201
|
Shelake RM, Pramanik D, Kim JY. In Vivo Rapid Investigation of CRISPR-Based Base Editing Components in Escherichia coli (IRI-CCE): A Platform for Evaluating Base Editing Tools and Their Components. Int J Mol Sci 2022; 23:ijms23031145. [PMID: 35163069 PMCID: PMC8834901 DOI: 10.3390/ijms23031145] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 02/04/2023] Open
Abstract
Rapid assessment of clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas)-based genome editing (GE) tools and their components is a critical aspect for successful GE applications in different organisms. In many bacteria, double-strand breaks (DSBs) generated by CRISPR/Cas tool generally cause cell death due to the lack of an efficient nonhomologous end-joining pathway and restricts its use. CRISPR-based DSB-free base editors (BEs) have been applied for precise nucleotide (nt) editing in bacteria, which does not need to make DSBs. However, optimization of newer BE tools in bacteria is challenging owing to the toxic effects of BE reagents expressed using strong promoters. Improved variants of two main BEs, cytidine base editor (CBE) and adenine base editor (ABE), capable of converting C to T and A to G, respectively, have been recently developed but yet to be tested for editing characteristics in bacteria. Here, we report a platform for in vivo rapid investigation of CRISPR-BE components in Escherichia coli (IRI-CCE) comprising a combination of promoters and terminators enabling the expression of nCas9-based BE and sgRNA to nontoxic levels, eventually leading to successful base editing. We demonstrate the use of IRI-CCE to characterize different variants of CBEs (PmCDA1, evoCDA1, APOBEC3A) and ABEs (ABE8e, ABE9e) for bacteria, exhibiting that each independent BE has its specific editing pattern for a given target site depending on protospacer length. In summary, CRISPR-BE components expressed without lethal effects on cell survival in the IRI-CCE allow an analysis of various BE tools, including cloned biopart modules and sgRNAs.
Collapse
Affiliation(s)
- Rahul Mahadev Shelake
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea;
- Correspondence: (R.M.S.); (J.-Y.K.)
| | - Dibyajyoti Pramanik
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea;
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea;
- Division of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Korea
- Correspondence: (R.M.S.); (J.-Y.K.)
| |
Collapse
|
202
|
Liu Z, Chen S, Xie W, Song Y, Li J, Lai L, Li Z. Versatile and efficient in vivo genome editing with compact Streptococcus pasteurianus Cas9. Mol Ther 2022; 30:256-267. [PMID: 34174445 PMCID: PMC8753289 DOI: 10.1016/j.ymthe.2021.06.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/01/2021] [Accepted: 06/21/2021] [Indexed: 01/07/2023] Open
Abstract
Compact CRISPR-Cas9 systems that can be packaged into an adeno-associated virus (AAV) show promise for gene therapy. However, the requirement of protospacer adjacent motifs (PAMs) restricts the target scope. To expand this repertoire, we revisited and optimized a small Cas9 ortholog derived from Streptococcus pasteurianus (SpaCas9) for efficient genome editing in vivo. We found that SpaCas9 enables potent targeting of 5'-NNGYRA-3' PAMs, which are distinct from those recognized by currently used small Cas9s; the Spa-cytosine base editor (CBE) and Spa-adenine base editor (ABE) systems efficiently generated robust C-to-T and A-to-G conversions both in vitro and in vivo. In addition, by exploiting natural variation in the PAM-interacting domain, we engineered three SpaCas9 variants to further expand the targeting scope of compact Cas9 systems. Moreover, mutant mice with efficient disruption of the Tyr gene were successfully generated by microinjection of SpaCas9 mRNA and the corresponding single guide RNA (sgRNA) into zygotes. Notably, all-in-one AAV delivery of SpaCas9 targeting the Pcsk9 gene in adult mouse liver produced efficient genome-editing events and reduced its serum cholesterol. Thus, with distinct PAMs and a small size, SpaCas9 will broaden the CRISPR-Cas9 toolsets for efficient gene modifications and therapeutic applications.
Collapse
Affiliation(s)
- Zhiquan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun 130062, China
| | - Siyu Chen
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun 130062, China
| | - Wanhua Xie
- The Precise Medicine Center, Shenyang Medical College, Shenyang 110000, China
| | - Yuning Song
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun 130062, China
| | - Jinze Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun 130062, China
| | - Liangxue Lai
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun 130062, China; CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangzhou Regenerative Medicine and Health Guang Dong Laboratory (GRMH-GDL), Guangzhou 510005, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| | - Zhanjun Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun 130062, China.
| |
Collapse
|
203
|
Sayed S, Sürün D, Mircetic J, Sidorova OA, Buchholz F. Using CRISPR-Cas9 to Dissect Cancer Mutations in Cell Lines. Methods Mol Biol 2022; 2508:235-260. [PMID: 35737245 DOI: 10.1007/978-1-0716-2376-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The CRISPR-Cas9 technology has revolutionized the scope and pace of biomedical research, enabling the targeting of specific genomic sequences for a wide spectrum of applications. Here we describe assays to functionally interrogate mutations identified in cancer cells utilizing both CRISPR-Cas9 nuclease and base editors. We provide guidelines to interrogate known cancer driver mutations or functionally screen for novel vulnerability mutations with these systems in characterized human cancer cell lines. The proposed platform should be transferable to primary cancer cells, opening up a path for precision oncology on a functional level.
Collapse
Affiliation(s)
- Shady Sayed
- Medical Faculty and University Hospital Carl Gustav Carus, UCC Section Medical Systems Biology, TU Dresden, Dresden, Germany
| | - Duran Sürün
- Medical Faculty and University Hospital Carl Gustav Carus, UCC Section Medical Systems Biology, TU Dresden, Dresden, Germany
| | - Jovan Mircetic
- Medical Faculty and University Hospital Carl Gustav Carus, UCC Section Medical Systems Biology, TU Dresden, Dresden, Germany
| | - Olga Alexandra Sidorova
- Medical Faculty and University Hospital Carl Gustav Carus, UCC Section Medical Systems Biology, TU Dresden, Dresden, Germany
| | - Frank Buchholz
- Medical Faculty and University Hospital Carl Gustav Carus, UCC Section Medical Systems Biology, TU Dresden, Dresden, Germany.
- National Center for Tumor Diseases (NCT) Dresden and German Cancer Research Center (DKFZ), Dresden, Germany.
- German Cancer Consortium (DKTK), Dresden, Germany.
| |
Collapse
|
204
|
Pavani G, Klein JG, French DL, Gadue P. Genome Engineering Human ESCs or iPSCs with Cytosine and Adenine Base Editors. Methods Mol Biol 2022; 2520:321-333. [PMID: 35579838 DOI: 10.1007/7651_2022_461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The ability to engineer specific mutations in human embryonic stem cells (ECSs) or induced pluripotent stem cells (iPSCs) is extremely important in the modeling of human diseases and the study of biological processes. While CRISPR/Cas9 can robustly generate gene knockouts (KOs) and gene loci modifications in coding sequences of iPSCs, it remains difficult to produce monoallelic mutations or modify specific nucleotides in noncoding sequences due to technical constraints.Here, we describe how to leverage cytosine (BE4max) and adenine (ABEmax) base editors to introduce precise mutations in iPSCs without inducing DNA double-stranded breaks. This chapter illustrates how to design and clone gRNAs, evaluate editing efficiency, and detect genomic edits at specific sites in iPSCs through the utilization of base editing technology.
Collapse
|
205
|
Detecting m 6A with In Vitro DART-Seq. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2404:363-374. [PMID: 34694620 DOI: 10.1007/978-1-0716-1851-6_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Recent studies have uncovered that cellular mRNAs contain a diverse epitranscriptome comprising chemically modified bases which play important roles in gene expression regulation. Among these is m6A, which is a highly prevalent modification that contributes to several aspects of RNA regulation and cellular function. Traditional methods for m6A profiling have used m6A antibodies to immunoprecipitate methylated RNAs. Although powerful, such methods require high amounts of input material. Recently, we developed DART-seq, an antibody-free method for m6A profiling from low-input RNA samples. DART-seq relies on deamination of cytidines that invariably follow m6A sites and can be performed using a simple in vitro assay with only 50 ng of total RNA. Here, we describe the in vitro DART method and present a detailed protocol for highly sensitive m6A profiling from any RNA sample of interest.
Collapse
|
206
|
Samuelson C, Radtke S, Zhu H, Llewellyn M, Fields E, Cook S, Huang MLW, Jerome KR, Kiem HP, Humbert O. Multiplex CRISPR/Cas9 genome editing in hematopoietic stem cells for fetal hemoglobin reinduction generates chromosomal translocations. Mol Ther Methods Clin Dev 2021; 23:507-523. [PMID: 34853798 PMCID: PMC8605315 DOI: 10.1016/j.omtm.2021.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 12/26/2022]
Abstract
Sickle cell disease and β-thalassemia are common monogenic disorders that cause significant morbidity and mortality globally. The only curative treatment currently is allogeneic hematopoietic stem cell transplantation, which is unavailable to many patients due to a lack of matched donors and carries risks including graft-versus-host disease. Genome editing therapies targeting either the BCL11A erythroid enhancer or the HBG promoter are already demonstrating success in reinducing fetal hemoglobin. However, where a single locus is targeted, reliably achieving levels high enough to deliver an effective cure remains a challenge. We investigated the application of a CRISPR/Cas9 multiplex genome editing approach, in which both the BCL11A erythroid enhancer and HBG promoter are disrupted within human hematopoietic stem cells. We demonstrate superior fetal hemoglobin reinduction with this dual-editing approach without compromising engraftment or lineage differentiation potential of edited cells post-xenotransplantation. However, multiplex editing consistently resulted in the generation of chromosomal rearrangement events that persisted in vivo following transplantation into immunodeficient mice. The risk of oncogenic events resulting from such translocations therefore currently prohibits its clinical translation, but it is anticipated that, in the future, alternative editing platforms will help alleviate this risk.
Collapse
Affiliation(s)
- Clare Samuelson
- Stem Cell and Gene Therapy Program, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | - Stefan Radtke
- Stem Cell and Gene Therapy Program, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | - Haiying Zhu
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Mallory Llewellyn
- Stem Cell and Gene Therapy Program, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | - Emily Fields
- Stem Cell and Gene Therapy Program, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | - Savannah Cook
- Stem Cell and Gene Therapy Program, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | - Meei-Li W. Huang
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Keith R. Jerome
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle WA 98109-1024, USA
| | - Hans-Peter Kiem
- Stem Cell and Gene Therapy Program, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Olivier Humbert
- Stem Cell and Gene Therapy Program, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| |
Collapse
|
207
|
Uchida T, Park SB, Inuzuka T, Zhang M, Allen JN, Chayama K, Liang TJ. Genetically edited hepatic cells expressing the NTCP-S267F variant are resistant to hepatitis B virus infection. Mol Ther Methods Clin Dev 2021; 23:597-605. [PMID: 34853804 PMCID: PMC8608598 DOI: 10.1016/j.omtm.2021.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/29/2021] [Accepted: 11/07/2021] [Indexed: 12/26/2022]
Abstract
The sodium-dependent taurocholate co-transporting polypeptide (NTCP)-S267F variant is known to be associated with a reduced risk of hepatitis B virus (HBV) infection and disease progression. The NTCP-S267F variant displays diminished function in mediating HBV entry, but its function in HBV infection has not been fully established in more biologically relevant models. We introduced the NTCP-S267F variant and tested infectivity by HBV in genetically edited hepatic cells. HepG2-NTCP clones with both homozygous and heterozygous variants were identified after CRISPR base editing. NTCP-S267F homozygous clones did not support HBV infection. The heterozygote clones behaved similarly to wild-type clones. We generated genetically edited human stem cells with the NTCP-S267F variant, which differentiated equally well as wild-type into hepatocyte-like cells (HLCs) expressing high levels of hepatocyte differentiation markers. We confirmed that HLCs with homozygous variant did not support HBV infection, and heterozygous variant clones were infected with HBV equally as well as the wild-type cells. In conclusion, we successfully introduced the S267F variant by CRISPR base editing into the NTCP/SLC10A gene of hepatocytes, and showed that the variant is a loss-of-function mutation. This technology of studying genetic variants and their pathogenesis in a natural context is potentially valuable for therapeutic intervention against HBV.
Collapse
Affiliation(s)
- Takuro Uchida
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.,Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Seung Bum Park
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tadashi Inuzuka
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Min Zhang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Joselyn N Allen
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kazuaki Chayama
- Collaborative Research Laboratory of Medical Innovation, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - T Jake Liang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
208
|
Sabharwal A, Kar B, Restrepo-Castillo S, Holmberg SR, Mathew ND, Kendall BL, Cotter RP, WareJoncas Z, Seiler C, Nakamaru-Ogiso E, Clark KJ, Ekker SC. The FusX TALE Base Editor (FusXTBE) for Rapid Mitochondrial DNA Programming of Human Cells In Vitro and Zebrafish Disease Models In Vivo. CRISPR J 2021; 4:799-821. [PMID: 34847747 PMCID: PMC8742272 DOI: 10.1089/crispr.2021.0061] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Functional analyses of mitochondria have been hampered by few effective approaches to manipulate mitochondrial DNA (mtDNA) and a lack of existing animal models. Recently a TALE-derived base editor was shown to induce C-to-T (or G-to-A) sequence changes in mtDNA. We report here the FusX TALE Base Editor (FusXTBE) to facilitate broad-based access to TALE mitochondrial base editing technology. TALE Writer is a de novo in silico design tool to map potential mtDNA base editing sites. FusXTBE was demonstrated to function with comparable activity to the initial base editor in human cells in vitro. Zebrafish embryos were used as a pioneering in vivo test system, with FusXTBE inducing 90+% editing efficiency in mtDNA loci as an example of near-complete induction of mtDNA heteroplasmy in vivo. Gene editing specificity as precise as a single nucleotide was observed for a protein-coding gene. Nondestructive genotyping enables single-animal mtDNA analyses for downstream biological functional genomic applications. FusXTBE is a new gene editing toolkit for exploring important questions in mitochondrial biology and genetics.
