201
|
Venhoff N, Lebrecht D, Pfeifer D, Venhoff AC, Bissé E, Kirschner J, Walker UA. Muscle-fiber transdifferentiation in an experimental model of respiratory chain myopathy. Arthritis Res Ther 2012; 14:R233. [PMID: 23107834 PMCID: PMC3580545 DOI: 10.1186/ar4076] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 10/26/2012] [Indexed: 12/21/2022] Open
Abstract
Introduction Skeletal muscle fiber composition and muscle energetics are not static and change in muscle disease. This study was performed to determine whether a mitochondrial myopathy is associated with adjustments in skeletal muscle fiber-type composition. Methods Ten rats were treated with zidovudine, an antiretroviral nucleoside reverse transcriptase inhibitor that induces a myopathy by interfering with mitochondrial functions. Soleus muscles were examined after 21 weeks of treatment. Ten untreated rats served as controls. Results Zidovudine induced a myopathy with mitochondrial DNA depletion, abnormalities in mitochondrial ultrastructure, and reduced cytochrome c oxidase activity. Mitochondrial DNA was disproportionally more diminished in type I compared with type II fibers, whereas atrophy predominated in type II fibers. Compared with those of controls, zidovudine-exposed soleus muscles contained an increased proportion (256%) of type II fibers, whereas neonatal myosin heavy chains remained repressed, indicating fiber-type transformation in the absence of regeneration. Microarray gene-expression analysis confirmed enhanced fast-fiber isoforms, repressed slow-fiber transcripts, and reduced neonatal fiber transcripts in the mitochondrial myopathy. Respiratory chain transcripts were diminished, whereas the enzymes of glycolysis and glycogenolysis were enhanced, indicating a metabolic adjustment from oxidative to glycolytic capacities. A coordinated regulation was found of transcription factors known to orchestrate type II fiber formation (upregulation of MyoD, Six1, Six2, Eya1, and Sox6, and downregulation of myogenin and ERRγ). Conclusions The type I to type II fiber transformation in mitochondrial myopathy implicates mitochondrial function as a new regulator of skeletal muscle fiber type.
Collapse
|
202
|
Mazzolini R, Rodrigues P, Bazzocco S, Dopeso H, Ferreira AM, Mateo-Lozano S, Andretta E, Woerner SM, Alazzouzi H, Landolfi S, Hernandez-Losa J, Macaya I, Suzuki H, Ramón y Cajal S, Mooseker MS, Mariadason JM, Gebert J, Hofstra RMW, Reventós J, Yamamoto H, Schwartz S, Arango D. Brush border myosin Ia inactivation in gastric but not endometrial tumors. Int J Cancer 2012; 132:1790-9. [PMID: 23002058 DOI: 10.1002/ijc.27856] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 08/09/2012] [Indexed: 12/17/2022]
Abstract
Brush border Myosin Ia (MYO1A) has been shown to be frequently mutated in colorectal tumors with microsatellite instability (MSI) and to have tumor suppressor activity in intestinal tumors. Here, we investigated the frequency of frameshift mutations in the A8 microsatellite in exon 28 of MYO1A in MSI gastric and endometrial tumors and found a high mutation rate in gastric (22/47; 46.8%) but not endometrial (3/48; 6.2%) tumors. Using a regression model, we show that MYO1A mutations are likely to confer a growth advantage to gastric, but not endometrial tumors. The mutant MYO1A(7A) protein was shown to lose its membrane localization in gastric cancer cells and a cycloheximide-chase assay demonstrated that the mutant MYO1A(7A) protein has reduced stability compared to the wild type MYO1A. Frequent MYO1A promoter hypermethylation was also found in gastric tumors. Promoter methylation negatively correlates with MYO1A mRNA expression in a series of 58 non-MSI gastric primary tumors (Pearson's r = -0.46; p = 0.0003) but not in a cohort of 54 non-MSI endometrial tumors and treatment of gastric cancer cells showing high MYO1A promoter methylation with the demethylating agent 5-aza-2'-deoxycytidine, resulted in a significant increase of MYO1A mRNA levels. We found that normal gastric epithelial cells, but not normal endometrial cells, express high levels of MYO1A. Therefore, when considered together, our findings suggest that MYO1A has tumor suppressor activity in the normal gastric epithelium but not in the normal endometrium and inactivation of MYO1A either genetically or epigenetically may confer gastric epithelial cells a growth advantage.
Collapse
Affiliation(s)
- Rocco Mazzolini
- Group of Molecular Oncology, CIBBIM-Nanomedicine, Vall d'Hebron University Hospital Research Institute, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Lee YK, Moon HJ. Reciprocal influence of masticatory apparatus, craniofacial structure and whole body homeostasis. Med Hypotheses 2012; 79:761-6. [PMID: 22981594 DOI: 10.1016/j.mehy.2012.08.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 06/07/2012] [Accepted: 08/21/2012] [Indexed: 11/15/2022]
Abstract
There are evidences that the evolution into Homo erectus was partially induced by masticatory muscular dystrophy caused by a gene mutation, which in turn increased brain capacity and led to bipedalism. It is generally accepted that the morphology and function of mammalian skull are partially controlled by epigenetic mechanisms. Archeologic evidences support that the masticatory apparatus have influenced the mechanical stress distribution in hominin skull, and consequently changed craniofacial morphology and function. Even after evolution into H. erectus, alterations in food properties by civilization and cultural preferences have caused modification of human masticatory pattern and accordingly craniofacial structure. Since there are evidences that prehuman and human masticatory apparatus has been influenced the craniofacial and whole body morphology and function, this apparatus in turn might influence whole body homeostasis. Plausible reciprocal influencing mechanisms of the masticatory apparatus on the whole body homeostasis might be (1) direct mechanical influence on the craniofacial structure, (2) distortion of cerebrospinal fluid circulation, and/or (3) several neural/humoral routes. Based on these backgrounds, the hypothesis of the present study is that the morphology and function of masticatory apparatus influence the whole body homeostasis and these interactions are reciprocal. Therefore, human masticatory apparatus, at the present time, should be kept in its physiological status to maintain the whole body homeostasis. We recommend basic and clinical approaches to confirm this hypothesis.
Collapse
Affiliation(s)
- Yong-Keun Lee
- ICPB and ETN Dental Clinic, Seoul, Republic of Korea.
| | | |
Collapse
|
204
|
Abstract
The development of cell-cell junctions was a fundamental step in metazoan evolution, and human health depends on the formation and function of cell junctions. Although it has long been known that actin and conventional myosin have important roles in cell junctions, research has begun to reveal the specific functions of the different forms of conventional myosin. Exciting new data also reveals that a growing number of unconventional myosins have important roles in cell junctions. Experiments showing that cell junctions act as mechanosensors have also provided new impetus to understand the functions of myosins and the forces they exert. In this review we will summarize recent developments on the roles of myosins in cell junctions.
Collapse
Affiliation(s)
- Katy C Liu
- Department of Cell and Molecular Physiology; School of Medicine; University of North Carolina at Chapel Hill; Chapel Hill, NC USA
| | - Richard E Cheney
- Department of Cell and Molecular Physiology; School of Medicine; University of North Carolina at Chapel Hill; Chapel Hill, NC USA
| |
Collapse
|
205
|
Ussowicz M, Jaśkowiec A, Meyer C, Marschalek R, Chybicka A, Szczepański T, Haus O. A three-way translocation of MLL, MLLT11, and the novel reciprocal partner gene MYO18A in a child with acute myeloid leukemia. Cancer Genet 2012; 205:261-5. [PMID: 22682626 DOI: 10.1016/j.cancergen.2012.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 02/14/2012] [Accepted: 02/15/2012] [Indexed: 10/28/2022]
Abstract
Translocations of the MLL gene are common among neonates and infants with acute lymphoblastic and acute myeloid leukemias. We characterized a new three-way translocation involving MLL in an infant with acute myeloid leukemia who subsequently relapsed and underwent a hematopoietic stem cell transplant from an unrelated stem cell donor. The translocation was characterized using karyotyping and fluorescence in situ hybridization. In this patient, a complex rearrangement fused the distal part of 11q23 with 17q11.2, the distal part of 17q11.2 with 1q21, and the distal part of 1q21 with 11q23, resulting in a three-way translocation; t(1;11;17)(q21;q23;q11.2). The two reciprocal MLL fusion sites were cloned by long-distance inverse polymerase chain reaction, which led to the identification of MLL-MLLT11 and the reciprocal MYO18A-MLL fusion alleles. Both fusion genes are in-frame and can be translated into functional fusion proteins. Although the MLL-MLLT11 fusion gene has been described in the literature, the reciprocal MYO18A fusion partner is a novel candidate gene in the growing list of reciprocal MLL fusions.
