201
|
Dean SO, Rogers SL, Stuurman N, Vale RD, Spudich JA. Distinct pathways control recruitment and maintenance of myosin II at the cleavage furrow during cytokinesis. Proc Natl Acad Sci U S A 2005; 102:13473-8. [PMID: 16174742 PMCID: PMC1200093 DOI: 10.1073/pnas.0506810102] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The correct localization of myosin II to the equatorial cortex is crucial for proper cell division. Here, we examine a collection of genes that cause defects in cytokinesis and reveal with live cell imaging two distinct phases of myosin II localization. Three genes in the rho1 signaling pathway, pebble (a Rho guanidine nucleotide exchange factor), rho1, and rho kinase, are required for the initial recruitment of myosin II to the equatorial cortex. This initial localization mechanism does not require F-actin or the two components of the centralspindlin complex, the mitotic kinesin pavarotti/MKLP1 and racGAP50c/CYK-4. However, F-actin, the centralspindlin complex, formin (diaphanous), and profilin (chickadee) are required to stably maintain myosin II at the furrow. In the absence of these latter genes, myosin II delocalizes from the equatorial cortex and undergoes highly dynamic appearances and disappearances around the entire cell cortex, sometimes associated with abnormal contractions or blebbing. Our findings support a model in which a rho kinase-dependent event, possibly myosin II regulatory light chain phosphorylation, is required for the initial recruitment to the furrow, whereas the assembly of parallel, unbranched actin filaments, generated by formin-mediated actin nucleation, is required for maintaining myosin II exclusively at the equatorial cortex.
Collapse
Affiliation(s)
- Sara O Dean
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
202
|
Lord M, Laves E, Pollard TD. Cytokinesis depends on the motor domains of myosin-II in fission yeast but not in budding yeast. Mol Biol Cell 2005; 16:5346-55. [PMID: 16148042 PMCID: PMC1266431 DOI: 10.1091/mbc.e05-07-0601] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Budding yeast possesses one myosin-II, Myo1p, whereas fission yeast has two, Myo2p and Myp2p, all of which contribute to cytokinesis. We find that chimeras consisting of Myo2p or Myp2p motor domains fused to the tail of Myo1p are fully functional in supporting budding yeast cytokinesis. Remarkably, the tail alone of budding yeast Myo1p localizes to the contractile ring, supporting both its constriction and cytokinesis. In contrast, fission yeast Myo2p and Myp2p require both the catalytic head domain as well as tail domains for function, with the tails providing distinct functions (Bezanilla and Pollard, 2000). Myo1p is the first example of a myosin whose cellular function does not require a catalytic motor domain revealing a novel mechanism of action for budding yeast myosin-II independent of actin binding and ATPase activity.
Collapse
Affiliation(s)
- Matthew Lord
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA
| | | | | |
Collapse
|
203
|
Luedeke C, Frei SB, Sbalzarini I, Schwarz H, Spang A, Barral Y. Septin-dependent compartmentalization of the endoplasmic reticulum during yeast polarized growth. ACTA ACUST UNITED AC 2005; 169:897-908. [PMID: 15967812 PMCID: PMC2171641 DOI: 10.1083/jcb.200412143] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Polarized cells frequently use diffusion barriers to separate plasma membrane domains. It is unknown whether diffusion barriers also compartmentalize intracellular organelles. We used photobleaching techniques to characterize protein diffusion in the yeast endoplasmic reticulum (ER). Although a soluble protein diffused rapidly throughout the ER lumen, diffusion of ER membrane proteins was restricted at the bud neck. Ultrastructural studies and fluorescence microscopy revealed the presence of a ring of smooth ER at the bud neck. This ER domain and the restriction of diffusion for ER membrane proteins through the bud neck depended on septin function. The membrane-associated protein Bud6 localized to the bud neck in a septin-dependent manner and was required to restrict the diffusion of ER membrane proteins. Our results indicate that Bud6 acts downstream of septins to assemble a fence in the ER membrane at the bud neck. Thus, in polarized yeast cells, diffusion barriers compartmentalize the ER and the plasma membrane along parallel lines.
Collapse
Affiliation(s)
- Cosima Luedeke
- Biology Department, Institute of Biochemistry, Swiss Federal Institute of Technology (ETH), ETH-Hönggerberg, 8093 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
204
|
Abstract
Cytokinesis in eukaryotes involves the regulated assembly and contraction of a ring comprising filamentous (F)-actin and myosin II. Assembly of the contractile ring occurs through the accumulation of cortical cues at the specified division plane, followed by recruitment of F-actin, myosin II and accessory proteins involved in generating the mature ring. Ring contraction is temporally regulated to occur only after chromosome segregation and, in yeast, it is controlled by a conserved signaling cascade that becomes active only after Cdk1-Cyclin-B inactivation. In this article (which is part of the Cytokinesis series), we discuss recent studies that have begun to clarify both the spatial and the temporal order of ring assembly and that have illuminated the signals that trigger ring contraction in yeast. These studies add to the growing knowledge of the processes that control eukaryotic cell division.
Collapse
Affiliation(s)
- Benjamin A Wolfe
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | |
Collapse
|
205
|
Shih JL, Reck-Peterson SL, Newitt R, Mooseker MS, Aebersold R, Herskowitz I. Cell polarity protein Spa2P associates with proteins involved in actin function in Saccharomyces cerevisiae. Mol Biol Cell 2005; 16:4595-608. [PMID: 16030260 PMCID: PMC1237067 DOI: 10.1091/mbc.e05-02-0108] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Spa2p is a nonessential protein that regulates yeast cell polarity. It localizes early to the presumptive bud site and remains at sites of growth throughout the cell cycle. To understand how Spa2p localization is regulated and to gain insight into its molecular function in cell polarity, we used a coimmunoprecipitation strategy followed by tandem mass spectrometry analysis to identify proteins that associate with Spa2p in vivo. We identified Myo1p, Myo2p, Pan1p, and the protein encoded by YFR016c as proteins that interact with Spa2p. Strikingly, all of these proteins are involved in cell polarity and/or actin function. Here we focus on the functional significance of the interactions of Spa2p with Myo2p and Myo1p. We find that localization of Spa2GFP to sites of polarized growth depends on functional Myo2p but not on Myo1p. We also find that Spa2p, like Myo2p, cosediments with F-actin in an ATP-sensitive manner. We hypothesize that Spa2p associates with actin via a direct or indirect interaction with Myo2p and that Spa2p may be involved in mediating polarized localization of polarity proteins via Myo2p. In addition, we observe an enhanced cell-separation defect in a myo1spa2 strain at 37 degrees C. This provides further evidence that Spa2p is involved in cytokinesis and cell wall morphogenesis.
Collapse
Affiliation(s)
- Judy L Shih
- Department of Biochemistry and Biophysics, University of California-San Francisco, San Francisco, CA 94143-2140, USA.
| | | | | | | | | | | |
Collapse
|
206
|
Abstract
At the end of nuclear division in the budding yeast, acto-myosin ring contraction and cytokinesis occur between mother and daughter cells. This is followed by cell separation, after which mother and daughter cells go their separate ways. While cell separation may be the last event that takes place between the two cells, it is nonetheless under tight regulation which ensures that both cells are viable upon separation. It is becoming increasingly clear that the components of the cell separation machinery are controlled at various levels, including the temporal and spatial regulation of the genes encoding for the components and the specific localization of the components to the neck. In addition, these regulatory controls are co-ordinated with exit from mitosis, thereby placing a mechanistic link between the end of mitosis and cell separation. More importantly, the success of the cell separation event is contingent upon the presence of a trilaminar septum, whose assembly is dependent on a host of proteins which localize to the neck over the span of one cell division cycle.
Collapse
Affiliation(s)
- Foong May Yeong
- Department of Biochemistry, National University of Singapore, MD 7, 8 Medical Drive, Singapore 117597.
| |
Collapse
|
207
|
Kanada M, Nagasaki A, Uyeda TQP. Adhesion-dependent and contractile ring-independent equatorial furrowing during cytokinesis in mammalian cells. Mol Biol Cell 2005; 16:3865-72. [PMID: 15944220 PMCID: PMC1182322 DOI: 10.1091/mbc.e05-03-0233] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Myosin II-dependent contraction of the contractile ring drives equatorial furrowing during cytokinesis in animal cells. Nonetheless, myosin II-null cells of the cellular slime mold Dictyostelium divide efficiently when adhering to substrates by making use of polar traction forces. Here, we show that in the presence of 30 microM blebbistatin, a potent myosin II inhibitor, normal rat kidney (NRK) cells adhering to fibronectin-coated surfaces formed equatorial furrows and divided in a manner strikingly similar to myosin II-null Dictyostelium cells. Such blebbistatin-resistant cytokinesis was absent in partially detached NRK cells and was disrupted in adherent cells if the advance of their polar lamellipodia was disturbed by neighboring cells. Y-27632 (40 microM), which inhibits Rho-kinase, was similar to 30 microM blebbistatin in that it inhibited cytokinesis of partially detached NRK cells but only prolonged furrow ingression in attached cells. In the presence of 100 microM blebbistatin, most NRK cells that initiated anaphase formed tight furrows, although scission never occurred. Adherent HT1080 fibrosarcoma cells also formed equatorial furrows efficiently in the presence of 100 microM blebbistatin. These results provide direct evidence for adhesion-dependent, contractile ring-independent equatorial furrowing in mammalian cells and demonstrate the importance of substrate adhesion for cytokinesis.