Collapse
Affiliation(s)
- Ankit Sabharwal
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Bibekananda Kar
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Santiago Restrepo-Castillo
- Mayo Clinic Graduate School of Biomedical Sciences, Virology and Gene Therapy Track, Mayo Clinic, Rochester, Minnesota, USA
| | - Shannon R. Holmberg
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Neal D. Mathew
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Benjamin Luke Kendall
- Mayo Clinic Graduate School of Biomedical Sciences, Virology and Gene Therapy Track, Mayo Clinic, Rochester, Minnesota, USA
| | - Ryan P. Cotter
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Zachary WareJoncas
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Christoph Seiler
- Zebrafish Core, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Eiko Nakamaru-Ogiso
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Karl J. Clark
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Stephen C. Ekker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
209
|
Marr E, Potter CJ. Base Editing of Somatic Cells Using CRISPR-Cas9 in Drosophila. CRISPR J 2021; 4:836-845. [PMID: 34813372 PMCID: PMC8744452 DOI: 10.1089/crispr.2021.0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cas9 and a guide RNA (gRNA) function to target specific genomic loci for generation of a double-stranded break. Catalytic dead versions of Cas9 (dCas9) no longer cause double-stranded breaks and instead can serve as molecular scaffolds to target additional enzymatic proteins to specific genomic loci. To generate mutations in selected genomic residues, dCas9 can be used for genomic base editing by fusing a cytidine deaminase (CD) to induce C > T (or G>A) mutations at targeted sites. In this study, we test base editing in Drosophila by expressing a transgenic Drosophila base editor (based on the mammalian BE2) that consists of a fusion protein of CD, dCas9, and uracil glycosylase inhibitor. We utilized transgenic lines expressing gRNAs along with pan-tissue expression of the Drosophila base editor (Actin5C-BE2) and found high rates of base editing at multiple targeted loci in the 20 bp target sequence. Highest rates of conversion of C > T were found in positions 3-9 of the gRNA-targeted site, with conversion reaching ∼100% of targeted DNA in somatic tissues. Surprisingly, the simultaneous use of two gRNAs targeting a genomic region spaced ∼50 bp apart led to mutations between the two gRNA targets, implicating a method to broaden the available sites accessible to targeting. These results indicate base editing is efficient in Drosophila, and could be used to induce point mutations at select loci.
Collapse
Affiliation(s)
- Elizabeth Marr
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Christopher J. Potter
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
210
|
Long J, Liu N, Tang W, Xie L, Qin F, Zhou L, Tao R, Wang Y, Hu Y, Jiao Y, Li L, Jiang L, Qu J, Chen Q, Yao S. A split cytosine deaminase architecture enables robust inducible base editing. FASEB J 2021; 35:e22045. [PMID: 34797942 DOI: 10.1096/fj.202100123r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 09/23/2021] [Accepted: 11/01/2021] [Indexed: 02/05/2023]
Abstract
Directed base substitution with base editing technology enables efficient and programmable conversion of C:G or A:T base pairs to T:A or G:C in the genome. Although this technology has shown great potentials in a variety of basic research, off-target editing is among one of the biggest challenges toward its way to clinical application. Base editing tools, especially the tools converting C to T, caused unpredictable off-target editing throughout the genome, which raise the concern that long-term application of these tools would induce genomic instability or even tumorigenesis. To overcome this challenge, we designed an inducible base editing tool that was active only in the presence of a clinically safe chemical, rapamycin. In the guidance of structural information, we designed four split-human APOBEC3A (A3A) -BE3 base editors in which these A3A deaminase enzymes were split at sites that were opposite to the protein-nucleotide interface. We showed that by inducible deaminase reconstruction with a rapamycin responsible interaction system (FRB and FKBP); three out of four split-A3A-derived base editors showed robust inducible base editing. However, in the absence of rapamycin, their editing ability was dramatically inhibited. Among these split editors, splicing at Aa85 of A3A generated the most efficient inducible editing. In addition, compared to the full-length base editor, the splitting did not obviously alter the editing window and motif preference, but slightly increased the product purity. We also expanded this strategy to another frequently used cytosine deaminase, rat APOBEC1 (rA1), and observed a similar induction response. In summary, these results demonstrated the concept that splitting deaminases is a practicable method for timely controlling of base editing tools.
Collapse
Affiliation(s)
- Jie Long
- Laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan university, Chengdu, China
| | - Nan Liu
- Laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan university, Chengdu, China
| | - Wenling Tang
- Laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan university, Chengdu, China
| | - Lifang Xie
- The College of Life Sciences, Sichuan University, Chengdu, China
| | - Fengming Qin
- Laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan university, Chengdu, China
| | - Lifang Zhou
- Laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan university, Chengdu, China
| | - Rui Tao
- Laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan university, Chengdu, China
| | - Yanhong Wang
- Laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan university, Chengdu, China
| | - Yun Hu
- Laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan university, Chengdu, China
| | - Yaoge Jiao
- Laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan university, Chengdu, China
| | - Li Li
- Laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan university, Chengdu, China
| | - Lurong Jiang
- Laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan university, Chengdu, China
| | - Junyan Qu
- Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Qiang Chen
- Laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan university, Chengdu, China
| | - Shaohua Yao
- Laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan university, Chengdu, China
| |
Collapse
|
211
|
Ferenczi A, Chew YP, Kroll E, von Koppenfels C, Hudson A, Molnar A. Mechanistic and genetic basis of single-strand templated repair at Cas12a-induced DNA breaks in Chlamydomonas reinhardtii. Nat Commun 2021; 12:6751. [PMID: 34799578 PMCID: PMC8604939 DOI: 10.1038/s41467-021-27004-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
Single-stranded oligodeoxynucleotides (ssODNs) are widely used as DNA repair templates in CRISPR/Cas precision genome editing. However, the underlying mechanisms of single-strand templated DNA repair (SSTR) are inadequately understood, constraining rational improvements to precision editing. Here we study SSTR at CRISPR/Cas12a-induced DNA double-strand breaks (DSBs) in the eukaryotic model green microalga Chlamydomonas reinhardtii. We demonstrate that ssODNs physically incorporate into the genome during SSTR at Cas12a-induced DSBs. This process is genetically independent of the Rad51-dependent homologous recombination and Fanconi anemia pathways, is strongly antagonized by non-homologous end-joining, and is mediated almost entirely by the alternative end-joining enzyme polymerase θ. These findings suggest differences in SSTR between C. reinhardtii and animals. Our work illustrates the promising potentially of C. reinhardtii as a model organism for studying nuclear DNA repair.
Collapse
Affiliation(s)
- Aron Ferenczi
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Yen Peng Chew
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Erika Kroll
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | | | - Andrew Hudson
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Attila Molnar
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
212
|
Jiao Y, Zhou L, Tao R, Wang Y, Hu Y, Jiang L, Li L, Yao S. Random-PE: an efficient integration of random sequences into mammalian genome by prime editing. MOLECULAR BIOMEDICINE 2021; 2:36. [PMID: 35006470 PMCID: PMC8607425 DOI: 10.1186/s43556-021-00057-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/21/2021] [Indexed: 02/08/2023] Open
Abstract
Prime editing (PE) enables efficiently targeted introduction of multiple types of small-sized genetic change without requiring double-strand breaks or donor templates. Here we designed a simple strategy to introduce random DNA sequences into targeted genomic loci by prime editing, which we named random prime editing (Random-PE). In our strategy, the prime editing guide RNA (pegRNA) was engineered to harbor random sequences between the primer binding sequence (PBS) and homologous arm (HA) of the reverse transcriptase templates. With these pegRNAs, we achieved efficient targeted insertion or substitution of random sequences with different lengths, ranging from 5 to 10, in mammalian cells. Importantly, the diversity of inserted sequences is well preserved. By fine-tuning the design of random sequences, we were able to make simultaneously insertions or substitutions of random sequences in multiple sites, allowing in situ evolution of multiple positions in a given protein. Therefore, these results provide a framework for targeted integration of random sequences into genomes, which can be redirected for manifold applications, such as in situ protospacer adjacent motif (PAM) library construction, enhancer screening, and DNA barcoding.
Collapse
Affiliation(s)
- Yaoge Jiao
- State Key Laboratory of Biotherapy, Laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Renmin Nanlu 17, Chengdu, 610041, Sichuan, China
| | - Lifang Zhou
- State Key Laboratory of Biotherapy, Laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Renmin Nanlu 17, Chengdu, 610041, Sichuan, China
| | - Rui Tao
- State Key Laboratory of Biotherapy, Laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Renmin Nanlu 17, Chengdu, 610041, Sichuan, China
| | - Yanhong Wang
- State Key Laboratory of Biotherapy, Laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Renmin Nanlu 17, Chengdu, 610041, Sichuan, China
| | - Yun Hu
- State Key Laboratory of Biotherapy, Laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Renmin Nanlu 17, Chengdu, 610041, Sichuan, China
| | - Lurong Jiang
- State Key Laboratory of Biotherapy, Laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Renmin Nanlu 17, Chengdu, 610041, Sichuan, China
| | - Li Li
- State Key Laboratory of Biotherapy, Laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Renmin Nanlu 17, Chengdu, 610041, Sichuan, China
| | - Shaohua Yao
- State Key Laboratory of Biotherapy, Laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Renmin Nanlu 17, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
213
|
Wang Q, Liu J, Janssen JM, Tasca F, Mei H, Gonçalves MAFV. Broadening the reach and investigating the potential of prime editors through fully viral gene-deleted adenoviral vector delivery. Nucleic Acids Res 2021; 49:11986-12001. [PMID: 34669958 PMCID: PMC8599732 DOI: 10.1093/nar/gkab938] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 12/12/2022] Open
Abstract
Prime editing is a recent precision genome editing modality whose versatility offers the prospect for a wide range of applications, including the development of targeted genetic therapies. Yet, an outstanding bottleneck for its optimization and use concerns the difficulty in delivering large prime editing complexes into cells. Here, we demonstrate that packaging prime editing constructs in adenoviral capsids overcomes this constrain resulting in robust genome editing in both transformed and non-transformed human cells with up to 90% efficiencies. Using this cell cycle-independent delivery platform, we found a direct correlation between prime editing activity and cellular replication and disclose that the proportions between accurate prime editing events and unwanted byproducts can be influenced by the target-cell context. Hence, adenovector particles permit the efficacious delivery and testing of prime editing reagents in human cells independently of their transformation and replication statuses. The herein integrated gene delivery and gene editing technologies are expected to aid investigating the potential and limitations of prime editing in numerous experimental settings and, eventually, in ex vivo or in vivo therapeutic contexts.
Collapse
Affiliation(s)
- Qian Wang
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Jin Liu
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Josephine M Janssen
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Francesca Tasca
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Hailiang Mei
- Department of Biomedical Data Sciences, Sequencing Analysis Support Core, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Manuel A F V Gonçalves
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| |
Collapse
|
214
|
BEAR reveals that increased fidelity variants can successfully reduce the mismatch tolerance of adenine but not cytosine base editors. Nat Commun 2021; 12:6353. [PMID: 34732717 PMCID: PMC8566456 DOI: 10.1038/s41467-021-26461-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 09/27/2021] [Indexed: 12/26/2022] Open
Abstract
Adenine and cytosine base editors (ABE, CBE) allow for precision genome engineering. Here, Base Editor Activity Reporter (BEAR), a plasmid-based fluorescent tool is introduced, which can be applied to report on ABE and CBE editing in a virtually unrestricted sequence context or to label base edited cells for enrichment. Using BEAR-enrichment, we increase the yield of base editing performed by nuclease inactive base editors to the level of the nickase versions while maintaining significantly lower indel background. Furthermore, by exploiting the semi-high-throughput potential of BEAR, we examine whether increased fidelity SpCas9 variants can be used to decrease SpCas9-dependent off-target effects of ABE and CBE. Comparing them on the same target sets reveals that CBE remains active on sequences, where increased fidelity mutations and/or mismatches decrease the activity of ABE. Our results suggest that the deaminase domain of ABE is less effective to act on rather transiently separated target DNA strands, than that of CBE explaining its lower mismatch tolerance.
Collapse
|
215
|
Reconstruction of evolving gene variants and fitness from short sequencing reads. Nat Chem Biol 2021; 17:1188-1198. [PMID: 34635842 PMCID: PMC8551035 DOI: 10.1038/s41589-021-00876-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 08/09/2021] [Indexed: 12/23/2022]
Abstract
Directed evolution can generate proteins with tailor-made activities. However, full-length genotypes, their frequencies and fitnesses are difficult to measure for evolving gene-length biomolecules using most high-throughput DNA sequencing methods, as short read lengths can lose mutation linkages in haplotypes. Here we present Evoracle, a machine learning method that accurately reconstructs full-length genotypes (R2 = 0.94) and fitness using short-read data from directed evolution experiments, with substantial improvements over related methods. We validate Evoracle on phage-assisted continuous evolution (PACE) and phage-assisted non-continuous evolution (PANCE) of adenine base editors and OrthoRep evolution of drug-resistant enzymes. Evoracle retains strong performance (R2 = 0.86) on data with complete linkage loss between neighboring nucleotides and large measurement noise, such as pooled Sanger sequencing data (~US$10 per timepoint), and broadens the accessibility of training machine learning models on gene variant fitnesses. Evoracle can also identify high-fitness variants, including low-frequency 'rising stars', well before they are identifiable from consensus mutations.