Collapse
Affiliation(s)
- Marek Ussowicz
- Wrocław Medical University, Department of Pediatric BMT, Hematology and Oncology, Wrocław, Poland.
| | | | | | | | | | | | | |
Collapse
|
206
|
Wessels D, Lusche DF, Steimle PA, Scherer A, Kuhl S, Wood K, Hanson B, Egelhoff TT, Soll DR. Myosin heavy chain kinases play essential roles in Ca2+, but not cAMP, chemotaxis and the natural aggregation of Dictyostelium discoideum. J Cell Sci 2012; 125:4934-44. [PMID: 22899719 DOI: 10.1242/jcs.112474] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Behavioral analyses of the deletion mutants of the four known myosin II heavy chain (Mhc) kinases of Dictyostelium discoideum revealed that all play a minor role in the efficiency of basic cell motility, but none play a role in chemotaxis in a spatial gradient of cAMP generated in vitro. However, the two kinases MhckA and MhckC were essential for chemotaxis in a spatial gradient of Ca(2+), shear-induced directed movement, and reorientation in the front of waves of cAMP during natural aggregation. The phenotypes of the mutants mhckA(-) and mhckC(-) were highly similar to that of the Ca(2+) channel/receptor mutant iplA(-) and the myosin II phosphorylation mutant 3XALA, which produces constitutively unphosphorylated myosin II. These results demonstrate that IplA, MhckA and MhckC play a selective role in chemotaxis in a spatial gradient of Ca(2+), but not cAMP, and suggest that Ca(2+) chemotaxis plays a role in the orientation of cells in the front of cAMP waves during natural aggregation.
Collapse
Affiliation(s)
- Deborah Wessels
- Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa, Iowa City, 52242, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
207
|
Gerrits L, Overheul GJ, Derks RC, Wieringa B, Hendriks WJ, Wansink DG. Gene duplication and conversion events shaped three homologous, differentially expressed myosin regulatory light chain (MLC2) genes. Eur J Cell Biol 2012; 91:629-39. [DOI: 10.1016/j.ejcb.2012.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 01/30/2012] [Accepted: 02/03/2012] [Indexed: 10/28/2022] Open
|
208
|
Molesini B, Pandolfini T, Pii Y, Korte A, Spena A. Arabidopsis thaliana AUCSIA-1 regulates auxin biology and physically interacts with a kinesin-related protein. PLoS One 2012; 7:e41327. [PMID: 22911780 PMCID: PMC3401106 DOI: 10.1371/journal.pone.0041327] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 06/25/2012] [Indexed: 12/22/2022] Open
Abstract
Aucsia is a green plant gene family encoding 44–54 amino acids long miniproteins. The sequenced genomes of most land plants contain two Aucsia genes. RNA interference of both tomato (Solanum lycopersicum) Aucsia genes (SlAucsia-1 and SlAucsia-2) altered auxin sensitivity, auxin transport and distribution; it caused parthenocarpic development of the fruit and other auxin-related morphological changes. Here we present data showing that the Aucsia-1 gene of Arabidopsis thaliana alters, by itself, root auxin biology and that the AtAUCSIA-1 miniprotein physically interacts with a kinesin-related protein. The AtAucsia-1 gene is ubiquitously expressed, although its expression is higher in roots and inflorescences in comparison to stems and leaves. Two allelic mutants for AtAucsia-1 gene did not display visible root morphological alterations; however both basipetal and acropetal indole-3-acetic acid (IAA) root transport was reduced as compared with wild-type plants. The transcript steady state levels of the auxin efflux transporters ATP BINDING CASSETTE subfamily B (ABCB) ABCB1, ABCB4 and ABCB19 were reduced in ataucsia-1 plants. In ataucsia-1 mutant, lateral root growth showed an altered response to i) exogenous auxin, ii) an inhibitor of polar auxin transport and iii) ethylene. Overexpression of AtAucsia-1 inhibited primary root growth. In vitro and in vivo protein-protein interaction experiments showed that AtAUCSIA-1 interacts with a 185 amino acids long fragment belonging to a 2712 amino acids long protein of unknown function (At4g31570). Bioinformatics analysis indicates that the AtAUCSIA-1 interacting protein (AtAUCSIA-1IP) clusters with a group of CENP-E kinesin-related proteins. Gene ontology predictions for the two proteins are consistent with the hypothesis that the AtAUCSIA-1/AtAUCSIA-1IP complex is involved in the regulation of the cytoskeleton dynamics underlying auxin biology.
Collapse
Affiliation(s)
- Barbara Molesini
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Youry Pii
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Arthur Korte
- WissenschaftZentrum WeihenstephanTechnische Universitaet Muenchen, Freising, Germany
| | - Angelo Spena
- Department of Biotechnology, University of Verona, Verona, Italy
- * E-mail:
| |
Collapse
|
209
|
Remarkable heterogeneity in myosin heavy-chain composition of the human young masseter compared with young biceps brachii. Histochem Cell Biol 2012; 138:669-82. [PMID: 22777345 DOI: 10.1007/s00418-012-0985-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2012] [Indexed: 10/28/2022]
Abstract
Adult human jaw muscles differ from limb and trunk muscles in enzyme-histochemical fibre type composition. Recently, we showed that the human masseter and biceps differ in fibre type pattern already at childhood. The present study explored the myosin heavy-chain (MyHC) expression in the young masseter and biceps muscles by means of gel electrophoresis (GE) and immuno-histochemical (IHC) techniques. Plasticity in MyHC expression during life was evaluated by comparing the results with the previously reported data for adult muscles. In young masseter, GE identified MyHC-I, MyHC-IIa MyHC-IIx and small proportions of MyHC-fetal and MyHC-α cardiac. Western blots confirmed the presence of MyHC-I, MyHC-IIa and MyHC-IIx. IHC revealed in the masseter six isomyosins, MyHC-I, MyHC-IIa, MyHC-IIx, MyHC-fetal, MyHC α-cardiac and a previously not reported isoform, termed MyHC-IIx'. The majority of the masseter fibres co-expressed two to four isoforms. In the young biceps, both GE and IHC identified MyHC-I, MyHC-IIa and MyHC-IIx. MyHC-I predominated in both muscles. Young masseter showed more slow and less-fast and fetal MyHC than the adult and elderly masseter. These results provide evidence that the young masseter muscle is unique in MyHC composition, expressing MyHC-α cardiac and MyHC-fetal isoforms as well as hitherto unrecognized potential spliced isoforms of MyHC-fetal and MyHC-IIx. Differences in masseter MyHC expression between young adult and elderly suggest a shift from childhood to adulthood towards more fast contractile properties. Differences between masseter and biceps are proposed to reflect diverse evolutionary and developmental origins and confirm that the masseter and biceps present separate allotypes of muscle.
Collapse
|
210
|
Guhathakurta P, Prochniewicz E, Muretta JM, Titus MA, Thomas DD. Allosteric communication in Dictyostelium myosin II. J Muscle Res Cell Motil 2012; 33:305-12. [PMID: 22752265 DOI: 10.1007/s10974-012-9304-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 05/22/2012] [Indexed: 12/14/2022]
Abstract
Myosin's affinities for nucleotides and actin are reciprocal. Actin-binding substantially reduces the affinity of ATP for myosin, but the effect of actin on myosin's ADP affinity is quite variable among myosin isoforms, serving as the principal mechanism for tuning the actomyosin system to specific physiological purposes. To understand the structural basis of this variable relationship between actin and ADP binding, we studied several constructs of the catalytic domain of Dictyostelium myosin II, varying their length (from the N-terminal origin) and cysteine content. The constructs varied considerably in their actin-activated ATPase activity and in the effect of actin on ADP affinity. Actin had no significant effect on ADP affinity for a single-cysteine catalytic domain construct, a double-cysteine construct partially restored the actin-dependence of ADP binding, and restoration of all native Cys restored it further, but full restoration of function (similar to that of skeletal muscle myosin II) was obtained only by adding all native Cys and an artificial lever arm extension. Pyrene-actin fluorescence confirmed these effects on ADP binding to actomyosin. We conclude that myosin's Cys content and lever arm both allosterically modulate the reciprocal affinities of myosin for ADP and actin, a key determinant of the biological functions of myosin isoforms.
Collapse
Affiliation(s)
- Piyali Guhathakurta
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church St. SE, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
211
|
Wu W, Li J, Liu Y, Zhang C, Meng X, Zhou Z. Comparative proteomic studies of serum from patients with hepatocellular carcinoma. J INVEST SURG 2012; 25:37-42. [PMID: 22272636 DOI: 10.3109/08941939.2011.603816] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Human hepatocellular carcinoma (HCC) is one of the most common solid tumors. It is always associated with prolonged hospital stay, increased attributable mortality, and greater hospitalization cost. To identify new biomarkers that could improve the early diagnosis in hepatocellular carcinoma, we performed a proteomic study. METHODS Two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS) were used to compare the serum protein profiles between patients with hepatocellular carcinoma and healthy volunteers. RESULTS Eight protein spots were found significantly changed in patients with hepatocellular carcinoma. Among them, four proteins were successfully identified, including MYH2 protein, mitochondrial ATP synthase, sulfated glycoprotein-2 (SGP-2), and Glial fibrillary acidic protein (GFAP). The increased levels of SGP-2 were further confirmed by Western blot analysis from independent series of serum samples. CONCLUSIONS These results indicate that MYH2 protein, mitochondrial ATP synthase, SGP-2, and GFAP may be potential molecular biomarkers for hepatocellular carcinoma, and special attention should be cast on MYH2 protein.