Collapse
Affiliation(s)
- Masamitsu Kanada
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | | | | |
Collapse
|
208
|
Ren G, Wang J, Brinkworth R, Winsor B, Kobe B, Munn AL. Verprolin Cytokinesis Function Mediated by the Hof One Trap Domain. Traffic 2005; 6:575-93. [PMID: 15941409 DOI: 10.1111/j.1600-0854.2005.00300.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In budding yeast, partitioning of the cytoplasm during cytokinesis can proceed via a pathway dependent on the contractile actomyosin ring, as in other eukaryotes, or alternatively via a septum deposition pathway dependent on an SH3 domain protein, Hof1/Cyk2 (the yeast PSTPIP1 ortholog). In dividing yeast cells, Hof1 forms a ring at the bud neck distinct from the actomyosin ring, and this zone is active in septum deposition. We previously showed the yeast Wiskott-Aldrich syndrome protein (WASP)-interacting protein (WIP) ortholog, verprolin/Vrp1/End5, interacts with Hof1 and facilitates Hof1 recruitment to the bud neck. A Vrp1 fragment unable to interact with yeast WASP (Las17/Bee1), localize to the actin cytoskeleton or function in polarization of the cortical actin cytoskeleton nevertheless retains function in Hof1 recruitment and cytokinesis. Here, we show the ability of this Vrp1 fragment to bind the Hof1 SH3 domain via its Hof one trap (HOT) domain is critical for cytokinesis. The Vrp1 HOT domain consists of three tandem proline-rich motifs flanked by serines. Unexpectedly, the Hof1 SH3 domain itself is not required for cytokinesis and indeed appears to negatively regulate cytokinesis. The Vrp1 HOT domain promotes cytokinesis by binding to the Hof1 SH3 domain and counteracting its inhibitory effect.
Collapse
Affiliation(s)
- Gang Ren
- Laboratory of Yeast Cell Biology, Institute of Molecular and Cell Biology, A*STAR Biomedical Sciences Institutes, Singapore, 138673, Republic of Singapore
| | | | | | | | | | | |
Collapse
|
209
|
Kozubowski L, Larson JR, Tatchell K. Role of the septin ring in the asymmetric localization of proteins at the mother-bud neck in Saccharomyces cerevisiae. Mol Biol Cell 2005; 16:3455-66. [PMID: 15901837 DOI: 10.1091/mbc.e04-09-0764] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae, septins form a scaffold in the shape of a ring at the future budding site that rearranges into a collar at the mother-bud neck. Many proteins bind asymmetrically to the septin collar. We found that the protein Bni4-CFP was located on the exterior of the septin ring before budding and on the mother side of the collar after budding, whereas the protein kinase Kcc4-YFP was located on the interior of the septin ring before budding and moved into the bud during the formation of the septin collar. Unbudded cells treated with the actin inhibitor latrunculin-A assembled cortical caps of septins on which Bni4-CFP and Kcc4-YFP colocalized. Bni4-CFP and Kcc4-YFP also colocalized on cortical caps of septins found in strains deleted for the genes encoding the GTPase activating proteins of Cdc42 (RGA1, RGA2, and BEM3). However, Bni4-CFP and Kcc4-YFP were still partially separated in mutants (gin4, elm1, cla4, and cdc3-1) in which septin morphology was severely disrupted in other ways. These observations provide clues to the mechanisms for the asymmetric localization of septin-associated proteins.
Collapse
Affiliation(s)
- Lukasz Kozubowski
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | | | | |
Collapse
|
210
|
VerPlank L, Li R. Cell cycle-regulated trafficking of Chs2 controls actomyosin ring stability during cytokinesis. Mol Biol Cell 2005; 16:2529-43. [PMID: 15772160 PMCID: PMC1087255 DOI: 10.1091/mbc.e04-12-1090] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Revised: 02/07/2005] [Accepted: 03/02/2005] [Indexed: 01/01/2023] Open
Abstract
Cytokinesis requires the coordination of many cellular complexes, particularly those involved in the constriction and reconstruction of the plasma membrane in the cleavage furrow. We have investigated the regulation and function of vesicle transport and fusion during cytokinesis in budding yeast. By using time-lapse confocal microscopy, we show that post-Golgi vesicles, as well as the exocyst, a complex required for the tethering and fusion of these vesicles, localize to the bud neck at a precise time just before spindle disassembly and actomyosin ring contraction. Using mutants affecting cyclin degradation and the mitotic exit network, we found that targeted secretion, in contrast to contractile ring activation, requires cyclin degradation but not the mitotic exit network. Analysis of cells in late anaphase bearing exocyst and myosin V mutations show that both vesicle transport and fusion machineries are required for the completion of cytokinesis, but this is not due to a delay in mitotic exit or assembly of the contractile ring. Further investigation of the dynamics of contractile rings in exocyst mutants shows these cells may be able to initiate contraction but often fail to complete the contraction due to premature disassembly during the contraction phase. This phenotype led us to identify Chs2, a transmembrane protein targeted to the bud neck through the exocytic pathway, as necessary for actomyosin ring stability during contraction. Chs2, as the chitin synthase that produces the primary septum, thus couples the assembly of the extracellular matrix with the dynamics of the contractile ring during cytokinesis.
Collapse
Affiliation(s)
- Lynn VerPlank
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
211
|
Bouck DC, Bloom KS. The kinetochore protein Ndc10p is required for spindle stability and cytokinesis in yeast. Proc Natl Acad Sci U S A 2005; 102:5408-13. [PMID: 15809434 PMCID: PMC556225 DOI: 10.1073/pnas.0405925102] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The budding yeast kinetochore is comprised of >60 proteins and associates with 120 bp of centromeric (CEN) DNA. Kinetochore proteins are highly dynamic and exhibit programmed cell cycle changes in localization. The CEN-specific histone, Cse4p, is one of a few stable kinetochore components and remains associated with CEN DNA throughout mitosis. In contrast, several other kinetochore proteins have been observed along interpolar microtubules and at the midzone during anaphase. The inner kinetochore protein, Ndc10p, is enriched at the spindle midzone in late anaphase. We show that Ndc10p is transported to the plus-ends of interpolar microtubules at the midzone during anaphase, a process that requires survivin (Bir1p), a member of the aurora kinase (Ipl1p) complex, and Cdc14p phosphatase. In addition, Ndc10p is required for essential non-kinetochore processes during mitosis. Cells lacking functional Ndc10p show defects in spindle stability during anaphase and failure to split the septin ring during cytokinesis. This latter phenotype leads to a cell separation defect in ndc10-1 cells. We propose that Ndc10p plays a direct role in maintaining spindle stability during anaphase and coordinates the completion of cell division after chromosome segregation.
Collapse
Affiliation(s)
- David C Bouck
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
212
|
Suda A, Kusama-Eguchi K, Ogawa Y, Watanabe K. Novel actin ring structure in sporulation of Zygosaccharomyces rouxii. MYCOSCIENCE 2005. [DOI: 10.1007/s10267-004-0216-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
213
|
Janetopoulos C, Borleis J, Vazquez F, Iijima M, Devreotes P. Temporal and Spatial Regulation of Phosphoinositide Signaling Mediates Cytokinesis. Dev Cell 2005; 8:467-77. [PMID: 15809030 DOI: 10.1016/j.devcel.2005.02.010] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Revised: 01/12/2005] [Accepted: 02/22/2005] [Indexed: 01/11/2023]
Abstract
Polarity is a prominent feature of both chemotaxis and cytokinesis. In chemotaxis, polarity is established by local accumulation of PI(3,4,5)P3 at the cell's leading edge, achieved through temporal and spatial regulation of PI3 kinases and the tumor suppressor, PTEN. We find that as migrating D. discoideum cells round up to enter cytokinesis, PI(3,4,5)P3 signaling is uniformly suppressed. Then, as the spindle and cell elongate, PI3 kinases and PTEN move to and function at the poles and furrow, respectively. Cell lines lacking both of these enzymatic activities fail to modulate PI(3,4,5)P3 levels, are defective in cytokinesis, and cannot divide in suspension. The cells continue to grow and duplicate their nuclei, generating large multinucleate cells. Furrows that fail to ingress between nuclei are unable to stably accumulate myosin filaments or suppress actin-filled ruffles. We propose that phosphoinositide-linked circuits, similar to those that bring about asymmetry during cell migration, also regulate polarity in cytokinesis.
Collapse
Affiliation(s)
- Chris Janetopoulos
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
214
|
Kovar DR, Wu JQ, Pollard TD. Profilin-mediated competition between capping protein and formin Cdc12p during cytokinesis in fission yeast. Mol Biol Cell 2005; 16:2313-24. [PMID: 15743909 PMCID: PMC1087237 DOI: 10.1091/mbc.e04-09-0781] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Fission yeast capping protein SpCP is a heterodimer of two subunits (Acp1p and Acp2p) that binds actin filament barbed ends. Neither acp1 nor acp2 is required for viability, but cells lacking either or both subunits have cytokinesis defects under stressful conditions, including elevated temperature, osmotic stress, or in combination with numerous mild mutations in genes important for cytokinesis. Defects arise as the contractile ring constricts and disassembles, resulting in delays in cell separation. Genetic and biochemical interactions show that the cytokinesis formin Cdc12p competes with capping protein for actin filament barbed ends in cells. Deletion of acp2 partly suppresses cytokinesis defects in temperature-sensitive cdc12-112 cells and mild overexpression of capping protein kills cdc12-112 cells. Biochemically, profilin has opposite effects on filaments capped with Cdc12p and capping protein. Profilin depolymerizes actin filaments capped by capping protein but allows filaments capped by Cdc12p to grow at their barbed ends. Once associated with a barbed end, either Cdc12p or capping protein prevents the other from influencing polymerization at that end. Given that capping protein arrives at the division site 20 min later than Cdc12p, capping protein may slowly replace Cdc12p on filament barbed ends in preparation for filament disassembly during ring constriction.
