201
|
Ngokwe ZB, Ntep David Bienvenue N, Azicha Shannen A, Stephane NK, Siafa Antoine B, Zacharie S. Treatment of an oral malignant lesion following mucosal insult; a case report. ADVANCES IN ORAL AND MAXILLOFACIAL SURGERY 2023. [DOI: 10.1016/j.adoms.2023.100426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|
202
|
Cesur IB, Özçelik Z. Systemic Immune-Inflammation Index May Predict Mortality in Neuroblastoma. Cureus 2023; 15:e35705. [PMID: 36875247 PMCID: PMC9982472 DOI: 10.7759/cureus.35705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2023] [Indexed: 03/06/2023] Open
Abstract
INTRODUCTION Neuroblastomas (NB) are among the most frequent childhood solid tumors. The link between inflammation and cancer is well understood. Many research studies have been conducted to determine the prognostic importance of inflammatory markers in cancer patients. C-reactive protein (CRP), neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and systemic immune-inflammation index (SII) are all potential inflammation indicators. The purpose of this study is to assess the efficacy of NLR and SII as inflammatory indicators in predicting NB patient survival. MATERIALS AND METHODS Patients with NB diagnosed between January 1, 2012 and December 31, 2021 were studied retrospectively, and death was documented. By dividing the number of neutrophils by the number of lymphocytes, the NLR was obtained. The SII was calculated by multiplying the NLR by the platelet count. RESULTS 46 patients with NB were included in the study with a mean age of 57.58 months (4.14-170.05). When the patients were analyzed based on mortality the NLR and SII values were statistically significantly increased in the dead group (2.71 (1.22-4.1 ) vs. 1.7 (0.16-5.1); p=0.02; and 677.8 (215-1322) vs. 294.6 (69.49-799.1), respectively; p=0.012). Analysis of the receiver operating curve found that 328.49 is the ideal cutoff value for SII to predict mortality with a sensitivity of 83% and a specificity of 68% (area under the receiver operating characteristic curve = 0.814 (95% confidence interval: 0.671-0.956), p=0.005 ). Analyzing the influence of risk factors on survival using Cox regression analysis, SII was discovered as a significant predictor of survival in the study (HR =1.001, 95% CI =1-1.20; p=0.049). CONCLUSION SII may be used to predict the overall survival of NB patients.
Collapse
Affiliation(s)
| | - Zerrin Özçelik
- Pediatric Surgery, Adana City Training Hospital, Adana, TUR
| |
Collapse
|
203
|
Prognostic circulating proteomic biomarkers in colorectal liver metastases. Comput Struct Biotechnol J 2023; 21:2129-2136. [PMID: 36992914 PMCID: PMC10041383 DOI: 10.1016/j.csbj.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
The liver is the most common site of metastasis in colorectal cancer. Multimodal treatment, including liver resection, is potentially curative and prolongs survival for selected patients with colorectal liver metastases (CRLM). However, the treatment of CRLM remains challenging because recurrence is common, and prognosis varies widely between patients despite curative-intent treatment. Clinicopathological features and tissue-based molecular biomarkers, either alone or in combination, are insufficient for accurate prognostication. As most of the functional information in cells resides in the proteome, circulating proteomic biomarkers may be useful for rationalising the molecular complexities of CRLM and identifying potentially prognostic molecular subtypes. High-throughput proteomics has accelerated a range of applications including protein profiling of liquid biopsies for biomarker discovery. Moreover, these proteomic biomarkers may provide non-invasive prognostic information even before CRLM resection. This review evaluates recently discovered circulating proteomic biomarkers in CRLM. We also highlight some of the challenges and opportunities with translating these discoveries into clinical applications.
Collapse
|
204
|
Yan C, Hu X, Liu X, Zhao J, Le Z, Feng J, Zhou M, Ma X, Zheng Q, Sun J. Upregulation of SLC12A3 and SLC12A9 Mediated by the HCP5/miR-140-5p Axis Confers Aggressiveness and Unfavorable Prognosis in Uveal Melanoma. J Transl Med 2023; 103:100022. [PMID: 36925204 DOI: 10.1016/j.labinv.2022.100022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/09/2022] [Accepted: 10/21/2022] [Indexed: 01/11/2023] Open
Abstract
Perturbation of solute carriers (SLCs) has been implicated in metabolic disorders and cancer, highlighting the potential for drug discovery and therapeutic opportunities. However, there is relatively little exploration of the clinical relevance and potential molecular mechanisms underlying the role of the SLC12 family in uveal melanoma (UVM). Here, we performed an integrative multiomics analysis of the SLC12 family in multicenter UVM datasets and found that high expression of SLC12A3 and SLC12A9 was associated with unfavorable prognosis. Moreover, SLC12A3 and SLC12A9 were highly expressed in UVM in vivo. We experimentally characterized the roles of these proteins in tumorigenesis in vitro and explored their association with the prognosis of UVM. Lastly, we identified the HCP5-miR-140-5p axis as a potential noncoding RNA pathway upstream of SLC12A3 and SLC12A9, which was associated with immunomodulation and may represent a novel predictor for clinical prognosis and responsiveness to checkpoint blockade immunotherapy. These findings may facilitate a better understanding of the SLCome and guide future rationalized development of SLC-targeted therapy and drug discovery for UVM.
Collapse
Affiliation(s)
- Congcong Yan
- School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Xiaojuan Hu
- School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Xiaoyan Liu
- School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Jingting Zhao
- School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Zhenmin Le
- School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Jiayao Feng
- The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, Ningbo, China
| | - Meng Zhou
- School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China; Institute of PSI Genomics, Wenzhou, China
| | - Xiaoyin Ma
- School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China.
| | - Qingxiang Zheng
- The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, Ningbo, China.
| | - Jie Sun
- School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
205
|
Breast Reconstruction after Breast Implant-Associated Anaplastic Large Cell Lymphoma Treatment: A Case Report and Literature Review. J Clin Med 2023; 12:jcm12051885. [PMID: 36902672 PMCID: PMC10003959 DOI: 10.3390/jcm12051885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023] Open
Abstract
Breast implant-associated anaplastic large cell lymphoma (BIA-ALCL) is a T-cell non-Hodgkin's lymphoma that occurs in patients with at least one prior textured breast implant. BIA-ALCL has a relatively good prognosis when treated promptly. However, data on the methods and timing of the reconstruction process are lacking. Herein, we report the first case of BIA-ALCL in Republic of Korea in a patient who underwent breast reconstruction using implants and an acellular dermal matrix (ADM). A 47-year-old female patient was diagnosed with BIA-ALCL stage IIA (T4N0M0) and underwent bilateral breast augmentation using textured breast implants. She then underwent removal of both breast implants, total bilateral capsulectomy, adjuvant chemotherapy, and radiotherapy. There was no evidence of recurrence at 28 months postoperatively; therefore, the patient wished to undergo breast reconstruction surgery. A smooth surface implant was used to consider the patient's desired breast volume and body mass index. The right breast was reconstructed with a smooth surface implant and an ADM in the prepectoral plane. Breast augmentation was performed on the left breast using a smooth surface implant. The patient was satisfied with the results and recovered fully with no complications.
Collapse
|
206
|
Chantana W, Hu R, Buddhasiri S, Thiennimitr P, Tantipaiboonwong P, Chewonarin T. The Extract of Perilla frutescens Seed Residue Attenuated the Progression of Aberrant Crypt Foci in Rat Colon by Reducing Inflammatory Processes and Altered Gut Microbiota. Foods 2023; 12:foods12050988. [PMID: 36900505 PMCID: PMC10001385 DOI: 10.3390/foods12050988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/19/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Perilla frutescens (PF) seed residue is a waste from perilla oil production that still contains nutrients and phytochemicals. This study aimed to investigate the chemoprotective action of PF seed residue crude ethanolic extract (PCE) on the inflammatory-induced promotion stage of rat colon carcinogenesis and cell culture models. PCE 0.1 and 1 g/kg body weight were administered by oral gavage to rats after receiving dimethylhydrazine (DMH) with one week of dextran sulfate sodium (DSS) supplementation. PCE at high dose exhibited a reduction in aberrant crypt foci (ACF) number (66.46%) and decreased pro-inflammatory cytokines compared to the DMH + DSS group (p < 0.01). Additionally, PCE could either modulate the inflammation induced in murine macrophage cells by bacterial toxins or suppress the proliferation of cancer cell lines, which was induced by the inflammatory process. These results demonstrate that the active components in PF seed residue showed a preventive effect on the aberrant colonic epithelial cell progression by modulating inflammatory microenvironments from the infiltrated macrophage or inflammatory response of aberrant cells. Moreover, consumption of PCE could alter rat microbiota, which might be related to health benefits. However, the mechanisms of PCE on the microbiota, which are related to inflammation and inflammatory-induced colon cancer progression, need to be further investigated.
Collapse
Affiliation(s)
- Weerachai Chantana
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Rentong Hu
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Laboratory Medicine, The Affiliated Hospital of Youjiang Medical, Baise 533099, China
| | - Songphon Buddhasiri
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Parameth Thiennimitr
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Payungsak Tantipaiboonwong
- Division of Biochemistry and Nutrition, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Teera Chewonarin
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: ; Tel.: +66-53-949437 (ext. 218); Fax: +66-53-894031
| |
Collapse
|
207
|
Targeting Underlying Inflammation in Carcinoma Is Essential for the Resolution of Depressiveness. Cells 2023; 12:cells12050710. [PMID: 36899845 PMCID: PMC10000718 DOI: 10.3390/cells12050710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/03/2023] [Accepted: 02/22/2023] [Indexed: 02/26/2023] Open
Abstract
In modern clinical practice and research on behavioral changes in patients with oncological problems, there are several one-sided approaches to these problems. Strategies for early detection of behavioral changes are considered, but they must take into account the specifics of the localization and phase in the course and treatment of somatic oncological disease. Behavioral changes, in particular, may correlate with systemic proinflammatory changes. In the up-to-date literature, there are a lot of useful pointers on the relationship between carcinoma and inflammation and between depression and inflammation. This review is intended to provide an overview of these similar underlying inflammatory disturbances in both oncological disease and depression. The specificities of acute and chronic inflammation are considered as a basis for causal current and future therapies. Modern therapeutic oncology protocols may also cause transient behavioral changes, so assessment of the quality, quantity, and duration of behavioral symptoms is necessary to prescribe adequate therapy. Conversely, antidepressant properties could be used to ameliorate inflammation. We will attempt to provide some impetus and present some unconventional potential treatment targets related to inflammation. It is certain that only an integrative oncology approach is justifiable in modern patient treatment.
