201
|
Hibiscus sabdariffa extractivities on cadmium—mediated alterations of human U937 cell viability and activation. ASIAN PAC J TROP MED 2012; 5:33-6. [DOI: 10.1016/s1995-7645(11)60241-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 07/15/2011] [Accepted: 08/15/2011] [Indexed: 11/21/2022] Open
|
202
|
Maa MC, Leu TH. Activation of Toll-like receptors induces macrophage migration via the iNOS/Src/FAK pathway. Biomedicine (Taipei) 2011. [DOI: 10.1016/j.biomed.2011.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
203
|
The lipopolysaccharide-induced pro-inflammatory response in RAW264.7 cells is attenuated by an unsaturated fatty acid–bovine serum albumin complex and enhanced by a saturated fatty acid–bovine serum albumin complex. Inflamm Res 2011; 61:151-60. [DOI: 10.1007/s00011-011-0399-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 10/04/2011] [Accepted: 11/02/2011] [Indexed: 12/27/2022] Open
|
204
|
Smolinska MJ, Page TH, Urbaniak AM, Mutch BE, Horwood NJ. Hck Tyrosine Kinase Regulates TLR4-Induced TNF and IL-6 Production via AP-1. THE JOURNAL OF IMMUNOLOGY 2011; 187:6043-51. [DOI: 10.4049/jimmunol.1100967] [Citation(s) in RCA: 243] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
205
|
Henkel A, Kather N, Mönch B, Northoff H, Jauch J, Werz O. Boswellic acids from frankincense inhibit lipopolysaccharide functionality through direct molecular interference. Biochem Pharmacol 2011; 83:115-21. [PMID: 22001311 DOI: 10.1016/j.bcp.2011.09.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 09/24/2011] [Accepted: 09/28/2011] [Indexed: 10/17/2022]
Abstract
Lipophilic extracts of gum resins of Boswellia species (BSE) are used in folk medicine to treat various inflammatory disorders and infections. The molecular background of the beneficial pharmacological effects of such extracts is still unclear. Various boswellic acids (BAs) have been identified as abundant bioactive ingredients of BSE. Here we report the identification of defined BAs as direct inhibitors of lipopolysaccharide (LPS) functionality and LPS-induced cellular responses. In pull-down experiments, LPS could be precipitated using an immobilized BA, implying direct molecular interactions. Binding of BAs to LPS leads to an inhibition of LPS activity which was observed in vitro using a modified limulus amoebocyte lysate assay. Analysis of different BAs revealed clear structure-activity relationships with the classical β-BA as most potent derivative (IC(50)=1.8 μM). In RAW264.7 cells, LPS-induced expression of inducible nitric oxide synthase (iNOS, EC 1.14.13.39) was selectively inhibited by those BAs that interfered with LPS activity. In contrast, interferon-γ-induced iNOS induction was not affected by BAs. We conclude that structurally defined BAs are LPS inhibiting agents and we suggest that β-BA may contribute to the observed anti-inflammatory effects of BSE during infections by suppressing LPS activity.
Collapse
Affiliation(s)
- Arne Henkel
- Department for Pharmaceutical Analytics, Pharmaceutical Institute, University of Tuebingen, Germany.
| | | | | | | | | | | |
Collapse
|
206
|
Carcinoma mucins trigger reciprocal activation of platelets and neutrophils in a murine model of Trousseau syndrome. Blood 2011; 118:4015-23. [PMID: 21860019 DOI: 10.1182/blood-2011-07-368514] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Trousseau syndrome is classically defined as migratory, heparin-sensitive but warfarin-resistant microthrombi in patients with occult, mucinous adenocarcinomas. Injecting carcinoma mucins into mice generates platelet-rich microthrombi dependent on P- and L-selectin but not thrombin. Heparin prevents mucin binding to P- and L-selectin and mucin-induced microthrombi. This model of Trousseau syndrome explains resistance to warfarin, which inhibits fluid-phase coagulation but not selectins. Here we found that carcinoma mucins do not generate microthrombi in mice lacking P-selectin glycoprotein ligand-1 (PSGL-1), the leukocyte ligand for P- and L-selectin. Furthermore, mucins did not activate platelets in blood from PSGL-1-deficient mice. Mucins induced microthrombi in radiation chimeras lacking endothelial P-selectin but not in chimeras lacking platelet P-selectin. Mucins caused leukocytes to release cathepsin G, but only if platelets were present. Mucins failed to generate microthrombi in cathepsin G-deficient mice. Mucins did not activate platelets in blood from mice lacking cathepsin G or protease-activated receptor-4 (PAR4), indicating that cathepsin G activates platelets through PAR4. Using knockout mice and blocking antibodies, we found that mucin-triggered cathepsin G release requires L-selectin and PSGL-1 on neutrophils, P-selectin on platelets, and Src family kinases in both cell types. Thus, carcinoma mucins promote thrombosis through adhesion-dependent, bidirectional signaling in neutrophils and platelets.
Collapse
|
207
|
Rego D, Kumar A, Nilchi L, Wright K, Huang S, Kozlowski M. IL-6 Production Is Positively Regulated by Two DistinctSrcHomology Domain 2-Containing Tyrosine Phosphatase-1 (SHP-1)–Dependent CCAAT/Enhancer-Binding Protein β and NF-κB Pathways and an SHP-1–Independent NF-κB Pathway in Lipopolysaccharide-Stimulated Bone Marrow-Derived Macrophages. THE JOURNAL OF IMMUNOLOGY 2011; 186:5443-56. [DOI: 10.4049/jimmunol.1003551] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
208
|
Lowell CA. Src-family and Syk kinases in activating and inhibitory pathways in innate immune cells: signaling cross talk. Cold Spring Harb Perspect Biol 2011; 3:a002352. [PMID: 21068150 PMCID: PMC3039931 DOI: 10.1101/cshperspect.a002352] [Citation(s) in RCA: 205] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The response of innate immune cells to growth factors, immune complexes, extracellular matrix proteins, cytokines, pathogens, cellular damage, and many other stimuli is regulated by a complex net of intracellular signal transduction pathways. The majority of these pathways are either initiated or modulated by Src-family or Syk tyrosine kinases present in innate cells. The Src-family kinases modulate the broadest range of signaling responses, including regulating immunoreceptors, C-type lectins, integrins, G-protein-coupled receptors, and many others. Src-family kinases also modulate the activity of other kinases, including the Tec-family members as well as FAK and Pyk2. Syk kinase is required for initiation of signaling involving receptors that utilize immunoreceptor tyrosine activation (ITAM) domains. This article reviews the major activating and inhibitory signaling pathways regulated by these cytoplasmic tyrosine kinases, illuminating the many examples of signaling cross talk between pathways.
Collapse
Affiliation(s)
- Clifford A Lowell
- Department of Laboratory Medicine, University of California, San Francisco, 94143, USA.
| |
Collapse
|
209
|
Nelson MP, Christmann BS, Werner JL, Metz AE, Trevor JL, Lowell CA, Steele C. IL-33 and M2a alveolar macrophages promote lung defense against the atypical fungal pathogen Pneumocystis murina. THE JOURNAL OF IMMUNOLOGY 2011; 186:2372-81. [PMID: 21220696 DOI: 10.4049/jimmunol.1002558] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We have recently reported that mice deficient in the myeloid Src-family tyrosine kinases Hck, Fgr, and Lyn (Src triple knockout [TKO]) had augmented innate lung clearance of Pneumocystis murina that correlated with a higher ability of alveolar macrophages (AMs) from these mice to kill P. murina. In this article, we show that despite possessing enhanced killing, AMs from naive Src TKO mice did not demonstrate enhanced inflammatory responses to P. murina. We subsequently discovered that both AMs and lungs from P. murina-infected Src TKO mice expressed significantly greater levels of the M2a markers RELM-α and Arg1, and the M2a-associated chemokines CCL17 and CCL22 than did wild-type mice. IL-4 and IL-13, the primary cytokines that promote M2a polarization, were not differentially produced in the lungs between wild-type and Src TKO mice. P. murina infection in Src TKO mice resulted in enhanced lung production of the novel IL-1 family cytokine IL-33. Immunohistochemical analysis of IL-33 in lung tissue revealed localization predominantly in the nucleus of alveolar epithelial cells. We further demonstrate that experimental polarization of naive AMs to M2a resulted in more efficient killing of P. murina compared with untreated AMs, which was further enhanced by the addition of IL-33. Administration of IL-33 to C57BL/6 mice increased lung RELM-α and CCL17 levels, and enhanced clearance of P. murina, despite having no effect on the cellular composition of the lungs. Collectively, these results indicate that M2a AMs are potent effector cells against P. murina. Furthermore, enhancing M2a polarization may be an adjunctive therapy for the treatment of Pneumocystis.