Collapse
Affiliation(s)
- David R Kovar
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | | | |
Collapse
|
215
|
Norden C, Liakopoulos D, Barral Y. Dissection of septin actin interactions using actin overexpression in Saccharomyces cerevisiae. Mol Microbiol 2005; 53:469-83. [PMID: 15228528 DOI: 10.1111/j.1365-2958.2004.04148.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although many proteins can be overexpressed several fold without much effect on cell viability and morphology, some become toxic upon a slight increase in their intracellular level. This is particularly true for cytoskeletal proteins and has proven useful in the past for studying the cytoskeleton. In yeast, actin and tubulin are examples of proteins that cannot be overexpressed without affecting cell viability. Here, we have analysed the effect of actin overexpression in Saccharomyces cerevisiae. We show that actin overexpression interferes differently with distinct aspects of actin function. For example, two- to fourfold overexpression of actin did not affect the establishment of actin polarity, whereas it abrogated its maintenance. Also, actin structures that are barely visible in wild-type cells could be observed upon actin overexpression. This allowed us to identify a new ring-like actin structure genetically distinguishable from the actomyosin contractile ring. Formation of this actin structure upon actin overexpression was dependent on the septin cytoskeleton, the poorly understood cytokinetic protein Hof1 and the Arp2/3 complex. In contrast to the actomyosin ring, the ring formed upon actin overexpression required neither Myo1 nor formins for assembly. Therefore, we propose that Hof1 acts as a linker between actin and septins. Furthermore, we found that, in the absence of actin overexpression, a novel, Hof1-dependent actin belt is formed at the bud neck of anaphase cells. The physiological role of this belt might be related to that of the similar structure observed in dividing fission yeast.
Collapse
Affiliation(s)
- Caren Norden
- Institute of Biochemistry, Swiss Federal Institute of Technology, ETH-Hönggerberg, 8093 Zürich, Switzerland
| | | | | |
Collapse
|
216
|
Valouev IA, Urakov VN, Kochneva-Pervukhova NV, Smirnov VN, Ter-Avanesyan MD. Translation termination factors function outside of translation: yeast eRF1 interacts with myosin light chain, Mlc1p, to effect cytokinesis. Mol Microbiol 2005; 53:687-96. [PMID: 15228544 DOI: 10.1111/j.1365-2958.2004.04157.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The translation termination factor eRF1 recognizes stop codons at the A site of the ribosome and induces peptidyl-tRNA hydrolysis at the peptidyl transferase centre. Recent data show that, besides translation, yeast eRF1 is also involved in cell cycle regulation. To clarify the mechanisms of non-translational functions of eRF1, we performed a genetic screen for its novel partner proteins. This screen revealed the gene for myosin light chain, Mlc1p, acting as a dosage suppressor of a temperature-sensitive mutation in the SUP45 gene encoding eRF1. eRF1 and Mlc1p are able to interact with each other and, similarly to depletion of Mlc1p, mutations in the SUP45 gene may affect cytokinesis. Immunofluorescent staining performed to determine localization of Mlc1p has shown that the sup45 mutation, which arrests cytokinesis, redistributed Mlc1p, causing its disappearance from the bud tip and the bud neck. The data obtained demonstrate that yeast eRF1 has an important non-translational function effecting cytokinesis via interaction with Mlc1p.
Collapse
Affiliation(s)
- I A Valouev
- Institute of Experimental Cardiology, Cardiology Research Center, 3rd Cherepkovskaya Street 15A, 121552 Moscow, Russia
| | | | | | | | | |
Collapse
|
217
|
Fujita M, Yoko-o T, Okamoto M, Jigami Y. GPI7 Involved in Glycosylphosphatidylinositol Biosynthesis Is Essential for Yeast Cell Separation. J Biol Chem 2004; 279:51869-79. [PMID: 15452134 DOI: 10.1074/jbc.m405232200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GPI7 is involved in adding ethanolaminephosphate to the second mannose in the biosynthesis of glycosylphosphatidylinositol (GPI) in Saccharomyces cerevisiae. We isolated gpi7 mutants, which have defects in cell separation and a daughter cell-specific growth defect at the non-permissive temperature. WSC1, RHO2, ROM2, GFA1, and CDC5 genes were isolated as multicopy suppressors of gpi7-2 mutant. Multicopy suppressors could suppress the growth defect of gpi7 mutants but not the cell separation defect. Loss of function mutations of genes involved in the Cbk1p-Ace2p pathway, which activates the expression of daughter-specific genes for cell separation after cytokinesis, bypassed the temperature-sensitive growth defect of gpi7 mutants. Furthermore, deletion of EGT2, one of the genes controlled by Ace2p and encoding a GPI-anchored protein required for cell separation, ameliorated the temperature sensitivity of the gpi7 mutant. In this mutant, Egt2p was displaced from the septal region to the cell cortex, indicating that GPI7 plays an important role in cell separation via the GPI-based modification of daughter-specific proteins in S. cerevisiae.
Collapse
Affiliation(s)
- Morihisa Fujita
- Research Center for Glycoscience, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8566, Japan
| | | | | | | |
Collapse
|
218
|
Kim DS, Hubbard SL, Peraud A, Salhia B, Sakai K, Rutka JT. Analysis of mammalian septin expression in human malignant brain tumors. Neoplasia 2004; 6:168-78. [PMID: 15140406 PMCID: PMC1502092 DOI: 10.1593/neo.03310] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Septins are a highly conserved subfamily of GTPases that play an important role in the process of cytokinesis. To increase our understanding of the expression and localization of the different mammalian septins in human brain tumors, we used antibodies against septins 2, 3, 4, 5, 6, 7, 9, and 11 in immunofluorescence and Western blot analyses of astrocytomas and medulloblastomas. We then characterized the expression and subcellular distribution of the SEPT2 protein in aphidicolin-synchronized U373 MG astrocytoma cells by immunofluorescence and fluorescence-activated cell sorter analysis. To determine the role of SEPT2 in astrocytoma cytokinesis, we inducibly expressed a dominant-negative (DN) SEPT2 mutant in U373 MG astrocytoma cells. We show variable levels and expression patterns of the different septins in brain tissue, brain tumor specimens, and human brain tumor cell lines. SEPT2 was abundantly expressed in all brain tumor samples and cell lines studied. SEPT3 was expressed in medulloblastoma specimens and cell lines, but not in astrocytoma specimens or cell lines. SEPT2 expression was cell cycle-related, with maximal levels in G2-M. Immunocytochemical analysis showed endogenous levels of the different septins within the perinuclear and peripheral cytoplasmic regions. In mitosis, SEPT2 was concentrated at the cleavage furrow. By immunocytochemistry and flow cytometry, we show that a DN SEPT2 mutant inhibits the completion of cell division and results in the accumulation of multinucleated cells. These results suggest that septins are variably expressed in human brain tumors. Stable expression of the DN SEPT2 mutant leads to a G2-M cell cycle block in astrocytoma cells.
Collapse
Affiliation(s)
- Dong-Seok Kim
- The Arthur and Sonia Labatt Brain Tumor Research Centre and Division of Neurosurgery, The Hospital for Sick Children, The University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
219
|
Pruyne D, Gao L, Bi E, Bretscher A. Stable and dynamic axes of polarity use distinct formin isoforms in budding yeast. Mol Biol Cell 2004; 15:4971-89. [PMID: 15371545 PMCID: PMC524755 DOI: 10.1091/mbc.e04-04-0296] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Bud growth in yeast is guided by myosin-driven delivery of secretory vesicles from the mother cell to the bud. We find transport occurs along two sets of actin cables assembled by two formin isoforms. The Bnr1p formin assembles cables that radiate from the bud neck into the mother, providing a stable mother-bud axis. These cables also depend on septins at the neck and are required for efficient transport from the mother to the bud. The Bni1p formin assembles cables that line the bud cortex and target vesicles to varying locations in the bud. Loss of these cables results in morphological defects as vesicles accumulate at the neck. Assembly of these cables depends on continued polarized secretion, suggesting vesicular transport provides a positive feedback signal for Bni1p activation, possibly by rho-proteins. By coupling different formin isoforms to unique cortical landmarks, yeast uses common cytoskeletal elements to maintain stable and dynamic axes in the same cell.
Collapse
Affiliation(s)
- David Pruyne
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703, USA
| | | | | | | |
Collapse
|
220
|
Kadota J, Yamamoto T, Yoshiuchi S, Bi E, Tanaka K. Septin ring assembly requires concerted action of polarisome components, a PAK kinase Cla4p, and the actin cytoskeleton in Saccharomyces cerevisiae. Mol Biol Cell 2004; 15:5329-45. [PMID: 15371547 PMCID: PMC532014 DOI: 10.1091/mbc.e04-03-0254] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Septins are filament-forming proteins that function in cytokinesis in a wide variety of organisms. In budding yeast, the small GTPase Cdc42p triggers the recruitment of septins to the incipient budding site and the assembly of septins into a ring. We herein report that Bni1p and Cla4p, effectors of Cdc42p, are required for the assembly of the septin ring during the initiation of budding but not for its maintenance after the ring converts to a septin collar. In bni1Delta cla4-75-td mutant, septins were recruited to the incipient budding site. However, the septin ring was not assembled, and septins remained at the polarized growing sites. Bni1p, a formin family protein, is a member of the polarisome complex with Spa2p, Bud6p, and Pea2p. All spa2Delta cla4-75-td, bud6Delta cla4-75-td, and pea2Delta cla4-75-td mutants showed defects in septin ring assembly. Bni1p stimulates actin polymerization for the formation of actin cables. Point mutants of BNI1 that are specifically defective in actin cable formation also exhibited septin ring assembly defects in the absence of Cla4p. Consistently, treatment of cla4Delta mutant with the actin inhibitor latrunculin A inhibited septin ring assembly. Our results suggest that polarisome components and Cla4p are required for the initial assembly of the septin ring and that the actin cytoskeleton is involved in this process.