Collapse
|
208
|
Salazar-Valdivia FE, Valdez-Cornejo VA, Ulloque-Badaracco JR, Hernandez-Bustamante EA, Alarcón-Braga EA, Mosquera-Rojas MD, Garrido-Matta DP, Herrera-Añazco P, Benites-Zapata VA, Hernandez AV. Systemic Immune-Inflammation Index and Mortality in Testicular Cancer: A Systematic Review and Meta-Analysis. Diagnostics (Basel) 2023; 13:843. [PMID: 36899987 PMCID: PMC10000460 DOI: 10.3390/diagnostics13050843] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 02/25/2023] Open
Abstract
The systemic immune-inflammation index (SIII) is a marker studied in multiple types of urologic cancer. This systematic review evaluates the association between SIII values with overall survival (OS) and progression-free survival (PFS) in testicular cancer. We searched observational studies in five databases. The quantitative synthesis was performed using a random-effects model. The risk of bias was assessed using the Newcastle-Ottawa Scale (NOS). The only measure of the effect was the hazard ratio (HR). A sensitivity analysis was performed according to the risk of bias in the studies. There were 833 participants in a total of 6 cohorts. We found that high SIII values were associated with worse OS (HR = 3.28; 95% CI 1.3-8.9; p < 0.001; I2 = 78) and PFS (HR = 3.9; 95% CI 2.53-6.02; p < 0.001; I2 = 0). No indication of small study effects was found in the association between SIII values and OS (p = 0.5301). High SIII values were associated with worse OS and PFS. However, further primary studies are suggested to enhance the effect of this marker in different outcomes of testicular cancer patients.
Collapse
Affiliation(s)
- Farley E. Salazar-Valdivia
- Escuela de Medicina, Universidad Peruana de Ciencias Aplicadas, Lima 15023, Peru
- Sociedad Científica de Estudiantes de Medicina de la Universidad Peruana de Ciencias Aplicadas, Lima 15023, Peru
| | - Valeria A. Valdez-Cornejo
- Escuela de Medicina, Universidad Peruana de Ciencias Aplicadas, Lima 15023, Peru
- Sociedad Científica de Estudiantes de Medicina de la Universidad Peruana de Ciencias Aplicadas, Lima 15023, Peru
| | | | - Enrique A. Hernandez-Bustamante
- Sociedad Científica de Estudiantes de Medicina de la Universidad Nacional de Trujillo, Trujillo 13011, Peru
- Grupo Peruano de Investigación Epidemiológica, Unidad para la Generación y Síntesis de Evidencias en Salud, Universidad San Ignacio de Loyola, Lima 15012, Peru
| | - Esteban A. Alarcón-Braga
- Escuela de Medicina, Universidad Peruana de Ciencias Aplicadas, Lima 15023, Peru
- Sociedad Científica de Estudiantes de Medicina de la Universidad Peruana de Ciencias Aplicadas, Lima 15023, Peru
| | - Melany D. Mosquera-Rojas
- Escuela de Medicina, Universidad Peruana de Ciencias Aplicadas, Lima 15023, Peru
- Sociedad Científica de Estudiantes de Medicina de la Universidad Peruana de Ciencias Aplicadas, Lima 15023, Peru
| | | | - Percy Herrera-Añazco
- Escuela de Medicina, Universidad Privada San Juan Bautista, Lima 15067, Peru
- Universidad Privada del Norte, Trujillo 13011, Peru
| | - Vicente A. Benites-Zapata
- Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Vicerrectorado de Investigación, Universidad San Ignacio de Loyola, Lima 14072, Peru
| | - Adrian V. Hernandez
- Unidad de Revisiones Sistemáticas y Meta-análisis, Guías de Práctica Clínica y Evaluaciones de Tecnología Sanitaria, Vicerrectorado de Investigación, Universidad San Ignacio de Loyola, Lima 15012, Peru
- Health Outcomes, Policy, and Evidence Synthesis Group, University of Connecticut School of Pharmacy, Mansfield, CT 06269, USA
| |
Collapse
|
209
|
Xu H, Zhao G, Lin J, Ye Q, Xiang J, Yan B. A combined preoperative red cell distribution width and carcinoembryonic antigen score contribute to prognosis prediction in stage I lung adenocarcinoma. World J Surg Oncol 2023; 21:56. [PMID: 36814297 PMCID: PMC9945661 DOI: 10.1186/s12957-023-02945-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/11/2023] [Indexed: 02/24/2023] Open
Abstract
AIMS Hematological markers that can be used for prognosis prediction for stage I lung adenocarcinoma (LUAD) are still lacking. Here, we examined the prognostic value of a combination of the red cell distribution width (RDW) and carcinoembryonic antigen (CEA), namely, the RDW-CEA score (RCS), in stage I LUAD. MATERIALS AND METHODS A retrospective study with 154 patients with stage I LUAD was conducted. Patients were divided into RCS 1 (decreased RDW and CEA), RCS 2 (decreased RDW and increased CEA, increased RDW and decreased CEA), and RCS 3 (increased RDW and CEA) subgroups based on the best optimal cutoff points of RDW and CEA for overall survival (OS). The differences in other clinicopathological parameters among RCS subgroups were calculated. Disease-free survival (DFS) and OS among these groups were determined by Kaplan-Meier analysis, and risk factors for outcome were calculated by a Cox proportional hazards model. RESULTS Seventy, 65, and 19 patients were assigned to the RCS 1, 2, and 3 subgroups, respectively. Patients ≥ 60 years (P < 0.001), male sex (P = 0.004), T2 stage (P = 0.004), and IB stage (P = 0.006) were more significant in the RCS 2 or 3 subgroups. The RCS had a good area under the curve (AUC) for predicting DFS (AUC = 0.81, P < 0.001) and OS (AUC = 0.93, P < 0.001). The DFS (log-rank = 33.26, P < 0.001) and OS (log-rank = 42.05, P < 0.001) were significantly different among RCS subgroups, with RCS 3 patients displaying the worst survival compared to RCS 1 or 2 patients. RCS 3 was also an independent risk factor for both DFS and OS. CONCLUSIONS RCS is a useful prognostic indicator in stage I LUAD patients, and RCS 3 patients have poorer survival. However, randomized controlled trials are needed to validate our findings in the future.
Collapse
Affiliation(s)
- Hengliang Xu
- Department of Thoracic Surgery, Hainan Hospital of Chinese PLA General Hospital, Sanya, Hainan 572000 People’s Republic of China
| | - Guangqiang Zhao
- Department of Respiratory Medicine, Sanya Peoples’ Hospital, Sanya, Hainan 572000 People’s Republic of China
| | - Jixing Lin
- Department of Thoracic Surgery, Hainan Hospital of Chinese PLA General Hospital, Sanya, Hainan 572000 People’s Republic of China
| | - Qianwen Ye
- Department of Oncology, Hainan Hospital of Chinese PLA General Hospital, No. 80 of Jianglin Road, Haitang District, Sanya, Hainan 572000 People’s Republic of China
| | - Jia Xiang
- Department of Oncology, Hainan Hospital of Chinese PLA General Hospital, No. 80 of Jianglin Road, Haitang District, Sanya, Hainan 572000 People’s Republic of China
| | - Bing Yan
- Department of Oncology, Hainan Hospital of Chinese PLA General Hospital, No. 80 of Jianglin Road, Haitang District, Sanya, Hainan, 572000, People's Republic of China.
| |
Collapse
|
210
|
Bhardwaj P, Iyengar NM, Zahid H, Carter KM, Byun DJ, Choi MH, Sun Q, Savenkov O, Louka C, Liu C, Piloco P, Acosta M, Bareja R, Elemento O, Foronda M, Dow LE, Oshchepkova S, Giri DD, Pollak M, Zhou XK, Hopkins BD, Laughney AM, Frey MK, Ellenson LH, Morrow M, Spector JA, Cantley LC, Brown KA. Obesity promotes breast epithelium DNA damage in women carrying a germline mutation in BRCA1 or BRCA2. Sci Transl Med 2023; 15:eade1857. [PMID: 36812344 PMCID: PMC10557057 DOI: 10.1126/scitranslmed.ade1857] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 01/23/2023] [Indexed: 02/24/2023]
Abstract
Obesity, defined as a body mass index (BMI) ≥ 30, is an established risk factor for breast cancer among women in the general population after menopause. Whether elevated BMI is a risk factor for women with a germline mutation in BRCA1 or BRCA2 is less clear because of inconsistent findings from epidemiological studies and a lack of mechanistic studies in this population. Here, we show that DNA damage in normal breast epithelia of women carrying a BRCA mutation is positively correlated with BMI and with biomarkers of metabolic dysfunction. In addition, RNA sequencing showed obesity-associated alterations to the breast adipose microenvironment of BRCA mutation carriers, including activation of estrogen biosynthesis, which affected neighboring breast epithelial cells. In breast tissue explants cultured from women carrying a BRCA mutation, we found that blockade of estrogen biosynthesis or estrogen receptor activity decreased DNA damage. Additional obesity-associated factors, including leptin and insulin, increased DNA damage in human BRCA heterozygous epithelial cells, and inhibiting the signaling of these factors with a leptin-neutralizing antibody or PI3K inhibitor, respectively, decreased DNA damage. Furthermore, we show that increased adiposity was associated with mammary gland DNA damage and increased penetrance of mammary tumors in Brca1+/- mice. Overall, our results provide mechanistic evidence in support of a link between elevated BMI and breast cancer development in BRCA mutation carriers. This suggests that maintaining a lower body weight or pharmacologically targeting estrogen or metabolic dysfunction may reduce the risk of breast cancer in this population.
