201
|
Sequential development of apical-basal and planar polarities in aggregating epitheliomuscular cells of Hydra. Dev Biol 2016; 412:148-159. [DOI: 10.1016/j.ydbio.2016.02.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/18/2016] [Accepted: 02/23/2016] [Indexed: 11/24/2022]
|
202
|
Rella L, Fernandes Póvoa EE, Korswagen HC. The Caenorhabditis elegans Q neuroblasts: A powerful system to study cell migration at single-cell resolution in vivo. Genesis 2016; 54:198-211. [PMID: 26934462 DOI: 10.1002/dvg.22931] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/09/2016] [Accepted: 02/25/2016] [Indexed: 11/08/2022]
Abstract
During development, cell migration plays a central role in the formation of tissues and organs. Understanding the molecular mechanisms that drive and control these migrations is a key challenge in developmental biology that will provide important insights into disease processes, including cancer cell metastasis. In this article, we discuss the Caenorhabditis elegans Q neuroblasts and their descendants as a tool to study cell migration at single-cell resolution in vivo. The highly stereotypical migration of these cells provides a powerful system to study the dynamic cytoskeletal processes that drive migration as well as the evolutionarily conserved signaling pathways (including different Wnt signaling cascades) that guide the cells along their specific trajectories. Here, we provide an overview of what is currently known about Q neuroblast migration and highlight the live-cell imaging, genome editing, and quantitative gene expression techniques that have been developed to study this process.
Collapse
Affiliation(s)
- Lorenzo Rella
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| | - Euclides E Fernandes Póvoa
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| | - Hendrik C Korswagen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| |
Collapse
|
203
|
Devenport D. Tissue morphodynamics: Translating planar polarity cues into polarized cell behaviors. Semin Cell Dev Biol 2016; 55:99-110. [PMID: 26994528 DOI: 10.1016/j.semcdb.2016.03.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/15/2016] [Indexed: 12/21/2022]
Abstract
The ability of cells to collectively orient and align their behaviors is essential in multicellular organisms for unidirectional cilia beating, collective cell movements, oriented cell divisions, and asymmetric cell fate specification. The planar cell polarity pathway coordinates a vast and diverse array of collective cell behaviors by intersecting with downstream pathways that regulate cytoskeletal dynamics and intercellular signaling. How the planar polarity pathway translates directional cues to produce polarized cell behaviors is the focus of this review.
Collapse
Affiliation(s)
- Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
204
|
Panousopoulou E, Hobbs C, Mason I, Green JBA, Formstone CJ. Epiboly generates the epidermal basal monolayer and spreads the nascent mammalian skin to enclose the embryonic body. J Cell Sci 2016; 129:1915-27. [PMID: 26989131 PMCID: PMC4893800 DOI: 10.1242/jcs.180703] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 03/14/2016] [Indexed: 01/09/2023] Open
Abstract
Epiboly is a morphogenetic process that is employed in the surface ectoderm of anamniotes during gastrulation to cover the entire embryo. We propose here that mammals also utilise this process to expand the epidermis and enclose the body cavity and spinal cord with a protective surface covering. Our data supports a model whereby epidermal spreading is driven by the primary establishment of the epidermal basal progenitor monolayer through radial cell intercalation of a multi-layered epithelium towards the basal lamina. By using a suspension organotypic culture strategy, we find that this process is fibronectin-dependent and autonomous to the skin. The radial cell rearrangements that drive epidermal spreading also require ROCK activity but are driven by cell protrusions and not myosin II contractility. Epidermal progenitor monolayer formation and epidermal spreading are delayed in Crash mice, which possess a dominant mutation in Celsr1, an orthologue of the core planar cell polarity (PCP) Drosophila protein Flamingo (also known as Stan). We observe a failure of ventral enclosure in Crash mutants suggesting that defective epidermal spreading might underlie some ventral wall birth defects. Summary: The nascent mammalian epidermis spreads to enclose the embryo trunk through a process akin to epiboly, which has important implications for human birth defects of the abdominal wall.