Collapse
Affiliation(s)
- Jun Kadota
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Medicine, N15 W7, Kita-ku, Sapporo, 060-0815, Japan
| | | | | | | | | |
Collapse
|
221
|
Motegi F, Mishra M, Balasubramanian MK, Mabuchi I. Myosin-II reorganization during mitosis is controlled temporally by its dephosphorylation and spatially by Mid1 in fission yeast. ACTA ACUST UNITED AC 2004; 165:685-95. [PMID: 15184401 PMCID: PMC2172373 DOI: 10.1083/jcb.200402097] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Cytokinesis in many eukaryotes requires an actomyosin contractile ring. Here, we show that in fission yeast the myosin-II heavy chain Myo2 initially accumulates at the division site via its COOH-terminal 134 amino acids independently of F-actin. The COOH-terminal region can access to the division site at early G2, whereas intact Myo2 does so at early mitosis. Ser1444 in the Myo2 COOH-terminal region is a phosphorylation site that is dephosphorylated during early mitosis. Myo2 S1444A prematurely accumulates at the future division site and promotes formation of an F-actin ring even during interphase. The accumulation of Myo2 requires the anillin homologue Mid1 that functions in proper ring placement. Myo2 interacts with Mid1 in cell lysates, and this interaction is inhibited by an S1444D mutation in Myo2. Our results suggest that dephosphorylation of Myo2 liberates the COOH-terminal region from an intramolecular inhibition. Subsequently, dephosphorylated Myo2 is anchored by Mid1 at the medial cortex and promotes the ring assembly in cooperation with F-actin.
Collapse
Affiliation(s)
- Fumio Motegi
- Division of Biology, Department of Life Sciences, Graduate School of Arts and Science, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | | | | | | |
Collapse
|
222
|
Luo J, Vallen EA, Dravis C, Tcheperegine SE, Drees B, Bi E. Identification and functional analysis of the essential and regulatory light chains of the only type II myosin Myo1p in Saccharomyces cerevisiae. ACTA ACUST UNITED AC 2004; 165:843-55. [PMID: 15210731 PMCID: PMC2172396 DOI: 10.1083/jcb.200401040] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cytokinesis in Saccharomyces cerevisiae involves coordination between actomyosin ring contraction and septum formation and/or targeted membrane deposition. We show that Mlc1p, a light chain for Myo2p (type V myosin) and Iqg1p (IQGAP), is the essential light chain for Myo1p, the only type II myosin in S. cerevisiae. However, disruption or reduction of Mlc1p–Myo1p interaction by deleting the Mlc1p binding site on Myo1p or by a point mutation in MLC1, mlc1-93, did not cause any obvious defect in cytokinesis. In contrast, a different point mutation, mlc1-11, displayed defects in cytokinesis and in interactions with Myo2p and Iqg1p. These data suggest that the major function of the Mlc1p–Myo1p interaction is not to regulate Myo1p activity but that Mlc1p may interact with Myo1p, Iqg1p, and Myo2p to coordinate actin ring formation and targeted membrane deposition during cytokinesis. We also identify Mlc2p as the regulatory light chain for Myo1p and demonstrate its role in Myo1p ring disassembly, a function likely conserved among eukaryotes.
Collapse
Affiliation(s)
- Jianying Luo
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058, USA
| | | | | | | | | | | |
Collapse
|
223
|
Balasubramanian MK, Bi E, Glotzer M. Comparative Analysis of Cytokinesis in Budding Yeast, Fission Yeast and Animal Cells. Curr Biol 2004; 14:R806-18. [PMID: 15380095 DOI: 10.1016/j.cub.2004.09.022] [Citation(s) in RCA: 248] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cytokinesis is a temporally and spatially regulated process through which the cellular constituents of the mother cell are partitioned into two daughter cells, permitting an increase in cell number. When cytokinesis occurs in a polarized cell it can create daughters with distinct fates. In eukaryotes, cytokinesis is carried out by the coordinated action of a cortical actomyosin contractile ring and targeted membrane deposition. Recent use of model organisms with facile genetics and improved light-microscopy methods has led to the identification and functional characterization of many proteins involved in cytokinesis. To date, this analysis indicates that some of the basic components involved in cytokinesis are conserved from yeast to humans, although their organization into functional machinery that drives cytokinesis and the associated regulatory mechanisms bear species-specific features. Here, we briefly review the current status of knowledge of cytokinesis in the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe and animal cells, in an attempt to highlight both the common and the unique features. Although these organisms diverged from a common ancestor about a billion years ago, there are eukaryotes that are far more divergent. To evaluate the overall evolutionary conservation of cytokinesis, it will be necessary to include representatives of these divergent branches. Nevertheless, the three species discussed here provide substantial mechanistic diversity.
Collapse
|
224
|
Dobbelaere J, Barral Y. Spatial coordination of cytokinetic events by compartmentalization of the cell cortex. Science 2004; 305:393-6. [PMID: 15256669 DOI: 10.1126/science.1099892] [Citation(s) in RCA: 217] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
During cytokinesis, furrow ingression and plasma membrane fission irreversibly separate daughter cells. How actomyosin ring assembly and contraction, vesicle fusion, and abscission are spatially coordinated was unknown. We found that during cytokinesis septin rings, located on both sides of the actomyosin ring, acted as barriers to compartmentalize the cortex around the cleavage site. Compartmentalization maintained diffusible cortical factors, such as the exocyst and the polarizome, to the site of cleavage. In turn, such factors were required for actomyosin ring function and membrane abscission. Thus, a specialized cortical compartment ensures the spatial coordination of cytokinetic events.
Collapse
Affiliation(s)
- Jeroen Dobbelaere
- Institute of Biochemistry, Swiss Federal Institute of Technology, ETH-Hönggerberg, 8093 Zürich, Switzerland
| | | |
Collapse
|
225
|
Baluska F, Volkmann D, Barlow PW. Eukaryotic cells and their cell bodies: Cell Theory revised. ANNALS OF BOTANY 2004; 94:9-32. [PMID: 15155376 PMCID: PMC4242365 DOI: 10.1093/aob/mch109] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
BACKGROUND Cell Theory, also known as cell doctrine, states that all eukaryotic organisms are composed of cells, and that cells are the smallest independent units of life. This Cell Theory has been influential in shaping the biological sciences ever since, in 1838/1839, the botanist Matthias Schleiden and the zoologist Theodore Schwann stated the principle that cells represent the elements from which all plant and animal tissues are constructed. Some 20 years later, in a famous aphorism Omnis cellula e cellula, Rudolf Virchow annunciated that all cells arise only from pre-existing cells. General acceptance of Cell Theory was finally possible only when the cellular nature of brain tissues was confirmed at the end of the 20th century. Cell Theory then rapidly turned into a more dogmatic cell doctrine, and in this form survives up to the present day. In its current version, however, the generalized Cell Theory developed for both animals and plants is unable to accommodate the supracellular nature of higher plants, which is founded upon a super-symplasm of interconnected cells into which is woven apoplasm, symplasm and super-apoplasm. Furthermore, there are numerous examples of multinucleate coenocytes and syncytia found throughout the eukaryote superkingdom posing serious problems for the current version of Cell Theory. SCOPE To cope with these problems, we here review data which conform to the original proposal of Daniel Mazia that the eukaryotic cell is composed of an elemental Cell Body whose structure is smaller than the cell and which is endowed with all the basic attributes of a living entity. A complement to the Cell Body is the Cell Periphery Apparatus, which consists of the plasma membrane associated with other periphery structures. Importantly, boundary structures of the Cell Periphery Apparatus, although capable of some self-assembly, are largely produced and maintained by Cell Body activities and can be produced from it de novo. These boundary structures serve not only as mechanical support for the Cell Bodies but they also protect them from the hostile external environment and from inappropriate interactions with adjacent Cell Bodies within the organism. CONCLUSIONS From the evolutionary perspective, Cell Bodies of eukaryotes are proposed to represent vestiges of hypothetical, tubulin-based 'guest' proto-cells. After penetrating the equally hypothetical actin-based 'host' proto-cells, tubulin-based 'guests' became specialized for transcribing, storing and partitioning DNA molecules via the organization of microtubules. The Cell Periphery Apparatus, on the other hand, represents vestiges of the actin-based 'host' proto-cells which have become specialized for Cell Body protection, shape control, motility and for actin-mediated signalling across the plasma membrane.