Collapse
Affiliation(s)
- Priya Bhardwaj
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Neil M. Iyengar
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Heba Zahid
- Department of Medical Laboratory Technology, College of Applied Medical Science, Taibah University, Medina 42353, Saudi Arabia
| | | | - Dong Jun Byun
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Man Ho Choi
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Qi Sun
- Computational Biology Service Unit of Life Sciences Core Laboratories Center, Cornell University, Ithaca, NY 14853, USA
| | - Oleksandr Savenkov
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY 10065, USA
| | - Charalambia Louka
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Catherine Liu
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Phoebe Piloco
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Monica Acosta
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Rohan Bareja
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Olivier Elemento
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Miguel Foronda
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lukas E. Dow
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Sofya Oshchepkova
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Dilip D. Giri
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michael Pollak
- Departments of Medicine and Oncology, McGill University, Montreal, Canada
| | - Xi Kathy Zhou
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY 10065, USA
| | - Benjamin D. Hopkins
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ashley M. Laughney
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Melissa K. Frey
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lora Hedrick Ellenson
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Monica Morrow
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jason A. Spector
- Laboratory of Bioregenerative Medicine and Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lewis C. Cantley
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Kristy A. Brown
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
211
|
Pan C, Wu QV, Voutsinas J, Houlton JJ, Barber B, Rizvi ZH, Marchiano E, Futran N, Laramore GE, Liao JJ, Parvathaneni U, Martins RG, Fromm JR, Rodriguez CP. Peripheral lymphocytes and lactate dehydrogenase correlate with response and survival in head and neck cancers treated with immune checkpoint inhibitors. Cancer Med 2023; 12:9384-9391. [PMID: 36806947 PMCID: PMC10166901 DOI: 10.1002/cam4.5697] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND Little is known regarding associations between peripheral blood biomarkers (PBBMs) and survival, response, and toxicity in recurrent/metastatic head and neck squamous cell carcinomas (R/M HNSCC) treated with immune checkpoint inhibitors (ICIs). METHODS In this single-institution retrospective cohort study, a dataset of patients with R/M HNSCC treated with ICIs between 08/2012-03/2021 was established, including demographic and clinicopathologic characteristics. Pretreatment PBBMs were collected and evaluated for associations with grade ≥3 adverse events (G ≥ 3AE) by CTCAEv5, objective response (ORR) by RECIST 1.1, overall survival (OS), and progression-free survival (PFS). Multivariable models for each outcome were created using elastic net variable selection. RESULTS Our study included 186 patients, with 51 (27%) demonstrating complete or partial response to immunotherapy. Multivariable models adjusted for ECOG performance status (PS), p16, and smoking demonstrated that pretreatment higher LDH and absolute neutrophils, as well as lower percent lymphocytes correlated with worse OS and PFS. Higher LDH and lower % lymphocytes also correlated with worse ORR. CONCLUSIONS In the largest study to date examining PBBMs in ICI-treated R/M HNSCCs, our variable selection method revealed PBBMs prognostic for survival and response to immunotherapy. These biomarkers warrant further investigation in a prospective study along with validation with CPS biomarker.
Collapse
Affiliation(s)
- Cassie Pan
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, Washington, USA
| | - Qian Vicky Wu
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Jenna Voutsinas
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | | | - Brittany Barber
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, Washington, USA
| | - Zain H Rizvi
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, Washington, USA
| | - Emily Marchiano
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, Washington, USA
| | - Neal Futran
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, Washington, USA
| | - George E Laramore
- Department of Radiation Oncology, University of Washington, Seattle, Washington, USA
| | - Jay J Liao
- Department of Radiation Oncology, University of Washington, Seattle, Washington, USA
| | - Upendra Parvathaneni
- Department of Radiation Oncology, University of Washington, Seattle, Washington, USA
| | - Renato G Martins
- Division of Hematology, Oncology and Palliative Care, Department of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jonathan R Fromm
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Cristina P Rodriguez
- Division of Oncology, Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
212
|
Predictive Value of Inflammatory and Nutritional Indexes in the Pathology of Bladder Cancer Patients Treated with Radical Cystectomy. Curr Oncol 2023; 30:2582-2597. [PMID: 36975410 PMCID: PMC10047817 DOI: 10.3390/curroncol30030197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
In recent years, the focus of numerous studies has been the predictive value of inflammatory and nutritional parameters in oncology patients. The aim of our study was to examine the relationship between the inflammatory and nutritional parameters and the histopathological characteristics of patients with bladder cancer. A retrospective study included 491 patients who underwent radical cystectomy for bladder cancer between 2017 and 2021. We calculated the preoperative values of the neutrophil-to-lymphocyte ratio (NLR), the derived neutrophil-to-lymphocyte ratio (dNLR), the systemic immune-inflammation index (SII), the systemic inflammatory response index (SIRI), the platelet-to-lymphocyte ratio (PLR), the lymphocyte-to-monocyte ratio (LMR), the prognostic nutritional index (PNI), and the geriatric nutritional risk index (GNRI). Statistically significant positive correlations were observed between NLR, dNLR, SII, SIRI, and PLR and the pathological stage of the tumor. We observed statistically significant inverse correlations for LMR, PNI, and GNRI with the tumor stage. SIRI was identified as an independent predictor of the presence of LVI. dNLR was identified as an independent predictor of positive surgical margins. GNRI was identified as an independent predictor of the presence of metastases in the lymph nodes. We noticed the predictive value of SIRI, dNLR, and GNRI in the pathology of bladder cancer patients.
Collapse
|
213
|
Glioblastoma Multiforme: Probing Solutions to Systemic Toxicity towards High-Dose Chemotherapy and Inflammatory Influence in Resistance against Temozolomide. Pharmaceutics 2023; 15:pharmaceutics15020687. [PMID: 36840009 PMCID: PMC9962012 DOI: 10.3390/pharmaceutics15020687] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 02/19/2023] Open
Abstract
Temozolomide (TMZ), the first-line chemotherapeutic drug against glioblastoma multiforme (GBM), often fails to provide the desired clinical outcomes due to inflammation-induced resistance amid inefficient drug delivery across the blood-brain barrier (BBB). The current study utilized solid lipid nanoparticles (SLNPs) for targeted delivery of TMZ against GBM. After successful formulation and characterization of SLNPs and conjugation with TMZ (SLNP-TMZ), their in-vitro anti-cancer efficacy and effect on the migratory potential of cancer cells were evaluated using temozolomide-sensitive (U87-S) as well as TMZ-resistant (U87-R) glioma cell lines. Elevated cytotoxicity and reduction in cell migration in both cell lines were observed with SLNP-TMZ as compared to the free drug (p < 0.05). Similar results were obtained in-vivo using an orthotopic xenograft mouse model (XM-S and XM-R), where a reduction in tumor size was observed with SLNP-TMZ treatment compared to TMZ. Concomitantly, higher concentrations of the drug were found in brain tissue resections of mice treated with SLNP-TMZ as compared to other vital organs than mice treated with free TMZ. Expression of inflammatory markers (Interleukin-1β, Interleukin-6 and Tumor Necrosis factor-α) in a resistant cell line (U87-R) and its respective mouse model (XM-R) were also found to be significantly elevated as compared to the sensitive U87-S cell line and its respective mouse model (XM-S). Thus, the in-vitro and in-vivo results of the study strongly support the potential application of SLNP-TMZ for TMZ-sensitive and resistant GBM therapy, indicatively through inflammatory mechanisms, and thus merit further detailed insights.
Collapse
|
214
|
Rong D, Wang Y, Liu L, Cao H, Huang T, Liu H, Hao X, Sun G, Sun G, Zheng Z, Kang J, Xia Y, Chen Z, Tang W, Wang X. GLIS1 intervention enhances anti-PD1 therapy for hepatocellular carcinoma by targeting SGK1-STAT3-PD1 pathway. J Immunother Cancer 2023; 11:jitc-2022-005126. [PMID: 36787938 PMCID: PMC9930610 DOI: 10.1136/jitc-2022-005126] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND GLI-similar 1 (GLIS1) is one of of Krüppel-like zinc finger proteins, which are either stimulators or inhibitors of genetic transcription. Nevertheless, its effects on T cell were elusive. METHODS In this study, we intend to explore the effects of GLIS1 on modulating the anticancer potency of CD8+ T cells in hepatocellular carcinoma (HCC). The expression of GLIS1 in CD8 peripheral blood mononuclear cell and CD8 tumor-infiltrating lymphocytes of HCC tissues was validated by quantificational real-time-PCR and flow cytometry. The anticancer potency of CD8+ T cells with GLIS1 knock down was confirmed in C57BL/6 mouse model and HCC patient-derived xenograft mice model. GLIS1-/- C57BL/6 mice was applied to explore the effects GLIS1 on tumor immune microenvironment. Chromatin immunoprecipitation and RNA transcriptome sequencing analysis were both performed in GLIS1-knock down of CD8+ T cells. RESULTS GLIS1 was upregulated in exhausted CD8+ T cells in HCC. GLIS1 downregulation in CD8+ T cells repressed cancer development, elevated the infiltrate ability of CD8+ T cells, mitigated CD8+ T cell exhaustion and ameliorated the anti-PD1 reaction of CD8+ T cells in HCC. The causal link beneath this included transcriptional regulation of SGK1-STAT3-PD1 pathway by GLIS1, thereby maintaining the abundant PD1 expression on the surface of CD8+ T cells. CONCLUSION Our study revealed that GLIS1 promoted CD8+ T cell exhaustion in HCC through transcriptional regulating SGK1-STAT3-PD1 pathway. Downregulating the expression of GLIS1 in CD8+ T cells exerted an effect with anti-PD1 treatment synergistically, revealing a prospective method for HCC immune therapy.
Collapse
Affiliation(s)
- Dawei Rong
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Yuliang Wang
- School of Basic Medicine, Nanjing Medical University, Nanjing, China
| | - Li Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hengsong Cao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Tian Huang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Hanyuan Liu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Xiaopei Hao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Guangshun Sun
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Guoqiang Sun
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Zhiying Zheng
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Junwei Kang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Yongxiang Xia
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Ziyi Chen
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Weiwei Tang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Xuehao Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| |
Collapse
|
215
|
Chauhan M, Dhar ZA, Gorki V, Sharma S, Koul A, Bala S, Kaur R, Kaur S, Sharma M, Dhingra N. Exploration of anticancer potential of Lantadenes from weed Lantana camara: Synthesis, in silico, in vitro and in vivo studies. PHYTOCHEMISTRY 2023; 206:113525. [PMID: 36442578 DOI: 10.1016/j.phytochem.2022.113525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 06/16/2023]
Abstract
Naturally occurring pentacyclic triterpenoids and their semisynthetic analogues have engrossed increasing attention for their anticancer potential and exhibiting promising role in discovery of new anticancer agents. Present study include the semi synthetic modifications of Lantadenes from the weed Lantana carama and their structures delineation by FT-IR, 1H-NMR, 13C-NMR & mass spectroscopy. All the compounds were scrutinized for in vitro cytotoxicity, ligand receptor interaction and in vivo anticancer studies. Most of the novel analogues displayed potent antiproliferative activity against A375 & A431 cancer cell lines and found superior to parent Lantadenes. In particular, 3β-(4-Methoxybenzoyloxy)-22β-senecioyloxy-olean-12-en-28-oic acid was found to be most suitable compound, with IC50 value of 3.027 μM aganist A375 cell line having least docking score (-69.40 kcal/mol). Promising anticancer potential of the lead was further indicated by significant reduction in tumor volume and burden in two stage carcinoma model. These findings suggests that the Lantadene derivatives may hold promising potential for the intervention of skin cancers.