Collapse
Affiliation(s)
- Eleni Panousopoulou
- Department of Craniofacial Development and Stem Cell Biology, Guys Tower, Kings College London, London SE1 1UL, UK
| | - Carl Hobbs
- Wolfson-CARD, Kings College London, London SE1 1UL, UK
| | - Ivor Mason
- MRC Centre for Developmental Neurobiology, New Hunts House, Kings College London, London SE1 1UL, UK
| | - Jeremy B A Green
- Department of Craniofacial Development and Stem Cell Biology, Guys Tower, Kings College London, London SE1 1UL, UK
| | - Caroline J Formstone
- MRC Centre for Developmental Neurobiology, New Hunts House, Kings College London, London SE1 1UL, UK
| |
Collapse
|
205
|
Spatial regulation of cell cohesion by Wnt5a during second heart field progenitor deployment. Dev Biol 2016; 412:18-31. [PMID: 26916252 DOI: 10.1016/j.ydbio.2016.02.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 02/18/2016] [Accepted: 02/19/2016] [Indexed: 01/11/2023]
Abstract
Wnt5a, a non-canonical Wnt ligand critical for outflow tract (OFT) morphogenesis, is expressed specifically in second heart field (SHF) progenitors in the caudal splanchnic mesoderm (SpM) near the inflow tract (IFT). Using a conditional Wnt5a gain of function (GOF) allele and Islet1-Cre, we broadly over-expressed Wnt5a throughout the SHF lineage, including the entire SpM between the IFT and OFT. Wnt5a over-expression in Wnt5a null mutants can rescue the cell polarity and actin polymerization defects as well as severe SpM shortening, but fails to rescue OFT shortening. Moreover, Wnt5a over-expression in wild-type background is able to cause OFT shortening. We find that Wnt5a over-expression does not perturb SHF cell proliferation, apoptosis or differentiation, but affects the deployment of SHF cells by causing them to accumulate into a large bulge at the rostral SpM and fail to enter the OFT. Our immunostaining analyses suggest an inverse correlation between cell cohesion and Wnt5a level in the wild-type SpM. Ectopic Wnt5a expression in the rostral SpM of Wn5a-GOF mutants diminishes the upregulation of adherens junction; whereas loss of Wnt5a in Wnt5a null mutants causes premature increase in adherens junction level in the caudal SpM. Over-expression of mouse Wnt5a in Xenopus animal cap cells also reduces C-cadherin distribution on the plasma membrane without affecting its overall protein level, suggesting that Wnt5a may play an evolutionarily conserved role in controlling the cell surface level of cadherin to modulate cell cohesion during tissue morphogenesis. Collectively, our data indicate that restricted expression of Wnt5a in the caudal SpM is essential for normal OFT morphogenesis, and uncover a novel function of spatially regulated cell cohesion by Wnt5a in driving the deployment of SHF cells from the SpM into the OFT.
Collapse
|
206
|
Gibbs BC, Damerla RR, Vladar EK, Chatterjee B, Wan Y, Liu X, Cui C, Gabriel GC, Zahid M, Yagi H, Szabo-Rogers HL, Suyama KL, Axelrod JD, Lo CW. Prickle1 mutation causes planar cell polarity and directional cell migration defects associated with cardiac outflow tract anomalies and other structural birth defects. Biol Open 2016; 5:323-35. [PMID: 26883626 PMCID: PMC4810743 DOI: 10.1242/bio.015750] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Planar cell polarity (PCP) is controlled by a conserved pathway that regulates directional cell behavior. Here, we show that mutant mice harboring a newly described mutation termed Beetlejuice (Bj) in Prickle1 (Pk1), a PCP component, exhibit developmental phenotypes involving cell polarity defects, including skeletal, cochlear and congenital cardiac anomalies. Bj mutants die neonatally with cardiac outflow tract (OFT) malalignment. This is associated with OFT shortening due to loss of polarized cell orientation and failure of second heart field cell intercalation mediating OFT lengthening. OFT myocardialization was disrupted with cardiomyocytes failing to align with the direction of cell invasion into the outflow cushions. The expression of genes mediating Wnt signaling was altered. Also noted were shortened but widened bile ducts and disruption in canonical Wnt signaling. Using an in vitro wound closure assay, we showed Bj mutant fibroblasts cannot establish polarized cell morphology or engage in directional cell migration, and their actin cytoskeleton failed to align with the direction of wound closure. Unexpectedly, Pk1 mutants exhibited primary and motile cilia defects. Given Bj mutant phenotypes are reminiscent of ciliopathies, these findings suggest Pk1 may also regulate ciliogenesis. Together these findings show Pk1 plays an essential role in regulating cell polarity and directional cell migration during development. Summary: Outflow tract malalignment and multiple birth defects observed in the Prickle1 mutant may arise from cell polarity perturbation, which may involve disruptions in Wnt signaling and of cilia function.