Collapse
Affiliation(s)
- Michael P Nelson
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | |
Collapse
|
210
|
Maa MC, Chang MY, Li J, Li YY, Hsieh MY, Yang CJ, Chen YJ, Li Y, Chen HC, Cheng WE, Hsieh CY, Cheng CW, Leu TH. The iNOS/Src/FAK axis is critical in Toll-like receptor-mediated cell motility in macrophages. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:136-47. [PMID: 20849883 DOI: 10.1016/j.bbamcr.2010.09.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 08/20/2010] [Accepted: 09/08/2010] [Indexed: 12/14/2022]
Abstract
The Toll-like receptors (TLRs) play a pivotal role in innate immunity for the detection of highly conserved, pathogen-expressed molecules. Previously, we demonstrated that lipopolysaccharide (LPS, TLR4 ligand)-increased macrophage motility required the participation of Src and FAK, which was inducible nitric oxide synthase (iNOS)-dependent. To investigate whether this iNOS/Src/FAK pathway is a general mechanism for macrophages to mobilize in response to engagement of TLRs other than TLR4, peptidoglycan (PGN, TLR2 ligand), polyinosinic-polycytidylic acid (polyI:C, TLR3 ligand) and CpG-oligodeoxynucleotides (CpG, TLR9 ligand) were used to treat macrophages in this study. Like LPS stimulation, simultaneous increase of cell motility and Src (but not Fgr, Hck, and Lyn) was detected in RAW264.7, peritoneal macrophages, and bone marrow-derived macrophages exposed to PGN, polyI:C and CpG. Attenuation of Src suppressed PGN-, polyI:C-, and CpG-elicited movement and the level of FAK Pi-Tyr861, which could be reversed by the reintroduction of siRNA-resistant Src. Besides, knockdown of FAK reduced the mobility of macrophages stimulated with anyone of these TLR ligands. Remarkably, PGN-, polyI:C-, and CpG-induced Src expression, FAK Pi-Tyr861, and cell mobility were inhibited in macrophages devoid of iNOS, indicating the importance of iNOS. These findings corroborate that iNOS/Src/FAK axis occupies a central role in macrophage locomotion in response to engagement of TLRs.
Collapse
Affiliation(s)
- Ming-Chei Maa
- Institute of Molecular Systems Biomedicine, China Medical University, Taichung, Taiwan, Republic of China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Tuftsin derivatives of FITC, Tb-DOTA or Gd-DOTA as potential macrophage-specific imaging biomarkers. CONTRAST MEDIA & MOLECULAR IMAGING 2010; 5:223-30. [DOI: 10.1002/cmmi.381] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
212
|
Koh YJ, Cha DS, Ko JS, Park HJ, Choi HD. Anti-Inflammatory Effect of Taraxacum officinale Leaves on Lipopolysaccharide-Induced Inflammatory Responses in RAW 264.7 Cells. J Med Food 2010; 13:870-8. [DOI: 10.1089/jmf.2009.1249] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Yoon-Jeoung Koh
- Research Division for Food Industry Platform Technology, Korea Food Research Institute, Seongnam, Republic of Korea
| | - Dong-Soo Cha
- Biocoats Co., Ltd., Korea University, Seoul, Republic of Korea
| | - Je-Sang Ko
- School of Life Science and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Hyun-Jin Park
- School of Life Science and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Hee-Don Choi
- Research Division for Food Industry Platform Technology, Korea Food Research Institute, Seongnam, Republic of Korea
| |
Collapse
|
213
|
Scapini P, Hu Y, Chu CL, Migone TS, Defranco AL, Cassatella MA, Lowell CA. Myeloid cells, BAFF, and IFN-gamma establish an inflammatory loop that exacerbates autoimmunity in Lyn-deficient mice. ACTA ACUST UNITED AC 2010; 207:1757-73. [PMID: 20624892 PMCID: PMC2916124 DOI: 10.1084/jem.20100086] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Autoimmunity is traditionally attributed to altered lymphoid cell selection and/or tolerance, whereas the contribution of innate immune cells is less well understood. Autoimmunity is also associated with increased levels of B cell–activating factor of the TNF family (BAFF; also known as B lymphocyte stimulator), a cytokine that promotes survival of self-reactive B cell clones. We describe an important role for myeloid cells in autoimmune disease progression. Using Lyn-deficient mice, we show that overproduction of BAFF by hyperactive myeloid cells contributes to inflammation and autoimmunity in part by acting directly on T cells to induce the release of IFN-γ. Genetic deletion of IFN-γ or reduction of BAFF activity, achieved by either reducing myeloid cell hyperproduction or by treating with an anti-BAFF monoclonal antibody, reduced disease development in lyn−/− mice. The increased production of IFN-γ in lyn−/− mice feeds back on the myeloid cells to further stimulate BAFF release. Expression of BAFF receptor on T cells was required for their full activation and IFN-γ release. Overall, our data suggest that the reciprocal production of BAFF and IFN-γ establishes an inflammatory loop between myeloid cells and T cells that exacerbates autoimmunity in this model. Our findings uncover an important pathological role of BAFF in autoimmune disorders.
Collapse
Affiliation(s)
- Patrizia Scapini
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | | | |
Collapse
|
214
|
Gutierrez T, Halcomb KE, Coughran AJ, Li QZ, Satterthwaite AB. Separate checkpoints regulate splenic plasma cell accumulation and IgG autoantibody production in Lyn-deficient mice. Eur J Immunol 2010; 40:1897-905. [PMID: 20394076 PMCID: PMC3057185 DOI: 10.1002/eji.200940043] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Accumulation of plasma cells and autoantibodies against nuclear antigens characterize both human and murine lupus. Understanding how these processes are controlled may reveal novel therapeutic targets for this disease. Mice deficient in Lyn, a negative regulator of B and myeloid cell activity, develop lupus-like autoimmune disease. Here, we show that lyn(-) (/) (-) mice exhibit increased splenic plasmablasts and plasma cells and produce IgM against a wide range of self-antigens. Both events require Btk, a target of Lyn-dependent inhibitory pathways. A Btk-dependent increase in the expression of the plasma cell survival factor IL-6 by lyn(-) (/) (-) splenic myeloid cells was also observed. Surprisingly, IL-6 was not required for plasma cell accumulation or polyclonal IgM autoreactivity in lyn(-/-) mice. IL-6 was, however, necessary for the production of IgG autoantibodies, which we show are focused towards a limited set of nucleic acid-containing and glomerular autoantigens in lyn(-) (/) (-) mice. A similar uncoupling of plasma cell accumulation from IgG autoantibodies was seen in lyn(+/-) mice. Plasma cell accumulation and polyclonal IgM autoreactivity are therefore controlled separately from, and are insufficient for, the production of IgG against lupus-associated autoantigens. Regulators of either of these two checkpoints may be attractive therapeutic targets for lupus.
Collapse
MESH Headings
- Agammaglobulinaemia Tyrosine Kinase
- Animals
- Antibodies, Antinuclear/biosynthesis
- Antibodies, Antinuclear/blood
- Antibodies, Antinuclear/genetics
- Autoantigens/immunology
- Cells, Cultured
- Disease Models, Animal
- Humans
- Immunoglobulin G/blood
- Immunoglobulin M/blood
- Interleukin-6/biosynthesis
- Interleukin-6/genetics
- Lupus Erythematosus, Systemic/blood
- Lupus Erythematosus, Systemic/genetics
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microarray Analysis
- Plasma Cells/immunology
- Plasma Cells/metabolism
- Plasma Cells/pathology
- Protein-Tyrosine Kinases/metabolism
- Spleen/pathology
- src-Family Kinases/genetics
- src-Family Kinases/immunology
- src-Family Kinases/metabolism
Collapse
Affiliation(s)
- Toni Gutierrez
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kristina E. Halcomb
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alanna J. Coughran
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Quan-Zhen Li
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Anne B. Satterthwaite
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
215
|
Keck S, Freudenberg M, Huber M. Activation of murine macrophages via TLR2 and TLR4 is negatively regulated by a Lyn/PI3K module and promoted by SHIP1. THE JOURNAL OF IMMUNOLOGY 2010; 184:5809-18. [PMID: 20385881 DOI: 10.4049/jimmunol.0901423] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Src family kinases are involved in a plethora of aspects of cellular signaling. We demonstrate in this study that the Src family kinase Lyn negatively regulates TLR signaling in murine bone marrow-derived macrophages (BMM Phis) and in vivo. LPS-stimulated Lyn(-/-) BMM Phis produced significantly more IL-6, TNF-alpha, and IFN-alpha/beta compared with wild type (WT) BMM Phis, suggesting that Lyn is able to control both MyD88- and TRIF-dependent signaling pathways downstream of TLR4. CD14 was not involved in this type of regulation. Moreover, Lyn attenuated proinflammatory cytokine production in BMM Phis in response to the TLR2 ligand FSL-1, but not to ligands for TLR3 (dsRNA) or TLR9 (CpG 1668). In agreement with these in vitro experiments, Lyn-deficient mice produced higher amounts of proinflammatory cytokines than did WT mice after i. v. injection of LPS or FSL-1. Although Lyn clearly acted as a negative regulator downstream of TLR4 and TLR2, it did not, different from what was proposed previously, prevent the induction of LPS tolerance. Stimulation with a low dose of LPS resulted in reduced production of proinflammatory cytokines after subsequent stimulation with a high dose of LPS in both WT and Lyn(-/-) BMM Phis, as well as in vivo. Mechanistically, Lyn interacted with PI3K; in correlation, PI3K inhibition resulted in increased LPS-triggered cytokine production. In this line, SHIP1(-/-) BMM Phis, exerting enhanced PI3K-pathway activation, produced fewer cytokines than did WT BMM Phis. The data suggest that the Lyn-mediated negative regulation of TLR signaling proceeds, at least in part, via PI3K.