Collapse
Affiliation(s)
- Frantisek Baluska
- Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53175 Bonn, Germany.
| | | | | |
Collapse
|
226
|
Cabib E. The septation apparatus, a chitin-requiring machine in budding yeast. Arch Biochem Biophys 2004; 426:201-7. [PMID: 15158670 DOI: 10.1016/j.abb.2004.02.030] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2003] [Revised: 02/17/2004] [Indexed: 11/29/2022]
Affiliation(s)
- Enrico Cabib
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health/DHHS, Bethesda, MD 20892, USA.
| |
Collapse
|
227
|
Molk JN, Schuyler SC, Liu JY, Evans JG, Salmon ED, Pellman D, Bloom K. The differential roles of budding yeast Tem1p, Cdc15p, and Bub2p protein dynamics in mitotic exit. Mol Biol Cell 2004; 15:1519-32. [PMID: 14718561 PMCID: PMC379252 DOI: 10.1091/mbc.e03-09-0708] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In the budding yeast Saccharomyces cerevisiae the mitotic spindle must be positioned along the mother-bud axis to activate the mitotic exit network (MEN) in anaphase. To examine MEN proteins during mitotic exit, we imaged the MEN activators Tem1p and Cdc15p and the MEN regulator Bub2p in vivo. Quantitative live cell fluorescence microscopy demonstrated the spindle pole body that segregated into the daughter cell (dSPB) signaled mitotic exit upon penetration into the bud. Activation of mitotic exit was associated with an increased abundance of Tem1p-GFP and the localization of Cdc15p-GFP on the dSPB. In contrast, Bub2p-GFP fluorescence intensity decreased in mid-to-late anaphase on the dSPB. Therefore, MEN protein localization fluctuates to switch from Bub2p inhibition of mitotic exit to Cdc15p activation of mitotic exit. The mechanism that elevates Tem1p-GFP abundance in anaphase is specific to dSPB penetration into the bud and Dhc1p and Lte1p promote Tem1p-GFP localization. Finally, fluorescence recovery after photobleaching (FRAP) measurements revealed Tem1p-GFP is dynamic at the dSPB in late anaphase. These data suggest spindle pole penetration into the bud activates mitotic exit, resulting in Tem1p and Cdc15p persistence at the dSPB to initiate the MEN signal cascade.
Collapse
Affiliation(s)
- Jeffrey N Molk
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | |
Collapse
|
228
|
Ufano S, Pablo ME, Calzada A, del Rey F, Vázquez de Aldana CR. Swm1p subunit of the APC/cyclosome is required for activation of the daughter-specific gene expression program mediated by Ace2p during growth at high temperature in Saccharomyces cerevisiae. J Cell Sci 2004; 117:545-57. [PMID: 14709718 DOI: 10.1242/jcs.00880] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SWM1 was originally identified for its role in the late steps of the sporulation process, being required for spore wall assembly. This protein, recently identified as one of the core subunits of the anaphase-promoting complex (APC) is also required to complete cell separation in vegetative cells during growth at high temperature. Mutants lacking SWM1 show a thermosensitive growth defect that is suppressed by osmotic support in the culture medium. At the restrictive temperature, swm1 mutants are unable to complete separation, forming chains of cells that remain associated and, with prolonged incubation times, the stability of the cell wall is compromised, resulting in cell lysis. This separation defect is due to a reduction in expression of CTS1 (the gene encoding chitinase) and a group of genes involved in cell separation (such as ENG1,SCW11, DSE1 and DSE2). Interestingly, these genes are specifically regulated by the transcription factor Ace2p, suggesting that Swm1p is required for normal expression of Ace2p-dependent genes during growth at high temperatures. Although no defect in Ace2p localization can be observed at 28 degrees C, this transcription factor is unable to enter the nucleus of the daughter cell during growth at 38 degrees C. Under these growth conditions, swm1 cells undergo a delay in exit from mitosis, as determined by analysis of Clb2p degradation and Cdc28p-Clb2p kinase assays, and this could be the reason for the cytoplasmic localization of Ace2p.
Collapse
Affiliation(s)
- Sandra Ufano
- Instituto de Microbiología-Bioquímica, Departamento de Microbiología y Genética, CSIC/Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | | | | | | | | |
Collapse
|
229
|
Uyeda TQP, Nagasaki A, Yumura S. Multiple Parallelisms in Animal Cytokinesis. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 240:377-432. [PMID: 15548417 DOI: 10.1016/s0074-7696(04)40004-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The process of cytokinesis in animal cells is usually presented as a relatively simple picture: A cleavage plane is first positioned in the equatorial region by the astral microtubules of the anaphase mitotic apparatus, and a contractile ring made up of parallel filaments of actin and myosin II is formed and encircles the cortex at the division site. Active sliding between the two filament systems constricts the perimeter of the cortex, leading to separation of two daughter cells. However, recent studies in both animal cells and lower eukaryotic model organisms have demonstrated that cytokinesis is actually far more complex. It is now obvious that the three key processes of cytokinesis, cleavage plane determination, equatorial furrowing, and scission, are driven by different mechanisms in different types of cells. In some cases, moreover, multiple pathways appear to have redundant functions in a single cell type. In this review, we present a novel hypothesis that incorporates recent observations on the activities of mitotic microtubules and the biochemistry of Rho-type GTPase proteins and postulates that two different sets of microtubules are responsible for the two known mechanisms of cleavage plane determination and also for two distinct mechanisms of equatorial furrowing.
Collapse
Affiliation(s)
- Taro Q P Uyeda
- Gene Function Research Center, National Institute for Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | | | | |
Collapse
|
230
|
Wu JQ, Kuhn JR, Kovar DR, Pollard TD. Spatial and temporal pathway for assembly and constriction of the contractile ring in fission yeast cytokinesis. Dev Cell 2003; 5:723-34. [PMID: 14602073 DOI: 10.1016/s1534-5807(03)00324-1] [Citation(s) in RCA: 325] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Microscopy of fluorescent fusion proteins and genetic dependencies show that fission yeast assemble and constrict a cytokinetic contractile ring in a precisely timed, sequential order. More than 90 min prior to separation of the spindle pole bodies (SPB), the anillin-like protein (Mid1p) migrates from the nucleus and specifies a broad band of cortex around the equator as the division site. Between 10 min before and 2 min after SPB separation, conventional myosin-II (Myo2p), IQGAP (Rng2p), PCH protein (Cdc15p), and formin (Cdc12p) join the broad band independent of actin filaments. Over the subsequent 10 min prior to anaphase B, this broad band of proteins condenses into a contractile ring including actin, tropomyosin (Cdc8p), and alpha-actinin (Ain1p). During anaphase B, unconventional myosin-II (Myp2p) joins the ring followed by the septin (Spn1p). Ring contraction and disassembly begin 37 min after SPB separation. This spatial and temporal hierarchy provides the framework for analysis of molecular mechanisms.
Collapse
Affiliation(s)
- Jian-Qiu Wu
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
231
|
Oeffinger M, Tollervey D. Yeast Nop15p is an RNA-binding protein required for pre-rRNA processing and cytokinesis. EMBO J 2003; 22:6573-83. [PMID: 14657029 PMCID: PMC291811 DOI: 10.1093/emboj/cdg616] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2003] [Revised: 10/13/2003] [Accepted: 10/17/2003] [Indexed: 11/13/2022] Open
Abstract
Nop15p is an essential protein that contains an RNA recognition motif (RRM) and localizes to the nucleoplasm and nucleolus. Cells depleted of Nop15p failed to synthesize the 25S and 5.8S rRNA components of the 60S ribosomal subunit, and exonucleolytic 5' processing of 5.8S rRNA was strongly inhibited. Pre-rRNAs co-precipitated with tagged Nop15p confirmed its association with early pre-60S particles and Nop15p bound a pre-rRNA transcript in vitro. Nop15p-depleted cells show an unusually abrupt growth arrest prior to substantial depletion of ribosomal subunits. Following cell synchronization in mitosis, Nop15p-depleted cells undergo nuclear division with wild-type kinetics, activate the mitotic exit network and disassemble their mitotic spindle. However, they uniformly arrest at cytokinesis and fail to assemble a contractile actin ring at the bud neck. In dividing wild-type cells, segregation of nucleolar proteins to the daughter nuclei occurs after separation of the nucleoplasm. In these late mitotic cells, Nop15p was partially delocalized from the nucleolus to the nucleoplasm, consistent with a specific function in cell division in addition to its role in ribosome synthesis.
Collapse
Affiliation(s)
- Marlene Oeffinger
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK.
| | | |
Collapse
|
232
|
Abstract
Cytokinesis is the ultimate step of a cell cycle resulting in the generation of two progeny. Failure of correct cell division may be lethal for both, mother and daughter cells, and thus such a process must be tightly regulated with other events of the cell cycle. Differing solutions to the same problem have been developed in bacteria and plants while cytokinesis in animal and fungal cells is highly similar and requires a contractile ring containing actomyosin. Cytokinesis in fungi can be viewed as a three-stage process: (i) selection of a division site, (ii) orderly assembly of protein complexes, and finally (iii) dynamic events that lead to a constriction of the contractile ring and septum construction. Elaborate mechanisms known as the Mitotic Exit Network (MEN) and the Septation Initiation Network (SIN) have evolved to link these events, particularly the final steps of cytokinesis, with nuclear division. The purpose of this review was to discuss the latest developments in the fungal field and to describe the central known players required for key steps on the road to cell division. Differences in the cytokinesis of yeast-like fungi that result in complete cell separation in contrast to septation which leads to the compartmentalization of fungal hyphae are highlighted.
Collapse
Affiliation(s)
- Andrea Walther
- Department of Microbiology, Hans-Knöll Institute, Friedrich-Schiller University Jena, Winzerlaer, Germany
| | | |
Collapse
|
233
|
Irazoqui JE, Gladfelter AS, Lew DJ. Scaffold-mediated symmetry breaking by Cdc42p. Nat Cell Biol 2003; 5:1062-70. [PMID: 14625559 DOI: 10.1038/ncb1068] [Citation(s) in RCA: 201] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2003] [Accepted: 10/23/2003] [Indexed: 01/26/2023]
Abstract
Cell polarization generally occurs along a single well-defined axis that is frequently determined by environmental cues such as chemoattractant gradients or cell-cell contacts, but polarization can also occur spontaneously in the apparent absence of such cues, through a process called symmetry breaking. In Saccharomyces cerevisiae, cells are born with positional landmarks that mark the poles of the cell and guide subsequent polarization and bud emergence to those sites, but cells lacking such landmarks polarize towards a random cortical site and proliferate normally. The landmarks employ a Ras-family GTPase, Rsr1p, to communicate with the conserved Rho-family GTPase Cdc42p, which is itself polarized and essential for cytoskeletal polarization. We found that yeast Cdc42p was effectively polarized to a single random cortical site even in the combined absence of landmarks, microtubules and microfilaments. Among a panel of Cdc42p effectors and interacting proteins, we found that the scaffold protein Bem1p was uniquely required for this symmetry-breaking behaviour. Moreover, polarization was dependent on GTP hydrolysis by Cdc42p, suggesting that assembly of a polarization site involves cycling of Cdc42p between GTP- and GDP-bound forms, rather than functioning as a simple on/off switch.