Collapse
|
216
|
Zhou W, Brown W, Bardhan A, Tsang M, Deiters A. Optical Control of Base Editing and Transcription through Light‐Activated Guide RNA. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Wenyuan Zhou
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Wes Brown
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Anirban Bardhan
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Michael Tsang
- Department of Developmental Biology University of Pittsburgh Pittsburgh PA 15260 USA
| | - Alexander Deiters
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| |
Collapse
|
217
|
Adenine base editing of the DUX4 polyadenylation signal for targeted genetic therapy in facioscapulohumeral muscular dystrophy. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:342-354. [PMID: 34484861 PMCID: PMC8399085 DOI: 10.1016/j.omtn.2021.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/26/2021] [Indexed: 12/26/2022]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is caused by chromatin relaxation of the D4Z4 repeat resulting in misexpression of the D4Z4-encoded DUX4 gene in skeletal muscle. One of the key genetic requirements for the stable production of full-length DUX4 mRNA in skeletal muscle is a functional polyadenylation signal (ATTAAA) in exon three of DUX4 that is used in somatic cells. Base editors hold great promise to treat DNA lesions underlying genetic diseases through their ability to carry out specific and rapid nucleotide mutagenesis even in postmitotic cells such as skeletal muscle. In this study, we present a simple and straightforward strategy for mutagenesis of the somatic DUX4 polyadenylation signal by adenine base editing in immortalized myoblasts derived from independent FSHD-affected individuals. We show that mutating this critical cis-regulatory element results in downregulation of DUX4 mRNA and its direct transcriptional target genes. Our findings identify the somatic DUX4 polyadenylation signal as a therapeutic target and represent the first step toward clinical application of the CRISPR-Cas9 base editing platform for FSHD gene therapy.
Collapse
|
218
|
Shan H, Liu Z, Jia Y, Chen S, Chen M, Song Y, Sui T, Lai L, Li Z. Reduced off-target effect of NG-BE4max by using NG-HiFi system. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 25:168-172. [PMID: 34458002 PMCID: PMC8368781 DOI: 10.1016/j.omtn.2021.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 05/13/2021] [Indexed: 12/26/2022]
Abstract
Recently, a rationally engineered SpCas9 variant (SpCas9-NG) that can recognize a minimal NG protospacer adjacent motif (PAM) was reported to expand the targeting scope in genome editing. However, increased genome-wide off-target mutations with this variant compared with SpCas9 were reported in previous studies. In addition, lower base editing frequencies and higher unintended off-target mutations were also found in Hoxc13-ablated rabbits generated by NG-BE4max in our study. Here, a high-fidelity base editor, NG-HiFi, in comparison to NG-BE4max, showed retention of on-target activity while exhibiting significantly decreased off-target activity in Hoxc13-ablated rabbits. Collectively, the improved specificity and reduced off-target effect of SpCas9-NG assisted in cytidine base editing with the NG-HiFi system, providing a promising tool to precisely model human diseases in rabbits.
Collapse
Affiliation(s)
- Huanhuan Shan
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Zhiquan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Yingqi Jia
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Siyu Chen
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Mao Chen
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Yuning Song
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Tingting Sui
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Liangxue Lai
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China.,CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Guangzhou Regenerative Medicine and Health Guang Dong Laboratory (GRMH-GDL), Guangzhou 510005, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhanjun Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| |
Collapse
|
219
|
MultiEditR: The first tool for the detection and quantification of RNA editing from Sanger sequencing demonstrates comparable fidelity to RNA-seq. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 25:515-523. [PMID: 34589274 PMCID: PMC8463291 DOI: 10.1016/j.omtn.2021.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 07/13/2021] [Indexed: 11/20/2022]
Abstract
We present MultiEditR (Multiple Edit Deconvolution by Inference of Traces in R), the first algorithm specifically designed to detect and quantify RNA editing from Sanger sequencing (z.umn.edu/multieditr). Although RNA editing is routinely evaluated by measuring the heights of peaks from Sanger sequencing traces, the accuracy and precision of this approach has yet to be evaluated against gold standard next-generation sequencing methods. Through a comprehensive comparison to RNA sequencing (RNA-seq) and amplicon-based deep sequencing, we show that MultiEditR is accurate, precise, and reliable for detecting endogenous and programmable RNA editing.
Collapse
|
220
|
Molla KA, Sretenovic S, Bansal KC, Qi Y. Precise plant genome editing using base editors and prime editors. NATURE PLANTS 2021; 7:1166-1187. [PMID: 34518669 DOI: 10.1038/s41477-021-00991-1] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/26/2021] [Indexed: 05/06/2023]
Abstract
The development of CRISPR-Cas systems has sparked a genome editing revolution in plant genetics and breeding. These sequence-specific RNA-guided nucleases can induce DNA double-stranded breaks, resulting in mutations by imprecise non-homologous end joining (NHEJ) repair or precise DNA sequence replacement by homology-directed repair (HDR). However, HDR is highly inefficient in many plant species, which has greatly limited precise genome editing in plants. To fill the vital gap in precision editing, base editing and prime editing technologies have recently been developed and demonstrated in numerous plant species. These technologies, which are mainly based on Cas9 nickases, can introduce precise changes into the target genome at a single-base resolution. This Review provides a timely overview of the current status of base editors and prime editors in plants, covering both technological developments and biological applications.
Collapse
Affiliation(s)
- Kutubuddin A Molla
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, India.
| | - Simon Sretenovic
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Kailash C Bansal
- The Alliance of Bioversity International and the International Centre for Tropical Agriculture, Asia-India, New Delhi, India
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA.
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA.
| |
Collapse
|
221
|
Hao W, Cui W, Cheng Z, Han L, Suo F, Liu Z, Zhou L, Zhou Z. Development of a base editor for protein evolution via in situ mutation in vivo. Nucleic Acids Res 2021; 49:9594-9605. [PMID: 34390349 PMCID: PMC8450078 DOI: 10.1093/nar/gkab673] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 12/16/2022] Open
Abstract
Protein evolution has significantly enhanced the development of life science. However, it is difficult to achieve in vitro evolution of some special proteins because of difficulties with heterologous expression, purification, and function detection. To achieve protein evolution via in situ mutation in vivo, we developed a base editor by fusing nCas with a cytidine deaminase in Bacillus subtilis through genome integration. The base editor introduced a cytidine-to-thymidine mutation of approximately 100% across a 5 nt editable window, which was much higher than those of other base editors. The editable window was expanded to 8 nt by extending the length of sgRNA, and conversion efficiency could be regulated by changing culture conditions, which was suitable for constructing a mutant protein library efficiently in vivo. As proof-of-concept, the Sec-translocase complex and bacitracin-resistance-related protein BceB were successfully evolved in vivo using the base editor. A Sec mutant with 3.6-fold translocation efficiency and the BceB mutants with different sensitivity to bacitracin were obtained. As the construction of the base editor does not rely on any additional or host-dependent factors, such base editors (BEs) may be readily constructed and applicable to a wide range of bacteria for protein evolution via in situ mutation.
Collapse
Affiliation(s)
- Wenliang Hao
- The Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Wenjing Cui
- The Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Zhongyi Cheng
- The Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Laichuang Han
- The Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Feiya Suo
- The Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Zhongmei Liu
- The Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Li Zhou
- The Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Zhemin Zhou
- The Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| |
Collapse
|
222
|
Li G, Wang Y, Li X, Wang Y, Huang X, Gao J, Hu X. Developing PspCas13b-based enhanced RESCUE system, eRESCUE, with efficient RNA base editing. Cell Commun Signal 2021; 19:84. [PMID: 34380502 PMCID: PMC8356384 DOI: 10.1186/s12964-021-00716-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/29/2021] [Indexed: 12/24/2022] Open
Abstract
RNA base editing is potential for cellular function research and genetic diseases treating. There are two main RNA base editors, REPAIR and RESCUE, for in vitro use. REPAIR was developed by fusing inactivated Cas13 (dCas13) with the adenine deaminase domain of ADAR2, which efficiently performs adenosine-to-inosine (A-to-I) RNA editing. RESCUE, which performs both cytidine-to-uridine (C-to-U) and A-to-I RNA editing, was developed by fusing inactivated Cas13 (dCas13) with the evolved ADAR2. However, the relatively low editing efficiency of the RESCUE system limits its broad application. Here, we constructed an enhanced RESCUE (eRESCUE) system; this dPspCas13b-RESCUE-NES system was generated by fusing inactivated PspCas13b with the evolved ADAR2. We determined the endogenous mRNA A-to-I and C-to-U editing efficiency mediated by the dPspCas13b-RESCUE-NES system in HEK-293T cells. This new RNA base editor was then used to induce 177Ser/Gly conversion of inhibitor kappa B kinase β (IKKβ) by changing the genetic code from AGU to GGU. The results showed that the eRESCUE editor mediates more efficient A-to-I and C-to-U RNA editing than the RESCUE RNA editor, as was previously reported. The 177Ser/Gly conversion of IKKβ, accomplished by converting the genetic code from AGU to GGU, resulted in a decrease in the phosphorylation of IKKβ and downregulation of downstream IKKβ-related genes. In summary, we developed a more efficient RNA base editor, eRESCUE, which may provide a useful tool for biomedical research and genetic disease treatment. Video Abstract
Collapse
Affiliation(s)
- Guo Li
- State Key Laboratory of Agrobiotechnology, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.,College of Biological Sciences, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Yihan Wang
- National Research Institute for Family Planning, 12 Dahuisi Road, Haidian District, Beijing, 100081, China.,Graduate School of Peking, Union Medical College, 9 Dongdan Santiao, Dongcheng District, Beijing, 100730, China
| | - Xiangyang Li
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Pudong New Area, Shanghai, 200031, China
| | - Yuzhe Wang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.,College of Animal Science and Technology, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Xingxu Huang
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Pudong New Area, Shanghai, 200031, China.,CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Jianen Gao
- National Research Institute for Family Planning, 12 Dahuisi Road, Haidian District, Beijing, 100081, China
| | - Xiaoxiang Hu
- State Key Laboratory of Agrobiotechnology, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China. .,College of Biological Sciences, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| |
Collapse
|
223
|
Wang Y, Li G, Li X, Wang Y, Huang X, Hu X, Gao J. ecRESCUE: a novel ecDHFR-regulated RESCUE system with reduced RNA off-targeting activity. Cell Commun Signal 2021; 19:81. [PMID: 34332602 PMCID: PMC8325194 DOI: 10.1186/s12964-021-00759-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/18/2021] [Indexed: 11/29/2022] Open
Abstract
The currently available RESCUE RNA base editing system demonstrates considerable potential for the treatment of genetic diseases at the transcriptional level. However, the relatively high incidence of off-target events hampers the precise RNA editing, thereby limiting its use in the clinical setting. This study describes a new RNA base editing method, named ecRESCUE, which utilizes inducible stabilization of the protein ecDHFR DD fused at the C-terminal of the original RESCUE system. In vitro experiments in 293T cells showed that the ecRESCUE editor markedly reduced the incidence of off-target single nucleotide polymorphisms without affecting the RNA A-to-I and C-to-U base editing efficiency. Altogether, these results demonstrate that the inducible ecRESCUE system represents an attractive approach to regulate and improve the outcome of the available RNA base editor with reduced off-targeting activity.![]() Video Abstract
Collapse
Affiliation(s)
- Yihan Wang
- National Research Institute for Family Planning, Beijing, 100081, China.,Graduate School of Peking, Union Medical College, Beijing, 100730, China
| | - Guo Li
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China.,College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiangyang Li
- School of Life Science and Technology, Shanghai Tech University, Shanghai, 200031, China
| | - Yuzhe Wang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China.,College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xingxu Huang
- School of Life Science and Technology, Shanghai Tech University, Shanghai, 200031, China.,CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiaoxiang Hu
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China. .,College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Jianen Gao
- National Research Institute for Family Planning, Beijing, 100081, China. .,Graduate School of Peking, Union Medical College, Beijing, 100730, China.
| |
Collapse
|
224
|
Motozono C, Toyoda M, Zahradnik J, Saito A, Nasser H, Tan TS, Ngare I, Kimura I, Uriu K, Kosugi Y, Yue Y, Shimizu R, Ito J, Torii S, Yonekawa A, Shimono N, Nagasaki Y, Minami R, Toya T, Sekiya N, Fukuhara T, Matsuura Y, Schreiber G, Ikeda T, Nakagawa S, Ueno T, Sato K. SARS-CoV-2 spike L452R variant evades cellular immunity and increases infectivity. Cell Host Microbe 2021; 29:1124-1136.e11. [PMID: 34171266 PMCID: PMC8205251 DOI: 10.1016/j.chom.2021.06.006] [Citation(s) in RCA: 355] [Impact Index Per Article: 118.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/22/2021] [Accepted: 06/09/2021] [Indexed: 01/15/2023]
Abstract
Many SARS-CoV-2 variants with naturally acquired mutations have emerged. These mutations can affect viral properties such as infectivity and immune resistance. Although the sensitivity of naturally occurring SARS-CoV-2 variants to humoral immunity has been investigated, sensitivity to human leukocyte antigen (HLA)-restricted cellular immunity remains largely unexplored. Here, we demonstrate that two recently emerging mutations in the receptor-binding domain of the SARS-CoV-2 spike protein, L452R (in B.1.427/429 and B.1.617) and Y453F (in B.1.1.298), confer escape from HLA-A24-restricted cellular immunity. These mutations reinforce affinity toward the host entry receptor ACE2. Notably, the L452R mutation increases spike stability, viral infectivity, viral fusogenicity, and thereby promotes viral replication. These data suggest that HLA-restricted cellular immunity potentially affects the evolution of viral phenotypes and that a further threat of the SARS-CoV-2 pandemic is escape from cellular immunity.