Collapse
Affiliation(s)
- Brian C Gibbs
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA
| | - Rama Rao Damerla
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA
| | - Eszter K Vladar
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bishwanath Chatterjee
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA
| | - Yong Wan
- Department of Oral Biology, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA 15261, USA
| | - Xiaoqin Liu
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA
| | - Cheng Cui
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA
| | - George C Gabriel
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA
| | - Maliha Zahid
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA
| | - Hisato Yagi
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA
| | - Heather L Szabo-Rogers
- Department of Oral Biology, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA 15261, USA
| | - Kaye L Suyama
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jeffrey D Axelrod
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Cecilia W Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA
| |
Collapse
|
207
|
Sharp KA, Axelrod JD. Prickle isoforms control the direction of tissue polarity by microtubule independent and dependent mechanisms. Biol Open 2016; 5:229-36. [PMID: 26863941 PMCID: PMC4810745 DOI: 10.1242/bio.016162] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Planar cell polarity signaling directs the polarization of cells within the plane of many epithelia. While these tissues exhibit asymmetric localization of a set of core module proteins, in Drosophila, more than one mechanism links the direction of core module polarization to the tissue axes. One signaling system establishes a polarity bias in the parallel, apical microtubules upon which vesicles containing core proteins traffic. Swapping expression of the differentially expressed Prickle isoforms, Prickle and Spiny-legs, reverses the direction of core module polarization. Studies in the proximal wing and the anterior abdomen indicated that this results from their differential control of microtubule polarity. Prickle and Spiny-legs also control the direction of polarization in the distal wing (D-wing) and the posterior abdomen (P-abd). We report here that this occurs without affecting microtubule polarity in these tissues. The direction of polarity in the D-wing is therefore likely determined by a novel mechanism independent of microtubule polarity. In the P-abd, Prickle and Spiny-legs interpret at least two directional cues through a microtubule-polarity-independent mechanism.
Collapse
Affiliation(s)
- Katherine A Sharp
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, L235, Stanford, CA 94305, USA Department of Genetics, Stanford University School of Medicine, 300 Pasteur Drive, L235, Stanford, CA 94305, USA
| | - Jeffrey D Axelrod
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, L235, Stanford, CA 94305, USA
| |
Collapse
|
208
|
Franco CA, Jones ML, Bernabeu MO, Vion AC, Barbacena P, Fan J, Mathivet T, Fonseca CG, Ragab A, Yamaguchi TP, Coveney PV, Lang RA, Gerhardt H. Non-canonical Wnt signalling modulates the endothelial shear stress flow sensor in vascular remodelling. eLife 2016; 5:e07727. [PMID: 26845523 PMCID: PMC4798962 DOI: 10.7554/elife.07727] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 02/03/2016] [Indexed: 12/22/2022] Open
Abstract
Endothelial cells respond to molecular and physical forces in development and vascular homeostasis. Deregulation of endothelial responses to flow-induced shear is believed to contribute to many aspects of cardiovascular diseases including atherosclerosis. However, how molecular signals and shear-mediated physical forces integrate to regulate vascular patterning is poorly understood. Here we show that endothelial non-canonical Wnt signalling regulates endothelial sensitivity to shear forces. Loss of Wnt5a/Wnt11 renders endothelial cells more sensitive to shear, resulting in axial polarization and migration against flow at lower shear levels. Integration of flow modelling and polarity analysis in entire vascular networks demonstrates that polarization against flow is achieved differentially in artery, vein, capillaries and the primitive sprouting front. Collectively our data suggest that non-canonical Wnt signalling stabilizes forming vascular networks by reducing endothelial shear sensitivity, thus keeping vessels open under low flow conditions that prevail in the primitive plexus.