Collapse
Affiliation(s)
- Wenyong Wu
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, PR China
| | | | | | | | | | | |
Collapse
|
212
|
Abstract
Vigorous transport of cytoplasmic components along axons over substantial distances is crucial for the maintenance of neuron structure and function. The transport of mitochondria, which serves to distribute mitochondrial functions in a dynamic and non-uniform fashion, has attracted special interest in recent years following the discovery of functional connections among microtubules, motor proteins and mitochondria, and their influences on neurodegenerative diseases. Although the motor proteins that drive mitochondrial movement are now well characterized, the mechanisms by which anterograde and retrograde movement are coordinated with one another and with stationary axonal mitochondria are not yet understood. In this Commentary, we review why mitochondria move and how they move, focusing particularly on recent studies of transport regulation, which implicate control of motor activity by specific cell-signaling pathways, regulation of motor access to transport tracks and static microtubule-mitochondrion linkers. A detailed mechanism for modulating anterograde mitochondrial transport has been identified that involves Miro, a mitochondrial Ca(2+)-binding GTPase, which with associated proteins, can bind and control kinesin-1. Elements of the Miro complex also have important roles in mitochondrial fission-fusion dynamics, highlighting questions about the interdependence of biogenesis, transport, dynamics, maintenance and degradation.
Collapse
Affiliation(s)
- William M Saxton
- Department of Molecular Cell and Developmental Biology, University of California, Cruz, CA 95060, USA.
| | | |
Collapse
|
213
|
Heissler SM, Manstein DJ. Nonmuscle myosin-2: mix and match. Cell Mol Life Sci 2012; 70:1-21. [PMID: 22565821 PMCID: PMC3535348 DOI: 10.1007/s00018-012-1002-9] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 04/16/2012] [Accepted: 04/17/2012] [Indexed: 12/31/2022]
Abstract
Members of the nonmuscle myosin-2 (NM-2) family of actin-based molecular motors catalyze the conversion of chemical energy into directed movement and force thereby acting as central regulatory components of the eukaryotic cytoskeleton. By cyclically interacting with adenosine triphosphate and F-actin, NM-2 isoforms promote cytoskeletal force generation in established cellular processes like cell migration, shape changes, adhesion dynamics, endo- and exo-cytosis, and cytokinesis. Novel functions of the NM-2 family members in autophagy and viral infection are emerging, making NM-2 isoforms regulators of nearly all cellular processes that require the spatiotemporal organization of cytoskeletal scaffolding. Here, we assess current views about the role of NM-2 isoforms in these activities including the tight regulation of NM-2 assembly and activation through phosphorylation and how NM-2-mediated changes in cytoskeletal dynamics and mechanics affect cell physiological functions in health and disease.
Collapse
Affiliation(s)
- Sarah M. Heissler
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Dietmar J. Manstein
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
214
|
Abstract
Proteinuria is often accompanied by a pathological change in the glomerulus that is refereed as effacement of the podocyte foot processes. The highly dynamic podocyte foot processes contain an actin-based contractile apparatus comparable to that of pericytes, which needs to be precisely and temporally controlled to withstand high pressure in the capillaries and to maintain intact glomerular filtration properties. This review outlines the most recent concepts on the function of the podocyte contractile apparatus with a focus on the role of non-muscle myosins as they have been highlighted by studies in monogenic hereditary proteinuric diseases.
Collapse
Affiliation(s)
- Marina Noris
- Mario Negri Institute for Pharmacological Research, Clinical Research Center for Rare Diseases "Aldo e Cele Daccò", Department of Molecular Medicine, Ranica, Italy
| | - Giuseppe Remuzzi
- Mario Negri Institute for Pharmacological Research, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy.,Unit of Nephrology and Dialysis, Azienda Ospedaliera, Ospedali Riuniti di Bergamo, Italy
| |
Collapse
|
215
|
González L, Eiró N, González-Reyes S, Andicoechea A, González LO, García-Muñiz JL, Vizoso FJ. Clinical significance of myosin in colorectal cancer. Ann Diagn Pathol 2012; 16:260-6. [PMID: 22445363 DOI: 10.1016/j.anndiagpath.2011.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 11/25/2011] [Indexed: 11/16/2022]
Abstract
Myosin has raised an interest in cancer research because of its role in tumor progression. The aim of this study was to investigate the expression and clinical relevance of myosin in colorectal cancer (CC). Myosin was detected in CC tumors with recurrence using matrix-assisted laser desorption/ionization time-of-flight analysis. An immunohistochemical study was performed using tissue arrays and specific antibodies against myosin heavy chain. Determinations on cancer specimens from 91 patients with resectable CCs were performed. The minimum follow-up period was of 12.5 years for these patients without tumor recurrence. Western blot and real-time polymerase chain reaction analysis were also performed. Samples of carcinomas with recurrence showed an increased expression of myosin. Tumors with high myosin expression by tumor cell were significantly associated with higher probability of metastasis. Our results suggest that myosin expression in CCs is associated with tumor progression and metastasis development. Therefore, myosin tumor expression may contribute to an improved prognostic evaluation in patients with CC.
Collapse
Affiliation(s)
- Lucía González
- Unidad de Investigación, Fundación Hospital de Jove, Gijón, Spain
| | | | | | | | | | | | | |
Collapse
|
216
|
Taheri-Talesh N, Xiong Y, Oakley BR. The functions of myosin II and myosin V homologs in tip growth and septation in Aspergillus nidulans. PLoS One 2012; 7:e31218. [PMID: 22359575 PMCID: PMC3281053 DOI: 10.1371/journal.pone.0031218] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 01/04/2012] [Indexed: 01/05/2023] Open
Abstract
Because of the industrial and medical importance of members of the fungal genus Aspergillus, there is considerable interest in the functions of cytoskeletal components in growth and secretion in these organisms. We have analyzed the genome of Aspergillus nidulans and found that there are two previously unstudied myosin genes, a myosin II homolog, myoB (product = MyoB) and a myosin V homolog, myoE (product = MyoE). Deletions of either cause significant growth defects. MyoB localizes in strings that coalesce into contractile rings at forming septa. It is critical for septation and normal deposition of chitin but not for hyphal extension. MyoE localizes to the Spitzenkörper and to moving puncta in the cytoplasm. Time-lapse imaging of SynA, a v-SNARE, reveals that in myoE deletion strains vesicles no longer localize to the Spitzenkörper. Tip morphology is slightly abnormal and branching occurs more frequently than in controls. Tip extension is slower than in controls, but because hyphal diameter is greater, growth (increase in volume/time) is only slightly reduced. Concentration of vesicles into the Spitzenkörper before incorporation into the plasma membrane is, thus, not required for hyphal growth but facilitates faster tip extension and a more normal hyphal shape.
Collapse
Affiliation(s)
- Naimeh Taheri-Talesh
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Yi Xiong
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Berl R. Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
217
|
Chiu HC, Chang TY, Huang CT, Chao YS, Hsu JTA. EGFR and myosin II inhibitors cooperate to suppress EGFR-T790M-mutant NSCLC cells. Mol Oncol 2012; 6:299-310. [PMID: 22366308 DOI: 10.1016/j.molonc.2012.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 01/31/2012] [Accepted: 02/03/2012] [Indexed: 11/26/2022] Open
Abstract
An acquired mutation (T790M) in the epidermal growth factor receptor (EGFR) accounts for half of all relapses in non-small cell lung cancer (NSCLC) patients who initially respond to EGFR kinase inhibitors. In this study, we demonstrated for the first time that EGFR-T790M interacts with the cytoskeletal components, myosin heavy chain 9 (MYH9) and β-actin, in the nucleus of H1975 cells carrying the T790M-mutant EGFR. The interactions of EGFR with MYH9 and β-actin were reduced in the presence of blebbistatin, a specific inhibitor for the MYH9-β-actin interaction, suggesting that the EGFR interaction with MYH9 and β-actin is affected by the integrity of the cytoskeleton. These physical interactions among MYH9, β-actin, and EGFR were also impaired by CL-387,785, a kinase inhibitor for EGFR-T790M. Furthermore, CL-387,785 and blebbistatin interacted in a synergistic fashion to suppress cell proliferation and induce apoptosis in H1975 cells. The combination of CL-387,785 and blebbistatin enhanced the down-regulation of cyclooxygenase-2 (COX-2), a transcriptional target of nuclear EGFR. Overall, our findings demonstrate that disrupting EGFR interactions with the cytoskeletal components enhanced the anti-cancer effects of CL-387,785 against H1975 cells, suggesting a novel therapeutic approach for NSCLC cells that express the drug-resistant EGFR-T790M.