Collapse
Affiliation(s)
- Chihiro Motozono
- Division of Infection and Immunity, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 8600811, Japan
| | - Mako Toyoda
- Division of Infection and Immunity, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 8600811, Japan
| | - Jiri Zahradnik
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Akatsuki Saito
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki 8892192, Japan; Center for Animal Disease Control, University of Miyazaki, Miyazaki 8892192, Japan; Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki 8892192, Japan
| | - Hesham Nasser
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 8600811, Japan; Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia 41511, Egypt
| | - Toong Seng Tan
- Division of Infection and Immunity, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 8600811, Japan
| | - Isaac Ngare
- Division of Infection and Immunity, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 8600811, Japan
| | - Izumi Kimura
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan
| | - Keiya Uriu
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan
| | - Yusuke Kosugi
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan
| | - Yuan Yue
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 8600811, Japan
| | - Ryo Shimizu
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 8600811, Japan
| | - Jumpei Ito
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan
| | - Shiho Torii
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 5650871, Japan; Division of Microbiology and Immunology, Center for Infectious Diseases Education and Research, Osaka University, Osaka 5650871, Japan; Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka 5650871, Japan
| | - Akiko Yonekawa
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 8128582, Japan
| | - Nobuyuki Shimono
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 8128582, Japan
| | - Yoji Nagasaki
- Division of Infectious Diseases, Clinical Research Institute, National Hospitalization Organization, Kyushu Medical Center, Fukuoka 8108563, Japan
| | - Rumi Minami
- Internal Medicine, Clinical Research Institute, National Hospital Organization, Kyushu Medical Center, Fukuoka 8108563, Japan
| | - Takashi Toya
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo 1138677, Japan
| | - Noritaka Sekiya
- Department of Infection Prevention and Control, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo 1138677, Japan; Department of Clinical Laboratory, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo 1138677, Japan
| | - Takasuke Fukuhara
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Hokkaido 0608638, Japan
| | - Yoshiharu Matsuura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 5650871, Japan; Division of Microbiology and Immunology, Center for Infectious Diseases Education and Research, Osaka University, Osaka 5650871, Japan; Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka 5650871, Japan
| | - Gideon Schreiber
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Terumasa Ikeda
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 8600811, Japan.
| | - So Nakagawa
- Department of Molecular Life Science, Tokai University School of Medicine, Kanagawa 2591193, Japan; CREST, Japan Science and Technology Agency, Saitama 3220012, Japan.
| | - Takamasa Ueno
- Division of Infection and Immunity, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 8600811, Japan.
| | - Kei Sato
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan; CREST, Japan Science and Technology Agency, Saitama 3220012, Japan.
| |
Collapse
|
225
|
Badawi M, Mori T, Kurihara T, Yoshizawa T, Nohara K, Kouyama-Suzuki E, Yanagawa T, Shirai Y, Tabuchi K. Risperidone Mitigates Enhanced Excitatory Neuronal Function and Repetitive Behavior Caused by an ASD-Associated Mutation of SIK1. Front Mol Neurosci 2021; 14:706494. [PMID: 34295222 PMCID: PMC8289890 DOI: 10.3389/fnmol.2021.706494] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 05/27/2021] [Indexed: 12/28/2022] Open
Abstract
Six mutations in the salt-inducible kinase 1 (SIK1)-coding gene have been identified in patients with early infantile epileptic encephalopathy (EIEE-30) accompanied by autistic symptoms. Two of the mutations are non-sense mutations that truncate the C-terminal region of SIK1. It has been shown that the C-terminal-truncated form of SIK1 protein affects the subcellular distribution of SIK1 protein, tempting to speculate the relevance to the pathophysiology of the disorders. We generated SIK1-mutant (SIK1-MT) mice recapitulating the C-terminal-truncated mutations using CRISPR/Cas9-mediated genome editing. SIK1-MT protein was distributed in the nucleus and cytoplasm, whereas the distribution of wild-type SIK1 was restricted to the nucleus. We found the disruption of excitatory and inhibitory (E/I) synaptic balance due to an increase in excitatory synaptic transmission and enhancement of neural excitability in the pyramidal neurons in layer 5 of the medial prefrontal cortex in SIK1-MT mice. We also found the increased repetitive behavior and social behavioral deficits in SIK1-MT mice. The risperidone administration attenuated the neural excitability and excitatory synaptic transmission, but the disrupted E/I synaptic balance was unchanged, because it also reduced the inhibitory synaptic transmission. Risperidone also eliminated the repetitive behavior but not social behavioral deficits. These results indicate that risperidone has a role in decreasing neuronal excitability and excitatory synapses, ameliorating repetitive behavior in the SIK1-truncated mice.
Collapse
Affiliation(s)
- Moataz Badawi
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takuma Mori
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto, Japan.,Department of NeuroHealth Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Japan
| | - Taiga Kurihara
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takahiro Yoshizawa
- Research Center for Supports to Advanced Science, Shinshu University, Matsumoto, Japan
| | - Katsuhiro Nohara
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Emi Kouyama-Suzuki
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Toru Yanagawa
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yoshinori Shirai
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Katsuhiko Tabuchi
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto, Japan.,Department of NeuroHealth Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Japan
| |
Collapse
|
226
|
Wang Z, Liu X, Xie X, Deng L, Zheng H, Pan H, Li D, Li L, Zhong C. ABE8e with Polycistronic tRNA-gRNA Expression Cassette Sig-Nificantly Improves Adenine Base Editing Efficiency in Nicotiana benthamiana. Int J Mol Sci 2021; 22:5663. [PMID: 34073486 PMCID: PMC8198424 DOI: 10.3390/ijms22115663] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 01/25/2023] Open
Abstract
Adenine base editor containing TadA8e (ABE8e) has been reported in rice. However, the application of ABE8e in other plant species has not been described, and the comparison between ABE8e and ABE7.10, which is widely used in plants, has also been poorly studied. Here, we developed the ABE8e with the polycistronic tRNA-gRNA expression cassette (PTG-ABE8e) and PTG-ABE7.10 and compared their A-to-G editing efficiencies using both transient and stable transformation in the allotetraploid Nicotiana benthamiana. We found that the editing efficiency of PTG-ABE8e was significantly higher than that of PTG-ABE7.10, indicating that ABE8e was more efficient for A-to-G conversion in N. benthamiana. We further optimized the ABE8e editing efficiency by changing the sgRNA expression cassette and demonstrated that both PTG and single transcript unit (STU) enhanced ABE8e efficiency for A-to-G conversion in N. benthamiana. We also estimated the potential off-target effect of PTG-ABE8e at potential off-targeting sites predicted using an online tool in transgenic plants, and no off-target editing event was found for potential off-targeting sites selected, indicating that ABE8e could specifically facilitate A-to-G conversion. Our results showed that ABE8e with PTG structure was more suitable for A-to-G conversion in N. benthamiana and provided valuable clues for optimizing ABE tools in other plants.
Collapse
Affiliation(s)
- Zupeng Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (X.L.); (X.X.); (L.D.); (H.Z.); (H.P.); (D.L.); (L.L.)
- Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- Engineering Laboratory for Kiwifruit Industrial Technology, Chinese Academy of Sciences, Wuhan 430074, China
| | - Xiaoying Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (X.L.); (X.X.); (L.D.); (H.Z.); (H.P.); (D.L.); (L.L.)
- Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- Engineering Laboratory for Kiwifruit Industrial Technology, Chinese Academy of Sciences, Wuhan 430074, China
| | - Xiaodong Xie
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (X.L.); (X.X.); (L.D.); (H.Z.); (H.P.); (D.L.); (L.L.)
- Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- Engineering Laboratory for Kiwifruit Industrial Technology, Chinese Academy of Sciences, Wuhan 430074, China
| | - Lei Deng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (X.L.); (X.X.); (L.D.); (H.Z.); (H.P.); (D.L.); (L.L.)
- Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- Engineering Laboratory for Kiwifruit Industrial Technology, Chinese Academy of Sciences, Wuhan 430074, China
| | - Hao Zheng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (X.L.); (X.X.); (L.D.); (H.Z.); (H.P.); (D.L.); (L.L.)
- Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- Engineering Laboratory for Kiwifruit Industrial Technology, Chinese Academy of Sciences, Wuhan 430074, China
| | - Hui Pan
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (X.L.); (X.X.); (L.D.); (H.Z.); (H.P.); (D.L.); (L.L.)
- Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- Engineering Laboratory for Kiwifruit Industrial Technology, Chinese Academy of Sciences, Wuhan 430074, China
| | - Dawei Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (X.L.); (X.X.); (L.D.); (H.Z.); (H.P.); (D.L.); (L.L.)
- Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- Engineering Laboratory for Kiwifruit Industrial Technology, Chinese Academy of Sciences, Wuhan 430074, China
| | - Li Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (X.L.); (X.X.); (L.D.); (H.Z.); (H.P.); (D.L.); (L.L.)
- Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- Engineering Laboratory for Kiwifruit Industrial Technology, Chinese Academy of Sciences, Wuhan 430074, China
| | - Caihong Zhong
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (X.L.); (X.X.); (L.D.); (H.Z.); (H.P.); (D.L.); (L.L.)
- Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- Engineering Laboratory for Kiwifruit Industrial Technology, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
227
|
Escobar H, Krause A, Keiper S, Kieshauer J, Müthel S, de Paredes MG, Metzler E, Kühn R, Heyd F, Spuler S. Base editing repairs an SGCA mutation in human primary muscle stem cells. JCI Insight 2021; 6:145994. [PMID: 33848270 PMCID: PMC8262330 DOI: 10.1172/jci.insight.145994] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 04/07/2021] [Indexed: 11/28/2022] Open
Abstract
Skeletal muscle can regenerate from muscle stem cells and their myogenic precursor cell progeny, myoblasts. However, precise gene editing in human muscle stem cells for autologous cell replacement therapies of untreatable genetic muscle diseases has not yet been reported. Loss-of-function mutations in SGCA, encoding α-sarcoglycan, cause limb-girdle muscular dystrophy 2D/R3, an early-onset, severe, and rapidly progressive form of muscular dystrophy affecting both male and female patients. Patients suffer from muscle degeneration and atrophy affecting the limbs, respiratory muscles, and heart. We isolated human muscle stem cells from 2 donors, with the common SGCA c.157G>A mutation affecting the last coding nucleotide of exon 2. We found that c.157G>A is an exonic splicing mutation that induces skipping of 2 coregulated exons. Using adenine base editing, we corrected the mutation in the cells from both donors with > 90% efficiency, thereby rescuing the splicing defect and α-sarcoglycan expression. Base-edited patient cells regenerated muscle and contributed to the Pax7+ satellite cell compartment in vivo in mouse xenografts. Here, we provide the first evidence to our knowledge that autologous gene–repaired human muscle stem cells can be harnessed for cell replacement therapies of muscular dystrophies.
Collapse
Affiliation(s)
- Helena Escobar
- Muscle Research Unit, Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité, Universitätsmedizin Berlin, Germany.,Charité Universitätsmedizin Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Anne Krause
- Muscle Research Unit, Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité, Universitätsmedizin Berlin, Germany.,Charité Universitätsmedizin Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Sandra Keiper
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Berlin, Germany
| | - Janine Kieshauer
- Muscle Research Unit, Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité, Universitätsmedizin Berlin, Germany.,Charité Universitätsmedizin Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Stefanie Müthel
- Muscle Research Unit, Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité, Universitätsmedizin Berlin, Germany.,Charité Universitätsmedizin Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Manuel García de Paredes
- Muscle Research Unit, Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité, Universitätsmedizin Berlin, Germany
| | - Eric Metzler
- Muscle Research Unit, Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité, Universitätsmedizin Berlin, Germany.,Charité Universitätsmedizin Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Ralf Kühn
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Florian Heyd
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Berlin, Germany
| | - Simone Spuler
- Muscle Research Unit, Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité, Universitätsmedizin Berlin, Germany
| |
Collapse
|
228
|
Zhang Y, Yun K, Huang H, Tu R, Hua E, Wang M. Antisense RNA Interference-Enhanced CRISPR/Cas9 Base Editing Method for Improving Base Editing Efficiency in Streptomyces lividans 66. ACS Synth Biol 2021; 10:1053-1063. [PMID: 33720688 DOI: 10.1021/acssynbio.0c00563] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
CRISPR/Cas9-mediated base editors, based on cytidine deaminase or adenosine deaminase, are emerging genetic technologies that facilitate genomic manipulation in many organisms. Since base editing is free from DNA double-strand breaks (DSBs), it has certain advantages, such as a lower toxicity, compared to the traditional DSB-based genome engineering technologies. In terms of Streptomyces, a base editing method has been successfully applied in several model and non-model species, such as Streptomyces coelicolor and Streptomyces griseofuscus. In this study, we first proved that BE2 (rAPOBEC1-dCas9-UGI) and BE3 (rAPOBEC1-nCas9-UGI) were functional base editing tools in Streptomyces lividans 66, albeit with a much lower editing efficiency compared to that of S. coelicolor. Uracil generated in deamination is a key intermediate in the base editing process, and it can be hydrolyzed by uracil DNA glycosidase (UDG) involved in the intracellular base excision repair, resulting in a low base editing efficiency. By knocking out two endogenous UDGs (UDG1 and UDG2), we managed to improve the base editing efficiency by 3.4-67.4-fold among different loci. However, the inactivation of UDG is detrimental to the genome stability and future application of engineered strains. Therefore, we finally developed antisense RNA interference-enhanced CRISPR/Cas9 Base Editing method (asRNA-BE) to transiently disrupt the expression of uracil DNA glycosidases during base editing, leading to a 2.8-65.8-fold enhanced editing efficiency and better genome stability. Our results demonstrate that asRNA-BE is a much better editing tool for base editing in S. lividans 66 and might be beneficial for improving the base editing efficiency and genome stability in other Streptomyces strains.