Collapse
Affiliation(s)
- Claudio A Franco
- Vascular Biology Laboratory, Lincoln's Inn Laboratories, London Research Institute, The Francis Crick Institute, London, United Kingdom
- Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, Lisbon, Portugal
| | - Martin L Jones
- Vascular Biology Laboratory, Lincoln's Inn Laboratories, London Research Institute, The Francis Crick Institute, London, United Kingdom
| | - Miguel O Bernabeu
- Centre for Medical Informatics, Usher Institute, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Computational Science, Department of Chemistry, University College London, London, United Kingdom
| | - Anne-Clemence Vion
- Vascular Biology Laboratory, Lincoln's Inn Laboratories, London Research Institute, The Francis Crick Institute, London, United Kingdom
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Pedro Barbacena
- Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, Lisbon, Portugal
| | - Jieqing Fan
- The Visual Systems Group, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Thomas Mathivet
- Vascular Patterning Laboratory, Vesalius Research Center, Leuven, Belgium
- Department of Oncology, Vascular Patterning Laboratory, Vesalius Research Center, Leuven, Belgium
| | - Catarina G Fonseca
- Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, Lisbon, Portugal
| | - Anan Ragab
- Vascular Biology Laboratory, Lincoln's Inn Laboratories, London Research Institute, The Francis Crick Institute, London, United Kingdom
| | - Terry P Yamaguchi
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, NCI-Frederick, National Institutes of Health, Frederick, United States
| | - Peter V Coveney
- Centre for Computational Science, Department of Chemistry, University College London, London, United Kingdom
| | - Richard A Lang
- The Visual Systems Group, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Holger Gerhardt
- Vascular Biology Laboratory, Lincoln's Inn Laboratories, London Research Institute, The Francis Crick Institute, London, United Kingdom
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Vascular Patterning Laboratory, Vesalius Research Center, Leuven, Belgium
- Department of Oncology, Vascular Patterning Laboratory, Vesalius Research Center, Leuven, Belgium
- German Center for Cardiovascular Research, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
209
|
Wnt signaling in cartilage development and diseases: lessons from animal studies. J Transl Med 2016; 96:186-96. [PMID: 26641070 PMCID: PMC4838282 DOI: 10.1038/labinvest.2015.142] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/30/2015] [Accepted: 09/30/2015] [Indexed: 01/08/2023] Open
Abstract
Cartilage not only plays essential roles in skeletal development and growth during pre- and postnatal stages but also serves to provide smooth movement of skeletons throughout life. Thus, dysfunction of cartilage causes a variety of skeletal disorders. Results from animal studies reveal that β-catenin-dependent canonical and independent non-canonical Wnt signaling pathways have multiple roles in regulation of cartilage development, growth, and maintenance. β-Catenin-dependent signaling is required for progression of endochondral ossification and growth of axial and appendicular skeletons, while excessive activation of this signaling can cause severe inhibition of initial cartilage formation and growth plate organization and function in mice. In contrast, non-canonical Wnt signaling is important in columnar organization of growth plate chondrocytes. Manipulation of Wnt signaling causes or ameliorates articular cartilage degeneration in rodent osteoarthritis models. Human genetic studies indicate that Wnt/β-catenin signaling is a risk factor for osteoarthritis. Accumulative findings from analysis of expression of Wnt signaling molecules and in vivo and in vitro functional experiments suggest that Wnt signaling is a therapeutic target for osteoarthritis. The target tissues of Wnt signaling may be not only articular cartilage but also synovium and subchondral bone.
Collapse
|
210
|
Abstract
Vertebrate neural tube formation is a complex morphogenetic process, which involves hundreds of genes dynamically coordinating various behaviors in different cell populations of neural tissue. The challenge remains to determine the relative contributions of physical forces and biochemical signaling events to neural tube closure and accompanying cell fate specification. Planar cell polarity (PCP) molecules are prime candidate factors for the production of actomyosin-dependent mechanical signals necessary for morphogenesis. Conversely, physical forces may contribute to the polarized distribution of PCP proteins. Understanding mechanosensory and mechanotransducing properties of diverse molecules should help define the direction and amplitude of physical stresses that are critical for neurulation.
Collapse
Affiliation(s)
- Sergei Y Sokol
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, USA.