Collapse
Affiliation(s)
- Monika Chauhan
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India; School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, 248007, India.
| | - Zahid Ahmad Dhar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Varun Gorki
- Parasitology Laboratory, Department of Zoology, Panjab University, Chandigarh, 160014, India
| | - Sonia Sharma
- Department Cum National Centre for Human Genome Studies and Research, Punjab University, Chandigarh, 160014, India
| | - Ashwani Koul
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Shashi Bala
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Ramandeep Kaur
- Department Cum National Centre for Human Genome Studies and Research, Punjab University, Chandigarh, 160014, India
| | - Sukhbir Kaur
- Parasitology Laboratory, Department of Zoology, Panjab University, Chandigarh, 160014, India
| | - Manu Sharma
- National Forensic Science University, Delhi Campus, India
| | - Neelima Dhingra
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
216
|
An enzyme activated fluorescent probe for LTA 4H activity sensing and its application in cancer screening. Talanta 2023; 253:123887. [PMID: 36088846 DOI: 10.1016/j.talanta.2022.123887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/31/2022] [Accepted: 08/23/2022] [Indexed: 12/13/2022]
Abstract
Early diagnosis of cancer is an efficient strategy to prevent tumor progression and improve the survival rate of patients. However, to discovery of reliable tumor-specific biomarkers remains a great challenge. Leukotriene A4 hydrolase (LTA4H) is a bifunctional zinc metalloenzyme with epoxide hydrolase activity and aminopeptidase activity, which plays important roles in allergic and inflammatory reactions and showed strong relevance with carcinoma progression. We thus sought to investigate the possibility of application LTA4H activity detection in cancer diagnosis. To achieve this, we herein develop an enzyme activated fluorescent probe for LTA4H activity sensing by incorporating the specific recognition unit of LTA4H with a red-emitting fluorophore. The acquired probe (named as ADMAB) showed high sensitivity and specificity toward LTA4H in vitro. By further application of ADMAB in living cells, significantly elevated LTA4H activity in cancer cell lines was observed when compared with normal cell lines and in vivo tracing A549 tumor in nude mice was also realized by ADMAB. Meanwhile, the wound-healing assay further revealed the importance of LTA4H in tumor metastasis. Moreover, the LTA4H activity in human serum sample was successfully detected by ADMAB and significantly elevated LTA4H activity in patients diagnosed with cancer was firstly found, which demonstrated ADMAB to be a useful tool for cancer diagnosis and LTA4H related biological study.
Collapse
|
217
|
Ait-Ahmed Y, Lafdil F. Novel insights into the impact of liver inflammatory responses on primary liver cancer development. LIVER RESEARCH 2023. [DOI: 10.1016/j.livres.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
|
218
|
Zhang L, Zhao K, kuang T, Wang K, Chai D, Qiu Z, Liu R, Deng W, Wang W. The prognostic value of the advanced lung cancer inflammation index in patients with gastrointestinal malignancy. BMC Cancer 2023; 23:101. [PMID: 36717809 PMCID: PMC9885705 DOI: 10.1186/s12885-023-10570-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Systemic inflammation is crucial for the development and progression of cancers. The advanced lung cancer inflammation index (ALI) is considered to be a better indicator of systemic inflammation than current biomarkers. However, the prognostic value of the ALI in gastrointestinal neoplasms remains unclear. We performed the first meta-analysis to explore the association between ALI and gastrointestinal oncologic outcomes to help physicians better evaluate the prognosis of those patients. METHODS Eligible articles were retrieved using PubMed, the Cochrane Library, EMBASE, and Google Scholar by December 29, 2022. Clinical outcomes were overall survival (OS), disease-free survival (DFS), progression-free survival (PFS), and cancer-specific survival (CSS). RESULTS A total of 18 articles with 6898 patients were included in this meta-analysis. The pooled results demonstrated that a low ALI was correlated with poor OS (HR = 1.914, 95% CI: 1.514-2.419, P < 0.001), DFS (HR = 1.631, 95% CI: 1.197-2.224, P = 0.002), and PFS (HR = 1.679, 95% CI: 1.073-2.628, P = 0.023) of patients with gastrointestinal cancers. Subgroup analysis revealed that a low ALI was associated with shorter OS (HR = 2.279, 95% CI: 1.769-2.935, P < 0.001) and DFS (HR = 1.631, 95% CI: 1.197-2.224, P = 0.002), and PFS (HR = 1.911, 95% CI: 1.517-2.408, P = 0.002) of patients with colorectal cancer. However, the ALI was not related to CSS in the patients with gastrointestinal malignancy (HR = 1.121, 95% CI: 0.694-1.812, P = 0.640). Sensitivity analysis supported the stability and dependability of the above results. CONCLUSION The pre-treatment ALI was a useful predictor of prognosis in patients with gastrointestinal cancers.
Collapse
Affiliation(s)
- Lilong Zhang
- grid.412632.00000 0004 1758 2270Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China ,grid.412632.00000 0004 1758 2270Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China ,Hubei Key Laboratory of Digestive System Disease, Wuhan, China
| | - Kailiang Zhao
- grid.412632.00000 0004 1758 2270Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China ,grid.412632.00000 0004 1758 2270Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China ,Hubei Key Laboratory of Digestive System Disease, Wuhan, China
| | - Tianrui kuang
- grid.412632.00000 0004 1758 2270Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China ,grid.412632.00000 0004 1758 2270Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China ,Hubei Key Laboratory of Digestive System Disease, Wuhan, China
| | - Kunpeng Wang
- grid.412632.00000 0004 1758 2270Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China ,grid.412632.00000 0004 1758 2270Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China ,Hubei Key Laboratory of Digestive System Disease, Wuhan, China
| | - Dongqi Chai
- grid.412632.00000 0004 1758 2270Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China ,grid.412632.00000 0004 1758 2270Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China ,Hubei Key Laboratory of Digestive System Disease, Wuhan, China
| | - Zhendong Qiu
- grid.412632.00000 0004 1758 2270Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China ,grid.412632.00000 0004 1758 2270Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China ,Hubei Key Laboratory of Digestive System Disease, Wuhan, China
| | - Rongqiang Liu
- grid.412632.00000 0004 1758 2270Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China ,grid.412632.00000 0004 1758 2270Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China ,Hubei Key Laboratory of Digestive System Disease, Wuhan, China
| | - Wenhong Deng
- grid.412632.00000 0004 1758 2270Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China ,grid.412632.00000 0004 1758 2270Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China ,Hubei Key Laboratory of Digestive System Disease, Wuhan, China
| | - Weixing Wang
- grid.412632.00000 0004 1758 2270Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China ,grid.412632.00000 0004 1758 2270Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China ,Hubei Key Laboratory of Digestive System Disease, Wuhan, China
| |
Collapse
|
219
|
Takeuchi Y, Gotoh N. Inflammatory cytokine-enriched microenvironment plays key roles in the development of breast cancers. Cancer Sci 2023; 114:1792-1799. [PMID: 36704829 PMCID: PMC10154879 DOI: 10.1111/cas.15734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/29/2022] [Accepted: 01/20/2023] [Indexed: 01/28/2023] Open
Abstract
As the incidence of breast cancer continues to increase, it is critical to develop prevention strategies for this disease. Inflammation underlies the onset of the disease, and NF-κB is a master transcription factor for inflammation. Nuclear factor-κB (NF-κB) is activated in a variety of cell types, including normal epithelial cells, cancer cells, cancer-associated fibroblasts (CAFs), and immune cells. Ductal carcinoma in situ (DCIS) is the earliest stage of breast cancer, and not all DCIS lesions develop into invasive breast cancers (IBC). Currently, most patients with DCIS undergo surgery with postoperative therapy, although there is a risk of overtreatment. In BRCA mutants, receptor activator of NF-κB (RANK)-positive progenitors serve as the cell of origin, and treatment using the RANK monoclonal antibody reduces the risk of IBC. There is still an unmet need to diagnose malignant DCIS, which has the potential to progress to IBC, and to establish appropriate prevention strategies. We recently demonstrated novel molecular mechanisms for NF-κB activation in premalignant mammary tissues, which include DCIS, and the resultant cytokine-enriched microenvironment is essential for breast cancer development. On the early endosomes in a few epithelial cells, the adaptor protein FRS2β, forming a complex with ErbB2, carries the IκB kinase (IKK) complex and leads to the activation of NF-κB, thereby inducing a variety of cytokines. Therefore, the FRS2β-NFκB axis in the inflammatory premalignant environment could be targetable to prevent IBC. Further analysis of the molecular mechanisms of inflammation in the premalignant microenvironment is necessary to prevent the risk of IBC.
Collapse
Affiliation(s)
- Yasuto Takeuchi
- Division of Cancer Cell Biology, Cancer Research Institute, Kanazawa University, Kanazawa City, Japan.,Institute for Frontier Science Initiative, Kanazawa University, Kanazawa City, Japan
| | - Noriko Gotoh
- Division of Cancer Cell Biology, Cancer Research Institute, Kanazawa University, Kanazawa City, Japan.,Institute for Frontier Science Initiative, Kanazawa University, Kanazawa City, Japan
| |
Collapse
|
220
|
Dean PT, Hooks SB. Pleiotropic effects of the COX-2/PGE2 axis in the glioblastoma tumor microenvironment. Front Oncol 2023; 12:1116014. [PMID: 36776369 PMCID: PMC9909545 DOI: 10.3389/fonc.2022.1116014] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 12/19/2022] [Indexed: 01/27/2023] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive form of malignant glioma. The GBM tumor microenvironment (TME) is a complex ecosystem of heterogeneous cells and signaling factors. Glioma associated macrophages and microglia (GAMs) constitute a significant portion of the TME, suggesting that their functional attributes play a crucial role in cancer homeostasis. In GBM, an elevated GAM population is associated with poor prognosis and therapeutic resistance. Neoplastic cells recruit these myeloid populations through release of chemoattractant factors and dysregulate their induction of inflammatory programs. GAMs become protumoral advocates through production a variety of cytokines, inflammatory mediators, and growth factors that can drive cancer proliferation, invasion, immune evasion, and angiogenesis. Among these inflammatory factors, cyclooxygenase-2 (COX-2) and its downstream product, prostaglandin E2 (PGE2), are highly enriched in GBM and their overexpression is positively correlated with poor prognosis in patients. Both tumor cells and GAMs have the ability to signal through the COX-2 PGE2 axis and respond in an autocrine/paracrine manner. In the GBM TME, enhanced signaling through the COX-2/PGE2 axis leads to pleotropic effects that impact GAM dynamics and drive tumor progression.