Collapse
Affiliation(s)
- Simone Keck
- Department of Molecular Immunology, Biology III, University of Freiburg, Germany
| | | | | |
Collapse
|
216
|
Saunders AE, Johnson P. Modulation of immune cell signalling by the leukocyte common tyrosine phosphatase, CD45. Cell Signal 2010; 22:339-48. [PMID: 19861160 DOI: 10.1016/j.cellsig.2009.10.003] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 10/18/2009] [Indexed: 01/01/2023]
Abstract
CD45 is a leukocyte specific transmembrane glycoprotein and a receptor-like protein tyrosine phosphatase (PTP). CD45 can be expressed as several alternatively spliced isoforms that differ in the extracellular domain. The isoforms are regulated in a cell type and activation state-dependent manner, yet their function has remained elusive. The Src family kinase members Lck and Lyn are key substrates for CD45 in T and B lymphocytes, respectively. CD45 lowers the threshold of antigen receptor signalling, which impacts T and B cell activation and development. CD45 also regulates antigen triggered Fc receptor signalling in mast cells and Toll-like receptor (TLR) signalling in dendritic cells, thus broadening the role of CD45 to other recognition receptors involved in adaptive and innate immunity. In addition, CD45 can affect immune cell adhesion and migration and can modulate cytokine production and signalling. Here we review what is known about the substrate specificity and regulation of CD45 and summarise its effect on immune cell signalling pathways, from its established role in T and B antigen receptor signalling to its emerging role regulating innate immune cell recognition and cytokine production.
Collapse
Affiliation(s)
- A E Saunders
- Department of Microbiology and Immunology, Life Sciences Institute, 2350 Health Sciences Mall, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | | |
Collapse
|
217
|
Maa MC, Chang MY, Hsieh MY, Chen YJ, Yang CJ, Chen ZC, Li YK, Yen CK, Wu RR, Leu TH. Butyrate reduced lipopolysaccharide-mediated macrophage migration by suppression of Src enhancement and focal adhesion kinase activity. J Nutr Biochem 2010; 21:1186-92. [PMID: 20149623 DOI: 10.1016/j.jnutbio.2009.10.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 10/14/2009] [Accepted: 10/20/2009] [Indexed: 10/19/2022]
Abstract
Macrophage motility is vital in innate immunity. Lipopolysaccharide (LPS)-mediated macrophage migration requires the enhancement of Src expression and enzymatic activity, which can be regulated by inducible nitric oxide synthase (iNOS). As a major short-chain fatty acid with histone deacetylase (HDAC) inhibitor activity, butyrate exerts anti-inflammatory effect by regulating the expression of cytokines. However, the influence of butyrate on macrophage movement was vague. In this study, we observed that butyrate inhibited migration of both RAW264.7 and rat peritoneal macrophages elicited by LPS. Unlike its myeloid relatives (i.e. Lyn, Fgr and Hck) whose expression was almost unaltered in the presence or absence of butyrate in LPS-treated macrophages, LPS-mediated Src induction was greatly suppressed by butyrate and that could be attributable to reduced level of the src transcript. Similar phenomenon was also detected in LPS-treated macrophages exposed to another HDAC inhibitor, trichostatin A (TSA). Consistent with the indispensability of iNOS in promoting macrophage mobilization via Src up-regulation and the activation of both Src and FAK, we did observe concomitant decrement of iNOS, Src and the suppressed activity of Src and FAK in butyrate- or TSA-pretreated macrophages following LPS exposure. These results imply that by virtue of reduction of Src, butyrate could effectively hamper LPS-triggered macrophage locomotion.
Collapse
Affiliation(s)
- Ming-Chei Maa
- Institute of Molecular Systems Biomedicine, China Medical University, Taichung, Taiwan 40402, R.O.C.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
218
|
Fraser CK, Lousberg EL, Kumar R, Hughes TP, Diener KR, Hayball JD. Dasatinib inhibits the secretion of TNF-α following TLR stimulation in vitro and in vivo. Exp Hematol 2009; 37:1435-44. [PMID: 19786067 DOI: 10.1016/j.exphem.2009.09.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 08/31/2009] [Accepted: 09/22/2009] [Indexed: 12/31/2022]
|
219
|
Okoko T, Awhin EP. Glycine reduces cadmium-induced alterations in the viability and activation of macrophage U937 cells. Food Chem Toxicol 2009; 48:536-8. [PMID: 19914328 DOI: 10.1016/j.fct.2009.11.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 10/15/2009] [Accepted: 11/06/2009] [Indexed: 10/20/2022]
Abstract
This study investigates the effect of glycine on cadmium-induced alterations on the viability and activation of the cell line U-937. In this experiment, U-937 cells were pre-treated with 16 microM cadmium (as cadmium chloride). These cadmium-treated cells were later incubated with or without glycine (1-16 microM). After 72 h, it was revealed that glycine significantly (P<0.05) reduced the tendency of cadmium to reduce the viability of the cells. U-937 cells were also treated with phorbol, 12-myristate, 13-acetate to enhance their transition to the macrophage form. Thereafter, the cells were treated with cadmium with or without glycine (1-16 microM). Twenty-four hours later, the supernatants of each cell culture were assessed for the production of tumour necrosis factor alpha (TNF-alpha), interleukin 6 (IL-6), interleukin 1 (IL-1), nitric oxide (NO), and catalase activity as indices of the activation of macrophages. The results show that glycine significantly (P<0.05) reduced the cadmium-induced production of all the markers of the activation of macrophages in a concentration-dependent manner. The findings support the immense antioxidant role of glycine.
Collapse
Affiliation(s)
- Tebekeme Okoko
- Biochemistry Programme, Department of Chemical Sciences, Niger Delta University, PMB 71, Wilberforce Island, Bayelsa State, Nigeria.
| | | |
Collapse
|
220
|
In vitro antioxidant and free radical scavenging activities of Garcinia kola seeds. Food Chem Toxicol 2009; 47:2620-3. [PMID: 19635523 DOI: 10.1016/j.fct.2009.07.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 06/19/2009] [Accepted: 07/21/2009] [Indexed: 11/22/2022]
Abstract
Garcinia kola Heckel--a tropical plant which grows in moist forest, has found wide applications in traditional medicine especially in the West and Central African sub-region. The seeds have been demonstrated to possess numerous bioactivities but research is highly limited on the link between its fractions and the bioactivities. In this work, the methanolic extract of Garcinia kola seeds was subjected to silica gel column chromatography into five fractions ME1-ME5 and the free radical scavenging activities and antioxidant potentials were determined for each fraction using various in vitro models. The ME4 fraction possessed the greatest activities. It was also demonstrated that the ME4 fraction strongly inhibited nitric oxide production in lipopolysaccharide activated macrophage U937 cells. Chromatographic fractionation and spectroscopic analysis of the ME4 fraction revealed the presence of four compounds namely garcinia biflavonoids GB1 and GB2, garcinal and garcinoic acid. These findings show that these four compounds are partly responsible for the great antioxidant potential of Garcinia kola seeds. This gives further evidence to the nutraceutical and pharmaceutical potential of Garcinia kola.
Collapse
|
221
|
Nag K, Chaudhary A. Mediators of Tyrosine Phosphorylation in Innate Immunity: From Host Defense to Inflammation onto Oncogenesis. CURRENT SIGNAL TRANSDUCTION THERAPY 2009; 4:76-81. [PMID: 21709741 PMCID: PMC3123156 DOI: 10.2174/15743620978816750] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cells respond to extracellular cues through a variety of receptors on the surface. These signals once transduced across the cell membrane, activate protein tyrosine kinases, which through phosphorylation of substrates on key tyrosine residues, are able to control cellular growth, activation and differentiation pathways. Recent data suggest that protein tyrosine kinases are critical in integrating signals from various cellular receptors, including pathogen detection receptors that mediate the host innate immune response. In this article, we have reviewed the roles of tyrosine kinases of the Tec, FAK, Fps, Fer, Syk, Src and TAM-receptor families in toll-like receptor signaling. The shared roles of these tyrosine phosphorylation mediators in host defense, inflammation, autoimmune disease and oncogenesis provides promising avenues for the use of their inhibitors in multiple disorders.
Collapse
Affiliation(s)
- Kamalika Nag
- Biosciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Anu Chaudhary
- Biosciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
222
|
Lee YG, Chain BM, Cho JY. Distinct role of spleen tyrosine kinase in the early phosphorylation of inhibitor of κBα via activation of the phosphoinositide-3-kinase and Akt pathways. Int J Biochem Cell Biol 2009; 41:811-21. [DOI: 10.1016/j.biocel.2008.08.011] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 07/17/2008] [Accepted: 08/11/2008] [Indexed: 10/21/2022]
|
223
|
Inhibitory activity of quercetin and its metabolite on lipopolysaccharide-induced activation of macrophage U937 cells. Food Chem Toxicol 2009; 47:809-12. [DOI: 10.1016/j.fct.2009.01.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
224
|
The absence of Hck, Fgr, and Lyn tyrosine kinases augments lung innate immune responses to Pneumocystis murina. Infect Immun 2009; 77:1790-7. [PMID: 19255189 DOI: 10.1128/iai.01441-08] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Src family tyrosine kinases (SFKs) phosphorylate immunotyrosine activation motifs in the cytoplasmic tail of multiple immunoreceptors, leading to the initiation of cellular effector functions, such as phagocytosis, reactive oxygen species production, and cytokine production. SFKs also play important roles in regulating these responses through the activation of immunotyrosine inhibitory motif-containing inhibitory receptors. As myeloid cells preferentially express the SFKs Hck, Fgr, and Lyn, we questioned the role of these kinases in innate immune responses to Pneumocystis murina. Increased phosphorylation of Hck was readily detectable in alveolar macrophages after stimulation with P. murina. We further observed decreased phosphorylation of Lyn on its C-terminal inhibitory tyrosine in P. murina-stimulated alveolar macrophages, indicating that SFKs were activated in alveolar macrophages in response to P. murina. Mice deficient in Hck, Fgr, and Lyn exhibited augmented clearance 3 and 7 days after intratracheal administration of P. murina, which correlated with elevated levels of interleukin 1beta (IL-1beta), IL-6, CXCL1/KC, CCL2/monocyte chemoattractant protein 1, and granulocyte colony-stimulating factor in lung homogenates and a dramatic increase in macrophage and neutrophil recruitment. Augmented P. murina clearance was also observed in Lyn(-/-) mice 3 days postchallenge, although the level was less than that observed in Hck(-/-) Fgr(-/-) Lyn(-/-) mice. A correlate to augmented clearance of P. murina in Hck(-/-) Fgr(-/-) Lyn(-/-) mice was a greater ability of alveolar macrophages from these mice to kill P. murina in vitro, suggesting that SFKs regulate the alveolar macrophage effector function against P. murina. Mice deficient in paired immunoglobulin receptor B (PIR-B), an inhibitory receptor activated by SFKs, did not exhibit enhanced inflammatory responsiveness to or clearance of P. murina. Our results suggest that SFKs regulate innate lung responses to P. murina in a PIR-B-independent manner.