Collapse
Affiliation(s)
- Huan-Chih Chiu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan, ROC
| | | | | | | | | |
Collapse
|
218
|
Pak WL, Shino S, Leung HT. PDA (prolonged depolarizing afterpotential)-defective mutants: the story of nina's and ina's--pinta and santa maria, too. J Neurogenet 2012; 26:216-37. [PMID: 22283778 PMCID: PMC3433705 DOI: 10.3109/01677063.2011.642430] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Our objective is to present a comprehensive view of the PDA (prolonged depolarizing afterpotential)-defective Drosophila mutants, nina's and ina's, from the discussion of the PDA and the PDA-based mutant screening strategy to summaries of the knowledge gained through the studies of mutants generated using the strategy. The PDA is a component of the light-evoked photoreceptor potential that is generated when a substantial fraction of rhodopsin is photoconverted to its active form, metarhodopsin. The PDA-based mutant screening strategy was adopted to enhance the efficiency and efficacy of ERG (electroretinogram)-based screening for identifying phototransduction-defective mutants. Using this strategy, two classes of PDA-defective mutants were identified and isolated, nina and ina, each comprising multiple complementation groups. The nina mutants are characterized by allele-dependent reduction in the major rhodopsin, Rh1, whereas the ina mutants display defects in some aspects of functions related to the transduction channel, TRP (transient receptor potential). The signaling proteins that have been identified and elucidated through the studies of nina mutants include the Drosophila opsin protein (NINAE), the chaperone protein for nascent opsin (NINAA), and the multifunctional protein, NINAC, required in multiple steps of the Drosophila phototransduction cascade. Also identified by the nina mutants are some of the key enzymes involved in the biogenesis of the rhodopsin chromophore. As for the ina mutants, they led to the discovery of the scaffold protein, INAD, responsible for the nucleation of the supramolecular signaling complex. Also identified by the ina mutants is one of the key members of the signaling complex, INAC (ePKC), and two other proteins that are likely to be important, though their roles in the signaling cascade have not yet been fully elucidated. In most of these cases, the protein identified is the first member of its class to be so recognized.
Collapse
Affiliation(s)
- William L Pak
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907-2054, USA.
| | | | | |
Collapse
|
219
|
Avisar D, Abu-Abied M, Belausov E, Sadot E. Myosin XIK is a major player in cytoplasm dynamics and is regulated by two amino acids in its tail. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:241-9. [PMID: 21914656 PMCID: PMC3245463 DOI: 10.1093/jxb/err265] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 07/22/2011] [Accepted: 08/02/2011] [Indexed: 05/18/2023]
Abstract
It has recently been found that among the 17 Arabidopsis myosins, six (XIC, XIE, XIK, XI-I, MYA1, and MYA2) have a major role in the motility of Golgi bodies and mitochondria in Nicotiana benthamiana and Nicotiana tabacum. Here, the same dominant negative tail fragments were also found to arrest the movement of Gogi bodies when transiently expressed in Arabidopsis plants. However, when a Golgi marker was transiently expressed in plants knocked out in these myosins, its movement was dramatically inhibited only in the xik mutant. In addition, a tail fragment of myosin XIK could inhibit the movement of several post-Golgi organelles, such as the trans-Golgi network, pre-vacuolar compartment, and endosomes, as well as total cytoplasmic streaming, suggesting that myosin XIK is a major player in cytoplasm kinetics. However, no co-localization of myosin tails with the arrested organelles was observed. Several deletion truncations of the myosin XIK tail were generated to corroborate function with localization. All deletion mutants possessing an inhibitory effect on organelle movement exhibited a diffuse cytoplasmic distribution. Point mutations in the tail of myosin XIK revealed that Arg1368 and Arg1443 are essential for its activity. These residues correspond to Lys1706 and Lys1779 from mouse myosin Va, which mediate the inhibitory head-tail interaction in this myosin. Therefore, such an interaction might underlie the dominant negative effect of truncated plant myosin tails and explain the mislocalization with target organelles.
Collapse
Affiliation(s)
| | | | | | - Einat Sadot
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
220
|
Abstract
Cells use molecular motors, such as myosins, to move, position and segregate their organelles. Class V myosins possess biochemical and structural properties that should make them ideal actin-based cargo transporters. Indeed, studies show that class V myosins function as cargo transporters in yeast, moving a range of organelles, such as the vacuole, peroxisomes and secretory vesicles. There is also increasing evidence in vertebrate cells that class V myosins not only tether organelles to actin but also can serve as short-range, point-to-point organelle transporters, usually following long-range, microtubule-dependent organelle transport.
Collapse
|
221
|
Abstract
Mammalian erythroblasts undergo enucleation, a process thought to be similar to cytokinesis. Although an assemblage of actin, non-muscle myosin II, and several other proteins is crucial for proper cytokinesis, the role of non-muscle myosin II in enucleation remains unclear. In this study, we investigated the effect of various cell-division inhibitors on cytokinesis and enucleation. For this purpose, we used human colony-forming unit-erythroid (CFU-E) and mature erythroblasts generated from purified CD34(+) cells as target cells for cytokinesis and enucleation assay, respectively. Here we show that the inhibition of myosin by blebbistatin, an inhibitor of non-muscle myosin II ATPase, blocks both cell division and enucleation, which suggests that non-muscle myosin II plays an essential role not only in cytokinesis but also in enucleation. When the function of non-muscle myosin heavy chain (NMHC) IIA or IIB was inhibited by an exogenous expression of myosin rod fragment, myosin IIA or IIB, each rod fragment blocked the proliferation of CFU-E but only the rod fragment for IIB inhibited the enucleation of mature erythroblasts. These data indicate that NMHC IIB among the isoforms is involved in the enucleation of human erythroblasts.
Collapse
|
222
|
Sun Y, Goldman YE. Lever-arm mechanics of processive myosins. Biophys J 2011; 101:1-11. [PMID: 21723809 DOI: 10.1016/j.bpj.2011.05.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 05/07/2011] [Accepted: 05/09/2011] [Indexed: 11/19/2022] Open
Affiliation(s)
- Yujie Sun
- Pennsylvania Muscle Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
223
|
DeGiorgis JA, Cavaliere KR, Burbach JPH. Identification of molecular motors in the Woods Hole squid, Loligo pealei: an expressed sequence tag approach. Cytoskeleton (Hoboken) 2011; 68:566-77. [PMID: 21913340 DOI: 10.1002/cm.20531] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 08/26/2011] [Indexed: 12/31/2022]
Abstract
The squid giant axon and synapse are unique systems for studying neuronal function. While a few nucleotide and amino acid sequences have been obtained from squid, large scale genetic and proteomic information is lacking. We have been particularly interested in motors present in axons and their roles in transport processes. Here, to obtain genetic data and to identify motors expressed in squid, we initiated an expressed sequence tag project by single-pass sequencing mRNAs isolated from the stellate ganglia of the Woods Hole Squid, Loligo pealei. A total of 22,689 high quality expressed sequence tag (EST) sequences were obtained and subjected to basic local alignment search tool analysis. Seventy six percent of these sequences matched genes in the National Center for Bioinformatics databases. By CAP3 analysis this library contained 2459 contigs and 7568 singletons. Mining for motors successfully identified six kinesins, six myosins, a single dynein heavy chain, as well as components of the dynactin complex, and motor light chains and accessory proteins. This initiative demonstrates that EST projects represent an effective approach to obtain sequences of interest.
Collapse
Affiliation(s)
- Joseph A DeGiorgis
- Department of Biology, Providence College, Providence, Rhode Island, USA.
| | | | | |
Collapse
|
224
|
Bloemink MJ, Geeves MA. Shaking the myosin family tree: biochemical kinetics defines four types of myosin motor. Semin Cell Dev Biol 2011; 22:961-7. [PMID: 22001381 DOI: 10.1016/j.semcdb.2011.09.015] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 09/29/2011] [Indexed: 12/12/2022]
Abstract
Although all myosin motors follow the same basic cross-bridge cycle, they display a large variety in the rates of transition between different states in the cycle, allowing each myosin to be finely tuned for a specific task. Traditionally, myosins have been classified by sequence analysis into a large number of sub-families (∼35). Here we use a different method to classify the myosin family members which is based on biochemical and mechanical properties. The key properties that define the type of mechanical activity of the motor are duty ratio (defined as the fraction of the time myosin remains attached to actin during each cycle), thermodynamic coupling of actin and nucleotide binding to myosin and the degree of strain-sensitivity of the ADP release step. Based on these properties we propose to classify myosins into four different groups: (I) fast movers, (II) slow/efficient force holders, (III) strain sensors and (IV) gates.
Collapse
|
225
|
Wang A, Ma X, Conti MA, Adelstein RS. Distinct and redundant roles of the non-muscle myosin II isoforms and functional domains. Biochem Soc Trans 2011; 39:1131-5. [PMID: 21936777 PMCID: PMC3512102 DOI: 10.1042/bst0391131] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We propose that the in vivo functions of NM II (non-muscle myosin II) can be divided between those that depend on the N-terminal globular motor domain and those less dependent on motor activity but more dependent on the C-terminal domain. The former, being more dependent on the kinetic properties of NM II to translocate actin filaments, are less amenable to substitution by different NM II isoforms, whereas the in vivo functions of the latter, which involve the structural properties of NM II to cross-link actin filaments, are more amenable to substitution. In light of this hypothesis, we examine the ability of NM II-A, as well as a motor-compromised form of NM II-B, to replace NM II-B and rescue neuroepithelial cell-cell adhesion defects and hydrocephalus in the brain of NM II-B-depleted mice. We also examine the ability of NM II-B as well as chimaeric forms of NM II (II-A head and II-B tail and vice versa) to substitute for NM II-A in cell-cell adhesions in II-A-ablated mice. However, we also show that certain functions, such as neuronal cell migration in the developing brain and vascularization of the mouse embryo and placenta, specifically require NM II-B and II-A respectively.