Collapse
Affiliation(s)
- Javier E Irazoqui
- Department of Pharmacology and Cancer Biology Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
234
|
Faix J. The actin-bundling protein cortexillin is the downstream target of a Rac1-signaling pathway required for cytokinesis. J Muscle Res Cell Motil 2003; 23:765-72. [PMID: 12952074 DOI: 10.1023/a:1024427712131] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
During the process of cytokinesis by which eukaryotic cells constrict and divide in two, multiple cellular activities have to be precisely coordinated in space and time to guarantee equal distribution of chromosomes and cytoplasm to the emerging daughter cells. Eventually, constriction of the cleavage furrow leads to the complete separation of the daughter cells. Since the basic observation of cell division some 100 years ago, the principal challenge has been to unravel the detailed molecular mechanisms and signaling events leading to cytokinesis. Regulation of this fundamental cellular process is still poorly understood yet a central issue in modern cell biology. In the recent past it became evident that small GTPases of the Ras super family play a major role during this process. This review is focused on a Rho family GTPase-mediated signaling pathway that is required for cleavage furrow assembly and cytokinesis by the actin-bundling protein cortexillin of D. discoideum cells.
Collapse
Affiliation(s)
- J Faix
- A. Butenandt-Institut für Zellbiologie, Ludwig-Maximilians-Universität München, Schillerstrasse 42, 80336 München, Germany.
| |
Collapse
|
235
|
Caviston JP, Longtine M, Pringle JR, Bi E. The role of Cdc42p GTPase-activating proteins in assembly of the septin ring in yeast. Mol Biol Cell 2003; 14:4051-66. [PMID: 14517318 PMCID: PMC206999 DOI: 10.1091/mbc.e03-04-0247] [Citation(s) in RCA: 196] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The septins are a conserved family of GTP-binding, filament-forming proteins. In the yeast Saccharomyces cerevisiae, the septins form a ring at the mother-bud neck that appears to function primarily by serving as a scaffold for the recruitment of other proteins to the neck, where they participate in cytokinesis and a variety of other processes. Formation of the septin ring depends on the Rho-type GTPase Cdc42p but appears to be independent of the actin cytoskeleton. In this study, we investigated further the mechanisms of septin-ring formation. Fluorescence-recovery-after-photobleaching (FRAP) experiments indicated that the initial septin structure at the presumptive bud site is labile (exchanges subunits freely) but that it is converted into a stable ring as the bud emerges. Mutants carrying the cdc42V36G allele or lacking two or all three of the known Cdc42p GTPase-activating proteins (GAPs: Bem3p, Rga1p, and Rga2p) could recruit the septins to the cell cortex but were blocked or delayed in forming a normal septin ring and had accompanying morphogenetic defects. These phenotypes were dramatically enhanced in mutants that were also defective in Cla4p or Gin4p, two protein kinases previously shown to be important for normal septin-ring formation. The Cdc42p GAPs colocalized with the septins both early and late in the cell cycle, and overexpression of the GAPs could suppress the septin-organization and morphogenetic defects of temperature-sensitive septin mutants. Taken together, the data suggest that formation of the mature septin ring is a process that consists of at least two distinguishable steps, recruitment of the septin proteins to the presumptive bud site and their assembly into the stable septin ring. Both steps appear to depend on Cdc42p, whereas the Cdc42p GAPs and the other proteins known to promote normal septin-ring formation appear to function in a partially redundant manner in the assembly step. In addition, because the eventual formation of a normal septin ring in a cdc42V36G or GAP mutant was invariably accompanied by a switch from an abnormally elongated to a more normal bud morphology distal to the ring, it appears that the septin ring plays a direct role in determining the pattern of bud growth.
Collapse
Affiliation(s)
- Juliane P Caviston
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6058, USA
| | | | | | | |
Collapse
|
236
|
Abstract
Septins are a conserved eukaryotic family of GTP-binding filament-forming proteins with functions in cytokinesis and other processes. In the budding yeast Saccharomyces cerevisiae, septins initially localize to the presumptive bud site and then to the cortex of the mother-bud neck as an hourglass structure. During cytokinesis, the septin hourglass splits and single septin rings partition with each of the resulting cells. Septins are thought to function in diverse processes in S. cerevisiae, mainly by acting as a scaffold to direct the neck localization of septin-associated proteins.
Collapse
Affiliation(s)
- Mark S Longtine
- Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74075-3035, USA
| | | |
Collapse
|
237
|
Yuzyuk T, Amberg DC. Actin recovery and bud emergence in osmotically stressed cells requires the conserved actin interacting mitogen-activated protein kinase kinase kinase Ssk2p/MTK1 and the scaffold protein Spa2p. Mol Biol Cell 2003; 14:3013-26. [PMID: 12857882 PMCID: PMC165694 DOI: 10.1091/mbc.e02-11-0747] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Osmotic stress causes actin cytoskeleton disassembly, a cell cycle arrest, and activation of the high osmolarity growth mitogen-activated protein kinase pathway. A previous study showed that Ssk2p, a mitogen-activated protein kinase kinase kinase of the high osmolarity growth pathway, promotes actin cytoskeleton recovery to the neck of late cell cycle, osmotically stressed yeast cells. Data presented herein examined the role of Ssk2p in actin recovery early in the cell cycle. We found that actin recovery at all stages of the cell cycle is not controlled by Ssk1p, the known activator of Ssk2p, but required a polarized distribution of Ssk2p as well as its actin-interacting and kinase activity. Stress-induced localization of Ssk2p to the neck required the septin Shs1p, whereas localization to the bud cortex depended on the polarity scaffold protein Spa2p. spa2delta cells, like ssk2delta cells, were defective for actin recovery from osmotic stress. These spa2delta defects could be suppressed by overexpression of catalytically active Ssk2p. Furthermore, Spa2p could be precipitated by GST-Ssk2p from extracts of osmotically stressed cells. The Ssk2p mediated actin recovery pathway seems to be conserved; MTK1, a human mitogen-activated protein kinase kinase kinase of the p38 stress response pathway and Ssk2p homolog, was also able to localize at polarized growth sites, form a complex with actin and Spa2p, and complement actin recovery defects in osmotically stressed ssk2delta and spa2delta yeast cells. We hypothesize that osmotic stress-induced actin disassembly leads to the formation of an Ssk2p-actin complex and the polarized localization of Ssk2p. Polarized Ssk2p associates with the scaffold protein Spa2p in the bud and Shs1p in the neck, allowing Ssk2p to regulate substrates involved in polarized actin assembly.
Collapse
Affiliation(s)
- Tatiana Yuzyuk
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York 13210, USA
| | | |
Collapse
|
238
|
Toi H, Fujimura-Kamada K, Irie K, Takai Y, Todo S, Tanaka K. She4p/Dim1p interacts with the motor domain of unconventional myosins in the budding yeast, Saccharomyces cerevisiae. Mol Biol Cell 2003; 14:2237-49. [PMID: 12808026 PMCID: PMC194874 DOI: 10.1091/mbc.e02-09-0616] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
She4p/Dim1p, a member of the UNC-45/CRO1/She4p (UCS) domain-containing protein family, is required for endocytosis, polarization of actin cytoskeleton, and polarization of ASH1 mRNA in Saccharomyces cerevisiae. We show herein that She4p/Dim1p is involved in endocytosis and actin polarization through interactions with the type I myosins Myo3p and Myo5p. Two-hybrid and biochemical experiments showed that She4p/Dim1p interacts with the motor domain of Myo3/5p through its UCS domain. She4p/Dim1p was required for Myo5p localization to cortical patch-like structures. Using random mutagenesis of the motor region of MYO5, we identified four independent dominant point mutations that suppress the temperature-sensitive growth phenotype of the she4/dim1 null mutant. All of the amino acid substitutions caused by these mutations, V164I, N168I, N209S, and K377M, could suppress the defects of endocytosis and actin polarization of the she4/dim1 mutant as well. She4p/Dim1p also showed two-hybrid interactions with the motor domain of a type II myosin Myo1p and type V myosins Myo2p and Myo4p, and was required for proper localization of Myo4p, which regulates polarization of ASH1 mRNA. Our results suggest that She4p/Dim1p is required for structural integrity or regulation of the motor domain of unconventional myosins.
Collapse
Affiliation(s)
- Hirofumi Toi
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
239
|
Chiroli E, Fraschini R, Beretta A, Tonelli M, Lucchini G, Piatti S. Budding yeast PAK kinases regulate mitotic exit by two different mechanisms. J Cell Biol 2003; 160:857-74. [PMID: 12642613 PMCID: PMC2173773 DOI: 10.1083/jcb.200209097] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We report the characterization of the dominant-negative CLA4t allele of the budding yeast CLA4 gene, encoding a member of the p21-activated kinase (PAK) family of protein kinases, which, together with its homologue STE20, plays an essential role in promoting budding and cytokinesis. Overproduction of the Cla4t protein likely inhibits both endogenous Cla4 and Ste20 and causes a delay in the onset of anaphase that correlates with inactivation of Cdc20/anaphase-promoting complex (APC)-dependent proteolysis of both the cyclinB Clb2 and securin. Although the precise mechanism of APC inhibition by Cla4t remains to be elucidated, our results suggest that Cla4 and Ste20 may regulate the first wave of cyclinB proteolysis mediated by Cdc20/APC, which has been shown to be crucial for activation of the mitotic exit network (MEN). We show that the Cdk1-inhibitory kinase Swe1 is required for the Cla4t-dependent delay in cell cycle progression, suggesting that it might be required to prevent full Cdc20/APC and MEN activation. In addition, inhibition of PAK kinases by Cla4t prevents mitotic exit also by a Swe1-independent mechanism impinging directly on the MEN activator Tem1.