Collapse
|
225
|
Abstract
Lyn is an Src family kinase present in B lymphocytes and myeloid cells. In these cell types, Lyn establishes signaling thresholds by acting as both a positive and a negative modulator of a variety of signaling responses and effector functions. Lyn deficiency in mice results in the development of myeloproliferation and autoimmunity. The latter has been attributed to the hyper-reactivity of Lyn-deficient B cells due to the unique role of Lyn in downmodulating B-cell receptor activation, mainly through phosphorylation of inhibitory molecules and receptors. Myeloproliferation results, on the other hand, from the enhanced sensitivity of Lyn-deficient progenitors to a number of colony-stimulating factors (CSFs). The hyper-sensitivity to myeloid growth factors may also be secondary to poor inhibitory receptor phosphorylation, leading to impaired recruitment/activation of tyrosine phosphatases and reduced downmodulation of CSF signaling responses. Despite these observations, the overall role of Lyn in the modulation of myeloid cell effector functions is much less well understood, as often both positive and negative roles of this kinase have been reported. In this review, we discuss the current knowledge of the duplicitous nature of Lyn in the modulation of myeloid cell signaling and function.
Collapse
Affiliation(s)
- Patrizia Scapini
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143-0451, USA
| | | | | | | |
Collapse
|
226
|
Sarantos MR, Zhang H, Schaff UY, Dixit N, Hayenga HN, Lowell CA, Simon SI. Transmigration of neutrophils across inflamed endothelium is signaled through LFA-1 and Src family kinase. THE JOURNAL OF IMMUNOLOGY 2009; 181:8660-9. [PMID: 19050286 DOI: 10.4049/jimmunol.181.12.8660] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Leukocyte capture on inflamed endothelium is facilitated by a shift in LFA-1 from low to high affinity that supports binding to ICAM-1. LFA-1 bonds help anchor polymorphonuclear leukocytes (PMN) to inflamed endothelium in shear flow, and their redistribution to the leading edge guides pseudopod formation, migration, and extravasation. These events can be disrupted at the plasma membrane by stabilizing LFA-1 in a low- or intermediate-affinity state with allosteric small molecules. We hypothesized that a minimum dimeric bond formation between high-affinity LFA-1 and ICAM-1 under shear stress is necessary to catalyze transmembrane signaling of directed cell migration. Microspheres and substrates were derivatized with monomeric or dimeric ICAM-1 to simulate the surface of inflamed endothelium under defined ligand valence. Binding to dimeric ICAM-1, and not monomeric ICAM-1, was sufficient to elicit assembly of F-actin and phosphorylation of Src family kinases that colocalized with LFA-1 on adherent PMN. Genetic deletion or small molecule inhibition of Src family kinases disrupted their association with LFA-1 that correlated with diminished polarization of arrested PMN and abrogation of transmigration on inflamed endothelium. We conclude that dimeric bond clusters of LFA-1/ICAM-1 provide a key outside-in signal for orienting cytoskeletal dynamics that direct PMN extravasation at sites of inflammation.
Collapse
Affiliation(s)
- Melissa R Sarantos
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA
| | | | | | | | | | | | | |
Collapse
|
227
|
Mariani MM, Lampen P, Popp J, Wood BR, Deckert V. Impact of fixation on in vitro cell culture lines monitored with Raman spectroscopy. Analyst 2009; 134:1154-61. [DOI: 10.1039/b822408k] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
228
|
Suárez del Villar I, Gradillas A, Gómez-Ovalles A, Martínez-Murillo R, Martínez A, Pérez-Castells J. Cyclopropanation Reactions for the Synthesis of 2-Azabicyclo[4.1.0]heptane Derivatives with Nitric Oxide Synthase Inhibitory Activity. CHEM LETT 2008. [DOI: 10.1246/cl.2008.1222] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
229
|
Zarbock A, Abram CL, Hundt M, Altman A, Lowell CA, Ley K. PSGL-1 engagement by E-selectin signals through Src kinase Fgr and ITAM adapters DAP12 and FcR gamma to induce slow leukocyte rolling. ACTA ACUST UNITED AC 2008; 205:2339-47. [PMID: 18794338 PMCID: PMC2556779 DOI: 10.1084/jem.20072660] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
E-selectin binding to P-selectin glycoprotein ligand-1 (PSGL-1) can activate the β2 integrin lymphocyte function-associated antigen-1 by signaling through spleen tyrosine kinase (Syk). This signaling is independent of Gαi-protein–coupled receptors, results in slow rolling, and promotes neutrophil recruitment to sites of inflammation. However, the signaling pathways linking E-selectin engagement of PSGL-1 to Syk activation are unknown. To test the role of Src family kinases and immunoreceptor tyrosine-based activating motif (ITAM)–containing adaptor proteins, we used different gene-deficient mice in flow chamber, intravital microscopy, and peritonitis studies. E-selectin–mediated phosphorylation of Syk and slow rolling was abolished in neutrophils from fgr−/− or hck−/− lyn−/− fgr−/− mice. Neutrophils from Tyrobp−/− Fcrg−/− mice lacking both DAP12 and FcRγ were incapable of sustaining slow neutrophil rolling on E-selectin and intercellular adhesion molecule-1 and were unable to phosphorylate Syk and p38 MAPK. This defect was confirmed in vivo by using mixed chimeric mice. Gαi-independent neutrophil recruitment into the inflamed peritoneal cavity was sharply suppressed in Tyrobp−/− Fcrg−/− mice. Our data demonstrate that an ITAM-dependent pathway involving the Src-family kinase Fgr and the ITAM-containing adaptor proteins DAP12 and FcRγ is involved in the initial signaling events downstream of PSGL-1 that are required to initiate neutrophil slow rolling.
Collapse
Affiliation(s)
- Alexander Zarbock
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | | | |
Collapse
|
230
|
Maa MC, Chang MY, Chen YJ, Lin CH, Yu CJ, Yang YL, Li J, Chen PR, Tang CH, Lei HY, Leu TH. Requirement of inducible nitric-oxide synthase in lipopolysaccharide-mediated Src induction and macrophage migration. J Biol Chem 2008; 283:31408-16. [PMID: 18786925 DOI: 10.1074/jbc.m801158200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previously, we have demonstrated the induction of Src in lipopolysaccharide (LPS)-stimulated macrophages. In this study, we observed that pharmacological blockade or knockout of inducible nitric-oxide synthase (iNOS) reduced LPS-mediated Src induction and macrophage migration. Either SNAP (a NO donor) or 8-Br-cGMP (a cGMP analogue) could rescue these defects in iNOS-null macrophages, which indicated the participation of NO/cGMP in LPS-elicited Src expression and mobilization. In addition, Src family kinase (SFK)-specific inhibitor, PP2, inhibited SNAP- and 8-Br-cGMP-evoked motility implicating the involvement of SFKs downstream of NO/cGMP. Analysis of the expression of SFKs indicated LPS dramatically induced Src, which could be attributable to the increased level of the src transcript. Attenuation of Src by src-specific siRNA reduced LPS- and SNAP-evoked mobilization in Raw264.7 macrophages, and reintroduction of avian Src could rescue their motility. Furthermore, LPS-mediated Src induction led to increased FAK Pi-Tyr-397 and Pi-Tyr-861, which was also iNOS-dependent. With these findings, we concluded that iNOS was important for LPS-mediated macrophage locomotion and Src was a critical player in this process.