Collapse
Affiliation(s)
- Aibing Wang
- Laboratory of Molecular Cardiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1583, U.S.A
| | - Xuefei Ma
- Laboratory of Molecular Cardiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1583, U.S.A
| | - Mary Anne Conti
- Laboratory of Molecular Cardiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1583, U.S.A
| | - Robert S. Adelstein
- Laboratory of Molecular Cardiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1583, U.S.A
| |
Collapse
|
226
|
Abstract
Mammalian skeletal muscle comprises different fiber types, whose identity is first established during embryonic development by intrinsic myogenic control mechanisms and is later modulated by neural and hormonal factors. The relative proportion of the different fiber types varies strikingly between species, and in humans shows significant variability between individuals. Myosin heavy chain isoforms, whose complete inventory and expression pattern are now available, provide a useful marker for fiber types, both for the four major forms present in trunk and limb muscles and the minor forms present in head and neck muscles. However, muscle fiber diversity involves all functional muscle cell compartments, including membrane excitation, excitation-contraction coupling, contractile machinery, cytoskeleton scaffold, and energy supply systems. Variations within each compartment are limited by the need of matching fiber type properties between different compartments. Nerve activity is a major control mechanism of the fiber type profile, and multiple signaling pathways are implicated in activity-dependent changes of muscle fibers. The characterization of these pathways is raising increasing interest in clinical medicine, given the potentially beneficial effects of muscle fiber type switching in the prevention and treatment of metabolic diseases.
Collapse
Affiliation(s)
- Stefano Schiaffino
- Venetian Institute of Molecular Medicine, Department of Biomedical Sciences, University of Padova, Consiglio Nazionale delle Ricerche Institute of Neurosciences, and Department of Human Anatomy and Physiology, University of Padova, Padova, Italy
| | - Carlo Reggiani
- Venetian Institute of Molecular Medicine, Department of Biomedical Sciences, University of Padova, Consiglio Nazionale delle Ricerche Institute of Neurosciences, and Department of Human Anatomy and Physiology, University of Padova, Padova, Italy
| |
Collapse
|
227
|
Maravillas-Montero JL, Santos-Argumedo L. The myosin family: unconventional roles of actin-dependent molecular motors in immune cells. J Leukoc Biol 2011; 91:35-46. [DOI: 10.1189/jlb.0711335] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
228
|
A holistic phylogeny of the coronin gene family reveals an ancient origin of the tandem-coronin, defines a new subfamily, and predicts protein function. BMC Evol Biol 2011; 11:268. [PMID: 21943019 PMCID: PMC3203266 DOI: 10.1186/1471-2148-11-268] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 09/25/2011] [Indexed: 01/11/2023] Open
Abstract
Background Coronins belong to the superfamily of the eukaryotic-specific WD40-repeat proteins and play a role in several actin-dependent processes like cytokinesis, cell motility, phagocytosis, and vesicular trafficking. Two major types of coronins are known: First, the short coronins consisting of an N-terminal coronin domain, a unique region and a short coiled-coil region, and secondly the tandem coronins comprising two coronin domains. Results 723 coronin proteins from 358 species have been identified by analyzing the whole-genome assemblies of all available sequenced eukaryotes (March 2011). The organisms analyzed represent most eukaryotic kingdoms but also cover every taxon several times to provide a better statistical sampling. The phylogenetic tree of the coronin domains based on the Bayesian method is in accordance with the most recent grouping of the major kingdoms of the eukaryotes and also with the grouping of more recently separated branches. Based on this "holistic" approach the coronins group into four classes: class-1 (Type I) and class-2 (Type II) are metazoan/choanoflagellate specific classes, class-3 contains the tandem-coronins (Type III), and the new class-4 represents the coronins fused to villin (Type IV). Short coronins from non-metazoans are equally related to class-1 and class-2 coronins and thus remain unclassified. Conclusions The coronin class distribution suggests that the last common eukaryotic ancestor possessed a single and a tandem-coronin, and most probably a class-4 coronin of which homologs have been identified in Excavata and Opisthokonts although most of these species subsequently lost the class-4 homolog. The most ancient short coronin already contained the trimerization motif in the coiled-coil domain.
Collapse
|
229
|
Abstract
The myosin superfamily is diverse in its structure, kinetic mechanisms and cellular function. The enzymatic activities of most myosins are regulated by some means such as Ca2+ ion binding, phosphorylation or binding of other proteins. In the present review, we discuss the structural basis for the regulation of mammalian myosin 5a and Drosophila myosin 7a. We show that, although both myosins have a folded inactive state in which domains in the myosin tail interact with the motor domain, the details of the regulation of these two myosins differ greatly.
Collapse
|
230
|
Saha S, Dey SK, Das P, Jana SS. Increased expression of nonmuscle myosin IIs is associated with 3MC-induced mouse tumor. FEBS J 2011; 278:4025-34. [PMID: 21848673 DOI: 10.1111/j.1742-4658.2011.08306.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Administration of the chemical carcinogen, 3-methylcholanthrene (3MC), in the hind leg induces the progressive formation of tumors in mice within 110 days. Previous reports suggest that transformation of muscle cells to atypical cells is one of the causes of tumor formation. Molecular events that lead to transformation of normal cells to atypical cells are not well understood. Here, we investigate the effect of 3MC on the expression of nonmuscle myosin IIs (NM IIs) which are known to be involved in cell migration, division and adhesion. Mass spectroscopy analysis reveals that tumor tissue contains 64.5% NM II-A, 34% II-B and only 1.5% II-C of total NM IIs, whereas these three isoforms of NM IIs are undetectable by mass spectroscopy in normal tissue associated with the tumor (NTAT) from the hind leg. Quantification of heavy chain mRNAs of NM II suggests that tumor tissue contains 25.7-fold and 19.03-fold more of NM II-A and II-B, respectively, compared with NTAT. Unlike NM II-B, which is detected only after tumor formation, II-A is detectable as early as day 7 after a second dose of 3MC. Immunofluorescence confocal microscopy reveals that fibroblast cells which are sparsely distributed in normal tissue are densely populated but of atypical shape in the tumor. These findings suggest that transformation of fibroblasts or non-fibroblast cells to atypical, cancerous cells is associated with increased levels of NM II-A and NM II-B expression in the 3MC-induced tumor mouse model. 3MC-induced transformation is further demonstrated in C2C12 myotubes.
Collapse
Affiliation(s)
- Shekhar Saha
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India
| | | | | | | |
Collapse
|
231
|
Calábria LK, Peixoto PMV, Passos Lima AB, Peixoto LG, de Moraes VRA, Teixeira RR, Dos Santos CT, E Silva LO, da Silva MDFR, dos Santos AAD, Garcia-Cairasco N, Martins AR, Espreafico EM, Espindola FS. Myosins and DYNLL1/LC8 in the honey bee (Apis mellifera L.) brain. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:1300-1311. [PMID: 21718700 DOI: 10.1016/j.jinsphys.2011.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 06/09/2011] [Accepted: 06/10/2011] [Indexed: 05/31/2023]
Abstract
Honey bees have brain structures with specialized and developed systems of communication that account for memory, learning capacity and behavioral organization with a set of genes homologous to vertebrate genes. Many microtubule- and actin-based molecular motors are involved in axonal/dendritic transport. Myosin-Va is present in the honey bee Apis mellifera nervous system of the larvae and adult castes and subcastes. DYNLL1/LC8 and myosin-IIb, -VI and -IXb have also been detected in the adult brain. SNARE proteins, such as CaMKII, clathrin, syntaxin, SNAP25, munc18, synaptophysin and synaptotagmin, are also expressed in the honey bee brain. Honey bee myosin-Va displayed ATP-dependent solubility and was associated with DYNLL1/LC8 and SNARE proteins in the membrane vesicle-enriched fraction. Myosin-Va expression was also decreased after the intracerebral injection of melittin and NMDA. The immunolocalization of myosin-Va and -IV, DYNLL1/LC8, and synaptophysin in mushroom bodies, and optical and antennal lobes was compared with the brain morphology based on Neo-Timm histochemistry and revealed a distinct and punctate distribution. This result suggested that the pattern of localization is associated with neuron function. Therefore, our data indicated that the roles of myosins, DYNLL1/LC8, and SNARE proteins in the nervous and visual systems of honey bees should be further studied under different developmental, caste and behavioral conditions.