Collapse
Affiliation(s)
- Elena Chiroli
- Dipartimento di Biotecnologie e Bioscienze, Piazza della Scienza 2, 20126 Milano, Italy
| | | | | | | | | | | |
Collapse
|
240
|
Dobbelaere J, Gentry MS, Hallberg RL, Barral Y. Phosphorylation-dependent regulation of septin dynamics during the cell cycle. Dev Cell 2003; 4:345-57. [PMID: 12636916 DOI: 10.1016/s1534-5807(03)00061-3] [Citation(s) in RCA: 200] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Septins are GTPases involved in cytokinesis. In yeast, they form a ring at the cleavage site. Using FRAP, we show that septins are mobile within the ring at bud emergence and telophase and are immobile during S, G2, and M phases. Immobilization of the septins is dependent on both Cla4, a PAK-like kinase, and Gin4, a septin-dependent kinase that can phosphorylate the septin Shs1/Sep7. Induction of septin ring dynamics in telophase is triggered by the translocation of Rts1, a kinetochore-associated regulatory subunit of PP2A phosphatase, to the bud neck and correlates with Rts1-dependent dephosphorylation of Shs1. In rts1-Delta cells, the actomyosin ring contracts properly but cytokinesis fails. Together our results implicate septins in a late step of cytokinesis and indicate that proper regulation of septin dynamics, possibly through the control of their phosphorylation state, is required for the completion of cytokinesis.
Collapse
Affiliation(s)
- Jeroen Dobbelaere
- Institute of Biochemistry, Swiss Federal Institute of Technology, ETH-Hönggerberg, CH-8093, Zürich, Switzerland
| | | | | | | |
Collapse
|
241
|
Mulvihill DP, Hyams JS. Role of the two type II myosins, Myo2 and Myp2, in cytokinetic actomyosin ring formation and function in fission yeast. CELL MOTILITY AND THE CYTOSKELETON 2003; 54:208-16. [PMID: 12589679 DOI: 10.1002/cm.10093] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The formation and contraction of a cytokinetic actomyosin ring (CAR) is essential for the execution of cytokinesis in fission yeast. Unlike most organisms in which its composition has been investigated, the fission yeast CAR contains two type II myosins encoded by the genes myo2(+) and myp2(+). myo2(+) is an essential gene whilst myp2(+) is dispensable under normal growth conditions. Myo2 is hence the major contractile protein of the CAR whilst Myp2 plays a more subtle and, as yet, incompletely documented role. Using a fission yeast strain in which the chromosomal copy of the myo2(+) gene is fused to the gene encoding green fluorescent protein (GFP), we analysed CAR formation and function in the presence and absence of Myp2. No change in the rate of CAR contraction was observed when Myp2 was absent although the CAR persisted longer in the contracted state and was occasionally observed to split into two discrete rings. This was also observed in myp2Delta cells following actin depolymerisation with latrunculin. CAR contraction in the absence of Myp2 was completely abolished in the presence of elevated levels of chloride ions. Thus, Myp2 appears to contribute to the stability of the CAR, in particular at a late stage of CAR contraction, and to be a component of the signalling pathway that regulates cytokinesis in response to elevated levels of chloride. To determine whether the presence of two type II myosins was a feature of cytokinesis in other fungi that divide by septation, we searched the genomes of two filamentous fungi, Aspergillus fumigatus and Neurospora crassa, for myosin genes. As in fission yeast, both A. fumigatus and N. crassa contained myosins of classes I, II, and V. Unlike fission yeast, both contained a single type II myosin gene that, on the basis of its tail structure, was more reminiscent of Myp2 than Myo2. The significance of these observations to our understanding of septum to formation and cleavage is discussed.
Collapse
Affiliation(s)
- Daniel P Mulvihill
- Department of Biology, University College London, London, United Kingdom
| | | |
Collapse
|
242
|
Tolliday N, Pitcher M, Li R. Direct evidence for a critical role of myosin II in budding yeast cytokinesis and the evolvability of new cytokinetic mechanisms in the absence of myosin II. Mol Biol Cell 2003; 14:798-809. [PMID: 12589071 PMCID: PMC150009 DOI: 10.1091/mbc.e02-09-0558] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In the budding yeast Saccharomyces cerevisiae, an actomyosin-based contractile ring is present during cytokinesis, as occurs in animal cells. However, the precise requirement for this structure during budding yeast cytokinesis has been controversial. Here we show that deletion of MYO1, the single myosin II gene, is lethal in a commonly used strain background. The terminal phenotype of myo1Delta is interconnected chains of cells, suggestive of a cytokinesis defect. To further investigate the role of Myo1p in cytokinesis, we conditionally disrupted Myo1 function by using either a dominant negative Myo1p construct or a strain where expression of Myo1p can be shut-off. Both ways of disruption of Myo1 function result in a failure in cytokinesis. Additionally, we show that a myo1Delta strain previously reported to grow nearly as well as the wild type contains a single genetic suppressor that alleviates the severe cytokinesis defects of myo1Delta. Using fluorescence time-lapse imaging and electron microscopy techniques, we show that cytokinesis in this strain is achieved through formation of multiple aberrant septa. Taken together, these results strongly suggest that the actomyosin ring is crucial for successful cytokinesis in budding yeast, but new cytokinetic mechanisms can evolve through genetic changes when myosin II function is impaired.
Collapse
Affiliation(s)
- Nicola Tolliday
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
243
|
Park CJ, Song S, Lee PR, Shou W, Deshaies RJ, Lee KS. Loss of CDC5 function in Saccharomyces cerevisiae leads to defects in Swe1p regulation and Bfa1p/Bub2p-independent cytokinesis. Genetics 2003; 163:21-33. [PMID: 12586693 PMCID: PMC1462412 DOI: 10.1093/genetics/163.1.21] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In many organisms, polo kinases appear to play multiple roles during M-phase progression. To provide new insights into the function of budding yeast polo kinase Cdc5p, we generated novel temperature-sensitive cdc5 mutants by mutagenizing the C-terminal domain. Here we show that, at a semipermissive temperature, the cdc5-3 mutant exhibited a synergistic bud elongation and growth defect with loss of HSL1, a component important for normal G(2)/M transition. Loss of SWE1, which phosphorylates and inactivates the budding yeast Cdk1 homolog Cdc28p, suppressed the cdc5-3 hsl1Delta defect, suggesting that Cdc5p functions at a point upstream of Swe1p. In addition, the cdc5-4 and cdc5-7 mutants exhibited chained cell morphologies with shared cytoplasms between the connected cell bodies, indicating a cytokinetic defect. Close examination of these mutants revealed delayed septin assembly at the incipient bud site and loosely organized septin rings at the mother-bud neck. Components in the mitotic exit network (MEN) play important roles in normal cytokinesis. However, loss of BFA1 or BUB2, negative regulators of the MEN, failed to remedy the cytokinetic defect of these mutants, indicating that Cdc5p promotes cytokinesis independently of Bfa1p and Bub2p. Thus, Cdc5p contributes to the activation of the Swe1p-dependent Cdc28p/Clb pathway, normal septin function, and cytokinesis.
Collapse
Affiliation(s)
- Chong Jin Park
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
244
|
Abstract
Although cytokinesis was first described in the 1830s, the molecular events underlying this key cellular process remain elusive. New results reveal a role for actin polymerization, the small GTPase Rho and formins in cytokinetic ring assembly.
Collapse
Affiliation(s)
- Thomas M Huckaba
- Department of Anatomy and Cell Biology, Columbia University P&S 12-425, 630 West 168th Street, New York, New York 10032, USA
| | | |
Collapse
|
245
|
Wagner W, Bielli P, Wacha S, Ragnini-Wilson A. Mlc1p promotes septum closure during cytokinesis via the IQ motifs of the vesicle motor Myo2p. EMBO J 2002; 21:6397-408. [PMID: 12456647 PMCID: PMC136954 DOI: 10.1093/emboj/cdf650] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Little is known about the molecular machinery that directs secretory vesicles to the site of cell separation during cytokinesis. We show that in Saccharomyces cerevisiae, the class V myosin Myo2p and the Rab/Ypt Sec4p, that are required for vesicle polarization processes at all stages of the cell cycle, form a complex with each other and with a myosin light chain, Mlc1p, that is required for actomyosin ring assembly and cytokinesis. Mlc1p travels on secretory vesicles and forms a complex(es) with Myo2p and/or Sec4p. Its functional interaction with Myo2p is essential during cytokinesis to target secretory vesicles to fill the mother bud neck. The role of Mlc1p in actomyosin ring assembly instead is dispensable for this process. Therefore, in yeast, as recently shown in mammals, class V myosins associate with vesicles via the formation of a complex with Rab/Ypt proteins. Further more, myosin light chains, via their ability to be transported by secretory vesicles and to interact with class V myosin IQ motifs, can regulate vesicle polarization processes at a specific location and stage of the cell cycle.