Collapse
Affiliation(s)
- Yue Zhang
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Kaiyue Yun
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Huamei Huang
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ran Tu
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Erbing Hua
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Meng Wang
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
229
|
STAT1 gain-of-function heterozygous cell models reveal diverse interferon-signature gene transcriptional responses. NPJ Genom Med 2021; 6:34. [PMID: 33990617 PMCID: PMC8121859 DOI: 10.1038/s41525-021-00196-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/05/2021] [Indexed: 12/12/2022] Open
Abstract
Signal transducer and activator of transcription 1 (STAT1) gain-of-function (GOF) is an autosomal dominant immune disorder marked by wide infectious predisposition, autoimmunity, vascular disease, and malignancy. Its molecular hallmark, elevated phospho-STAT1 (pSTAT1) following interferon (IFN) stimulation, is seen consistently in all patients and may not fully account for the broad phenotypic spectrum associated with this disorder. While over 100 mutations have been implicated in STAT1 GOF, genotype-phenotype correlation remains limited, and current overexpression models may be of limited use in gene expression studies. We generated heterozygous mutants in diploid HAP1 cells using CRISPR/Cas9 base-editing, targeting the endogenous STAT1 gene. Our models recapitulated the molecular phenotype of elevated pSTAT1, and were used to characterize the expression of five IFN-stimulated genes under a number of conditions. At baseline, transcriptional polarization was evident among mutants compared with wild type, and this was maintained following prolonged serum starvation. This suggests a possible role for unphosphorylated STAT1 in the pathogenesis of STAT1 GOF. Following stimulation with IFNα or IFNγ, differential patterns of gene expression emerged among mutants, including both gain and loss of transcriptional function. This work highlights the importance of modeling heterozygous conditions, and in particular transcription factor-related disorders, in a manner which accurately reflects patient genotype and molecular signature. Furthermore, we propose a complex and multifactorial transcriptional profile associated with various STAT1 mutations, adding to global efforts in establishing STAT1 GOF genotype-phenotype correlation and enhancing our understanding of disease pathogenesis.
Collapse
|
230
|
Hu Y, Stilp AM, McHugh CP, Rao S, Jain D, Zheng X, Lane J, Méric de Bellefon S, Raffield LM, Chen MH, Yanek LR, Wheeler M, Yao Y, Ren C, Broome J, Moon JY, de Vries PS, Hobbs BD, Sun Q, Surendran P, Brody JA, Blackwell TW, Choquet H, Ryan K, Duggirala R, Heard-Costa N, Wang Z, Chami N, Preuss MH, Min N, Ekunwe L, Lange LA, Cushman M, Faraday N, Curran JE, Almasy L, Kundu K, Smith AV, Gabriel S, Rotter JI, Fornage M, Lloyd-Jones DM, Vasan RS, Smith NL, North KE, Boerwinkle E, Becker LC, Lewis JP, Abecasis GR, Hou L, O'Connell JR, Morrison AC, Beaty TH, Kaplan R, Correa A, Blangero J, Jorgenson E, Psaty BM, Kooperberg C, Walton RT, Kleinstiver BP, Tang H, Loos RJF, Soranzo N, Butterworth AS, Nickerson D, Rich SS, Mitchell BD, Johnson AD, Auer PL, Li Y, Mathias RA, Lettre G, Pankratz N, Laurie CC, Laurie CA, Bauer DE, Conomos MP, Reiner AP. Whole-genome sequencing association analysis of quantitative red blood cell phenotypes: The NHLBI TOPMed program. Am J Hum Genet 2021; 108:874-893. [PMID: 33887194 DOI: 10.1016/j.ajhg.2021.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Whole-genome sequencing (WGS), a powerful tool for detecting novel coding and non-coding disease-causing variants, has largely been applied to clinical diagnosis of inherited disorders. Here we leveraged WGS data in up to 62,653 ethnically diverse participants from the NHLBI Trans-Omics for Precision Medicine (TOPMed) program and assessed statistical association of variants with seven red blood cell (RBC) quantitative traits. We discovered 14 single variant-RBC trait associations at 12 genomic loci, which have not been reported previously. Several of the RBC trait-variant associations (RPN1, ELL2, MIDN, HBB, HBA1, PIEZO1, and G6PD) were replicated in independent GWAS datasets imputed to the TOPMed reference panel. Most of these discovered variants are rare/low frequency, and several are observed disproportionately among non-European Ancestry (African, Hispanic/Latino, or East Asian) populations. We identified a 3 bp indel p.Lys2169del (g.88717175_88717177TCT[4]) (common only in the Ashkenazi Jewish population) of PIEZO1, a gene responsible for the Mendelian red cell disorder hereditary xerocytosis (MIM: 194380), associated with higher mean corpuscular hemoglobin concentration (MCHC). In stepwise conditional analysis and in gene-based rare variant aggregated association analysis, we identified several of the variants in HBB, HBA1, TMPRSS6, and G6PD that represent the carrier state for known coding, promoter, or splice site loss-of-function variants that cause inherited RBC disorders. Finally, we applied base and nuclease editing to demonstrate that the sentinel variant rs112097551 (nearest gene RPN1) acts through a cis-regulatory element that exerts long-range control of the gene RUVBL1 which is essential for hematopoiesis. Together, these results demonstrate the utility of WGS in ethnically diverse population-based samples and gene editing for expanding knowledge of the genetic architecture of quantitative hematologic traits and suggest a continuum between complex trait and Mendelian red cell disorders.
Collapse
Affiliation(s)
- Yao Hu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98105, USA
| | - Adrienne M Stilp
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Caitlin P McHugh
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Shuquan Rao
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02215, USA
| | - Deepti Jain
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Xiuwen Zheng
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - John Lane
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | - Laura M Raffield
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ming-Huei Chen
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA; National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA 01701, USA
| | - Lisa R Yanek
- Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Marsha Wheeler
- Department of Genome Sciences, University of Washington, Seattle, WA 98105, USA
| | - Yao Yao
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02215, USA
| | - Chunyan Ren
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02215, USA
| | - Jai Broome
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Jee-Young Moon
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Brian D Hobbs
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Quan Sun
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Praveen Surendran
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge CB1 8RN, UK; Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge CB1 8RN, UK; Rutherford Fund Fellow, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98105, USA
| | - Thomas W Blackwell
- TOPMed Informatics Research Center, University of Michigan, Department of Biostatistics, Ann Arbor, MI 48109, USA
| | - Hélène Choquet
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94601, USA
| | - Kathleen Ryan
- Department of Medicine, Division of Endocrinology, Diabetes & Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ravindranath Duggirala
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78539, USA
| | - Nancy Heard-Costa
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA 01701, USA; Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Zhe Wang
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nathalie Chami
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael H Preuss
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nancy Min
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Lynette Ekunwe
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Leslie A Lange
- Division of Biomedical Informatics and Personalized Medicine, School of Medicine University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mary Cushman
- Department of Medicine, Larner College of Medicine at the University of Vermont, Burlington, VT 05405, USA
| | - Nauder Faraday
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Joanne E Curran
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78539, USA
| | - Laura Almasy
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia and Department of Genetics University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kousik Kundu
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton CB10 1SA, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0PT, UK
| | - Albert V Smith
- TOPMed Informatics Research Center, University of Michigan, Department of Biostatistics, Ann Arbor, MI 48109, USA
| | | | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Myriam Fornage
- University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | | | - Ramachandran S Vasan
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA 01701, USA; Departments of Cardiology and Preventive Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Nicholas L Smith
- Department of Epidemiology, University of Washington, Seattle, WA 98105, USA; Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle, WA 98105, USA; Seattle Epidemiologic Research and Information Center, Department of Veterans Affairs Office of Research and Development, Seattle, WA 98105, USA
| | - Kari E North
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Lewis C Becker
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Joshua P Lewis
- Department of Medicine, Division of Endocrinology, Diabetes & Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Goncalo R Abecasis
- TOPMed Informatics Research Center, University of Michigan, Department of Biostatistics, Ann Arbor, MI 48109, USA
| | - Lifang Hou
- Northwestern University, Chicago, IL 60208, USA
| | - Jeffrey R O'Connell
- Department of Medicine, Division of Endocrinology, Diabetes & Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Terri H Beaty
- School of Public Health, John Hopkins University, Baltimore, MD 21205, USA
| | - Robert Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Adolfo Correa
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - John Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78539, USA
| | - Eric Jorgenson
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94601, USA
| | - Bruce M Psaty
- Department of Epidemiology, University of Washington, Seattle, WA 98105, USA; Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle, WA 98105, USA; Department of Medicine, University of Washington, Seattle, WA 98105, USA
| | - Charles Kooperberg
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98105, USA
| | - Russell T Walton
- Center for Genomic Medicine and Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Benjamin P Kleinstiver
- Center for Genomic Medicine and Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Hua Tang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nicole Soranzo
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge CB1 8RN, UK; Department of Human Genetics, Wellcome Sanger Institute, Hinxton CB10 1SA, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0PT, UK; National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge CB1 8RN, UK
| | - Adam S Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge CB1 8RN, UK; Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge CB1 8RN, UK; National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge CB1 8RN, UK; National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge CB1 8RN, UK
| | - Debbie Nickerson
- Department of Genome Sciences, University of Washington, Seattle, WA 98105, USA
| | - Stephen S Rich
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Braxton D Mitchell
- Department of Medicine, Division of Endocrinology, Diabetes & Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Andrew D Johnson
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA; National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA 01701, USA
| | - Paul L Auer
- Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53205, USA
| | - Yun Li
- Departments of Biostatistics, Genetics, Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rasika A Mathias
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MA 21205, USA
| | - Guillaume Lettre
- Montreal Heart Institute, Montréal, QC H1T 1C8, Canada; Faculté de Médecine, Université de Montréal, Montréal, QC H1T 1C8, Canada
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Cathy C Laurie
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Cecelia A Laurie
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Daniel E Bauer
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02215, USA
| | - Matthew P Conomos
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Alexander P Reiner
- Department of Epidemiology, University of Washington, Seattle, WA 98105, USA.
| |
Collapse
|
231
|
Xu C, Zhou Y, Xiao Q, He B, Geng G, Wang Z, Cao B, Dong X, Bai W, Wang Y, Wang X, Zhou D, Yuan T, Huo X, Lai J, Yang H. Programmable RNA editing with compact CRISPR-Cas13 systems from uncultivated microbes. Nat Methods 2021; 18:499-506. [PMID: 33941935 DOI: 10.1038/s41592-021-01124-4] [Citation(s) in RCA: 175] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 03/18/2021] [Indexed: 12/26/2022]
Abstract
Competitive coevolution between microbes and viruses has led to the diversification of CRISPR-Cas defense systems against infectious agents. By analyzing metagenomic terabase datasets, we identified two compact families (775 to 803 amino acids (aa)) of CRISPR-Cas ribonucleases from hypersaline samples, named Cas13X and Cas13Y. We engineered Cas13X.1 (775 aa) for RNA interference experiments in mammalian cell lines. We found Cas13X.1 could tolerate single-nucleotide mismatches in RNA recognition, facilitating prophylactic RNA virus inhibition. Moreover, a minimal RNA base editor, composed of engineered deaminase (385 aa) and truncated Cas13X.1 (445 aa), exhibited robust editing efficiency and high specificity to induce RNA base conversions. Our results suggest that there exist untapped bacterial defense systems in natural microbes that can function efficiently in mammalian cells, and thus potentially are useful for RNA-editing-based research.
Collapse
Affiliation(s)
- Chunlong Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yingsi Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Qingquan Xiao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Bingbing He
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Guannan Geng
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zikang Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Birong Cao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xue Dong
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Weiya Bai
- Huigene Therapeutics Inc., Shanghai, China
| | - Yifan Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiang Wang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Dongming Zhou
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.,Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Tanglong Yuan
- Center for Animal Genomics, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xiaona Huo
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jinsheng Lai
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China.
| | - Hui Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
232
|
Uzonyi A, Nir R, Shliefer O, Stern-Ginossar N, Antebi Y, Stelzer Y, Levanon EY, Schwartz S. Deciphering the principles of the RNA editing code via large-scale systematic probing. Mol Cell 2021; 81:2374-2387.e3. [PMID: 33905683 DOI: 10.1016/j.molcel.2021.03.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/31/2021] [Accepted: 03/17/2021] [Indexed: 12/26/2022]
Abstract
Adenosine-to-inosine editing is catalyzed by ADAR1 at thousands of sites transcriptome-wide. Despite intense interest in ADAR1 from physiological, bioengineering, and therapeutic perspectives, the rules of ADAR1 substrate selection are poorly understood. Here, we used large-scale systematic probing of ∼2,000 synthetic constructs to explore the structure and sequence context determining editability. We uncover two structural layers determining the formation and propagation of A-to-I editing, independent of sequence. First, editing is robustly induced at fixed intervals of 35 bp upstream and 30 bp downstream of structural disruptions. Second, editing is symmetrically introduced on opposite sites on a double-stranded structure. Our findings suggest a recursive model for RNA editing, whereby the structural alteration induced by the editing at one site iteratively gives rise to the formation of an additional editing site at a fixed periodicity, serving as a basis for the propagation of editing along and across both strands of double-stranded RNA structures.