Collapse
Affiliation(s)
- Luciana Karen Calábria
- Institute of Genetics and Biochemistry, Federal University of Uberlandia, Uberlandia, MG, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
232
|
Matsui K, Parameswaran N, Bagheri N, Willard B, Gupta N. Proteomics analysis of the ezrin interactome in B cells reveals a novel association with Myo18aα. J Proteome Res 2011; 10:3983-92. [PMID: 21751808 DOI: 10.1021/pr200577d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The molecular regulation of recruitment and assembly of signalosomes near the B cell receptor (BCR) is poorly understood. We have previously demonstrated a role for the ERM family protein ezrin in regulating antigen-dependent lipid raft coalescence in B cells. In this study, we addressed the possibility that ezrin may collaborate with other adaptor proteins to regulate signalosome dynamics at the membrane. Using mass spectrometry-based proteomics analysis, we identified Myo18aα as a novel binding partner of ezrin. Myo18aα is an attractive candidate as it has several protein-protein interaction domains and an intrinsic motor activity. The expression of Myo18aα varied during B cell development in the bone marrow and in mature B cell subsets suggesting functional differences. Interestingly, BCR stimulation increased the association between ezrin and Myo18aα, and induced co-segregation of Myo18aα with the BCR and phosphotyrosine-containing proteins. Our data raise an intriguing possibility that the Myo18aα/ezrin complex may facilitate BCR-mediated signaling by recruiting signaling proteins that are in close proximity of the antigen receptor. Our study is not only significant with respect to understanding the molecular regulation of BCR signaling but also provides a broader basis for understanding the mechanism of action of ezrin in other cellular systems.
Collapse
Affiliation(s)
- Ken Matsui
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio 44195, United States
| | | | | | | | | |
Collapse
|
233
|
Tyska MJ, Nambiar R. Myosin-1a: A motor for microvillar membrane movement and mechanics. Commun Integr Biol 2011; 3:64-6. [PMID: 20539787 DOI: 10.4161/cib.3.1.10141] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Accepted: 09/18/2009] [Indexed: 11/19/2022] Open
Abstract
Myosin-1a is one of eight monomeric, membrane binding class I myosins expressed in vertebrates.1 As the most abundant actin-based motor protein found in the enterocyte microvillus, myosin-1a has long been known to interact with the apical membrane via a highly basic C-terminal tail domain.2 Several recent studies shed light on possible functional consequences of this protein/lipid interaction. In vitro and in vivo studies of microvillar function have revealed that myosin-1a can move apical membrane along core actin bundles, leading to the release of small vesicles from microvillar tips.3,4 Additional studies indicate that myosin-1a and other class I myosins contribute to membrane-cytoskeleton adhesion, which enables the apical membrane to resist deformation.5 These findings clearly position myosin-1a as an important player in apical membrane movement and structural stability. How this motor is able to fulfill these two seemingly distinct functions is currently unclear, but will serve as the focus of our discussion below.
Collapse
Affiliation(s)
- Matthew J Tyska
- Department of Cell and Developmental Biology; Vanderbilt University Medical Center; Nashville, TN USA
| | | |
Collapse
|
234
|
Gotesman M, Hosein RE, Gavin RH. MyTH4, independent of its companion FERM domain, affects the organization of an intramacronuclear microtubule array and is involved in elongation of the macronucleus in Tetrahymena thermophila. Cytoskeleton (Hoboken) 2011; 68:220-36. [PMID: 21387572 DOI: 10.1002/cm.20506] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Myo1 is a class XIV Tetrahymena myosin involved in amitotic elongation and constriction of the macronucleus into two subnuclei at cell division. Elongation of the macronucleus is accompanied by elongation of an intramacronuclear microtubule array, which is oriented parallel to the axis of nuclear elongation. Elongation of the macronucleus often fails to occur or is only partially completed in a MYO1 knockout, and division of the macronucleus is frequently uncoupled from cytokinesis. Myo1 contains a myosin tail homology 4 (MyTH4) and a band 4.1, ezrin, radixin, moesin homology (FERM) domain. Recently, we used green fluorescent protein (GFP) fusions to demonstrate that the entire FERM domain, independent of MyTH4, is essential for localization of FERM to the cytoskeleton and does not appear to directly affect nuclear division. Antiactin coprecipitates GFP-FERM, tubulin, actin, and Myo1. The immunoprecipitated GFP-FERM cosediments with either exogenous F-actin or exogenous microtubules. Here, we show that overexpressed GFP-MyTH4 colocalized with antitubulin to intramacronuclear microtubules. Ninety percent of overexpressing cells assembled intramacronuclear microtubules that did not become organized into a parallel array. Amitosis did not advance in the absence of the parallel array of intramacronuclear microtubules. Five percent of overexpressing cells organized the parallel array, but the microtubules and the macronucleus did not achieve full elongation. Partially elongated macronuclei constricted without cytokinesis. Antiactin coprecipitated GFP-MyTH4, tubulin, and actin. AntiGFP pulled down GFP-MyTH4, tubulin, and actin. GFP-MyTH4 cosedimented with either exogenous microtubules or exogenous F-actin. A novel finding from this study is that MyTH4 and FERM have overlapping and distinct roles in the function of a myosin.
Collapse
Affiliation(s)
- Michael Gotesman
- Department of Biology, Brooklyn College of the City University of New York, Brooklyn, New York, USA
| | | | | |
Collapse
|
235
|
Heissler SM, Manstein DJ. Functional characterization of the human myosin-7a motor domain. Cell Mol Life Sci 2011; 69:299-311. [PMID: 21687988 PMCID: PMC3249170 DOI: 10.1007/s00018-011-0749-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 05/30/2011] [Accepted: 06/01/2011] [Indexed: 11/26/2022]
Abstract
Myosin-7a participates in auditory and visual processes. Defects in MYO7A, the gene encoding the myosin-7a heavy chain, are causative for Usher syndrome 1B, the most frequent cause of deaf-blindness in humans. In the present study, we performed a detailed kinetic and functional characterization of the isolated human myosin-7a motor domain to elucidate the details of chemomechanical coupling and the regulation of motor function. A rate-limiting, slow ADP release step causes long lifetimes of strong actin-binding intermediates and results in a high duty ratio. Moreover, our results reveal a Mg2+-sensitive regulatory mechanism tuning the kinetic and mechanical properties of the myosin-7a motor domain. We obtained direct evidence that changes in the concentration of free Mg2+ ions affect the motor properties of human myosin-7a using an in vitro motility assay system. Our results suggest that in a cellular environment, compartment-specific fluctuations in free Mg2+ ions can mediate the conditional switching of myosin-7a between cargo moving and tension bearing modes.
Collapse
Affiliation(s)
- Sarah M. Heissler
- Institut für Biophysikalische Chemie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Dietmar J. Manstein
- Institut für Biophysikalische Chemie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
236
|
Structural basis of cargo recognition by the myosin-X MyTH4-FERM domain. EMBO J 2011; 30:2734-47. [PMID: 21642953 PMCID: PMC3155308 DOI: 10.1038/emboj.2011.177] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 05/06/2011] [Indexed: 11/26/2022] Open
Abstract
Myosin-X is implicated in spindle assembly and filopodial transport. A detailed structure function analysis of the myosin-X tail domain in association with a cargo involved in axonal pathfinding, the netrin receptor DCC and competitive binding to integrin β5 and microtubules is presented. Myosin-X is an important unconventional myosin that is critical for cargo transportation to filopodia tips and is also utilized in spindle assembly by interacting with microtubules. We present a series of structural and biochemical studies of the myosin-X tail domain cassette, consisting of myosin tail homology 4 (MyTH4) and FERM domains in complex with its specific cargo, a netrin receptor DCC (deleted in colorectal cancer). The MyTH4 domain is folded into a helical VHS-like structure and is associated with the FERM domain. We found an unexpected binding mode of the DCC peptide to the subdomain C groove of the FERM domain, which is distinct from previously reported β–β associations found in radixin–adhesion molecule complexes. We also revealed direct interactions between the MyTH4–FERM cassette and tubulin C-terminal acidic tails, and identified a positively charged patch of the MyTH4 domain, which is involved in tubulin binding. We demonstrated that both DCC and integrin bindings interfere with microtubule binding and that DCC binding interferes with integrin binding. Our results provide the molecular basis by which myosin-X facilitates alternative dual binding to cargos and microtubules.
Collapse
|
237
|
Zheng W. Coarse-grained modeling of conformational transitions underlying the processive stepping of myosin V dimer along filamentous actin. Proteins 2011; 79:2291-305. [PMID: 21590746 DOI: 10.1002/prot.23055] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 03/21/2011] [Accepted: 04/04/2011] [Indexed: 11/11/2022]
Abstract
To explore the structural basis of processive stepping of myosin V along filamentous actin, we have performed comprehensive modeling of its key conformational states and transitions with an unprecedented residue level of details. We have built structural models for a myosin V monomer complexed with filamentous actin at four biochemical states [adenosine diphosphate (ATP)-, adenosine diphosphate (ADP)-phosphate-, ADP-bound or nucleotide-free]. Then we have modeled a myosin V dimer (consisting of lead and rear head) at various two-head-bound states with nearly straight lever arms rotated by intramolecular strain. Next, we have performed transition pathway modeling to determine the most favorable sequence of transitions (namely, phosphate release at the lead head followed by ADP release at the rear head, while ADP release at the lead head is inhibited), which underlie the kinetic coordination between the two heads. Finally, we have used transition pathway modeling to reveal the order of structural changes during three key biochemical transitions (phosphate release at the lead head, ADP release and ATP binding at the rear head), which shed lights on the strain-dependence of the allosterically coupled motions at various stages of myosin V's work cycle. Our modeling results are in agreement with and offer structural insights to many results of kinetic, single-molecule and structural studies of myosin V.