Collapse
Affiliation(s)
- Wolfgang Wagner
- Institute of Microbiology and Genetics, Vienna Biocenter, University of Vienna, Dr Bohrgasse 9, A-1030 Vienna, Austria and Department of Biology, University of ‘Tor Vergata’ Rome, Viale Della Ricerca Scientifica, I-00133 Roma, Italy Present address: Friedrich Miescher Institute for Biomedical Research, Maulbeerstraße 66, CH-4058 Basel, Switzerland Corresponding author e-mail:
| | - Pamela Bielli
- Institute of Microbiology and Genetics, Vienna Biocenter, University of Vienna, Dr Bohrgasse 9, A-1030 Vienna, Austria and Department of Biology, University of ‘Tor Vergata’ Rome, Viale Della Ricerca Scientifica, I-00133 Roma, Italy Present address: Friedrich Miescher Institute for Biomedical Research, Maulbeerstraße 66, CH-4058 Basel, Switzerland Corresponding author e-mail:
| | - Stefan Wacha
- Institute of Microbiology and Genetics, Vienna Biocenter, University of Vienna, Dr Bohrgasse 9, A-1030 Vienna, Austria and Department of Biology, University of ‘Tor Vergata’ Rome, Viale Della Ricerca Scientifica, I-00133 Roma, Italy Present address: Friedrich Miescher Institute for Biomedical Research, Maulbeerstraße 66, CH-4058 Basel, Switzerland Corresponding author e-mail:
| | - Antonella Ragnini-Wilson
- Institute of Microbiology and Genetics, Vienna Biocenter, University of Vienna, Dr Bohrgasse 9, A-1030 Vienna, Austria and Department of Biology, University of ‘Tor Vergata’ Rome, Viale Della Ricerca Scientifica, I-00133 Roma, Italy Present address: Friedrich Miescher Institute for Biomedical Research, Maulbeerstraße 66, CH-4058 Basel, Switzerland Corresponding author e-mail:
| |
Collapse
|
246
|
Osman MA, Konopka JB, Cerione RA. Iqg1p links spatial and secretion landmarks to polarity and cytokinesis. J Cell Biol 2002; 159:601-11. [PMID: 12446742 PMCID: PMC2173104 DOI: 10.1083/jcb.200205084] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2002] [Revised: 10/16/2002] [Accepted: 10/21/2002] [Indexed: 11/22/2022] Open
Abstract
Cytokinesis requires the polarization of the actin cytoskeleton, the secretion machinery, and the correct positioning of the division axis. Budding yeast cells commit to their cytokinesis plane by choosing a bud site and polarizing their growth. Iqg1p (Cyk1p) was previously implicated in cytokinesis (Epp and Chant, 1997; Lippincott and Li, 1998; Osman and Cerione, 1998), as well as in the establishment of polarity and protein trafficking (Osman and Cerione, 1998). To better understand how Iqg1p influences these processes, we performed a two-hybrid screen and identified the spatial landmark Bud4p as a binding partner. Iqg1p can be coimmunoprecipitated with Bud4p, and Bud4p requires Iqg1p for its proper localization. Iqg1p also appears to specify axial bud-site selection and mediates the proper localization of the septin, Cdc12p, as well as binds and helps localize the secretion landmark, Sec3p. The double mutants iqg1Deltasec3Delta and bud4Deltasec3Delta display defects in polarity, budding pattern and cytokinesis, and electron microscopic studies reveal that these cells have aberrant septal deposition. Taken together, these findings suggest that Iqg1p recruits landmark proteins to form a targeting patch that coordinates axial budding with cytokinesis.
Collapse
Affiliation(s)
- Mahasin A Osman
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
247
|
Tolliday N, VerPlank L, Li R. Rho1 directs formin-mediated actin ring assembly during budding yeast cytokinesis. Curr Biol 2002; 12:1864-70. [PMID: 12419188 DOI: 10.1016/s0960-9822(02)01238-1] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In eukaryotic cells, dynamic rearrangement of the actin cytoskeleton is critical for cell division. In the yeast Saccharomyces cerevisiae, three main structures constitute the actin cytoskeleton: cortical actin patches, cytoplasmic actin cables, and the actin-based cytokinetic ring. The conserved Arp2/3 complex and a WASP-family protein mediate actin patch formation, whereas the yeast formins (Bni1 and Bnr1) promote assembly of actin cables. However, the mechanism of actin ring formation is currently unclear. Here, we show that actin filaments are required for cytokinesis in S. cerevisiae, and that the actin ring is a highly dynamic structure that undergoes constant turnover. Assembly of the actin ring requires the formin-like proteins and profilin, but is not Arp2/3-mediated. Furthermore, the formin-dependent actin ring assembly pathway is regulated by the Rho-type GTPase Rho1 but not Cdc42. Finally, we show that the formins are not required for localization of Cyk1/Iqg1, an IQGAP-like protein previously shown to be required for actin ring formation, suggesting that formin-like proteins and Cyk1 act synergistically but independently in assembly of the actin ring.
Collapse
Affiliation(s)
- Nicola Tolliday
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
248
|
Wendland J, Philippsen P. An IQGAP-related protein, encoded by AgCYK1, is required for septation in the filamentous fungus Ashbya gossypii. Fungal Genet Biol 2002; 37:81-8. [PMID: 12223192 DOI: 10.1016/s1087-1845(02)00034-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In filamentous ascomycetes hyphae are compartmentalized by septation in which the cytoplasm of the compartments are interconnected via septal pores. Thus, septation in filamentous fungi is different from cytokinesis in yeast like fungi. We have identified an Ashbya gossypii orthologue of the Saccharomyces cerevisiae CYK1 gene which belongs to the IQGAP-protein family. In contrast to S. cerevisiae disruption of AgCYK1 yields viable mutant strains that exhibit wildtype-like polarized hyphal growth rates. In the Agcyk1 mutant cortical actin patches localize to growing hyphal tips like wildtype, however, mutant hyphae are totally devoid of actin rings at presumptive septal sites. Septation in wildtype results in the formation of chitin rings. Agcyk1 mutant hyphae are aseptate and do not accumulate chitin in their cell walls. Agcyk1 mutant strains are completely asporogenous indicating that septation is essential for the formation of sporangia in A. gossypii. AgCyk1p-GFP localizes to sites of future septation as a ring prior to chitin depositioning. Furthermore, decrease in Cyk1p-ring diameter was found to be a prerequisite for the accumulation of chitin and septum formation.
Collapse
Affiliation(s)
- Jürgen Wendland
- Department of Microbiology, Friedrich-Schiller University, Winzerlaer Str. 10, Jena, Germany.
| | | |
Collapse
|
249
|
Lee PR, Song S, Ro HS, Park CJ, Lippincott J, Li R, Pringle JR, De Virgilio C, Longtine MS, Lee KS. Bni5p, a septin-interacting protein, is required for normal septin function and cytokinesis in Saccharomyces cerevisiae. Mol Cell Biol 2002; 22:6906-20. [PMID: 12215547 PMCID: PMC134035 DOI: 10.1128/mcb.22.19.6906-6920.2002] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the budding yeast Saccharomyces cerevisiae, the Cdc3p, Cdc10p, Cdc11p, Cdc12p, and Sep7p/Shs1p septins assemble early in the cell cycle in a ring that marks the future cytokinetic site. The septins appear to be major structural components of a set of filaments at the mother-bud neck and function as a scaffold for recruiting proteins involved in cytokinesis and other processes. We isolated a novel gene, BNI5, as a dosage suppressor of the cdc12-6 growth defect. Overexpression of BNI5 also suppressed the growth defects of cdc10-1, cdc11-6, and sep7Delta strains. Loss of BNI5 resulted in a cytokinesis defect, as evidenced by the formation of connected cells with shared cytoplasms, and deletion of BNI5 in a cdc3-6, cdc10-1, cdc11-6, cdc12-6, or sep7Delta mutant strain resulted in enhanced defects in septin localization and cytokinesis. Bni5p localizes to the mother-bud neck in a septin-dependent manner shortly after bud emergence and disappears from the neck approximately 2 to 3 min before spindle disassembly. Two-hybrid, in vitro binding, and protein-localization studies suggest that Bni5p interacts with the N-terminal domain of Cdc11p, which also appears to be sufficient for the localization of Cdc11p, its interaction with other septins, and other critical aspects of its function. Our data suggest that the Bni5p-septin interaction is important for septin ring stability and function, which is in turn critical for normal cytokinesis.
Collapse
Affiliation(s)
- Philip R Lee
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Caviston JP, Tcheperegine SE, Bi E. Singularity in budding: a role for the evolutionarily conserved small GTPase Cdc42p. Proc Natl Acad Sci U S A 2002; 99:12185-90. [PMID: 12218170 PMCID: PMC129419 DOI: 10.1073/pnas.182370299] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2001] [Indexed: 11/18/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae initiates polarized growth or budding once per cell cycle at a specific time of the cell cycle and at a specific location on the cell surface. Little is known about the molecular nature of the temporal and spatial regulatory mechanisms. It is also unclear what factors, if any, among the numerous proteins required to make a bud are involved in the determination of budding frequency. Here we describe a class of cdc42 mutants that produce multiple buds at random locations on the cell surface within one nuclear cycle. The critical mutation responsible for this phenotype affects amino acid residue 60, which is located in a domain required for GTP binding and hydrolysis. This mutation bypasses the requirement for the essential guanine-nucleotide-exchange factor Cdc24p, suggesting that the alteration at residue 60 makes Cdc42p hyperactive, which was confirmed biochemically. This result also suggests that the only essential function of Cdc24p is to activate Cdc42p. Together, these data suggest that the temporal and spatial regulation of polarized growth converges at the level of Cdc42p and that the activity of Cdc42p determines the budding frequency.
Collapse
Affiliation(s)
- Juliane P Caviston
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|