Collapse
Affiliation(s)
- Anna Uzonyi
- Department of Molecular Genetics, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Ronit Nir
- Department of Molecular Genetics, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Ofir Shliefer
- Faculty of Life Sciences, Bar Ilan University, 5290002 Ramat Gan, Israel
| | - Noam Stern-Ginossar
- Department of Molecular Genetics, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Yaron Antebi
- Department of Molecular Genetics, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Yonatan Stelzer
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Erez Y Levanon
- Faculty of Life Sciences, Bar Ilan University, 5290002 Ramat Gan, Israel
| | - Schraga Schwartz
- Department of Molecular Genetics, Weizmann Institute of Science, 7610001 Rehovot, Israel.
| |
Collapse
|
233
|
Kluesner MG, Lahr WS, Lonetree CL, Smeester BA, Qiu X, Slipek NJ, Claudio Vázquez PN, Pitzen SP, Pomeroy EJ, Vignes MJ, Lee SC, Bingea SP, Andrew AA, Webber BR, Moriarity BS. CRISPR-Cas9 cytidine and adenosine base editing of splice-sites mediates highly-efficient disruption of proteins in primary and immortalized cells. Nat Commun 2021; 12:2437. [PMID: 33893286 PMCID: PMC8065034 DOI: 10.1038/s41467-021-22009-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 02/24/2021] [Indexed: 12/19/2022] Open
Abstract
CRISPR-Cas9 cytidine and adenosine base editors (CBEs and ABEs) can disrupt genes without introducing double-stranded breaks by inactivating splice sites (BE-splice) or by introducing premature stop (pmSTOP) codons. However, no in-depth comparison of these methods or a modular tool for designing BE-splice sgRNAs exists. To address these needs, we develop SpliceR ( http://z.umn.edu/spliceR ) to design and rank BE-splice sgRNAs for any Ensembl annotated genome, and compared disruption approaches in T cells using a screen against the TCR-CD3 MHC Class I immune synapse. Among the targeted genes, we find that targeting splice-donors is the most reliable disruption method, followed by targeting splice-acceptors, and introducing pmSTOPs. Further, the CBE BE4 is more effective for disruption than the ABE ABE7.10, however this disparity is eliminated by employing ABE8e. Collectively, we demonstrate a robust method for gene disruption, accompanied by a modular design tool that is of use to basic and translational researchers alike.
Collapse
Affiliation(s)
- Mitchell G Kluesner
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Walker S Lahr
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Cara-Lin Lonetree
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Branden A Smeester
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Xiaohong Qiu
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Nicholas J Slipek
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Patricia N Claudio Vázquez
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Samuel P Pitzen
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Emily J Pomeroy
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Madison J Vignes
- College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Samantha C Lee
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
- College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Samuel P Bingea
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Aneesha A Andrew
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
- College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Beau R Webber
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA.
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA.
| | - Branden S Moriarity
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA.
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
234
|
Yao J, Wang Y, Cao C, Song R, Bi D, Zhang H, Li Y, Qin G, Hou N, Zhang N, Zhang J, Guo W, Yang S, Wang Y, Zhao J. CRISPR/Cas9-mediated correction of MITF homozygous point mutation in a Waardenburg syndrome 2A pig model. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 24:986-999. [PMID: 34094716 PMCID: PMC8141604 DOI: 10.1016/j.omtn.2021.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 04/09/2021] [Indexed: 01/23/2023]
Abstract
Gene therapy for curing congenital human diseases is promising, but the feasibility and safety need to be further evaluated. In this study, based on a pig model that carries the c.740T>C (L247S) mutation in MITF with an inheritance pattern and clinical pathology that mimics Waardenburg syndrome 2A (WS2A), we corrected the point mutation by the CRISPR-Cas9 system in the mutant fibroblast cells using single-stranded oligodeoxynucleotide (ssODN) and long donor plasmid DNA as the repair template. By using long donor DNA, precise correction of this point mutation was achieved. The corrected cells were then used as the donor cell for somatic cell nuclear transfer (SCNT) to produce piglets, which exhibited a successfully rescued phenotype of WS2A, including anophthalmia and hearing loss. Furthermore, engineered base editors (BEs) were exploited to make the correction in mutant porcine fibroblast cells and early embryos. The correction efficiency was greatly improved, whereas substantial off-targeting mutations were detected, raising a safety concern for their potential applications in gene therapy. Thus, we explored the possibility of precise correction of WS2A-causing gene mutation by the CRISPR-Cas9 system in a large-animal model, suggesting great prospects for its future applications in treating human genetic diseases.
Collapse
Affiliation(s)
- Jing Yao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Yu Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunwei Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Ruigao Song
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Dengfeng Bi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongyong Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongshun Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guosong Qin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Naipeng Hou
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nan Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jin Zhang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Weiwei Guo
- Department of Otolaryngology-Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing 100853, China
| | - Shiming Yang
- Department of Otolaryngology-Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing 100853, China
| | - Yanfang Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jianguo Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| |
Collapse
|
235
|
Eberherr AC, Maaske A, Wolf C, Giesert F, Berutti R, Rusha E, Pertek A, Kastlmeier MT, Voss C, Plummer M, Sayed A, Graf E, Effner R, Volz T, Drukker M, Strom TM, Meitinger T, Stoeger T, Buyx AM, Hagl B, Renner ED. Rescue of STAT3 Function in Hyper-IgE Syndrome Using Adenine Base Editing. CRISPR J 2021; 4:178-190. [PMID: 33876960 DOI: 10.1089/crispr.2020.0111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
STAT3-hyper IgE syndrome (STAT3-HIES) is a primary immunodeficiency presenting with destructive lung disease along with other symptoms. CRISPR-Cas9-mediated adenine base editors (ABEs) have the potential to correct one of the most common STAT3-HIES causing heterozygous STAT3 mutations (c.1144C>T/p.R382W). As a proof-of-concept, we successfully applied ABEs to correct STAT3 p.R382W in patient fibroblasts and induced pluripotent stem cells (iPSCs). Treated primary STAT3-HIES patient fibroblasts showed a correction efficiency of 29% ± 7% without detectable off-target effects evaluated through whole-genome and high-throughput sequencing. Compared with untreated patient fibroblasts, corrected single-cell clones showed functional rescue of STAT3 signaling with significantly increased STAT3 DNA-binding activity and target gene expression of CCL2 and SOCS3. Patient-derived iPSCs were corrected with an efficiency of 30% ± 6% and differentiated to alveolar organoids showing preserved plasticity in treated cells. In conclusion, our results are supportive for ABE-based gene correction as a potential causative treatment of STAT3-HIES.
Collapse
Affiliation(s)
- Andreas C Eberherr
- Translational Immunology in Environmental Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany; Technical University of Munich, Munich, Germany.,Translational Immunology, Institute of Environmental Medicine, Helmholtz Zentrum Munich, Neuherberg, Germany; Technical University of Munich, Munich, Germany
| | - Andre Maaske
- Translational Immunology in Environmental Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany; Technical University of Munich, Munich, Germany.,Translational Immunology, Institute of Environmental Medicine, Helmholtz Zentrum Munich, Neuherberg, Germany; Technical University of Munich, Munich, Germany
| | - Christine Wolf
- Translational Immunology in Environmental Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany; Technical University of Munich, Munich, Germany.,Translational Immunology, Institute of Environmental Medicine, Helmholtz Zentrum Munich, Neuherberg, Germany; Technical University of Munich, Munich, Germany
| | - Florian Giesert
- Institute of Developmental Genetics, Helmholtz Zentrum Munich, Neuherberg, Germany; Technical University of Munich, Munich, Germany.,Chair of Developmental Genetics, Technical University of Munich, Munich, Germany; Technical University of Munich, Munich, Germany
| | - Riccardo Berutti
- Institute of Human Genetics, Technical University of Munich, Munich, Germany; Technical University of Munich, Munich, Germany.,Institute of Human Genetics, Helmholtz Zentrum Munich, Neuherberg, Germany; Technical University of Munich, Munich, Germany.,Institute of Neurogenomics, Helmholtz Zentrum Munich, Neuherberg, Germany; Technical University of Munich, Munich, Germany
| | - Ejona Rusha
- iPSC Core Facility, Institute of Stem Cell Research, Helmholtz Zentrum Munich, Neuherberg, Germany; Technical University of Munich, Munich, Germany
| | - Anna Pertek
- iPSC Core Facility, Institute of Stem Cell Research, Helmholtz Zentrum Munich, Neuherberg, Germany; Technical University of Munich, Munich, Germany
| | - Miriam T Kastlmeier
- Institute of Lung Biology and Disease, Helmholtz Zentrum Munich, Neuherberg, Germany; Technical University of Munich, Munich, Germany
| | - Carola Voss
- Institute of Lung Biology and Disease, Helmholtz Zentrum Munich, Neuherberg, Germany; Technical University of Munich, Munich, Germany
| | - Michelle Plummer
- Translational Immunology in Environmental Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany; Technical University of Munich, Munich, Germany.,Translational Immunology, Institute of Environmental Medicine, Helmholtz Zentrum Munich, Neuherberg, Germany; Technical University of Munich, Munich, Germany
| | - Amina Sayed
- Translational Immunology in Environmental Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany; Technical University of Munich, Munich, Germany.,Translational Immunology, Institute of Environmental Medicine, Helmholtz Zentrum Munich, Neuherberg, Germany; Technical University of Munich, Munich, Germany.,Institute of Lung Biology and Disease, Helmholtz Zentrum Munich, Neuherberg, Germany; Technical University of Munich, Munich, Germany
| | - Elisabeth Graf
- Institute of Human Genetics, Helmholtz Zentrum Munich, Neuherberg, Germany; Technical University of Munich, Munich, Germany
| | - Renate Effner
- Translational Immunology in Environmental Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany; Technical University of Munich, Munich, Germany.,Translational Immunology, Institute of Environmental Medicine, Helmholtz Zentrum Munich, Neuherberg, Germany; Technical University of Munich, Munich, Germany
| | - Thomas Volz
- Department of Dermatology and Allergology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany; and Technical University of Munich, Munich, Germany
| | - Micha Drukker
- iPSC Core Facility, Institute of Stem Cell Research, Helmholtz Zentrum Munich, Neuherberg, Germany; Technical University of Munich, Munich, Germany
| | - Tim M Strom
- Institute of Human Genetics, Technical University of Munich, Munich, Germany; Technical University of Munich, Munich, Germany.,Institute of Human Genetics, Helmholtz Zentrum Munich, Neuherberg, Germany; Technical University of Munich, Munich, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Technical University of Munich, Munich, Germany; Technical University of Munich, Munich, Germany.,Institute of Human Genetics, Helmholtz Zentrum Munich, Neuherberg, Germany; Technical University of Munich, Munich, Germany
| | - Tobias Stoeger
- Institute of Lung Biology and Disease, Helmholtz Zentrum Munich, Neuherberg, Germany; Technical University of Munich, Munich, Germany
| | - Alena M Buyx
- Institute for History and Ethics of Medicine, Technical University of Munich, Munich, Germany
| | - Beate Hagl
- Translational Immunology in Environmental Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany; Technical University of Munich, Munich, Germany.,Translational Immunology, Institute of Environmental Medicine, Helmholtz Zentrum Munich, Neuherberg, Germany; Technical University of Munich, Munich, Germany
| | - Ellen D Renner
- Translational Immunology in Environmental Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany; Technical University of Munich, Munich, Germany.,Translational Immunology, Institute of Environmental Medicine, Helmholtz Zentrum Munich, Neuherberg, Germany; Technical University of Munich, Munich, Germany
| |
Collapse
|
236
|
Chemello F, Chai AC, Li H, Rodriguez-Caycedo C, Sanchez-Ortiz E, Atmanli A, Mireault AA, Liu N, Bassel-Duby R, Olson EN. Precise correction of Duchenne muscular dystrophy exon deletion mutations by base and prime editing. SCIENCE ADVANCES 2021; 7:eabg4910. [PMID: 33931459 PMCID: PMC8087404 DOI: 10.1126/sciadv.abg4910] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/15/2021] [Indexed: 05/06/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a fatal muscle disease caused by the lack of dystrophin, which maintains muscle membrane integrity. We used an adenine base editor (ABE) to modify splice donor sites of the dystrophin gene, causing skipping of a common DMD deletion mutation of exon 51 (∆Ex51) in cardiomyocytes derived from human induced pluripotent stem cells, restoring dystrophin expression. Prime editing was also capable of reframing the dystrophin open reading frame in these cardiomyocytes. Intramuscular injection of ∆Ex51 mice with adeno-associated virus serotype-9 encoding ABE components as a split-intein trans-splicing system allowed gene editing and disease correction in vivo. Our findings demonstrate the effectiveness of nucleotide editing for the correction of diverse DMD mutations with minimal modification of the genome, although improved delivery methods will be required before these strategies can be used to sufficiently edit the genome in patients with DMD.
Collapse
Affiliation(s)
- F Chemello
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - A C Chai
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - H Li
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - C Rodriguez-Caycedo
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - E Sanchez-Ortiz
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - A Atmanli
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - A A Mireault
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - N Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - R Bassel-Duby
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - E N Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
237
|
Yu W, Li J, Huang S, Li X, Li P, Li G, Liang A, Chi T, Huang X. Harnessing A3G for efficient and selective C-to-T conversion at C-rich sequences. BMC Biol 2021; 19:34. [PMID: 33602235 PMCID: PMC7893952 DOI: 10.1186/s12915-020-00879-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 09/24/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Site-specific C>T DNA base editing has been achieved by recruiting cytidine deaminases to the target C using catalytically impaired Cas proteins; the target C is typically located within 5-nt editing window specified by the guide RNAs. The prototypical cytidine base editor BE3, comprising rat APOBEC1 (rA1) fused to nCas9, can indiscriminately deaminate multiple C's within the editing window and also create substantial off-target edits on the transcriptome. A powerful countermeasure for the DNA off-target editing is to replace rA1 with APOBEC proteins which selectively edit C's in the context of specific motifs, as illustrated in eA3A-BE3 which targets TC. However, analogous editors selective for other motifs have not been described. In particular, it has been challenging to target a particular C in C-rich sequences. Here, we sought to confront this challenge and also to overcome the RNA off-target effects seen in BE3. RESULTS By replacing rA1 with an optimized human A3G (oA3G), we developed oA3G-BE3, which selectively targets CC and CCC and is also free of global off-target effects on the transcriptome. Furthermore, we created oA3G-BE4max, an upgraded version of oA3G-BE3 with robust on-target editing. Finally, we showed that oA3G-BE4max has negligible Cas9-independent off-target effects at the genome. CONCLUSIONS oA3G-BE4max can edit C(C)C with high efficiency and selectivity, which complements eA3A-editors to broaden the collective editing scope of motif selective editors, thus filling a void in the base editing tool box.