Collapse
Affiliation(s)
- Ming-Chei Maa
- Institute of Medical Science, China Medical University, Taichung 40402.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
231
|
Cross JL, Kott K, Miletic T, Johnson P. CD45 regulates TLR-induced proinflammatory cytokine and IFN-beta secretion in dendritic cells. THE JOURNAL OF IMMUNOLOGY 2008; 180:8020-9. [PMID: 18523265 DOI: 10.4049/jimmunol.180.12.8020] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
CD45 is a leukocyte-specific protein tyrosine phosphatase and an important regulator of AgR signaling in lymphocytes. However, its function in other leukocytes is not well-understood. In this study, we examine the function of CD45 in dendritic cells (DCs). Analysis of DCs from CD45-positive and CD45-null mice revealed that CD45 is not required for the development of DCs but does influence DC maturation induced by TLR agonists. CD45 affected the phosphorylation state of Lyn, Hck, and Fyn in bone marrow-derived DCs and dysregulated LPS-induced Lyn activation. CD45 affected TLR4-induced proinflammatory cytokine and IFN-beta secretion and TLR4-activated CD45-null DCs had a reduced ability to activate NK and Th1 cells to produce IFN-gamma. Interestingly, the effect of CD45 on TLR-induced cytokine secretion depended on the TLR activated. Analysis of CD45-negative DCs indicated a negative effect of CD45 on TLR2 and 9, MyD88-dependent cytokine production, and a positive effect on TLR3 and 4, MyD88-independent IFN-beta secretion. This indicates a new role for CD45 in regulating TLR-induced responses in DCs and implicates CD45 in a wider regulatory role in innate and adaptive immunity.
Collapse
Affiliation(s)
- Jennifer L Cross
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | | | | | | |
Collapse
|
232
|
O'Neill LAJ. When signaling pathways collide: positive and negative regulation of toll-like receptor signal transduction. Immunity 2008; 29:12-20. [PMID: 18631453 DOI: 10.1016/j.immuni.2008.06.004] [Citation(s) in RCA: 273] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Toll-like receptor (TLR) signaling is subjected to crosstalk from other signals, with a resulting positive or negative effect. There is complex crosstalk between the NLR family of immune-regulatory molecules and TLRs, and C-type lectin receptors such as Dectin-1 synergize with TLR2 via the tyrosine kinase Syk. Bruton's tyrosine kinase plays an important positive role in TLR signaling, whereas the TAM family of receptor tyrosine kinases is inhibitory. The tyrosine phosphatase SHP1 has been shown to positively regulate induction of interferon-beta, whereas SHP2 inhibits the kinase TBK1, limiting this response. K63-linked polyubiquination has also been shown to be critical for the initiation of TLR signaling. Finally, glucocorticoids affect TLR signaling by inducing the phosphatase MKP1 and inhibiting TBK1 activation. These recent findings emphasize the importance of considering TLR signaling in the context of other signaling pathways, as is likely to occur in vivo during infection and inflammation.
Collapse
Affiliation(s)
- Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
233
|
Chuang PH, Hsieh PW, Yang YL, Hua KF, Chang FR, Shiea J, Wu SH, Wu YC. Cyclopeptides with anti-inflammatory activity from seeds of Annona montana. JOURNAL OF NATURAL PRODUCTS 2008; 71:1365-1370. [PMID: 18687006 DOI: 10.1021/np8001282] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Four new cyclopeptides, cyclomontanins A-D (1- 4), annomuricatin C (5), and (+)-corytuberine were isolated from a methanol extract of Annona montana seeds. Their structures were elucidated by 2D NMR analysis, ESIMS/MS fragment evidence, and chemical means. The structure of 1 was confirmed by synthesis. Compounds 1, 3, and 4 exhibited anti-inflammatory activity in vitro using the J774.1 macrophage model.
Collapse
Affiliation(s)
- Pei-Hsuan Chuang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan, Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
234
|
Paul R, Obermaier B, Van Ziffle J, Angele B, Pfister HW, Lowell CA, Koedel U. Myeloid Src kinases regulate phagocytosis and oxidative burst in pneumococcal meningitis by activating NADPH oxidase. J Leukoc Biol 2008; 84:1141-50. [PMID: 18625913 DOI: 10.1189/jlb.0208118] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Myeloid cells, including neutrophils and macrophages, play important roles in innate immune defense against acute bacterial infections. Myeloid Src family kinases (SFKs) p59/61(hck) (Hck), p58(c-fgr) (Fgr), and p53/56(lyn) (Lyn) are known to control integrin beta(2) signal transduction and FcgammaR-mediated phagocytosis in leukocytes. In this study, we show that leukocyte recruitment into the cerebrospinal fluid space and bacterial clearance is hampered in mice deficient in all three myeloid SFKs (hck(-/-)fgr(-/-)lyn(-/-)) during pneumococcal meningitis. As a result, the hck(-/-)fgr(-/-)lyn(-/-) mice developed increased intracranial pressure and a worse clinical outcome (increased neurologic deficits and mortality) compared with wild-type mice. Impaired bacterial killing was associated with a lack of phagocytosis and superoxide production in triple knockout neutrophils. Moreover, in hck(-/-)fgr(-/-)lyn(-/-) neutrophils, phosphorylation of p40(phox) was absent in response to pneumococcal stimulation, indicating a defect in NAPDH oxidase activation. Mice lacking the complement receptor 3 (CR3; CD11b/CD18), which belongs to the beta(2)-integrin family, also displayed impaired host defense against pneumococci, along with defective neutrophil superoxide production, but cerebrospinal fluid pleocytosis was normal. Cerebral expression of cytokines and chemokines was not decreased in both mouse strains, indicating that CR3 and myeloid SFKs are dispensable for the production of inflammatory mediators. Thus, our study demonstrates the pivotal role of myeloid SFKs and CR3 in mounting an effective defense against CNS infection with Streptococcus pneumonia by regulating phagocytosis and NADPH oxidase-dependent superoxide production. These data support the role of SFKs as critical mediators of CR3 signal transduction in host defense.
Collapse
Affiliation(s)
- Robert Paul
- Department of Neurology, Klinikum Grosshadern, Ludwig-Maximilians University, Marchioninistr. 15, D-81377 Munich, Germany.
| | | | | | | | | | | | | |
Collapse
|
235
|
Abram CL, Lowell CA. The diverse functions of Src family kinases in macrophages. FRONT BIOSCI-LANDMRK 2008; 13:4426-50. [PMID: 18508521 DOI: 10.2741/3015] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Macrophages are key components of the innate immune response. These cells possess a diverse repertoire of receptors that allow them to respond to a host of external stimuli including cytokines, chemokines, and pathogen-associated molecules. Signals resulting from these stimuli activate a number of macrophage functional responses such as adhesion, migration, phagocytosis, proliferation, survival, cytokine release and production of reactive oxygen and nitrogen species. The cytoplasmic tyrosine kinase Src and its family members (SFKs) have been implicated in many intracellular signaling pathways in macrophages, initiated by a diverse set of receptors ranging from integrins to Toll-like receptors. However, it has been difficult to implicate any given member of the family in any specific pathway. SFKs appear to have overlapping and complementary functions in many pathways. Perhaps the function of these enzymes is to modulate the overall intracellular signaling network in macrophages, rather than operating as exclusive signaling switches for defined pathways. In general, SFKs may function more like rheostats, influencing the amplitude of many pathways.
Collapse
Affiliation(s)
- Clare L Abram
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143, USA
| | | |
Collapse
|
236
|
Xiao W, Hong H, Kawakami Y, Lowell CA, Kawakami T. Regulation of myeloproliferation and M2 macrophage programming in mice by Lyn/Hck, SHIP, and Stat5. J Clin Invest 2008; 118:924-34. [PMID: 18246197 DOI: 10.1172/jci34013] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2007] [Accepted: 11/28/2007] [Indexed: 12/31/2022] Open
Abstract
The proliferation and differentiation of hematopoietic stem cells (HSCs) is finely regulated by extrinsic and intrinsic factors via various signaling pathways. Here we have shown that, similar to mice deficient in the lipid phosphatase SHIP, loss of 2 Src family kinases, Lyn and Hck, profoundly affects HSC differentiation, producing hematopoietic progenitors with increased proliferation, reduced apoptosis, growth factor-independent survival, and skewed differentiation toward M2 macrophages. This phenotype culminates in a Stat5-dependent myeloproliferative disease that is accompanied by M2 macrophage infiltration of the lung. Expression of a membrane-bound form of SHIP in HSCs lacking both Lyn and Hck restored normal hematopoiesis and prevented myeloproliferation. In vitro and in vivo studies suggested the involvement of autocrine and/or paracrine production of IL-3 and GM-CSF in the increased proliferation and myeloid differentiation of HSCs. Thus, this study has defined a myeloproliferative transformation-sensitive signaling pathway, composed of Lyn/Hck, SHIP, autocrine/paracrine cytokines, and Stat5, that regulates HSC differentiation and M2 macrophage programming.
Collapse
Affiliation(s)
- Wenbin Xiao
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
237
|
Orschell CM, Borneo J, Munugalavadla V, Ma P, Sims E, Ramdas B, Yoder MC, Kapur R. Deficiency of Src family kinases compromises the repopulating ability of hematopoietic stem cells. Exp Hematol 2008; 36:655-66. [PMID: 18346837 DOI: 10.1016/j.exphem.2008.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 01/14/2008] [Accepted: 01/15/2008] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Src family kinases (SFK) have been implicated in regulating growth factor and integrin-induced proliferation, migration, and gene expression in multiple cell types. However, little is known about the role of these kinases in the growth, homing, and engraftment potential of hematopoietic stem and progenitor cells. RESULTS Here we show that loss of hematopoietic-specific SFKs Hck, Fgr, and Lyn results in increased number of Sca-1(+)Lin(-) cells in the bone marrow, which respond differentially to cytokine-induced growth in vitro and manifest a significant defect in the long-term repopulating potential in vivo. Interestingly, a significant increase in expression of adhesion molecules, known to coincide with the homing potential of wild-type bone marrow cells is also observed on the surface of SFK(-/-) cells, although, this increase did not affect the homing potential of more primitive Lin(-)Sca-1(+) SFK(-/-) cells. The stem cell-repopulating defect observed in mice transplanted with SFK(-/-) bone marrow cells is due to the loss of Lyn Src kinase, because deficiency of Lyn, but not Hck or Fgr, recapitulated the long-term stem cell defect observed in mice transplanted with SFK(-/-) bone marrow cells. CONCLUSIONS Taken together, our results demonstrate an essential role for Lyn kinase in positively regulating the long-term and multilineage engraftment of stem cells, which is distinct from its role in mature B cells and myeloid cells.