Collapse
|
221
|
Duan N, Hu X, Zhou R, Li Y, Wu W, Liu N. A Review on Dietary Flavonoids as Modulators of the Tumor Microenvironment. Mol Nutr Food Res 2023; 67:e2200435. [PMID: 36698331 DOI: 10.1002/mnfr.202200435] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The tumor microenvironment (TME) is the local environment where malignant cells strive and survive, composed of cancer cells and their surroundings, regulating essential tumor survival, and promotion functions. Dietary flavonoids are abundantly present in common vegetables and fruits and exhibit good anti-cancer activities, which significantly inhibit tumorigenesis by targeting TME constituents and their interaction with cancer cells. This review aims to synthesize information concerning the modulation of TME by dietary flavonoids, as well as to provide insights into the molecular basis of its potential anti-tumor activities, with an emphasis on its ability to control intracellular signaling cascades that regulate the TME processes, involving cell proliferation, invasion and migration, continuous angiogenesis, and immune inflammation. This study will provide a theoretical basis for the development of the leading compound targeting TME for anti-cancer therapies from these dietary flavonoids.
Collapse
Affiliation(s)
- Namin Duan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaohui Hu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Rui Zhou
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Yuru Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Wenhui Wu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Ning Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.,National R&D Branch Center for Freshwater Aquatic Products Processing Technology, Shanghai, 201306, China.,National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, 201306, China.,Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, 201306, China
| |
Collapse
|
222
|
Hosseinalizadeh H, Mohamadzadeh O, Kahrizi MS, Razaghi Bahabadi Z, Klionsky DJ, Mirzei H. TRIM8: a double-edged sword in glioblastoma with the power to heal or hurt. Cell Mol Biol Lett 2023; 28:6. [PMID: 36690946 PMCID: PMC9869596 DOI: 10.1186/s11658-023-00418-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/05/2023] [Indexed: 01/24/2023] Open
Abstract
Glioblastoma multiforme (GBM) is an aggressive primary brain tumor and one of the most lethal central nervous system tumors in adults. Despite significant breakthroughs in standard treatment, only about 5% of patients survive 5 years or longer. Therefore, much effort has been put into the search for identifying new glioma-associated genes. Tripartite motif-containing (TRIM) family proteins are essential regulators of carcinogenesis. TRIM8, a member of the TRIM superfamily, is abnormally expressed in high-grade gliomas and is associated with poor clinical prognosis in patients with glioma. Recent research has shown that TRIM8 is a molecule of duality (MoD) that can function as both an oncogene and a tumor suppressor gene, making it a "double-edged sword" in glioblastoma development. This characteristic is due to its role in selectively regulating three major cellular signaling pathways: the TP53/p53-mediated tumor suppression pathway, NFKB/NF-κB, and the JAK-STAT pathway essential for stem cell property support in glioma stem cells. In this review, TRIM8 is analyzed in detail in the context of GBM and its involvement in essential signaling and stem cell-related pathways. We also discuss the basic biological activities of TRIM8 in macroautophagy/autophagy, regulation of bipolar spindle formation and chromosomal stability, and regulation of chemoresistance, and as a trigger of inflammation.
Collapse
Affiliation(s)
- Hamed Hosseinalizadeh
- grid.411874.f0000 0004 0571 1549Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Omid Mohamadzadeh
- grid.411705.60000 0001 0166 0922Department of Neurosurgery, Tehran University of Medical Science, Tehran, Iran
| | - Mohammad Saeed Kahrizi
- grid.411705.60000 0001 0166 0922Department of Surgery, Alborz University of Medical Sciences, Karaj, Alborz Iran
| | - Zahra Razaghi Bahabadi
- grid.444768.d0000 0004 0612 1049School of Medicine, Kashan University of Medical Sciences, Kashan, Iran ,grid.444768.d0000 0004 0612 1049Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Daniel J. Klionsky
- grid.214458.e0000000086837370Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI USA
| | - Hamed Mirzei
- grid.444768.d0000 0004 0612 1049Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
223
|
Role of lymphocytes, macrophages and immune receptors in suppression of tumor immunity. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:269-310. [PMID: 36631195 DOI: 10.1016/bs.pmbts.2022.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cancer is now the leading cause of mortality across the world. Inflammatory immune cells are functionally important in the genesis and progression of tumors, as demonstrated by their presence in human tumors. Numerous research has recently been conducted to determine if the innate and adaptive immune systems' cytotoxic cells can inhibit tumor growth and spread. Majority of cancers, when growing into identifiable tumors use multiple strategies to elude immune monitoring by lowering tumor immunity. Immunological suppression in the tumor microenvironment is achieved through interfering with antigen-presenting cells and effector T cells. Treatment of cancer requires managing both the tumor as well as tumor microenvironment (TME). Most patients will not be able to gain benefits from immunotherapy because of the immunosuppressive tumor microenvironment. The actions of many stromal myeloid and lymphoid cells are regulated to suppress tumor-specific T lymphocytes. These frequently exhibit inducible suppressive processes brought on by the same anti-tumor inflammatory response the immunotherapy aims to produce. Therefore, a deeper comprehensive understanding of how the immunosuppressive environment arises and endures is essential. Here in this chapter, we will talk about how immune cells, particularly macrophages and lymphocytes, and their receptors affect the ability of tumors to mount an immune response.
Collapse
|
224
|
Matsumoto T, Ohki S, Kaneta A, Matsuishi A, Maruyama Y, Yamada L, Tada T, Hanayama H, Watanabe Y, Hayase S, Okayama H, Sakamoto W, Momma T, Saze Z, Kono K. Systemic inflammation score as a preoperative prognostic factor for patients with pT2-T4 resectable gastric cancer: a retrospective study. BMC Surg 2023; 23:8. [PMID: 36635689 PMCID: PMC9837917 DOI: 10.1186/s12893-023-01904-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Systemic inflammation has been reported to be associated with cancer progression and metastasis. Systemic inflammation score (SIS), calculated from preoperative serum albumin level and lymphocyte-to-monocyte ratio, has been shown to be a novel prognostic factor for several types of tumors. This study aimed to evaluate the prognostic value of the SIS in patients with pT2-4 resectable gastric cancer (GC). METHODS Total 97 patients with pT2-4 GC who underwent curative surgery from 322 cases between 2009 and 2015 in Fukushima Medical University Hospital were included. We performed univariate and multivariate analyses to evaluate the usefulness of preoperative SIS and other prognostic factors for relapse-free survival (RFS) and overall survival (OS). RESULTS The higher SIS score was associated with undifferentiated cancer and recurrence. Univariate analysis of RFS identified deeper tumor invasion and higher SIS were significant risk factors and multivariate analysis revealed that both of them were independent prognostic factors for RFS. As for OS, age, tumor invasion, SIS and LNR were significantly correlated with RFS. In multivariate analysis, tumor invasion, SIS and LNR were independent prognostic factors for OS. CONCLUSIONS SIS was an independent prognostic factor for RFS and OS in pT2-4 resectable gastric cancer patients who underwent curative gastrectomy.
Collapse
Affiliation(s)
- Takuro Matsumoto
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan.
| | - Shinji Ohki
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
- Shirakawa Kosei General Hospital, 2-1 Toyochikamiyajirou, Shirakawa, Fukushima, 961-005, Japan
| | - Akinao Kaneta
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Akira Matsuishi
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Yuya Maruyama
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Leo Yamada
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Takeshi Tada
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Hiroyuki Hanayama
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Yohei Watanabe
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Suguru Hayase
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Hirokazu Okayama
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Wataru Sakamoto
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Tomoyuki Momma
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Zenichiro Saze
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Koji Kono
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| |
Collapse
|
225
|
Xie Y, Shao F, Duan X, Ding J, Ning Y, Sun X, Xia L, Pan J, Chen J, He S, Shen D, Qi C. Whole β-glucan particle attenuates AOM/DSS-induced colorectal tumorigenesis in mice via inhibition of intestinal inflammation. Front Pharmacol 2023; 14:1017475. [PMID: 36713833 PMCID: PMC9877317 DOI: 10.3389/fphar.2023.1017475] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/03/2023] [Indexed: 01/14/2023] Open
Abstract
Yeast β-glucan is a polysaccharide purified from the Saccharomyces cerevisiae cell wall, and its multiple biological activities are essential for immune regulation. However, the effect of β-glucan on the intestinal immune response during colitis-associated colorectal cancer (CAC) is unclear. Here, we explore the possible role of β-glucan in the development of CAC. Wild type (WT) mice with CAC induced by azoxmethane (AOM) and dextran sodium sulfate (DSS) had fewer tumors than untreated mice after oral β-glucan because of increased antitumor dendritic cells (DCs) in the tumor microenvironment, resulting in more CD8+ T cells and the production of related cytokines. β-glucan also increased resistance to DSS-induced chronic colitis by reshaping the inflammatory microenvironment. These data suggest that β-glucan improves experimental intestinal inflammation and delays the development of CAC. Therefore, β-glucan is feasible for treating chronic colitis and CAC in clinical practice.
Collapse
Affiliation(s)
- Yewen Xie
- Medical Research Center, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China,Oncology Institute, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Fang Shao
- Medical Research Center, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China,Oncology Institute, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Xuehan Duan
- Medical Research Center, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Jun Ding
- Medical Research Center, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China,Oncology Institute, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Yongling Ning
- Medical Research Center, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China,Oncology Institute, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Xiao Sun
- Medical Research Center, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Lei Xia
- Medical Research Center, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Jie Pan
- Medical Research Center, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Jie Chen
- Medical Research Center, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Shuyan He
- Department of Oncology, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin, Jiangsu, China
| | - Dong Shen
- Department of Oncology, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin, Jiangsu, China,*Correspondence: Chunjian Qi, ; Dong Shen,
| | - Chunjian Qi
- Medical Research Center, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China,Oncology Institute, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China,*Correspondence: Chunjian Qi, ; Dong Shen,
| |
Collapse
|
226
|
Cancer Stem Cell Relationship with Pro-Tumoral Inflammatory Microenvironment. Biomedicines 2023; 11:biomedicines11010189. [PMID: 36672697 PMCID: PMC9855358 DOI: 10.3390/biomedicines11010189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Inflammatory processes and cancer stem cells (CSCs) are increasingly recognized as factors in the development of tumors. Emerging evidence indicates that CSCs are associated with cancer properties such as metastasis, treatment resistance, and disease recurrence. However, the precise interaction between CSCs and the immune microenvironment remains unexplored. Although evasion of the immune system by CSCs has been extensively studied, new research demonstrates that CSCs can also control and even profit from the immune response. This review provides an overview of the reciprocal interplay between CSCs and tumor-infiltrating immune cells, collecting pertinent data about how CSCs stimulate leukocyte reprogramming, resulting in pro-tumor immune cells that promote metastasis, chemoresistance, tumorigenicity, and even a rise in the number of CSCs. Tumor-associated macrophages, neutrophils, Th17 and regulatory T cells, mesenchymal stem cells, and cancer-associated fibroblasts, as well as the signaling pathways involved in these pro-tumor activities, are among the immune cells studied. Although cytotoxic leukocytes have the potential to eliminate CSCs, immune evasion mechanisms in CSCs and their clinical implications are also known. We intended to compile experimental findings that provide direct evidence of interactions between CSCs and the immune system and CSCs and the inflammatory milieu. In addition, we aimed to summarize key concepts in order to comprehend the cross-talk between CSCs and the tumor microenvironment as a crucial process for the effective design of anti-CSC therapies.