Collapse
Affiliation(s)
- Wenxia Yu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianan Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shisheng Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangyang Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ping Li
- Department of Hematology, Tongji Hospital of Tongji University, Shanghai, 200092, China
| | - Guanglei Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Aibin Liang
- Department of Hematology, Tongji Hospital of Tongji University, Shanghai, 200092, China
| | - Tian Chi
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Department Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Xingxu Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
238
|
Seroussi E. Estimating Copy-Number Proportions: The Comeback of Sanger Sequencing. Genes (Basel) 2021; 12:283. [PMID: 33671263 PMCID: PMC7922598 DOI: 10.3390/genes12020283] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 12/28/2022] Open
Abstract
Determination of the relative copy numbers of mixed molecular species in nucleic acid samples is often the objective of biological experiments, including Single-Nucleotide Polymorphism (SNP), indel and gene copy-number characterization, and quantification of CRISPR-Cas9 base editing, cytosine methylation, and RNA editing. Standard dye-terminator chromatograms are a widely accessible, cost-effective information source from which copy-number proportions can be inferred. However, the rate of incorporation of dye terminators is dependent on the dye type, the adjacent sequence string, and the secondary structure of the sequenced strand. These variable rates complicate inferences and have driven scientists to resort to complex and costly quantification methods. Because these complex methods introduce their own biases, researchers are rethinking whether rectifying distortions in sequencing trace files and using direct sequencing for quantification will enable comparable accurate assessment. Indeed, recent developments in software tools (e.g., TIDE, ICE, EditR, BEEP and BEAT) indicate that quantification based on direct Sanger sequencing is gaining in scientific acceptance. This commentary reviews the common obstacles in quantification and the latest insights and developments relevant to estimating copy-number proportions based on direct Sanger sequencing, concluding that bidirectional sequencing and sophisticated base calling are the keys to identifying and avoiding sequence distortions.
Collapse
Affiliation(s)
- Eyal Seroussi
- Institute of Animal Science, Agricultural Research Organization (ARO), HaMaccabim Road, P.O.B 15159, Rishon LeTsiyon 7528809, Israel
| |
Collapse
|
239
|
Trivedi D. Using CRISPR-Cas9-based genome engineering tools in Drosophila melanogaster. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 180:85-121. [PMID: 33934839 DOI: 10.1016/bs.pmbts.2021.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Drosophila melanogaster has been used as a model organism for over a century. Mutant-based analyses have been used extensively to understand the genetic basis of different cellular processes, including development, neuronal function and diseases. Most of the earlier genetic mutants and specific tools were generated by random insertions and deletion strategies and then mapped to specific genomic loci. Since all genomic regions are not equally accessible to random mutations and insertions, many genes still remain uncharacterized. Low efficiency of targeted genomic manipulation approaches that rely on homologous recombination, and difficulty in generating resources for sequence-specific endonucleases, such as ZFNs (Zinc Finger Nucleases) and TALENs (Transcription Activator-Like Effector Nucleases), could not make these gene targeting techniques very popular. However, recently RNA directed DNA endonucleases, such as CRISPR-Cas, have transformed genome engineering owing to their comparative ease, versatility, and low expense. With the added advantage of preexisting genetic tools, CRISPR-Cas-based manipulations are being extensively used in Drosophila melanogaster and simultaneously being fine-tuned for specific experimental requirements. In this chapter, I will discuss various uses of CRISPR-Cas-based genetic engineering and specific design methods in Drosophila melanogaster. I will summarize various already available tools that are being utilized in conjunction with CRISPR-Cas technology to generate specific genetic manipulation and are being optimized to address specific questions. Finally, I will discuss the future directions of Drosophila genetics research and how CRISPR-Cas can be utilized to target specific questions, addressing which has not been possible thus far.
Collapse
Affiliation(s)
- Deepti Trivedi
- National Centre for Biological Sciences-TIFR, Bengaluru, India.
| |
Collapse
|
240
|
Rosello M, Vougny J, Czarny F, Mione MC, Concordet JP, Albadri S, Del Bene F. Precise base editing for the in vivo study of developmental signaling and human pathologies in zebrafish. eLife 2021; 10:65552. [PMID: 33576334 PMCID: PMC7932688 DOI: 10.7554/elife.65552] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/10/2021] [Indexed: 02/07/2023] Open
Abstract
While zebrafish is emerging as a new model system to study human diseases, an efficient methodology to generate precise point mutations at high efficiency is still lacking. Here we show that base editors can generate C-to-T point mutations with high efficiencies without other unwanted on-target mutations. In addition, we established a new editor variant recognizing an NAA protospacer adjacent motif, expanding the base editing possibilities in zebrafish. Using these approaches, we first generated a base change in the ctnnb1 gene, mimicking oncogenic an mutation of the human gene known to result in constitutive activation of endogenous Wnt signaling. Additionally, we precisely targeted several cancer-associated genes including cbl. With this last target, we created a new zebrafish dwarfism model. Together our findings expand the potential of zebrafish as a model system allowing new approaches for the endogenous modulation of cell signaling pathways and the generation of precise models of human genetic disease-associated mutations.
Collapse
Affiliation(s)
- Marion Rosello
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,Institut Curie, PSL Research University, Inserm U934, CNRS UMR3215, Paris, France
| | - Juliette Vougny
- Institut Curie, PSL Research University, Inserm U934, CNRS UMR3215, Paris, France
| | - François Czarny
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Marina C Mione
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, Italy
| | - Jean-Paul Concordet
- Muséum National d'Histoire Naturelle, INSERM U1154, CNRS UMR 7196, Paris, France
| | - Shahad Albadri
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Filippo Del Bene
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,Institut Curie, PSL Research University, Inserm U934, CNRS UMR3215, Paris, France
| |
Collapse
|
241
|
Collantes JC, Tan VM, Xu H, Ruiz-Urigüen M, Alasadi A, Guo J, Tao H, Su C, Tyc KM, Selmi T, Lambourne JJ, Harbottle JA, Stombaugh J, Xing J, Wiggins CM, Jin S. Development and Characterization of a Modular CRISPR and RNA Aptamer Mediated Base Editing System. CRISPR J 2021; 4:58-68. [PMID: 33616445 PMCID: PMC7898459 DOI: 10.1089/crispr.2020.0035] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Conventional CRISPR approaches for precision genome editing rely on the introduction of DNA double-strand breaks (DSB) and activation of homology-directed repair (HDR), which is inherently genotoxic and inefficient in somatic cells. The development of base editing (BE) systems that edit a target base without requiring generation of DSB or HDR offers an alternative. Here, we describe a novel BE system called Pin-pointTM that recruits a DNA base-modifying enzyme through an RNA aptamer within the gRNA molecule. Pin-point is capable of efficiently modifying base pairs in the human genome with precision and low on-target indel formation. This system can potentially be applied for correcting pathogenic mutations, installing premature stop codons in pathological genes, and introducing other types of genetic changes for basic research and therapeutic development.
Collapse
Affiliation(s)
- Juan Carlos Collantes
- Department of Pharmacology, Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Victor M. Tan
- Department of Pharmacology, Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Huiting Xu
- Department of Pharmacology, Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Melany Ruiz-Urigüen
- Department of Pharmacology, Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Amer Alasadi
- Department of Pharmacology, Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Jingjing Guo
- Department of Pharmacology, Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Hanlin Tao
- Department of Pharmacology, Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Chi Su
- Department of Pharmacology, Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Katarzyna M. Tyc
- Department of Genetics, Rutgers, The State University of New Jersey–Piscataway, New Jersey, USA
| | | | | | | | | | - Jinchuan Xing
- Department of Genetics, Rutgers, The State University of New Jersey–Piscataway, New Jersey, USA
| | | | - Shengkan Jin
- Department of Pharmacology, Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| |
Collapse
|
242
|
Huang TP, Newby GA, Liu DR. Precision genome editing using cytosine and adenine base editors in mammalian cells. Nat Protoc 2021; 16:1089-1128. [PMID: 33462442 DOI: 10.1038/s41596-020-00450-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 10/20/2020] [Indexed: 01/29/2023]
Abstract
Genome editing has transformed the life sciences and has exciting prospects for use in treating genetic diseases. Our laboratory developed base editing to enable precise and efficient genome editing while minimizing undesired byproducts and toxicity associated with double-stranded DNA breaks. Adenine and cytosine base editors mediate targeted A•T-to-G•C or C•G-to-T•A base pair changes, respectively, which can theoretically address most human disease-associated single-nucleotide polymorphisms. Current base editors can achieve high editing efficiencies-for example, approaching 100% in cultured mammalian cells or 70% in adult mouse neurons in vivo. Since their initial description, a large set of base editor variants have been developed with different on-target and off-target editing characteristics. Here, we describe a protocol for using base editing in cultured mammalian cells. We provide guidelines for choosing target sites, appropriate base editor variants and delivery strategies to best suit a desired application. We further describe standard base-editing experiments in HEK293T cells, along with computational analysis of base-editing outcomes using CRISPResso2. Beginning with target DNA site selection, base-editing experiments in mammalian cells can typically be completed within 1-3 weeks and require only standard molecular biology techniques and readily available plasmid constructs.
Collapse
Affiliation(s)
- Tony P Huang
- Merkin Institute of Transformative Technologies in Healthcare, The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Gregory A Newby
- Merkin Institute of Transformative Technologies in Healthcare, The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, The Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
243
|
Approaches for the sensitive detection of rare base and prime editing events. Methods 2021; 194:75-82. [PMID: 33484827 DOI: 10.1016/j.ymeth.2021.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/11/2021] [Accepted: 01/18/2021] [Indexed: 12/23/2022] Open
Abstract
Precision chemistry entailing user-directed nucleotide substitutions and template-specified repair can be facilitated by base editing and prime editing, respectively. Recently, the diversification of adenine, cytosine, and prime editor variants obliges a considered, high-throughput evaluation of these tools for optimized, end-point applications. Herein, we outline novel, cost-effective and scalable approaches for the rapid detection of base editing and prime editing outcomes using gel electrophoresis. For base editing, we exploit primer mismatch amplification (SNP genotyping) for the gel-based detection of base editing efficiencies as low as 0.1%. For prime editing, we describe a one-pot reaction combining polymerase chain reaction (PCR) amplification of the target region with restriction digestion (restriction fragment length polymorphism; RFLP). RFLP enables the rapid detection of insertion or deletion events in under 2.5 h from genomic DNA extraction. We show that our method of SNP genotyping is amenable to both endogenous target loci as well as transfected, episomal plasmid targets in BHK-21 cells. Next, we validate the incidence of base and prime editing by describing Sanger sequencing and next-generation sequencing (NGS) workflows for the accurate validation and quantification of on-target editing efficiencies. Our workflow details three different methods for the detection of rare base and prime editing events, enabling a tiered approach from low to high resolution that makes use of gel electrophoresis, Sanger sequencing, and NGS.
Collapse
|
244
|
Liu Z, Chen S, Jia Y, Shan H, Chen M, Song Y, Lai L, Li Z. Efficient and high-fidelity base editor with expanded PAM compatibility for cytidine dinucleotide. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1355-1367. [PMID: 33420918 DOI: 10.1007/s11427-020-1775-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 09/10/2020] [Indexed: 12/26/2022]
Abstract
Cytidine base editor (CBE), which is composed of a cytidine deaminase fused to Cas9 nickase, has been widely used to induce C-to-T conversions in a wide range of organisms. However, the targeting scope of current CBEs is largely restricted to protospacer adjacent motif (PAM) sequences containing G, T, or A bases. In this study, we developed a new base editor termed "nNme2-CBE" with excellent PAM compatibility for cytidine dinucleotide, significantly expanding the genome-targeting scope of CBEs. Using nNme2-CBE, targeted editing efficiencies of 29.0%-55.0% and 17.3%-52.5% were generated in human cells and rabbit embryos, respectively. In contrast to conventional nSp-CBE, the nNme2-CBE is a natural high-fidelity base editing platform with minimal DNA off-targeting detected in vivo. Significantly increased efficiency in GC context and precision were determined by combining nNme2Cas9 with rationally engineered cytidine deaminases. In addition, the Founder rabbits with accurate single-base substitutions at Fgf5 gene loci were successfully generated by using the nNme2-CBE system. These novel nNme2-CBEs with expanded PAM compatibility and high fidelity will expand the base editing toolset for efficient gene modification and therapeutic applications.
Collapse
Affiliation(s)
- Zhiquan Liu
- Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, 130062, China
| | - Siyu Chen
- Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, 130062, China
| | - Yingqi Jia
- Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, 130062, China
| | - Huanhuan Shan
- Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, 130062, China
| | - Mao Chen
- Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, 130062, China
| | - Yuning Song
- Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, 130062, China
| | - Liangxue Lai
- Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, 130062, China. .,CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China. .,Guangzhou Regenerative Medicine and Health Guang Dong Laboratory, Guangzhou, 510005, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Zhanjun Li
- Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, 130062, China.
| |
Collapse
|
245
|
Lentiviral delivery of co-packaged Cas9 mRNA and a Vegfa-targeting guide RNA prevents wet age-related macular degeneration in mice. Nat Biomed Eng 2021; 5:144-156. [PMID: 33398131 DOI: 10.1038/s41551-020-00656-y] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 11/03/2020] [Indexed: 12/26/2022]
Abstract
Therapeutic genome editing requires effective and targeted delivery methods. The delivery of Cas9 mRNA using adeno-associated viruses has led to potent in vivo therapeutic efficacy, but can cause sustained Cas9 expression, anti-Cas9 immune responses and off-target edits. Lentiviral vectors have been engineered to deliver nucleases that are expressed transiently, but in vivo evidence of their biomedical efficacy is lacking. Here, we show that the lentiviral codelivery of Streptococcus pyogenes Cas9 mRNA and expression cassettes that encode a guide RNA that targets vascular endothelial growth factor A (Vegfa) is efficacious in a mouse model of wet age-related macular degeneration induced by Vegfa. A single subretinal injection of engineered lentiviruses knocked out 44% of Vegfa in retinal pigment epithelium and reduced the area of choroidal neovascularization by 63% without inducing off-target edits or anti-Cas9 immune responses. Engineered lentiviruses for the transient expression of nucleases may form the basis of new treatments for retinal neovascular diseases.