| |
Collapse
|
211
|
Unique and Overlapping Functions of Formins Frl and DAAM During Ommatidial Rotation and Neuronal Development in Drosophila. Genetics 2016; 202:1135-51. [PMID: 26801180 DOI: 10.1534/genetics.115.181438] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 01/18/2016] [Indexed: 01/14/2023] Open
Abstract
The noncanonical Frizzled/planar cell polarity (PCP) pathway regulates establishment of polarity within the plane of an epithelium to generate diversity of cell fates, asymmetric, but highly aligned structures, or to orchestrate the directional migration of cells during convergent extension during vertebrate gastrulation. In Drosophila, PCP signaling is essential to orient actin wing hairs and to align ommatidia in the eye, in part by coordinating the movement of groups of photoreceptor cells during ommatidial rotation. Importantly, the coordination of PCP signaling with changes in the cytoskeleton is essential for proper epithelial polarity. Formins polymerize linear actin filaments and are key regulators of the actin cytoskeleton. Here, we show that the diaphanous-related formin, Frl, the single fly member of the FMNL (formin related in leukocytes/formin-like) formin subfamily affects ommatidial rotation in the Drosophila eye and is controlled by the Rho family GTPase Cdc42. Interestingly, we also found that frl mutants exhibit an axon growth phenotype in the mushroom body, a center for olfactory learning in the Drosophila brain, which is also affected in a subset of PCP genes. Significantly, Frl cooperates with Cdc42 and another formin, DAAM, during mushroom body formation. This study thus suggests that different formins can cooperate or act independently in distinct tissues, likely integrating various signaling inputs with the regulation of the cytoskeleton. It furthermore highlights the importance and complexity of formin-dependent cytoskeletal regulation in multiple organs and developmental contexts.
Collapse
|
212
|
Mao Q, Lecuit T. Mechanochemical Interplay Drives Polarization in Cellular and Developmental Systems. Curr Top Dev Biol 2016; 116:633-57. [DOI: 10.1016/bs.ctdb.2015.11.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
213
|
Ontogeny, Oncogeny and Phylogeny: Deep Associations. Evol Biol 2016. [DOI: 10.1007/978-3-319-41324-2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
214
|
Strutt D, Schnabel R, Fiedler F, Prömel S. Adhesion GPCRs Govern Polarity of Epithelia and Cell Migration. Handb Exp Pharmacol 2016; 234:249-274. [PMID: 27832491 DOI: 10.1007/978-3-319-41523-9_11] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In multicellular organisms cells spatially arrange in a highly coordinated manner to form tissues and organs, which is essential for the function of an organism. The component cells and resulting structures are often polarised in one or more axes, and how such polarity is established and maintained correctly has been one of the major biological questions for many decades. Research progress has shown that many adhesion GPCRs (aGPCRs) are involved in several types of polarity. Members of the two evolutionarily oldest groups, Flamingo/Celsr and Latrophilins, are key molecules in planar cell polarity of epithelia or the propagation of cellular polarity in the early embryo, respectively. Other adhesion GPCRs play essential roles in cell migration, indicating that this receptor class includes essential molecules for the control of various levels of cellular organisation.
Collapse
Affiliation(s)
- David Strutt
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, UK.
| | - Ralf Schnabel
- Institute of Genetics, TU Braunschweig, Braunschweig, Germany.
| | - Franziska Fiedler
- Medical Faculty, Institute of Biochemistry, Leipzig University, Leipzig, Germany
| | - Simone Prömel
- Medical Faculty, Institute of Biochemistry, Leipzig University, Leipzig, Germany.
| |
Collapse
|
215
|
Hale R, Strutt D. Conservation of Planar Polarity Pathway Function Across the Animal Kingdom. Annu Rev Genet 2015; 49:529-51. [DOI: 10.1146/annurev-genet-112414-055224] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rosalind Hale
- Bateson Centre,
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom;
| | - David Strutt
- Bateson Centre,
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom;
| |
Collapse
|
216
|
Hirota Y, Sawada M, Huang SH, Ogino T, Ohata S, Kubo A, Sawamoto K. Roles of Wnt Signaling in the Neurogenic Niche of the Adult Mouse Ventricular-Subventricular Zone. Neurochem Res 2015; 41:222-30. [PMID: 26572545 DOI: 10.1007/s11064-015-1766-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/04/2015] [Accepted: 11/05/2015] [Indexed: 01/08/2023]
Abstract
In many animal species, the production of new neurons (neurogenesis) occurs throughout life, in a specialized germinal region called the ventricular-subventricular zone (V-SVZ). In this region, neural stem cells undergo self-renewal and generate neural progenitor cells and new neurons. In the olfactory system, the new neurons migrate rostrally toward the olfactory bulb, where they differentiate into mature interneurons. V-SVZ-derived new neurons can also migrate toward sites of brain injury, where they contribute to neural regeneration. Recent studies indicate that two major branches of the Wnt signaling pathway, the Wnt/β-catenin and Wnt/planar cell polarity pathways, play essential roles in various facets of adult neurogenesis. Here, we review the Wnt signaling-mediated regulation of adult neurogenesis in the V-SVZ under physiological and pathological conditions.