Collapse
|
227
|
Ren Z, Yang J, Liang J, Xu Y, Lu G, Han Y, Zhu J, Tan H, Xu T, Ren M. Monitoring of postoperative neutrophil-to-lymphocyte ratio, D-dimer, and CA153 in: Diagnostic value for recurrent and metastatic breast cancer. Front Surg 2023; 9:927491. [PMID: 36684341 PMCID: PMC9853451 DOI: 10.3389/fsurg.2022.927491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 11/23/2022] [Indexed: 01/09/2023] Open
Abstract
Objective This stydy aims to assess the value of monitoring of postoperative neutrophil-to-lymphocyte ratio (NLR), D-dimer, and carbohydrate antigen 153 (CA153) for diagnosis of breast cancer (BC) recurrence and metastasis. Materials/Methods A cohort of 252 BC patients who underwent surgery at the First Affiliated Hospital of Anhui Medical University between August 2008 and August 2018 were enrolled in this retrospective study. All patients were examined during outpatient follow-ups every 3 months for 5 years postoperation and every 6 months thereafter. Recurrence or metastasis was recorded for 131 patients but not for the remaining 121. Retrospective analysis of hematological parameters and clinicopathological characteristics allowed comparison between the two groups and evaluation of these parameters for the recurrent and metastatic patients. Results Lymph node metastasis, higher tumor node metastasis (TNM) staging, and higher histological grade correlated with BC recurrence and metastasis (p < 0.05). Statistical differences were found in absolute neutrophil count (ANC), absolute lymphocyte count (ALC), CEA, CA153, D-dimer, NLR, platelet-to-lymphocyte ratio (PLR), and monocyte-to-lymphocyte ratio (MLR) between the recurrent and metastatic and control groups (p < 0.05). Logistic regression analysis showed that CA153, D-dimer, NLR, and TNM staging were risk factors for BC recurrence and metastasis (p < 0.05). Combined values for the NLR, D-dimer, and CA153 had good diagnostic values, giving the highest area under the curve (AUC) of 0.913. High NLR, D-dimer, and CA153 values were significantly associated with recurrence and metastasis at multiple sites, lymph node metastasis, and higher TNM staging (p < 0.05). Patients with high CA153 were more likely to have bone metastases (p < 0.05), and those with high D-dimer were prone to lung metastasis (p < 0.05). With the increasing length of the postoperative period, the possibility of liver metastases gradually decreased, while that of chest wall recurrence gradually increased (p < 0.05). Conclusion Monitoring postoperative NLR, D-dimer, and CA153 is a convenient, practical method for diagnosing BC recurrence and metastasis. These metrics have good predictive value in terms of sites of recurrence and metastasis and the likelihood of multiple metastases.
Collapse
Affiliation(s)
- Zhiyao Ren
- Department of Breast Surgery,The First Affiliated Hospital of Anhui Medical University, Hefei, China,Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jing Yang
- Department of Breast Surgery,The First Affiliated Hospital of Anhui Medical University, Hefei, China,Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jiahui Liang
- Department of Breast Surgery,The First Affiliated Hospital of Anhui Medical University, Hefei, China,Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yunfeng Xu
- Department of Breast Surgery,The First Affiliated Hospital of Anhui Medical University, Hefei, China,Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Guanda Lu
- First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Yanxun Han
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Jie Zhu
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Husheng Tan
- Department of Breast Surgery,The First Affiliated Hospital of Anhui Medical University, Hefei, China,Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Tao Xu
- School of Pharmacy, Anhui Medical University, Hefei, China,Correspondence: Min Ren Tao Xu
| | - Min Ren
- Department of Breast Surgery,The First Affiliated Hospital of Anhui Medical University, Hefei, China,Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China,Correspondence: Min Ren Tao Xu
| |
Collapse
|
228
|
Nan Y, Su H, Zhou B, Liu S. The function of natural compounds in important anticancer mechanisms. Front Oncol 2023; 12:1049888. [PMID: 36686745 PMCID: PMC9846506 DOI: 10.3389/fonc.2022.1049888] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/30/2022] [Indexed: 01/06/2023] Open
Abstract
The existence of malignant tumors has been a threat to human life, health, and safety. Although the rapid development of radiotherapy, drug therapy, surgery, and local therapy has improved the quality of life of tumor patients, there are still some risks. Natural compounds are widely used in cancer because they are easy to obtain, have a good curative effects and have no obvious side effects, and play a vital role in the prevention and treatment of various cancers. Phenolic, flavonoids, terpenoids, alkaloids, and other natural components of traditional Chinese medicine have certain anti-tumor activities, which can promote apoptosis, anti-proliferation, anti-metastasis, inhibit angiogenesis, change the morphology of cancer cells and regulate immune function, etc., and have positive effects on breast cancer, liver cancer, lung cancer, gastric cancer, rectal cancer and so on. To better understand the effects of natural compounds on cancer, this paper screened out four important pathways closely related to cancer, including cell death and immunogenic cell death, immune cells in the tumor microenvironment, inflammation and related pathways and tumor metastasis, and systematically elaborated the effects of natural compounds on cancer.
Collapse
Affiliation(s)
- Yang Nan
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Heilongjiang, Haerbin, China
| | - Hongchan Su
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Heilongjiang, Haerbin, China
| | - Bo Zhou
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Heilongjiang, Haerbin, China
| | - Shumin Liu
- Chinese Medicine Research Institute, Heilongjiang University of Chinese Medicine, Heilongjiang, Haerbin, China,*Correspondence: Shumin Liu,
| |
Collapse
|
229
|
Zhang R, Hu C, Zhang J, Zhang Y, Yuan L, Yu P, Wang Y, Bao Z, Cao M, Ruan R, Cheng X, Xu Z. Prognostic significance of inflammatory and nutritional markers in perioperative period for patients with advanced gastric cancer. BMC Cancer 2023; 23:5. [PMID: 36597055 PMCID: PMC9808945 DOI: 10.1186/s12885-022-10479-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/23/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND It has been reported that inflammatory and nutritional markers are related to prognosis in numerous malignancies. The present study analyzed the significance of these markers' alterations during neoadjuvant chemotherapy in the long-term outcomes in patients with advanced gastric cancer. METHODS A retrospective review was performed of 437 advanced gastric cancer patients who underwent a neoadjuvant chemotherapy (NACT) regimen followed by surgical treatment. Inflammatory and nutritional markers measured from the blood samples collected from the patients before the first neoadjuvant chemotherapy and after the last neoadjuvant chemotherapy were used for analysis. Statistical analysis, including Mann-Whitney U or chi-square tests, the Kaplan-Meier method and Cox multivariate analysis, were performed to analyze the predictive value of these markers for overall survival outcomes (OS). RESULTS Most biomarkers, including lymphocyte, leucocyte, neutrophil, monocyte, platelet, LMR, PLR, SII, CRP, CAR, hemoglobulin and albumin levels, changed during NACT (P < 0.05). After separately grouping the patients based on the normal range of hematologic indexes and the change rate (α) of systemic inflammatory and nutritional markers by the cutoff value derived from X-tile (P < 0.05), we found that differentiation, TRG, pre-NACT BMI, pre-NACT platelet counts, post-NACT lymphocyte counts, the change in lymphocyte counts, change in platelet counts and LMR(α), PLR(α), SII(α), and CAR(α) were associated with OS. Multivariate analysis revealed that PLR (α) > - 19% was correlated with a 3.193-fold (95% CI: 2.194-4.649) higher risk of death (P < 0.001) than others. CONCLUSION NACT could significantly change several inflammatory and nutritional markers in the perioperative period; the platelet counts before NACT, and the change in lymphocytes during NACT truly correlated with long-term outcomes among patients with advanced gastric cancer. The systemic inflammatory marker PLR may be a reliable marker for the prediction of prognosis.
Collapse
Affiliation(s)
- Ruolan Zhang
- The Second School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Can Hu
- The Second School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jiaqing Zhang
- The Second School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yanqiang Zhang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Li Yuan
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Pengcheng Yu
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yi Wang
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zhehan Bao
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Mengxuan Cao
- Wenzhou Medical University, Wenzhou, 325035, China
| | - Rongwei Ruan
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China.
| | - Xiangdong Cheng
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China.
| | - Zhiyuan Xu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China.
| |
Collapse
|
230
|
Ren T, Wang S, Zhang B, Zhou W, Wang C, Zhao X, Feng J. LTA4H extensively associates with mRNAs and lncRNAs indicative of its novel regulatory targets. PeerJ 2023; 11:e14875. [PMID: 36923505 PMCID: PMC10010175 DOI: 10.7717/peerj.14875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/19/2023] [Indexed: 03/12/2023] Open
Abstract
The RNA-binding metabolic enzyme LTA4H is a novel target for cancer chemoprevention and chemotherapy. Recent research shows that the increased expression of LTA4H in laryngeal squamous cell carcinoma (LSCC) promotes tumor proliferation, migration, and metastasis. However, its mechanism remains unclear. To investigate the potential role of LTA4H in LSCC, we employed the improved RNA immunoprecipitation and sequencing (iRIP-Seq) experiment to get the expression profile of LTA4H binding RNA in HeLa model cells, a cancer model cell that is frequently used in molecular mechanism research. We found that LTA4H extensively binds with mRNAs/pre-mRNAs and lncRNAs. In the LTA4H binding peak, the frequency of the AAGG motif reported to interact with TRA2β4 was high in both replicates. More notably, LTA4H-binding genes were significantly enriched in the mitotic cell cycle, DNA repair, RNA splicing-related pathways, and RNA metabolism pathways, which means that LTA4H has tumor-related alternative splicing regulatory functions. QRT-PCR validation confirmed that LTA4H specifically binds to mRNAs of carcinogenesis-associated genes, including LTBP3, ROR2, EGFR, HSP90B1, and lncRNAs represented by NEAT1. These results suggest that LTA4H may combine with genes associated with LSCC as an RNA-binding protein to perform a cancer regulatory function. Our study further sheds light on the molecular mechanism of LTA4H as a clinical therapy target for LSCC.