Collapse
Affiliation(s)
- Christie M Orschell
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | |
Collapse
|
238
|
Johnson DE. Src family kinases and the MEK/ERK pathway in the regulation of myeloid differentiation and myeloid leukemogenesis. ADVANCES IN ENZYME REGULATION 2007; 48:98-112. [PMID: 18155170 PMCID: PMC2633125 DOI: 10.1016/j.advenzreg.2007.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Daniel E Johnson
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh, 5117 Centre Avenue, Pittsburgh, PA 15213-1863, USA.
| |
Collapse
|
239
|
Bmx tyrosine kinase regulates TLR4-induced IL-6 production in human macrophages independently of p38 MAPK and NFkapp}B activity. Blood 2007; 111:1781-8. [PMID: 18025155 DOI: 10.1182/blood-2007-07-102343] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chronic inflammation, as seen in conditions such as rheumatoid arthritis and Crohn disease, is in part driven by discordant production of inflammatory cytokines, such as tumor necrosis factor-alpha and interleukin-6 (IL-6). Tyrosine kinase activity is essential to lipopolysaccharide-induced cytokine production in monocytes, and previous studies by us and others have implicated a role for the Tec kinase Bruton's tyrosine kinase (Btk) in inflammatory cytokine production. Here we show that knockdown of Btk using RNA interference results in decreased tumor necrosis factor-alpha, but not IL-6 production. Further investigations into the signaling mechanisms regulating IL-6 production led to the discovery that the Tec kinase bone marrow tyrosine kinase gene in chromosome X (Bmx) regulates Toll-like receptor-induced IL-6 production. Our data further showed that Bmx-dependent super-induction of IL-6 does not involve nuclear factor-kappaB activity. More detailed investigations of pathways downstream of Bmx signaling revealed that Bmx targets the IL-6 3' untranslated region to increase mRNA stabilization via a novel, thus far undefined, p38 mitogen activated protein kinase-independent pathway. These data have important implications for the design of therapeutics targeted against specific cytokines and their regulators in inflammatory disease.
Collapse
|
240
|
Cuschieri J, Bulger E, Billgrin J, Garcia I, Maier RV. Acid sphingomyelinase is required for lipid Raft TLR4 complex formation. Surg Infect (Larchmt) 2007; 8:91-106. [PMID: 17381401 DOI: 10.1089/sur.2006.050] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Lipid rafts, composed of sphingolipids, are critical to Toll-like receptor 4 (TLR4) assembly during lipopolysaccharide (LPS) exposure as a result of phosphokinase C (PKC)-zeta activation. However, the mechanism responsible for these events remains unknown. PURPOSE We determined whether LPS-induced TLR4 assembly and activation are dependent on the sphingolipid metabolite ceramide, produced by acid sphingomyelinase following the initial binding of LPS to CD14. METHODS Cultured THP-1 cells were stimulated with LPS, exogenous C(2) ceramide, or both. Selected cells were pretreated with the acid sphingomyelinase inhibitor imipramine or CD14 neutralizing antibody. RESULTS Exposure to LPS led to activation of acid sphingomyelinase, production of ceramide, phosphorylation of PKCzeta, and assembly of the TLR4 receptor within lipid rafts. This was followed by activation of the MAPK family of products and the liberation of tumor necrosis factor-alpha. Pretreatment with imipramine or CD14 blockade was associated with attenuation of all of these LPS-induced events. Simultaneous treatment with C(2) ceramide and LPS reversed all the inhibitory effects induced by imipramine, but not those associated with CD14 blockade. CONCLUSION Assembly and activation of the TLR4 receptor following LPS binding to CD14 requires the production of ceramide by acid sphingomyelinase.
Collapse
Affiliation(s)
- Joseph Cuschieri
- Department of Surgery, University of Washington, Harborview Medical Center, 325 Ninth Avenue, Seattle, WA 98104, USA.
| | | | | | | | | |
Collapse
|
241
|
Ganguly N, Giang PH, Basu SK, Mir FA, Siddiqui I, Sharma P. Mycobacterium tuberculosis 6-kDa early secreted antigenic target (ESAT-6) protein downregulates lipopolysaccharide induced c-myc expression by modulating the extracellular signal regulated kinases 1/2. BMC Immunol 2007; 8:24. [PMID: 17915024 PMCID: PMC2082026 DOI: 10.1186/1471-2172-8-24] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Accepted: 10/03/2007] [Indexed: 12/05/2022] Open
Abstract
Background Mycobacterium tuberculosis (Mtb) causes death of 2–3 million people every year. The persistence of the pathogenic mycobacteria inside the macrophage occurs through modulation of host cell signaling which allows them, unlike the other non-pathogenic species, to survive inside the host. The secretory proteins of M. tuberculosis have gained attention in recent years both as vaccine candidates and diagnostic tools; they target the immune system and trigger a putatively protective response; however, they may also be involved in the clinical symptoms of the disease. Results Our studies showed that RD-1-encoded secretory protein ESAT-6 is involved in modulation of the mitogen-activated protein (MAP) kinase-signaling pathway inside the macrophage. ESAT-6 induced phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2) in the cytoplasm but not in the nucleus, which normally is the case for MAP kinases. ESAT-6 also antagonized LPS-induced ERK1/2 phosphorylation in the nucleus. Stimulation of cells by ESAT-6 along with sodium orthovanadate (a tyrosine phosphatase inhibitor) restored phosphorylation of ERK1/2 in the nucleus, suggesting active dephosphorylation of ERK1/2 by some putative phosphatase(s) in the nucleus. Further, ESAT-6 was found to down regulate the expression of LPS-inducible gene c-myc in an ERK1/2-dependent manner. Conclusion This study showed the effect of secretory proteins of M. tuberculosis in the modulation of macrophage signaling pathways particularly ERK1/2 MAP kinase pathway. This modulation appears to be achieved by limiting the ERK1/2 activation in the nucleus which ultimately affects the macrophage gene expression. This could be a mechanism by which secretory proteins of Mtb might modulate gene expression inside the macrophages.
Collapse
Affiliation(s)
- Niladri Ganguly
- Immunology Group, International Centre for Genetic Engineering and Biotechnology Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Pham H Giang
- Immunology Group, International Centre for Genetic Engineering and Biotechnology Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Sandip K Basu
- Immunology Group, International Centre for Genetic Engineering and Biotechnology Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Fayaz Ahmad Mir
- Immunology Group, International Centre for Genetic Engineering and Biotechnology Aruna Asaf Ali Marg, New Delhi-110067, India
- Department of Immunology, Max-Planck-Institute for Infection Biology, Chariteplatz 1, D-10117 Berlin, Germany
| | - Imran Siddiqui
- Immunology Group, International Centre for Genetic Engineering and Biotechnology Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Pawan Sharma
- Immunology Group, International Centre for Genetic Engineering and Biotechnology Aruna Asaf Ali Marg, New Delhi-110067, India
| |
Collapse
|
242
|
Smolinska MJ, Horwood NJ, Page TH, Smallie T, Foxwell BMJ. Chemical inhibition of Src family kinases affects major LPS-activated pathways in primary human macrophages. Mol Immunol 2007; 45:990-1000. [PMID: 17875324 DOI: 10.1016/j.molimm.2007.07.026] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 07/26/2007] [Accepted: 07/27/2007] [Indexed: 11/23/2022]
Abstract
Understanding the signalling mechanisms controlling inflammatory cytokine production is pivotal to the research of both acute and chronic immune disorders. Tyrosine phosphorylation is one of the earliest events to occur in response to an immune challenge yet the role of specific tyrosine kinases in inflammatory cytokine production has been difficult to ascribe due to conflicting literature. Here we show that the pyrazolo pyrimidine compound PP2, a selective inhibitor of Src family kinases (SFK), can inhibit LPS-induced TNF production as well as a number of other inflammatory cytokines. In addition, we show similar effects of PP2 on cytokine production when induced by other TLRs, (1, 2 and 5-8), indicating that SFK are important common regulators of TLR signalling. PP2 suppressed the activity of both TNF and IL-10 driven reporter genes, suggesting that this activity is mediated at the level of transcription. Interestingly, however, PP2 had no significant effect on the activation of NF-kappaB, or on p42/44 ERK, p46/54 JNK or p38 MAPK phosphorylation. In contrast, PP2 did inhibit AP-1 nuclear accumulation in response to LPS. Taken together, these findings show that the Src kinases are able to control inflammatory cytokine production at the transcriptional level independently of NF-kappaB, and highlight the role of the AP-1 family of transcription factors as downstream mediators of Src kinase action.