Collapse
Affiliation(s)
- Yuki Hirota
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Masato Sawada
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Shih-Hui Huang
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Takashi Ogino
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Shinya Ohata
- Laboratory of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, 113-0033, Japan
| | - Akiharu Kubo
- Department of Dermatology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Kazunobu Sawamoto
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan.
| |
Collapse
|
217
|
Strutt H, Strutt D. Planar polarity: forcing cells into line. Curr Biol 2015; 25:R1032-R1034. [PMID: 26528742 DOI: 10.1016/j.cub.2015.09.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Polarisation of tissues in the plane of an epithelium is fundamental for both animal morphogenesis and organ function. A new paper describes a role for mechanical cues in determining how such polarity is aligned with the body axes.
Collapse
Affiliation(s)
- Helen Strutt
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| | - David Strutt
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| |
Collapse
|
218
|
Abstract
In development, cells organize into biological tissues through cell growth, migration, and differentiation. Globally, this process is dictated by a genetically encoded program in which secreted morphogens and cell-cell interactions prompt the adoption of unique cell fates. Yet, at its lowest level, development is achieved through the modification of cell-cell adhesion and actomyosin-based contractility, which set the level of tension within cells and dictate how they pack together into tissues. The regulation of tension within individual cells and across large groups of cells is a major driving force of tissue organization and the basis of all cell shape change and cell movement in development.
Collapse
Affiliation(s)
- Evan Heller
- Howard Hughes Medical Institute, Robin Neustein Chemers Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY 10065
| | - Elaine Fuchs
- Howard Hughes Medical Institute, Robin Neustein Chemers Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY 10065
| |
Collapse
|
219
|
Chang H, Cahill H, Smallwood PM, Wang Y, Nathans J. Identification of Astrotactin2 as a Genetic Modifier That Regulates the Global Orientation of Mammalian Hair Follicles. PLoS Genet 2015; 11:e1005532. [PMID: 26418459 PMCID: PMC4587951 DOI: 10.1371/journal.pgen.1005532] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 08/24/2015] [Indexed: 12/30/2022] Open
Abstract
Planar cell polarity (PCP) signaling controls the global orientation of surface structures, such as hairs and bristles, in both vertebrates and invertebrates. In Frizzled6-/- (Fz6-/-) mice, hair follicle orientations on the head and back are nearly random at birth, but reorient during early postnatal development to eventually generate a nearly parallel anterior-to-posterior array. We report the identification of a naturally occurring exon 5 deletion in Astrotactin2 (Astn2) that acts as a recessive genetic modifier of the Fz6-/- hair patterning phenotype. A genetically engineered Astn2 exon 5 deletion recapitulates the modifier phenotype. In Fz6-/-;Astn2ex5del/del mice, hair orientation on the back is subtly biased from posterior-to-anterior, leading to a 180-degree orientation reversal in mature mice. These experiments suggest that Astn2, an endosomal membrane protein, modulates PCP signaling. Hair, feather, and scale patterns are a universal feature of vertebrate surface morphology. These patterns are under precise genetic control as seen by their species-specificity and by their alterations in different breeds of domesticated animals. The first clues to the mechanism of hair patterning in mammals came from genetic analyses of proteins that are homologous to a small set of Drosophila proteins that control patterning of bristles and hairs on the insect body surface and wings. The patterning process, referred to as planar cell polarity, involves a cell surface protein, Frizzled6, which is produced in skin and hair follicles. Following a chance observation that some Frizzled6 mutant mice exhibit an unusual hair pattern in which all of the hair follicles on the posterior half of the back have reversed orientations, we have identified a single spontaneous mutation that accounts for this reversal. The mutation removes a single coding exon from the gene coding for the membrane protein Astrotactin2. Interestingly, a closely related protein, Astrotactin1, has been implicated in directed neuronal migration along a glial substrate, suggesting a mechanistic connection between patterning mechanisms in skin and brain.