Collapse
Affiliation(s)
- Tianjiao Ren
- Department of Otorhinolaryngology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Song Wang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Bo Zhang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Wei Zhou
- Department of Otorhinolaryngology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Cansi Wang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xiaorui Zhao
- Department of Otorhinolaryngology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Juan Feng
- Department of Otorhinolaryngology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
231
|
Deng Y, Zhao L, Huang X, Zeng Y, Xiong Z, Zuo M. Contribution of skeletal muscle to cancer immunotherapy: A focus on muscle function, inflammation, and microbiota. Nutrition 2023; 105:111829. [PMID: 36265324 DOI: 10.1016/j.nut.2022.111829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022]
Abstract
Sarcopenia, characterized by degenerative and systemic loss of skeletal muscle mass and function, is a multifactorial syndrome commonly observed in individuals with cancer. Additionally, it represents a poor nutritional status and indicates possible presence of cancer cachexia. Recently, with the extensive application of cancer immunotherapy, the effects of sarcopenia/cachexia on cancer immunotherapy, have gained attention. The aim of this review was to summarize the influence of low muscle mass (sarcopenia/cachexia) on the response and immune-related adverse events to immunotherapy from the latest literature. It was revealed that low muscle mass (sarcopenia/cachexia) has detrimental effects on cancer immunotherapy in most cases, although there were results that were not consistent with this finding. This review also discussed potential causes of the paradox, such as different measure methods, research types, muscle indicators, time point, and cancer type. Mechanically, chronic inflammation, immune cells, and microbiota may be critically involved in regulating the efficacy of immunotherapy under the condition of low muscle mass (sarcopenia/cachexia). Thus, nutritional interventions will likely be promising ways for individuals with cancer to increase the efficacy of immunotherapy in the future, for low muscle mass (sarcopenia/cachexia) is an important prognostic factor for cancer immunotherapy.
Collapse
Affiliation(s)
- Yuanle Deng
- Department of Clinical Nutrition, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Sichuan, China
| | - Ling Zhao
- Department of Clinical Nutrition, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Sichuan, China
| | - Xuemei Huang
- Department of Clinical Nutrition, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Sichuan, China
| | - Yu Zeng
- Department of Clinical Nutrition, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Sichuan, China
| | - Zhujuan Xiong
- Department of Clinical Nutrition, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Sichuan, China.
| | - Ming Zuo
- Department of Clinical Nutrition, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Sichuan, China
| |
Collapse
|
232
|
Castellanos G, Valbuena DS, Pérez E, Villegas VE, Rondón-Lagos M. Chromosomal Instability as Enabling Feature and Central Hallmark of Breast Cancer. BREAST CANCER (DOVE MEDICAL PRESS) 2023; 15:189-211. [PMID: 36923397 PMCID: PMC10010144 DOI: 10.2147/bctt.s383759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/11/2022] [Indexed: 03/11/2023]
Abstract
Chromosomal instability (CIN) has become a topic of great interest in recent years, not only for its implications in cancer diagnosis and prognosis but also for its role as an enabling feature and central hallmark of cancer. CIN describes cell-to-cell variation in the number or structure of chromosomes in a tumor population. Although extensive research in recent decades has identified some associations between CIN with response to therapy, specific associations with other hallmarks of cancer have not been fully evidenced. Such associations place CIN as an enabling feature of the other hallmarks of cancer and highlight the importance of deepening its knowledge to improve the outcome in cancer. In addition, studies conducted to date have shown paradoxical findings about the implications of CIN for therapeutic response, with some studies showing associations between high CIN and better therapeutic response, and others showing the opposite: associations between high CIN and therapeutic resistance. This evidences the complex relationships between CIN with the prognosis and response to treatment in cancer. Considering the above, this review focuses on recent studies on the role of CIN in cancer, the cellular mechanisms leading to CIN, its relationship with other hallmarks of cancer, and the emerging therapeutic approaches that are being developed to target such instability, with a primary focus on breast cancer. Further understanding of the complexity of CIN and its association with other hallmarks of cancer could provide a better understanding of the cellular and molecular mechanisms involved in prognosis and response to treatment in cancer and potentially lead to new drug targets.
Collapse
Affiliation(s)
- Giovanny Castellanos
- Maestría en Ciencias Biológicas, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia.,School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - Duván Sebastián Valbuena
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - Erika Pérez
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - Victoria E Villegas
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Milena Rondón-Lagos
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| |
Collapse
|
233
|
Zhang J, Zhang L, Duan S, Li Z, Li G, Yu H. Single and combined use of the platelet-lymphocyte ratio, neutrophil-lymphocyte ratio, and systemic immune-inflammation index in gastric cancer diagnosis. Front Oncol 2023; 13:1143154. [PMID: 37064093 PMCID: PMC10098186 DOI: 10.3389/fonc.2023.1143154] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/16/2023] [Indexed: 04/18/2023] Open
Abstract
Introduction The platelet-lymphocyte ratio (PLR), neutrophil-lymphocyte ratio (NLR), and systemic immune-inflammation index (SII) are markers for systemic inflammatory responses and have been shown by numerous studies to correlate with the prognosis of gastric cancer (GC). However, the diagnostic value of these three markers in GC is unclear, and no research has examined them in combination. In this study, we investigated the value of the PLR, NLR, and SII individually or in combination for GC diagnosis and elucidated the connection of these three markers with GC patients' clinicopathological features. Methods This retrospective study was conducted on 125 patients diagnosed with GC and 125 healthy individuals, whose peripheral blood samples were obtained for analysis. The preoperative PLR, NLR, and SII values were subsequently calculated. Results The results suggest that the PLR, NLR, and SII values of the GC group were considerably higher than those of the healthy group (all P ≤ 0.001); moreover, all three parameters were notably higher in early GC patients (stage I/II) than in the healthy population. The diagnostic value of each index for GC was analyzed using receiver operating characteristic (ROC) curve analysis and area under the curve (AUC) calculation. The diagnostic efficacy of the SII alone (AUC: 0.831; 95% confidence interval [CI], 0.777-0.885) was expressively better than those of the NLR (AUC: 0.821; 95% CI: 0.769-0.873, P = 0.017) and PLR (AUC: 0.783; 95% CI: 0.726-0.840; P = 0.020). The AUC value of the combination of the PLR, NLR, and SII (AUC: 0.843; 95% CI: 0.791-0.885) was significantly higher than that of the combination of the SII and NLR (0.837, 95% CI: 0.785-0.880, P≤0.05), PLR (P = 0.020), NLR (P = 0.017), or SII alone (P ≤ 0.001). The optimal cut-off values were determined for the PLR, NLR, and SII using ROC analysis (SII: 438.7; NLR: 2.1; PLR: 139.5). Additionally, the PLR, NLR, and SII values were all meaningfully connected with the tumor size, TNM stage, lymph node metastasis, and serosa invasion (all P ≤ 0.05). Elevated levels of the NLR and SII were linked to distant metastasis (all P ≤ 0.001). Discussion These data suggest that the preoperative PLR, NLR, and SII could thus be utilized as diagnostic markers for GC or even early GC. Among these three indicators, the SII had the best diagnostic efficacy for GC, and the combination of the three could further improve diagnostic efficiency.
Collapse
Affiliation(s)
- Jingliang Zhang
- The First Clinical Medical School, Shanxi Medical University, Taiyuan, China
| | - Li Zhang
- Department of Gastroenterology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
- *Correspondence: Li Zhang,
| | - Shusheng Duan
- Department of Hematology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhi Li
- Department of Gastroenterology Surgery, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Guodong Li
- Department of Gastroenterology Surgery, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Haiyan Yu
- Department of Gastroenterology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
234
|
Backert S, Linz B, Tegtmeyer N. Helicobacter pylori-Induced Host Cell DNA Damage and Genetics of Gastric Cancer Development. Curr Top Microbiol Immunol 2023; 444:185-206. [PMID: 38231219 DOI: 10.1007/978-3-031-47331-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Gastric cancer is a very serious and deadly disease worldwide with about one million new cases every year. Most gastric cancer subtypes are associated with genetic and epigenetic aberrations caused by chromosome instability, microsatellite instability or Epstein-Barr virus infection. Another risk factor is an infection with Helicobacter pylori, which also triggers severe alterations in the host genome. This pathogen expresses an extraordinary repertoire of virulence determinants that take over control of important host cell signaling functions. In fact, H. pylori is a paradigm of persistent infection, chronic inflammation and cellular destruction. In particular, H. pylori profoundly induces chromosomal DNA damage by introducing double-strand breaks (DSBs) followed by genomic instability. DSBs appear in response to oxidative stress and pro-inflammatory transcription during the S-phase of the epithelial cell cycle, which mainly depends on the presence of the bacterial cag pathogenicity island (cagPAI)-encoded type IV secretion system (T4SS). This scenario is closely connected with the T4SS-mediated injection of ADP-glycero-β-D-manno-heptose (ADP-heptose) and oncoprotein CagA. While ADP-heptose links transcription factor NF-κB-induced innate immune signaling with RNA-loop-mediated DNA replication stress and introduction of DSBs, intracellular CagA targets the tumor suppressor BRCA1. The latter scenario promotes BRCAness, a disease characterized by the deficiency of effective DSB repair. In addition, genetic studies of patients demonstrated the presence of gastric cancer-associated single nucleotide polymorphisms (SNPs) in immune-regulatory and other genes as well as specific pathogenic germline variants in several crucial genes involved in homologous recombination and DNA repair, all of which are connected to H. pylori infection. Here we review the molecular mechanisms leading to chromosomal DNA damage and specific genetic aberrations in the presence or absence of H. pylori infection, and discuss their importance in gastric carcinogenesis.