Collapse
|
246
|
Chieca M, Torrini S, Conticello SG. Live-Cell Quantification of APOBEC1-Mediated RNA Editing: A Comparison of RNA Editing Assays. Methods Mol Biol 2021; 2181:69-81. [PMID: 32729075 DOI: 10.1007/978-1-0716-0787-9_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
APOBEC1 is a member of the AID/APOBECs, a group of deaminases responsible for the editing of C>U in both DNA and RNA. APOBEC1 is physiologically involved in C>U RNA editing: while hundreds of targets have been discovered in mice, in humans the only well-characterized target of APOBEC1 is the apolipoprotein B (ApoB) transcript. APOBEC1 edits a CAA codon into a stop codon, which causes the translation of a truncated form of ApoB. A number of assays have been developed to investigate this process. Early assays, poisoned primer extension and Sanger sequencing, have focused on accuracy and sensitivity but rely on extraction of the RNA from tissues and cells. More recently, the need to visualize the RNA editing process directly in live cells have led to the development of fluorescence-based tools. These assays detect RNA editing through reporters whose editing causes a change in cellular localization or a change in fluorescent properties. Here we review the available assays to quantify RNA editing, and we present the protocol for cytofluorimetric analysis using a double-fluorescent reporter.
Collapse
Affiliation(s)
- Martina Chieca
- Core Research Laboratory, ISPRO-Institute for Cancer Research, Prevention and Clinical Network, Firenze, Italy.,Department of Medical Biotechnologies, Università di Siena, Siena, Italy
| | - Serena Torrini
- Core Research Laboratory, ISPRO-Institute for Cancer Research, Prevention and Clinical Network, Firenze, Italy.,Department of Medical Biotechnologies, Università di Siena, Siena, Italy
| | - Silvestro G Conticello
- Core Research Laboratory, ISPRO-Institute for Cancer Research, Prevention and Clinical Network, Firenze, Italy. .,Institute of Clinical Physiology, CNR, Pisa, Italy.
| |
Collapse
|
247
|
Abstract
Agrobacterium spp. are important plant pathogens that are the causative agents of crown gall or hairy root disease. Their unique infection strategy depends on the delivery of part of their DNA to plant cells. Thanks to this capacity, these phytopathogens became a powerful and indispensable tool for plant genetic engineering and agricultural biotechnology. Although Agrobacterium spp. are standard tools for plant molecular biologists, current laboratory strains have remained unchanged for decades and functional gene analysis of Agrobacterium has been hampered by time-consuming mutation strategies. Here, we developed clustered regularly interspaced short palindromic repeats (CRISPR)-mediated base editing to enable the efficient introduction of targeted point mutations into the genomes of both Agrobacterium tumefaciens and Agrobacterium rhizogenes As an example, we generated EHA105 strains with loss-of-function mutations in recA, which were fully functional for maize (Zea mays) transformation and confirmed the importance of RolB and RolC for hairy root development by A. rhizogenes K599. Our method is highly effective in 9 of 10 colonies after transformation, with edits in at least 80% of the cells. The genomes of EHA105 and K599 were resequenced, and genome-wide off-target analysis was applied to investigate the edited strains after curing of the base editor plasmid. The off-targets present were characteristic of Cas9-independent off-targeting and point to TC motifs as activity hotspots of the cytidine deaminase used. We anticipate that CRISPR-mediated base editing is the start of "engineering the engineer," leading to improved Agrobacterium strains for more efficient plant transformation and gene editing.
Collapse
|
248
|
Brookhouser N, Nguyen T, Tekel SJ, Standage-Beier K, Wang X, Brafman DA. A Cas9-mediated adenosine transient reporter enables enrichment of ABE-targeted cells. BMC Biol 2020. [PMID: 33317513 DOI: 10.1186/s12915-020-00929-7.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Adenine base editors (ABE) enable single nucleotide modifications without the need for double-stranded DNA breaks (DSBs) induced by conventional CRIPSR/Cas9-based approaches. However, most approaches that employ ABEs require inefficient downstream technologies to identify desired targeted mutations within large populations of manipulated cells. In this study, we developed a fluorescence-based method, named "Cas9-mediated adenosine transient reporter for editing enrichment" (CasMAs-TREE; herein abbreviated XMAS-TREE), to facilitate the real-time identification of base-edited cell populations. RESULTS To establish a fluorescent-based assay able to detect ABE activity within a cell in real time, we designed a construct encoding a mCherry fluorescent protein followed by a stop codon (TGA) preceding the coding sequence for a green fluorescent protein (GFP), allowing translational readthrough and expression of GFP after A-to-G conversion of the codon to "TGG." At several independent loci, we demonstrate that XMAS-TREE can be used for the highly efficient purification of targeted cells. Moreover, we demonstrate that XMAS-TREE can be employed in the context of multiplexed editing strategies to simultaneous modify several genomic loci. In addition, we employ XMAS-TREE to efficiently edit human pluripotent stem cells (hPSCs), a cell type traditionally resistant to genetic modification. Furthermore, we utilize XMAS-TREE to generate clonal isogenic hPSCs at target sites not editable using well-established reporter of transfection (RoT)-based strategies. CONCLUSION We established a method to detect adenosine base-editing activity within a cell, which increases the efficiency of editing at multiple genomic locations through an enrichment of edited cells. In the future, XMAS-TREE will greatly accelerate the application of ABEs in biomedical research.
Collapse
Affiliation(s)
- Nicholas Brookhouser
- School of Biological and Health Systems Engineering, Arizona State University, 501 E. Tyler Mall, ECG 334A, Tempe, AZ, 85287, USA.,Graduate Program in Clinical Translational Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
| | - Toan Nguyen
- School of Biological and Health Systems Engineering, Arizona State University, 501 E. Tyler Mall, ECG 334A, Tempe, AZ, 85287, USA
| | - Stefan J Tekel
- School of Biological and Health Systems Engineering, Arizona State University, 501 E. Tyler Mall, ECG 334A, Tempe, AZ, 85287, USA
| | - Kylie Standage-Beier
- School of Biological and Health Systems Engineering, Arizona State University, 501 E. Tyler Mall, ECG 334A, Tempe, AZ, 85287, USA.,Molecular and Cellular Biology Graduate Program, Arizona State University, Tempe, AZ, 85287, USA
| | - Xiao Wang
- School of Biological and Health Systems Engineering, Arizona State University, 501 E. Tyler Mall, ECG 334A, Tempe, AZ, 85287, USA.
| | - David A Brafman
- School of Biological and Health Systems Engineering, Arizona State University, 501 E. Tyler Mall, ECG 334A, Tempe, AZ, 85287, USA.
| |
Collapse
|
249
|
Brookhouser N, Nguyen T, Tekel SJ, Standage-Beier K, Wang X, Brafman DA. A Cas9-mediated adenosine transient reporter enables enrichment of ABE-targeted cells. BMC Biol 2020; 18:193. [PMID: 33317513 PMCID: PMC7737295 DOI: 10.1186/s12915-020-00929-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 11/18/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Adenine base editors (ABE) enable single nucleotide modifications without the need for double-stranded DNA breaks (DSBs) induced by conventional CRIPSR/Cas9-based approaches. However, most approaches that employ ABEs require inefficient downstream technologies to identify desired targeted mutations within large populations of manipulated cells. In this study, we developed a fluorescence-based method, named "Cas9-mediated adenosine transient reporter for editing enrichment" (CasMAs-TREE; herein abbreviated XMAS-TREE), to facilitate the real-time identification of base-edited cell populations. RESULTS To establish a fluorescent-based assay able to detect ABE activity within a cell in real time, we designed a construct encoding a mCherry fluorescent protein followed by a stop codon (TGA) preceding the coding sequence for a green fluorescent protein (GFP), allowing translational readthrough and expression of GFP after A-to-G conversion of the codon to "TGG." At several independent loci, we demonstrate that XMAS-TREE can be used for the highly efficient purification of targeted cells. Moreover, we demonstrate that XMAS-TREE can be employed in the context of multiplexed editing strategies to simultaneous modify several genomic loci. In addition, we employ XMAS-TREE to efficiently edit human pluripotent stem cells (hPSCs), a cell type traditionally resistant to genetic modification. Furthermore, we utilize XMAS-TREE to generate clonal isogenic hPSCs at target sites not editable using well-established reporter of transfection (RoT)-based strategies. CONCLUSION We established a method to detect adenosine base-editing activity within a cell, which increases the efficiency of editing at multiple genomic locations through an enrichment of edited cells. In the future, XMAS-TREE will greatly accelerate the application of ABEs in biomedical research.
Collapse
Affiliation(s)
- Nicholas Brookhouser
- School of Biological and Health Systems Engineering, Arizona State University, 501 E. Tyler Mall, ECG 334A, Tempe, AZ, 85287, USA
- Graduate Program in Clinical Translational Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
| | - Toan Nguyen
- School of Biological and Health Systems Engineering, Arizona State University, 501 E. Tyler Mall, ECG 334A, Tempe, AZ, 85287, USA
| | - Stefan J Tekel
- School of Biological and Health Systems Engineering, Arizona State University, 501 E. Tyler Mall, ECG 334A, Tempe, AZ, 85287, USA
| | - Kylie Standage-Beier
- School of Biological and Health Systems Engineering, Arizona State University, 501 E. Tyler Mall, ECG 334A, Tempe, AZ, 85287, USA
- Molecular and Cellular Biology Graduate Program, Arizona State University, Tempe, AZ, 85287, USA
| | - Xiao Wang
- School of Biological and Health Systems Engineering, Arizona State University, 501 E. Tyler Mall, ECG 334A, Tempe, AZ, 85287, USA.
| | - David A Brafman
- School of Biological and Health Systems Engineering, Arizona State University, 501 E. Tyler Mall, ECG 334A, Tempe, AZ, 85287, USA.
| |
Collapse
|
250
|
Preece R, Pavesi A, Gkazi SA, Stegmann KA, Georgiadis C, Tan ZM, Aw JYJ, Maini MK, Bertoletti A, Qasim W. CRISPR-Mediated Base Conversion Allows Discriminatory Depletion of Endogenous T Cell Receptors for Enhanced Synthetic Immunity. Mol Ther Methods Clin Dev 2020; 19:149-161. [PMID: 33102612 PMCID: PMC7549055 DOI: 10.1016/j.omtm.2020.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/04/2020] [Indexed: 12/26/2022]
Abstract
Emerging base editing technology exploits CRISPR RNA-guided DNA modification effects for highly specific C > T conversion, which has been used to efficiently disrupt gene expression. These tools can enhance synthetic T cell immunity by restricting specificity, addressing histocompatibility leukocyte antigen (HLA) barriers, and promoting persistence. We report lentiviral delivery of a hepatitis B-virus (HBV)-specific recombinant T cell receptor (rTCR) and a linked CRISPR single-guide RNA for simultaneous disruption of endogenous TCRs (eTCRs) when combined with transient cytosine deamination. Discriminatory depletion of eTCR and coupled expression of rTCR resulted in enrichment of HBV-specific populations from 55% (SEM, ±2.4%) to 95% (SEM, ±0.5%). Intensity of rTCR expression increased 1.8- to 2.9-fold compared to that in cells retaining their competing eTCR, and increased cytokine production and killing of HBV antigen-expressing hepatoma cells in a 3D microfluidic model were exhibited. Molecular signatures confirmed that seamless conversion of C > T (G > A) had created a premature stop codon in TCR beta constant 1/2 loci, with no notable activity at predicted off-target sites. Thus, targeted disruption of eTCR by cytosine deamination and discriminatory enrichment of antigen-specific T cells offers the prospect of enhanced, more specific T cell therapies against HBV-associated hepatocellular carcinoma (HCC) as well as other viral and tumor antigens.
Collapse
Affiliation(s)
- Roland Preece
- Molecular and Cellular Immunology Unit, UCL Great Ormond Street Institute of Child Health, NIHR Great Ormond Street Hospital Biomedical Research Centre, 30 Guilford Street, London WC1N 1EH, UK
| | - Andrea Pavesi
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR) 61 Biopolis Drive, Singapore 138673, Singapore
| | - Soragia Athina Gkazi
- Molecular and Cellular Immunology Unit, UCL Great Ormond Street Institute of Child Health, NIHR Great Ormond Street Hospital Biomedical Research Centre, 30 Guilford Street, London WC1N 1EH, UK
| | - Kerstin A. Stegmann
- UCL Division of Infection and Immunity, The Rayne Building, 5 University Street, London WC1E 6EJ, UK
| | - Christos Georgiadis
- Molecular and Cellular Immunology Unit, UCL Great Ormond Street Institute of Child Health, NIHR Great Ormond Street Hospital Biomedical Research Centre, 30 Guilford Street, London WC1N 1EH, UK
| | - Zhi Ming Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR) 61 Biopolis Drive, Singapore 138673, Singapore
| | - Jia Ying Joey Aw
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR) 61 Biopolis Drive, Singapore 138673, Singapore
| | - Mala K. Maini
- UCL Division of Infection and Immunity, The Rayne Building, 5 University Street, London WC1E 6EJ, UK
| | - Antonio Bertoletti
- Program Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- Singapore Immunology Network (SigN), Agency of Science Technology and Research (A∗STAR), Singapore, Singapore
| | - Waseem Qasim
- Molecular and Cellular Immunology Unit, UCL Great Ormond Street Institute of Child Health, NIHR Great Ormond Street Hospital Biomedical Research Centre, 30 Guilford Street, London WC1N 1EH, UK
| |
Collapse
|