Collapse
Affiliation(s)
- Maria J Smolinska
- Kennedy Institute of Rheumatology Division, Faculty of Medicine, Imperial College of Science, Technology and Medicine, Charing Cross Campus, ARC Building, 1 Aspenlea Road, London W6 8LH, UK
| | | | | | | | | |
Collapse
|
243
|
Cain JA, Xiang Z, O'Neal J, Kreisel F, Colson A, Luo H, Hennighausen L, Tomasson MH. Myeloproliferative disease induced by TEL-PDGFRB displays dynamic range sensitivity to Stat5 gene dosage. Blood 2007; 109:3906-14. [PMID: 17218386 PMCID: PMC1874559 DOI: 10.1182/blood-2006-07-036335] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Accepted: 12/26/2006] [Indexed: 12/28/2022] Open
Abstract
Expression of the constitutively activated TEL/PDGFbetaR fusion protein is associated with the t(5;12)(q33;p13) chromosomal translocation found in a subset of patients with chronic myelomonocytic leukemia. TEL/PDGFbetaR activates multiple signal transduction pathways in cell-culture systems, and expression of the TEL-PDGFRB fusion gene induces myeloproliferative disease (MPD) in mice. We used gene-targeted mice to characterize the contribution of signal transducer and activator of transcription (Stat) and Src family genes to TEL-PDGFRB-mediated transformation in methylcellulose colony and murine bone marrow transduction/transplantation assays. Fetal liver hematopoietic stem and progenitor cells harboring targeted deletion of both Stat5a and Stat5b (Stat5ab(null/null)) genes were refractory to transformation by TEL-PDGFRB in methylcellulose colony assays. Notably, these cell populations were maintained in Stat5ab(null/null) fetal livers and succumbed to transformation by c-Myc. Surprisingly, targeted disruption of either Stat5a or Stat5b alone also impaired TEL-PDGFRB-mediated transformation. Survival of TPiGFP-->Stat5a(-/-) and TPiGFP-->Stat5a(+/-) mice was significantly prolonged, demonstrating significant sensitivity of TEL-PDGFRB-induced MPD to the dosage of Stat5a. TEL-PDGFRB-mediated MPD was incompletely penetrant in TPiGFP-->Stat5b(-/-) mice. In contrast, Src family kinases Lyn, Hck, and Fgr and the Stat family member Stat1 were dispensable for TEL-PDGFRB disease. Together, these data demonstrate that Stat5a and Stat5b are dose-limiting mediators of TEL-PDGFRB-induced myeloproliferation.
Collapse
MESH Headings
- Animals
- Bone Marrow/metabolism
- Bone Marrow/pathology
- Gene Dosage
- Gene Expression Regulation, Leukemic/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Mice
- Mice, Knockout
- Oncogene Proteins, Fusion/biosynthesis
- Oncogene Proteins, Fusion/genetics
- Proto-Oncogene Proteins c-ets/biosynthesis
- Proto-Oncogene Proteins c-ets/genetics
- Receptor, Platelet-Derived Growth Factor beta/biosynthesis
- Receptor, Platelet-Derived Growth Factor beta/genetics
- Repressor Proteins/biosynthesis
- Repressor Proteins/genetics
- STAT5 Transcription Factor/biosynthesis
- STAT5 Transcription Factor/deficiency
- Signal Transduction/genetics
- Translocation, Genetic/genetics
- Tumor Stem Cell Assay
- src-Family Kinases/metabolism
- ETS Translocation Variant 6 Protein
Collapse
Affiliation(s)
- Jennifer A Cain
- Department of Internal Medicine, Division of Oncology, Washington University Siteman Cancer Center, 550 S. Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
244
|
Abstract
The production of mature, differentiated myeloid cells is regulated by the action of hematopoietic cytokines on progenitor cells in the bone marrow. Cytokines drive the process of myeloid differentiation by binding to specific cell-surface receptors in a stage- and lineage-specific manner. Following the binding of a cytokine to its cognate receptor, intracellular signal-transduction pathways become activated that facilitate the myeloid differentiation process. These intracellular signaling pathways may promote myelopoiesis by stimulating expansion of a progenitor pool, supporting cellular survival during the differentiation process, or by directly driving the phenotypic changes associated with differentiation. Ultimately, pathways that drive the differentiation process converge on myeloid transcription factors, including PU.1 and the C/EBP family, that are critical for differentiation to proceed. While much is known about the cytokines, cytokine receptors and transcription factors that regulate myeloid differentiation, less is known about the precise roles that specific signaling mediators play in promoting myeloid differentiation. Recently, however, the application of novel pharmacologic inhibitors, siRNA strategies, and transgenic and knockout models has begun to shed light on the involvement and function of signaling pathways in normal myeloid differentiation. This review will discuss the roles that key signaling pathways and mediators play in myeloid differentiation.
Collapse
Affiliation(s)
- M B Miranda
- Department of Medicine, University of Pittsburgh and the University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
245
|
Gayathri B, Manjula N, Vinaykumar KS, Lakshmi BS, Balakrishnan A. Pure compound from Boswellia serrata extract exhibits anti-inflammatory property in human PBMCs and mouse macrophages through inhibition of TNFα, IL-1β, NO and MAP kinases. Int Immunopharmacol 2007; 7:473-82. [PMID: 17321470 DOI: 10.1016/j.intimp.2006.12.003] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 10/26/2006] [Accepted: 12/04/2006] [Indexed: 11/26/2022]
Abstract
The aim of the present study is to probe the anti-inflammatory potential of the plant Boswellia serrata by studying the effect of the crude extract and the pure compound isolated from it on key inflammatory mediators like TNFalpha, IL-1beta, and NO thus enabling the understanding of the key signaling events involved. The crude methanolic extract and the pure compound were analysed for their inhibitory effect on TNFalpha, IL-1beta and IL-6. The results demonstrated that all three cytokines are down regulated when PBMCs are cultured in the presence of crude extract or the pure compound at various time points. Observations on Th1/Th2 cytokines revealed marked down regulation of Th1 cytokines IFNgamma and IL-12 while the Th2 cytokines IL-4 and IL-10 were up regulated upon treatment with crude extract and pure compound. The extract and the pure compound isolated also showed considerable inhibition of NO production in activated RAW 264.7 cells, possibly via suppression of inducible NO synthase mRNA expression. Further to elucidate the underlying mechanism of action the effect of 12-ursene 2-diketone on LPS-induced activation of MAPK has also been examined. Our results demonstrated that 12-ursene 2-diketone inhibits the expression of pro-inflammatory cytokines and mediators via inhibition of phosphorylation of the MAP kinases JNK and p38 while no inhibition was seen in ERK phosphorylation in LPS-stimulated PBMCs. The above study therefore indicates that the crude methanolic extract and the isolated pure compound are capable of carrying out a natural anti-inflammatory activity at sites where chronic inflammation is present by switching off the pro-inflammatory cytokines and mediators, which initiate the process.
Collapse
Affiliation(s)
- B Gayathri
- Centre for Biotechnology, Anna University, Chennai, India
| | | | | | | | | |
Collapse
|
246
|
Petursdottir DH, Hardardottir I. Dietary fish oil increases the number of splenic macrophages secreting TNF-alpha and IL-10 but decreases the secretion of these cytokines by splenic T cells from mice. J Nutr 2007; 137:665-70. [PMID: 17311957 DOI: 10.1093/jn/137.3.665] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Dietary fish oil has immunomodulatory effects that are partly mediated by its effects on cytokine secretion. In this paper, we examine whether dietary fish oil has different effects on cytokine secretion by T cells and macrophages. Female BalbC mice were fed diets supplemented with 18% fish oil + 2% corn oil or 20% corn oil. Concanavalin A (ConA)- and LPS-induced TNF-alpha and IL-10 secretion by splenocytes was examined using ELISA. Dietary fish oil decreased ConA induced-, but increased LPS-induced, TNF-alpha and IL-10 secretion by total murine splenocytes. Dietary fish oil increased the number of splenocytes secreting TNF-alpha and IL-10, following stimulation with LPS, by 123 and 38%, respectively, but did not affect cytokine secretion by each cell, as determined using enzyme-linked immunospot. Spleens from mice fed the fish oil diet had over 2-fold higher proportion of macrophages with high expression of CD11b than spleens from mice fed the corn oil diet. In addition, fish oil increased the proportion of total and CD11b(+) splenocytes that expressed the LPS receptor complex molecules, CD14 and toll-like receptor (TLR)4/myeloid differentiation factor-2 (MD-2), by 85 and 28%, respectively. The increased proportion of macrophages expressing the LPS receptor complex molecules, CD14 and TLR4/MD-2, in spleens from mice fed the fish oil diet may explain the increased number of cells that secreted the cytokines after LPS stimulation.