Collapse
Affiliation(s)
- Wenjun Zheng
- Department of Physics, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
238
|
Soares MBP, Lima RS, Souza BSF, Vasconcelos JF, Rocha LL, Dos Santos RR, Iacobas S, Goldenberg RC, Lisanti MP, Iacobas DA, Tanowitz HB, Spray DC, Campos de Carvalho AC. Reversion of gene expression alterations in hearts of mice with chronic chagasic cardiomyopathy after transplantation of bone marrow cells. Cell Cycle 2011; 10:1448-55. [PMID: 21467843 PMCID: PMC3117044 DOI: 10.4161/cc.10.9.15487] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Chronic chagasic cardiomyopathy is a leading cause of heart failure in Latin American countries, being associated with intense inflammatory response and fibrosis. We have previously shown that bone marrow mononuclear cell (BMC) transplantation improves inflammation, fibrosis, and ventricular diameter in hearts of mice with chronic Chagas disease. Here we investigated the transcriptomic recovery induced by BMC therapy by comparing the heart transcriptomes of control, chagasic, and BMC transplanted mice. Out of the 9390 unique genes quantified in all samples, 1702 had their expression altered in chronic chagasic hearts compared to those of normal mice. Major categories of significantly upregulated genes were related to inflammation, fibrosis and immune responses, while genes involved in mitochondrion function were downregulated. When BMC-treated chagasic hearts were compared to infected mice, 96% of the alterations detected in infected hearts were restored to normal levels, although an additional 109 genes were altered by treatment. Transcriptomic recovery, a new measure that considers both resotrative and side effects of treatment, was remarkably high (84%). Immunofluorescence and morphometric analyses confirmed the effects of BMC therapy in the pattern of inflammatory-immune response and expression of adhesion molecules. In conclusion, by using large-scale gene profiling for unbiased assessment of therapeutic efficacy we demonstrate immunomodulatory effects of BMC therapy in chronic chagasic cardiomyopathy and identify potentially relevant factors involved in the pathogenesis of the disease that may provide new therapeutic targets.
Collapse
|
239
|
Guzik-Lendrum S, Nagy A, Takagi Y, Houdusse A, Sellers JR. Drosophila melanogaster myosin-18 represents a highly divergent motor with actin tethering properties. J Biol Chem 2011; 286:21755-66. [PMID: 21498886 PMCID: PMC3122231 DOI: 10.1074/jbc.m111.218669] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The gene encoding Drosophila myosin-18 is complex and can potentially yield six alternatively spliced mRNAs. One of the major features of this myosin is an N-terminal PDZ domain that is included in some of the predicted alternatively spliced products. To explore the biochemical properties of this protein, we engineered two minimal motor domain (MMD)-like constructs, one that contains the N-terminal PDZ (myosin-18 M-PDZ) domain and one that does not (myosin-18 M-ΔPDZ). These two constructs were expressed in the baculovirus/Sf9 system. The results suggest that Drosophila myosin-18 is highly divergent from most other myosins in the superfamily. Neither of the MMD constructs had an actin-activated MgATPase activity, nor did they even bind ATP. Both myosin-18 M-PDZ and M-ΔPDZ proteins bound to actin with Kd values of 2.61 and 1.04 μm, respectively, but only about 50–75% of the protein bound to actin even at high actin concentrations. Unbound proteins from these actin binding assays reiterated the 60% saturation maximum, suggesting an equilibrium between actin-binding and non-actin-binding conformations of Drosophila myosin-18 in vitro. Neither the binding affinity nor the substoichiometric binding was significantly affected by ATP. Optical trapping of single molecules in three-bead assays showed short lived interactions of the myosin-18 motors with actin filaments. Combined, these data suggest that this highly divergent motor may function as an actin tethering protein.
Collapse
Affiliation(s)
- Stephanie Guzik-Lendrum
- Laboratory of Molecular Physiology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
240
|
Heissler SM, Manstein DJ. Comparative kinetic and functional characterization of the motor domains of human nonmuscle myosin-2C isoforms. J Biol Chem 2011; 286:21191-202. [PMID: 21478157 PMCID: PMC3122181 DOI: 10.1074/jbc.m110.212290] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Nonmuscle myosins are widely distributed and play important roles in the maintenance of cell morphology and cytokinesis. In this study, we compare the detailed kinetic and functional characterization of naturally occurring transcript variants of the motor domain of human nonmuscle myosin heavy chain (NMHC)-2C. NMHC-2C is alternatively spliced both in loop-1 and loop-2. Isoform 2C0 contains no inserts in either of the loops and represents the shortest isoform. An 8-amino acid extension in the loop-1 region is present in isoforms 2C1 and 2C1C2. Isoform 2C1C2 additionally displays a 33-amino acid extension in the loop-2 region. Transient kinetic experiments indicate increased rate constants for F-actin binding by isoform 2C1C2 in the absence and presence of nucleotide, which can be attributed to the loop-2 extension. ADP binding shows only minor differences for the three transcript variants. In contrast, larger differences are observed for the rates of ADP release both in the absence and presence of F-actin. The largest differences are observed between isoforms 2C0 and 2C1C2. In the absence and presence of F-actin, isoform 2C1C2 displays a 5–7-fold increase in ADP affinity. Moreover, our results indicate that the ADP release kinetics of all three isoforms are modulated by changes in the concentration of free Mg2+ ions. The greatest responsiveness of the NMHC-2C isoforms is observed in the physiological range from 0.2 to 1.5 mm free Mg2+ ions, affecting their duty ratio, velocity, and tension-bearing properties.
Collapse
Affiliation(s)
- Sarah M Heissler
- Institute for Biophysical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | | |
Collapse
|
241
|
Pyrpassopoulos S, Shuman H, Ostap EM. Single-molecule adhesion forces and attachment lifetimes of myosin-I phosphoinositide interactions. Biophys J 2011; 99:3916-22. [PMID: 21156133 DOI: 10.1016/j.bpj.2010.10.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 10/10/2010] [Accepted: 10/27/2010] [Indexed: 11/19/2022] Open
Abstract
Phosphoinositides regulate the activities and localization of many cytoskeletal proteins involved in crucial biological processes, including membrane-cytoskeleton adhesion. Yet little is known about the mechanics of protein-phosphoinositide interactions, or about the membrane-attachment mechanics of any peripheral membrane proteins. Myosin-Ic (myo1c) is a molecular motor that links membranes to the cytoskeleton via phosphoinositide binding, so it is particularly important to understand the mechanics of its membrane attachment. We used optical tweezers to measure the strength and attachment lifetime of single myo1c molecules as they bind beads coated with a bilayer of 2% phosphatidylinositol 4,5-bisphosphate and 98% phosphatidylcholine. Adhesion forces measured under ramp-load ranged between 5.5 and 16 pN at loading rates between 250 and 1800 pN/s. Dissociation rates increased linearly with constant force (0.3-2.5 pN), with rates exceeding 360 s(-1) at 2.5 pN. Attachment lifetimes calculated from adhesion force measurements were loading-rate-dependent, suggesting nonadiabatic behavior during pulling. The adhesion forces of myo1c with phosphoinositides are greater than the motors stall forces and are within twofold of the force required to extract a lipid molecule from the membrane. However, attachment durations are short-lived, suggesting that phosphoinositides alone do not provide the mechanical stability required to anchor myo1c to membranes during multiple ATPase cycles.
Collapse
Affiliation(s)
- Serapion Pyrpassopoulos
- Pennsylvania Muscle Institute and Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
242
|
Correlation of dysfunction of nonmuscle myosin IIA with increased induction of Cyp1a1 in Hepa-1 cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:176-83. [PMID: 21216307 DOI: 10.1016/j.bbagrm.2011.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Revised: 12/20/2010] [Accepted: 01/03/2011] [Indexed: 11/20/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is one of the best known ligand-activated transcription factors and it induces Cyp1a1 transcription by binding with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Recent focus has been on the relationship of AhR with signaling pathways that modulate cell shape and migration. In nonmuscle cells, nonmuscle myosin II is one of the key determinants of cell morphology, but it has not been investigated whether its function is related to Cyp1a1 induction. In this study, we observed that (-)-blebbistatin, which is a specific inhibitor of nonmuscle myosin II, increased the level of CYP1A1-mRNA in Hepa-1 cells. Comparison of (-)-blebbistatin with (+)-blebbistatin, which is an inactive enantiomer, indicated that the increase of CYP1A1-mRNA was due to nonmuscle myosin II inhibition. Subsequent knockdown experiments observed that reduction of nonmuscle myosin IIA, which is only an isoform of nonmuscle myosin II expressed in Hepa-1 cells, was related to the enhancement of TCDD-dependent Cyp1a1 induction. Moreover, chromatin immunoprecipitation assay indicated that the increase of Cyp1a1 induction was the result of transcriptional activation due to increased binding of AhR and RNA polymerase II to the enhancer and proximal promoter regions of Cyp1a1, respectively. These findings provide a new insight into the correlation between the function of nonmuscle myosin II and gene induction.