Collapse
Affiliation(s)
- Hao Chang
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Hugh Cahill
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Philip M. Smallwood
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Yanshu Wang
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jeremy Nathans
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
220
|
Srivastava D, Chakrabarti O. Ubiquitin in regulation of spindle apparatus and its positioning: implications in development and disease. Biochem Cell Biol 2015; 93:273-81. [PMID: 26110206 DOI: 10.1139/bcb-2015-0011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Emerging data implicates ubiquitination, a post-translational modification, in regulating essential cellular events, one of them being mitosis. In this review we discuss how various E3 ligases modulate the cortical proteins such as dynein, LGN, NuMa, Gα, along with polymerization, stability, and integrity of spindles. These are responsible for regulating symmetric cell division. Some of the ubiquitin ligases regulating these proteins include PARK2, BRCA1/BARD1, MGRN1, SMURF2, and SIAH1; these play a pivotal role in the correct positioning of the spindle apparatus. A direct connection between developmental or various pathological disorders and the ubiquitination mediated cortical regulation is rather speculative, though deletions or mutations in them lead to developmental disorders and disease conditions.
Collapse
Affiliation(s)
- Devika Srivastava
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Sector-1, Block-AF, Bidhannagar, Kolkata, West Bengal 700064, India
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Sector-1, Block-AF, Bidhannagar, Kolkata, West Bengal 700064, India
| | - Oishee Chakrabarti
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Sector-1, Block-AF, Bidhannagar, Kolkata, West Bengal 700064, India
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Sector-1, Block-AF, Bidhannagar, Kolkata, West Bengal 700064, India
| |
Collapse
|
221
|
Abstract
Insulin-producing β cells within the vertebrate fetal pancreas acquire their fate in a step-wise manner. Whereas the intrinsic factors dictating the transcriptional or epigenetic status of pancreatic lineages have been intensely examined, less is known about cell-cell interactions that might constitute a niche for the developing β cell lineage. It is becoming increasingly clear that understanding and recapitulating these steps may instruct in vitro differentiation of embryonic stem cells and/or therapeutic regeneration. Indeed, directed differentiation techniques have improved since transitioning from 2D to 3D cultures, suggesting that the 3D microenvironment in which β cells are born is critical. However, to date, it remains unknown whether the changing architecture of the pancreatic epithelium impacts the fate of cells therein. An emerging challenge in the field is to elucidate how progenitors are allocated during key events, such as the stratification and subsequent resolution of the pre-pancreatic epithelium, as well as the formation of lumens and branches. Here, we assess the progenitor epithelium and examine how it might influence the emergence of pancreatic multipotent progenitors (MPCs), which give rise to β cells and other pancreatic lineages.
Collapse
Affiliation(s)
- Leilani Marty-Santos
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas (LMS,OC)
| | - Ondine Cleaver
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas (LMS,OC)
| |
Collapse
|
222
|
Balasov M, Akhmetova K, Chesnokov I. Drosophila model of Meier-Gorlin syndrome based on the mutation in a conserved C-Terminal domain of Orc6. Am J Med Genet A 2015; 167A:2533-40. [PMID: 26139588 DOI: 10.1002/ajmg.a.37214] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 06/05/2015] [Indexed: 11/09/2022]
Abstract
Meier-Gorlin syndrome (MGS) is an autosomal recessive disorder characterized by microtia, primordial dwarfism, small ears, and skeletal abnormalities. Patients with MGS often carry mutations in the genes encoding the components of the pre-replicative complex such as Origin Recognition Complex (ORC) subunits Orc1, Orc4, Orc6, and helicase loaders Cdt1 and Cdc6. Orc6 is an important component of ORC and has functions in both DNA replication and cytokinesis. Mutation in conserved C-terminal motif of Orc6 associated with MGS impedes the interaction of Orc6 with core ORC. In order to study the effects of MGS mutation in an animal model system we introduced MGS mutation in Orc6 and established Drosophila model of MGS. Mutant flies die at third instar larval stage with abnormal chromosomes and DNA replication defects. The lethality can be rescued by elevated expression of mutant Orc6 protein. Rescued MGS flies are unable to fly and display multiple planar cell polarity defects. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Maxim Balasov
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, School of Medicine, Birmingham, Alabama
| | - Katarina Akhmetova
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, School of Medicine, Birmingham, Alabama.,The Federal Research Center Institute of Cytology and Genetics, Prospekt Lavrentyeva 10, Novosibirsk, Russian Federation.,Novosibirsk State University, Novosibirsk, Russian Federation
| | - Igor Chesnokov
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, School of Medicine, Birmingham, Alabama
| |
Collapse
|
223
|
Sokol SY. Spatial and temporal aspects of Wnt signaling and planar cell polarity during vertebrate embryonic development. Semin Cell Dev Biol 2015; 42:78-85. [PMID: 25986055 PMCID: PMC4562884 DOI: 10.1016/j.semcdb.2015.05.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 05/08/2015] [Indexed: 11/19/2022]
Abstract
Wnt signaling pathways act at multiple locations and developmental stages to specify cell fate and polarity in vertebrate embryos. A long-standing question is how the same molecular machinery can be reused to produce different outcomes. The canonical Wnt/β-catenin branch modulates target gene transcription to specify cell fates along the dorsoventral and anteroposterior embryonic axes. By contrast, the Wnt/planar cell polarity (PCP) branch is responsible for cell polarization along main body axes, which coordinates morphogenetic cell behaviors during gastrulation and neurulation. Whereas both cell fate and cell polarity are modulated by spatially- and temporally-restricted Wnt activity, the downstream signaling mechanisms are very diverse. This review highlights recent progress in the understanding of Wnt-dependent molecular events leading to the establishment of PCP and linking it to early morphogenetic processes.