Collapse
Affiliation(s)
- Dagbjort H Petursdottir
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | | |
Collapse
|
247
|
Galdiero M, Vitiello M, D'Isanto M, Raieta K, Galdiero E. STAT1 and STAT3 phosphorylation by porins are independent of JAKs but are dependent on MAPK pathway and plays a role in U937 cells production of interleukin-6. Cytokine 2007; 36:218-28. [PMID: 17258468 DOI: 10.1016/j.cyto.2006.12.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 11/28/2006] [Accepted: 12/16/2006] [Indexed: 10/23/2022]
Abstract
A group of transcription factors, termed signal transducers and activators of transcription (STATs), appears to orchestrate the downstream events propagated by cytokine/growth factor interactions with their cognate receptors. Similarly, cytoplasmic Janus kinases (JAKs) seem to play a critical role in diverse signal transduction pathways that govern cellular survival, proliferation, differentiation and apoptosis. In this work, we analysed the effects of the Salmonella enterica serovar Typhimurium porins on signaling by the JAK/STAT pathway and IL-6 release in U937 cells. Porins and LPS of membrane from Gram-negative bacteria are factors implicated in septic shock. In our assays porins induce interleukin-6 (IL-6) release (110+/-2.6pg/ml) 24h after stimulation and STAT1/STAT3 tyrosine (Tyr701/Tyr705) and serine (Ser727) phosphorylation after 15min. By using several selective inhibitors we demonstrate that porins modulate the activation of STAT1/STAT3 through mitogen activated protein kinases (MAPKs) and not JAKs. Furthermore, we demonstrated that STAT1 and STAT3 are not involved in the modulation of IL-6 release in U937 cells stimulated with porins. Inhibition of tyrosine/serine phosphorylation mediated by MAPKs of STAT1 and STAT3 decrease the IL-6 secretion following porin stimulation. Therefore, suggesting a key role of this pathway in phosphorylation of Ser 727 in STAT1 and STAT3. These results are confirmed by porin or LPS-induced nuclear translocation of STAT1 and STAT3 in U937 cells.
Collapse
Affiliation(s)
- Marilena Galdiero
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, Faculty of Medicine, Second University of Naples, Naples, Italy
| | | | | | | | | |
Collapse
|
248
|
Patil C, Rossa C, Kirkwood KL. Actinobacillus actinomycetemcomitans lipopolysaccharide induces interleukin-6 expression through multiple mitogen-activated protein kinase pathways in periodontal ligament fibroblasts. ACTA ACUST UNITED AC 2007; 21:392-8. [PMID: 17064398 DOI: 10.1111/j.1399-302x.2006.00314.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Actinobacillus actinomycetemcomitans plays a major role in the pathogenesis of aggressive periodontitis. Lipopolysaccharide (LPS) derived from A. actinomycetemcomitans is a key factor in inflammatory cytokine generation within periodontal tissues. In this study, we identify major mitogen-activated protein kinase (MAPK) signaling pathways induced by A. actinomycetemcomitans LPS, Escherichia coli LPS and interleukin-1beta (IL-1beta) in a murine periodontal ligament (mPDL) fibroblast cell line. Immunoblot analysis was used to assess the phosphorylated forms of p38, extracellular-regulated kinase (ERK) and c-jun N-terminal kinase (JNK) MAPK following stimulation with A. actinomycetemcomitans LPS, E. coli LPS and IL-1beta. IL-6 mRNA induction was detected via reverse transcription-polymerase chain reaction, while protein levels were quantified via enzyme-linked immunosorbent assays (ELISA). We utilized biochemical inhibitors of p38, ERK and JNK MAPK to identify the MAPK signaling pathways needed for IL-6 expression. Additional use of stable mPDL cell lines containing dominant negative mutant constructs of MAPK kinase-3 and -6 (MKK-3/6) and p38 null mutant mouse embryonic fibroblast (MEF) cells were used to substantiate the biochemical inhibitor data. Blocking p38 MAPK with SB203580 reduced the induction of IL-6 mRNA by A. actinomycetemcomitans LPS, E. coli LPS and IL-1beta by >70%, >95% and approximately 60%, respectively. IL-6 ELISA indicated that blocking p38 MAPK reduced the IL-6 protein levels induced by A. actinomycetemcomitans LPS, E. coli LPS and IL-1beta by approximately 60%, approximately 50% and approximately 70%, respectively. All MAPK inhibitors significantly reduced the IL-6 protein levels induced by A. actinomycetemcomitans LPS, E. coli LPS and IL-1beta whereas only p38 inhibitors consistently reduced the A. actinomycetemcomitans LPS, E. coli LPS and IL-1beta induction of IL-6 mRNA steady-state levels. The contribution of p38 MAPK LPS-induced IL-6 expression was confirmed using MKK-3/6 dominant negative stable mPDL cell lines. Wild-type and p38alpha(-/-) MEF cells provided additional evidence to support the role of p38alpha MAPK in A. actinomycetemcomitans LPS-stimulated IL-6. Our results indicate that induction of IL-6 by E. coli LPS, IL-1beta and A. actinomycetemcomitans LPS requires signaling through MKK-3-p38alpha ERK, JNK and p38 MAPK in mPDL cells.
Collapse
Affiliation(s)
- C Patil
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, USA
| | | | | |
Collapse
|
249
|
Zaleskas VM, Krause DS, Lazarides K, Patel N, Hu Y, Li S, Van Etten RA. Molecular pathogenesis and therapy of polycythemia induced in mice by JAK2 V617F. PLoS One 2006; 1:e18. [PMID: 17183644 PMCID: PMC1762384 DOI: 10.1371/journal.pone.0000018] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Accepted: 09/18/2006] [Indexed: 01/17/2023] Open
Abstract
Background A somatic activating mutation (V617F) in the JAK2 tyrosine kinase was recently discovered in the majority of patients with polycythemia vera (PV), and some with essential thrombocythemia (ET) and chronic idiopathic myelofibrosis. However, the role of mutant JAK2 in disease pathogenesis is unclear. Methods and Findings We expressed murine JAK2 WT or V617F via retroviral bone marrow transduction/transplantation in the hematopoietic system of two different inbred mouse strains, Balb/c and C57Bl/6 (B6). In both strains, JAK2 V617F, but not JAK2 WT, induced non-fatal polycythemia characterized by increased hematocrit and hemoglobin, reticulocytosis, splenomegaly, low plasma erythropoietin (Epo), and Epo-independent erythroid colonies. JAK2 V617F also induced leukocytosis and neutrophilia that was much more prominent in Balb/c mice than in B6. Platelet counts were not affected in either strain despite expression of JAK2 V617F in megakaryocytes and markedly prolonged tail bleeding times. The polycythemia tended to resolve after several months, coincident with increased spleen and marrow fibrosis, but was resurrected by transplantation to secondary recipients. Using donor mice with mutations in Lyn, Hck, and Fgr, we demonstrated that the polycythemia was independent of Src kinases. Polycythemia and reticulocytosis responded to treatment with imatinib or a JAK2 inhibitor, but were unresponsive to the Src inhibitor dasatinib. Conclusions These findings demonstrate that JAK2 V617F induces Epo-independent expansion of the erythroid lineage in vivo. The fact that the central erythroid features of PV are recapitulated by expression of JAK2 V617F argues that it is the primary and direct cause of human PV. The lack of thrombocytosis suggests that additional events may be required for JAK2 V617F to cause ET, but qualitative platelet abnormalities induced by JAK2 V617F may contribute to the hemostatic complications of PV. Despite the role of Src kinases in Epo signaling, our studies predict that Src inhibitors will be ineffective for therapy of PV. However, we provide proof-of-principle that a JAK2 inhibitor should have therapeutic effects on the polycythemia, and perhaps myelofibrosis and hemostatic abnormalities, suffered by MPD patients carrying the JAK2 V617F mutation.
Collapse
Affiliation(s)
- Virginia M. Zaleskas
- Molecular Oncology Research Institute, Tufts‐New England Medical CenterBoston, Massachusetts, United States of America
| | - Daniela S. Krause
- Molecular Oncology Research Institute, Tufts‐New England Medical CenterBoston, Massachusetts, United States of America
| | - Katherine Lazarides
- Molecular Oncology Research Institute, Tufts‐New England Medical CenterBoston, Massachusetts, United States of America
| | - Nihal Patel
- Molecular Oncology Research Institute, Tufts‐New England Medical CenterBoston, Massachusetts, United States of America
| | - Yiguo Hu
- The Jackson LaboratoryBar Harbor, Maine, United States of America
| | - Shaoguang Li
- The Jackson LaboratoryBar Harbor, Maine, United States of America
| | - Richard A. Van Etten
- Molecular Oncology Research Institute, Tufts‐New England Medical CenterBoston, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
250
|
Doyle SL, O'Neill LAJ. Toll-like receptors: from the discovery of NFkappaB to new insights into transcriptional regulations in innate immunity. Biochem Pharmacol 2006; 72:1102-13. [PMID: 16930560 DOI: 10.1016/j.bcp.2006.07.010] [Citation(s) in RCA: 491] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 07/03/2006] [Accepted: 07/17/2006] [Indexed: 11/20/2022]
Abstract
Toll-like receptors (TLRs) are key components of the innate immune system, functioning as pattern recognition receptors that recognise a wide range of microbial pathogens. TLRs represent a primary line of defence against invading pathogens in mammals, plants and insects. Recognition of microbial components by TLRs triggers a cascade of cellular signals that culminates in the activation of NFkappaB which leads to inflammatory gene expression and clearance of the infectious agent. The history of NFkappaB began with the TLR4 ligand lipopolysaccharide (LPS), a component of the cell wall of Gram-negative bacteria, since this was the stimulus first used to activate NFkappaB in pre-B-cells. However, since those early days it has been a circuitous route, made possible by drawing on information provided by many different fields, that has led us not only to the discovery of TLRs but also to an understanding of the complex pathways that lead from TLR ligation to NFkappaB activation. In this review we will summarize the current knowledge of TLR-mediated NFkappaB activation, and also the recent discoveries that subtle differences in kappaB binding sequences and NFkappaB dimer formation result in specific gene expression profiles.
Collapse
Affiliation(s)
- Sarah L Doyle
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland.
| | | |
Collapse
|