Collapse
|
243
|
Characterization and localization of dynein and myosins V and VI in the ovaries of queen bees. Cell Biol Int 2011; 34:1041-7. [PMID: 20486900 DOI: 10.1042/cbi20090370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The presence of myosin and dynein in the ovaries of both Apis mellifera and Scaptotrigona postica was investigated in extracts and in histological sections. In the ovary extracts, motor proteins, myosins V, VI and dynein were detected by Western blot. In histological sections, they were detected by immunocytochemistry, using a mouse monoclonal antibody against the intermediary chain of dynein and a rabbit polyclonal antibody against the myosin V head domain. The myosin VI tail domain was recognized by a pig polyclonal antibody. The results show that these molecular motors are expressed in the ovaries of both bee species with few differences in location and intensity, in regions where movement of substances is expected during oogenesis. The fact that antibodies against vertebrate proteins recognize proteins of bee species indicates that the specific epitopes are evolutionarily well preserved.
Collapse
|
244
|
Boyle MM, Smaldone RA, Whalley AC, Ambrogio MW, Botros YY, Stoddart JF. Mechanised materials. Chem Sci 2011. [DOI: 10.1039/c0sc00453g] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
245
|
Dynamic Behavior of Double-Membrane-Bounded Organelles in Plant Cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 286:181-222. [DOI: 10.1016/b978-0-12-385859-7.00004-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
246
|
The fungal type II myosin in Penicillium marneffei, MyoB, is essential for chitin deposition at nascent septation sites but not actin localization. EUKARYOTIC CELL 2010; 10:302-12. [PMID: 21131434 DOI: 10.1128/ec.00201-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cytokinesis is essential for proliferative growth but also plays equally important roles during morphogenesis and development. The human pathogen Penicillium marneffei is capable of dimorphic switching in response to temperature, growing in a multicellular filamentous hyphal form at 25°C and in a unicellular yeast form at 37°C. P. marneffei also undergoes asexual development at 25°C to produce multicellular differentiated conidiophores. Thus, P. marneffei exhibits cell division with and without cytokinesis and division by budding and fission, depending on the cell type. The type II myosin gene, myoB, from P. marneffei plays important roles in the morphogenesis of these cell types. Deletion of myoB leads to chitin deposition defects at sites of cell division without perturbing actin localization. In addition to aberrant hyphal cells, distinct conidiophore cell types are lacking due to malformed septa and nuclear division defects. At 37°C, deletion of myoB prevents uninucleate yeast cell formation, instead producing long filaments resembling hyphae at 25°C. The ΔmyoB cells also often lyse due to defects in cell wall biogenesis. Thus, MyoB is essential for correct morphogenesis of all cell types regardless of division mode (budding or fission) and defines differences between the different types of growth.
Collapse
|
247
|
Mitsuhashi M, Sakata H, Kinjo M, Yazawa M, Takahashi M. Dynamic assembly properties of nonmuscle myosin II isoforms revealed by combination of fluorescence correlation spectroscopy and fluorescence cross-correlation spectroscopy. J Biochem 2010; 149:253-63. [PMID: 21106542 DOI: 10.1093/jb/mvq134] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Myosin II molecules assemble into filaments through their C-terminal rod region, and are responsible for several cellular motile activities. Three isoforms of nonmuscle myosin II (IIA, IIB and IIC) are expressed in mammalian cells. However, little is known regarding the isoform composition in filaments. To obtain new insight into the assembly properties of myosin II isoforms, especially regarding the isoform composition in filaments, we performed a combination analysis of fluorescence correlation spectroscopy (FCS) and fluorescence cross-correlation spectroscopy (FCCS), which enables us to acquire information on both the interaction and the size of each molecule simultaneously. Using C-terminal rod fragments of IIA and IIB (ARF296 and BRF305) labelled with different fluorescent probes, we demonstrated that hetero-assemblies were formed from a mixture of ARF296 and BRF305, and that dynamic exchange of rod fragments occurred between preformed homo-assemblies of each isoform in an isoform-independent manner. We also showed that Mts1 (S100A4) specifically stripped ARF296 away from the hetero-assemblies, and consequently, homo-assemblies of BRF305 were formed. These results suggest that IIA and IIB can form hetero-filaments in an isoform-independent manner, and that a factor like Mts1 can remove one isoform from the hetero-filament, resulting in a formation of homo-filaments consisting of another isoform.
Collapse
Affiliation(s)
- Mariko Mitsuhashi
- Division of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
| | | | | | | | | |
Collapse
|
248
|
Multiple tail domain interactions stabilize nonmuscle myosin II bipolar filaments. Proc Natl Acad Sci U S A 2010; 107:20964-9. [PMID: 21078954 DOI: 10.1073/pnas.1007025107] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Contractile force transduction by myosin II derives from its assembly into bipolar filaments. The coiled-coil tail domain of the myosin II heavy chain mediates filament assembly, although the mechanism is poorly understood. Tail domains contain an alternating electrostatic repeat, yet only a small region of the tail (termed the "assembly domain") is typically required for assembly. Using computational analysis, mutagenesis, and electron microscopy we discovered that the assembly domain does not function through self-interaction as previously thought. Rather, the assembly domain acts as a unique, positively charged interaction surface that can stably contact multiple complementary, negatively charged surfaces in the upstream tail domain. The relative affinities of the assembly domain to each complementary interaction surface sets the characteristic molecular staggers observed in myosin II filaments. Together these results explain the relationship between the charge repeat and assembly domain in stabilizing myosin bipolar filaments.
Collapse
|
249
|
Tekpinar M, Zheng W. Predicting order of conformational changes during protein conformational transitions using an interpolated elastic network model. Proteins 2010; 78:2469-81. [PMID: 20602461 DOI: 10.1002/prot.22755] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The decryption of sequence of structural events during protein conformational transitions is essential to a detailed understanding of molecular functions of various biological nanomachines. Coarse-grained models have proven useful by allowing highly efficient simulations of protein conformational dynamics. By combining two coarse-grained elastic network models constructed based on the beginning and end conformations of a transition, we have developed an interpolated elastic network model to generate a transition pathway between the two protein conformations. For validation, we have predicted the order of local and global conformational changes during key ATP-driven transitions in three important biological nanomachines (myosin, F(1) ATPase and chaperonin GroEL). We have found that the local conformational change associated with the closing of active site precedes the global conformational change leading to mechanical motions. Our finding is in good agreement with the distribution of intermediate experimental structures, and it supports the importance of local motions at active site to drive or gate various conformational transitions underlying the workings of a diverse range of biological nanomachines.
Collapse
Affiliation(s)
- Mustafa Tekpinar
- Department of Physics, University at Buffalo, Buffalo, New York 14260, USA
| | | |
Collapse
|
250
|
Caride AJ, Bennett RD, Strehler EE. Kinetic analysis reveals differences in the binding mechanism of calmodulin and calmodulin-like protein to the IQ motifs of myosin-10. Biochemistry 2010; 49:8105-16. [PMID: 20731332 DOI: 10.1021/bi100644q] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Myo10 is an unconventional myosin with important functions in filopodial motility, cell migration, and cell adhesion. The neck region of Myo10 contains three IQ motifs that bind calmodulin (CaM) or the tissue-restricted calmodulin-like protein (CLP) as light chains. However, little is known about the mechanism of light chain binding to the IQ motifs in Myo10. Binding of CaM and CLP to each IQ motif was assessed by nondenaturing gel electrophoresis and by stopped-flow experiments using fluorescence-labeled CaM and CLP. Although the binding kinetics are different in each case, there are similarities in the mechanism of binding of CaM and CLP to IQ1 and IQ2: for both IQ motifs Ca(2+) increased the binding affinity, mainly by increasing the rate of the forward steps. The general kinetic mechanism comprises a two-step process, which in some cases may involve the binding of a second IQ motif with lower affinity. For IQ3, however, the kinetics of CaM binding is very different from that of CLP. In both cases, binding in the absence of Ca(2+) is poor, and addition of Ca(2+) decreases the K(d) to below 10 nM. However, while the CaM binding kinetics are complex and best fitted by a multistep model, binding of CLP is fitted by a relatively simple two-step model. The results show that, in keeping with growing structural evidence, complexes between CaM or CaM-like myosin light chains and IQ motifs are highly diverse and depend on the specific sequence of the particular IQ motif as well as the light chain.
Collapse
Affiliation(s)
- Ariel J Caride
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|