Collapse
Affiliation(s)
- Sergei Y Sokol
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
224
|
Ossipova O, Kim K, Sokol SY. Planar polarization of Vangl2 in the vertebrate neural plate is controlled by Wnt and Myosin II signaling. Biol Open 2015; 4:722-30. [PMID: 25910938 PMCID: PMC4467192 DOI: 10.1242/bio.201511676] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The vertebrate neural tube forms as a result of complex morphogenetic movements, which require the functions of several core planar cell polarity (PCP) proteins, including Vangl2 and Prickle. Despite the importance of these proteins for neurulation, their subcellular localization and the mode of action have remained largely unknown. Here we describe the anteroposterior planar cell polarity (AP-PCP) of the cells in the Xenopus neural plate. At the neural midline, the Vangl2 protein is enriched at anterior cell edges and that this localization is directed by Prickle, a Vangl2-interacting protein. Our further analysis is consistent with the model, in which Vangl2 AP-PCP is established in the neural plate as a consequence of Wnt-dependent phosphorylation. Additionally, we uncover feedback regulation of Vangl2 polarity by Myosin II, reiterating a role for mechanical forces in PCP. These observations indicate that both Wnt signaling and Myosin II activity regulate cell polarity and cell behaviors during vertebrate neurulation.
Collapse
Affiliation(s)
- Olga Ossipova
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kyeongmi Kim
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sergei Y Sokol
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
225
|
Asymmetry of VANGL2 in migrating lymphocytes as a tool to monitor activity of the mammalian WNT/planar cell polarity pathway. Cell Commun Signal 2015; 13:2. [PMID: 25627785 PMCID: PMC4314808 DOI: 10.1186/s12964-014-0079-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 12/17/2014] [Indexed: 11/29/2022] Open
Abstract
Background The WNT/planar-cell-polarity (PCP) pathway is a key regulator of cell polarity and directional cell movements. Core PCP proteins such as Van Gogh-like2 (VANGL2) are evolutionarily highly conserved; however, the mammalian PCP machinery is still poorly understood mainly due to lack of suitable models and quantitative methodology. WNT/PCP has been implicated in many human diseases with the most distinguished positive role in the metastatic process, which accounts for more than 90% of cancer related deaths, and presents therefore an attractive target for pharmacological interventions. However, cellular assays for the assessment of PCP signaling, which would allow a more detailed mechanistic analysis of PCP function and possibly also high throughput screening for chemical compounds targeting mammalian PCP signaling, are still missing. Results Here we describe a mammalian cell culture model, which correlates B lymphocyte migration of patient-derived MEC1 cells and asymmetric localization of fluorescently-tagged VANGL2. We show by live cell imaging that PCP proteins are polarized in MEC1 cells and that VANGL2 polarization is controlled by the same mechanism as in tissues i.e. it is dependent on casein kinase 1 activity. In addition, destruction of the actin cytoskeleton leads to migratory arrest and cell rounding while VANGL2-EGFP remains polarized suggesting that active PCP signaling visualized by polarized distribution of VANGL2 is a cause for and not a consequence of the asymmetric shape of a migrating cell. Conclusions The presented imaging-based methodology allows overcoming limitations of earlier approaches to study the mammalian WNT/PCP pathway, which required in vivo models and analysis of complex tissues. Our system investigating PCP-like signaling on a single-cell level thus opens new possibilities for screening of compounds, which control asymmetric distribution of proteins in the PCP pathway. Electronic supplementary material The online version of this article (doi:10.1186/s12964-014-0079-1) contains supplementary material, which is available to authorized users.
Collapse
|