Collapse
Affiliation(s)
- Steffen Backert
- Division of Microbiology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany.
| | - Bodo Linz
- Division of Microbiology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Nicole Tegtmeyer
- Division of Microbiology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany.
| |
Collapse
|
235
|
Çağlar R. The relationship of different preoperative inflammatory markers with the prognosis of gastric carcinoma. Asian J Surg 2023; 46:360-365. [PMID: 35589478 DOI: 10.1016/j.asjsur.2022.04.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/15/2022] [Accepted: 04/21/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND It is aimed to determine the prognostic values of preoperative inflammatory biomarkers in patients undergoing curative surgery for gastric carcinoma and to contribute to the development of prognostic modeling. OBJECTIVE To investigate the effect of various different preoperative inflammatory markers on the prognosis of gastric carcinoma. MATERIAL AND METHOD The medical data and the mortality status of 91 patients who underwent total or subtotal gastrectomy operation for gastric carcinoma at Mersin City Training and Research Hospital between 2016 and 2020 were retrospectively reviewed from the hospital records and patient files. The patients' demographic characteristics, tumor location, histopathological diagnosis, pathological stage, tumor markers, and preoperative inflammatory and hematological markers were analyzed. Based on these data, tumor stage, metastatic lymph node ratio (MLR), lactate dehydrogenase albumin ratio (LAR), neutrophil-lymphocyte ratio (NLR), and platelet lymphocyte ratio (PLR) were calculated. The relationship between these parameters and postoperative survival was analyzed. Statistical analyses were performed with IBM SPSS for Windows, version 17.0 (IBM Corporation, Armonk, New York, United States). RESULTS The correlation analysis of the parameters affecting survival showed that, in addition to an advanced tumor stage, inflammatory parameters like NLR, PLR, and LAR adversely affected survival. CONCLUSION Preoperative NLR, PLR, LAR, and advanced tumor stage may help determine the survival of gastric carcinoma patients. Multiple studies with larger series are needed on this subject.
Collapse
Affiliation(s)
- Recep Çağlar
- Mersin City Training and Research Hospital, Department of General Surgery/ Gastroenterological Surgery, Mersin, Turkey.
| |
Collapse
|
236
|
Sieow JL, Penny HL, Gun SY, Tan LQ, Duan K, Yeong JPS, Pang A, Lim D, Toh HC, Lim TKH, Engleman E, Rotzschke O, Ng LG, Chen J, Tan SM, Wong SC. Conditional Knockout of Hypoxia-Inducible Factor 1-Alpha in Tumor-Infiltrating Neutrophils Protects against Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2023; 24:ijms24010753. [PMID: 36614196 PMCID: PMC9821271 DOI: 10.3390/ijms24010753] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/21/2022] [Accepted: 12/24/2022] [Indexed: 01/04/2023] Open
Abstract
Large numbers of neutrophils infiltrate tumors and comprise a notable component of the inflammatory tumor microenvironment. While it is established that tumor cells exhibit the Warburg effect for energy production, the contribution of the neutrophil metabolic state to tumorigenesis is unknown. Here, we investigated whether neutrophil infiltration and metabolic status promotes tumor progression in an orthotopic mouse model of pancreatic ductal adenocarcinoma (PDAC). We observed a large increase in the proportion of neutrophils in the blood and tumor upon orthotopic transplantation. Intriguingly, these tumor-infiltrating neutrophils up-regulated glycolytic factors and hypoxia-inducible factor 1-alpha (HIF-1α) expression compared to neutrophils from the bone marrow and blood of the same mouse. This enhanced glycolytic signature was also observed in human PDAC tissue samples. Strikingly, neutrophil-specific deletion of HIF-1α (HIF-1αΔNφ) significantly reduced tumor burden and improved overall survival in orthotopic transplanted mice, by converting the pro-tumorigenic neutrophil phenotype to an anti-tumorigenic phenotype. This outcome was associated with elevated reactive oxygen species production and activated natural killer cells and CD8+ cytotoxic T cells compared to littermate control mice. These data suggest a role for HIF-1α in neutrophil metabolism, which could be exploited as a target for metabolic modulation in cancer.
Collapse
Affiliation(s)
- Je Lin Sieow
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Hweixian Leong Penny
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
| | - Sin Yee Gun
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
| | - Ling Qiao Tan
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
| | - Kaibo Duan
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
| | - Joe Poh Sheng Yeong
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
- Department of Anatomical Pathology, Singapore General Hospital, Singapore 169856, Singapore
| | - Angela Pang
- Department of Haematology-Oncology, National University Cancer Institute, Singapore 119228, Singapore
| | - Diana Lim
- Department of Pathology, National University Health System, Singapore 119074, Singapore
| | - Han Chong Toh
- Department of Oncology, National Cancer Centre, Singapore 169610, Singapore
| | - Tony Kiat Hon Lim
- Department of Anatomical Pathology, Singapore General Hospital, Singapore 169856, Singapore
| | - Edgar Engleman
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Olaf Rotzschke
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
| | - Lai Guan Ng
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
| | - Jinmiao Chen
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
| | - Suet Mien Tan
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Siew Cheng Wong
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
- Correspondence: ; Tel.: +65-64070030
| |
Collapse
|
237
|
Myeloid-derived suppressor cells in head and neck squamous cell carcinoma. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 375:33-92. [PMID: 36967154 DOI: 10.1016/bs.ircmb.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs), which originated from hematopoietic stem cells, are heterogeneous population of cells that have different differentiation patterns and widely presented in tumor microenvironment. For tumor research, myeloid suppressor cells have received extensive attention since their discovery due to their specific immunosuppressive properties, and the mechanisms of immunosuppression and therapeutic approaches for MDSCs have been investigated in a variety of different types of malignancies. To improve the efficacy of treatment for head and neck squamous cell carcinoma (HNSCC), a disease with a high occurrence, immunotherapy has gradually emerged in after traditional surgery and subsequent radiotherapy and chemotherapy, and has made some progress. In this review, we introduced the mechanisms on the development, differentiation, and elimination of MDSCs and provided a detailed overview of the mechanisms behind the immunosuppressive properties of MDSCs. We summarized the recent researches on MDSCs in HNSCC, especially for targeting-MDSCs therapy and combination with other types of therapy such as immune checkpoint blockade (ICB). Furthermore, we looked at drug delivery patterns and collected the current diverse drug delivery systems for the improvement that contributed to therapy against MDSCs in HNSCC. Most importantly, we made possible outlooks for the future research priorities, which provide a basis for further study on the clinical significance and therapeutic value of MDSCs in HNSCC.
Collapse
|
238
|
Dai M, Wu W. Prognostic role of C-reactive protein to albumin ratio in cancer patients treated with immune checkpoint inhibitors: a meta-analysis. Front Oncol 2023; 13:1148786. [PMID: 37213304 PMCID: PMC10196627 DOI: 10.3389/fonc.2023.1148786] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/18/2023] [Indexed: 05/23/2023] Open
Abstract
Background There are numerous articles investigating whether C-reactive protein to albumin ratio (CAR) is significant for predicting prognosis of cancer cases receiving immune checkpoint inhibitors (ICIs), whereas the results were inconsistent. We thus retrieved the literature and conducted the present meta-analysis for clarifying relation of CAR with survival outcomes among ICI-treated cancer patients. Methods Through search against the Web of Science, PubMed, Cochrane Library, and Embase databases was carried out. The search was updated on 11 December 2022. This work later determined the combined hazard ratios (HRs) together with 95% confidence intervals (CIs) for estimating CAR for its prognostic efficiency for overall survival (OS) and progression-free survival (PFS) in cancer patients receiving ICIs. Results A total of 11 studies consisting of 1,321 cases were enrolled into the present meta-analysis. As revealed by combined data, the increased CAR level markedly predicted dismal OS (HR = 2.79, 95% CI = 1.66-4.67, p < 0.001) together with shortened PFS (HR = 1.95, 95% CI = 1.25-3.03, p = 0.003) among carcinoma cases using ICIs. The prognostic effect of CAR was not influenced by clinical stage or study center. Our result reliability was suggested by sensitivity analysis and publication bias test. Conclusions High CAR expression showed marked relation to worse survival outcomes among ICI-treated cancer cases. CAR is easily available and cost effective, which can be the potential biomarker for selecting cancer cases benefiting from ICIs.
Collapse
|
239
|
Hu Z, Yuan Y, Hu Z, Liu Q, Fu Y, Hou J, Sun X, Li S, Duan W, Chen M. Development and Validation of Prognostic Nomograms for Hepatocellular Carcinoma After Hepatectomy Based on Inflammatory Markers. J Hepatocell Carcinoma 2022; 9:1403-1413. [PMID: 36600988 PMCID: PMC9807130 DOI: 10.2147/jhc.s390858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/17/2022] [Indexed: 12/30/2022] Open
Abstract
Background The value of lactate dehydrogenase (LDH) compared with other inflammation-based scores in predicting the outcomes of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) patients after curative resection remains unknown. This study aims to evaluate the predictive value of LDH and develop novel nomograms to predict postoperative recurrence and survival in these patients. Methods This study retrospectively collected 1560 patients with HBV-related HCC who underwent curative resection from four institutions in China. In total, 924 patients were recruited from our center and randomly divided into the training cohort (n = 616) and internal validation (n = 308) cohorts. Additionally, 636 patients were selected from three other centers as the external validation cohort. The C index of inflammation-based scores was calculated and compared in the training cohort. Novel models were developed according to multivariable Cox regression analysis in the training cohort and validated in the internal and external validation cohorts. Results LDH showed a higher C-index than other inflammation-based scores for recurrence survival (RFS, 0.60, 95% CI, 0.58-0.61) and overall survival (OS, 0.65, 95% CI, 0.63-0.68). The nomograms of RFS and OS were developed based on tumor diameter, macrovascular invasion, AFP, operative hemorrhage, tumor differentiation, tumor number and LDH and achieved a high C-index (0.78, 95% CI, 0.76-0.79 and 0.81, 95% CI, 0.79-0.83), which were remarkably higher than the C-indexes of the five conventional HCC staging systems (0.52-0.62 for RFS and 0.53-0.67 for OS). The nomograms were validated in the internal validation cohort (0.77 for RFS, 0.78 for OS) and external validation cohort (0.80 for RFS, 0.81 for OS) and performed well-fitted calibration curves. Conclusion The two nomograms based on inflammatory markers achieved optimal prediction for RFS and OS of patients with HBV-related HCC after hepatectomy.
Collapse
Affiliation(s)
- Zili Hu
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People’s Republic of China,Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People’s Republic of China
| | - Yu Yuan
- Department of Respiratory Medicine, the Second Xiangya Hospital, Central South University, Changsha, 510235, People’s Republic of China
| | - Zhiwen Hu
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People’s Republic of China,Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People’s Republic of China
| | - Qingbo Liu
- Department of Hepatobiliary Surgery, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde), Foshan, 528308, People’s Republic of China
| | - Yizhen Fu
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People’s Republic of China,Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People’s Republic of China
| | - Jingyu Hou
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People’s Republic of China,Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People’s Republic of China
| | - Xuqi Sun
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People’s Republic of China
| | - Shaoqiang Li
- Hepatic Pancreatobiliary Surgery Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People’s Republic of China
| | - Wenbin Duan
- Department of Hepatobiliary Surgery, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, People’s Republic of China
| | - Minshan Chen
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People’s Republic of China,Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People’s Republic of China,Correspondence: Minshan Chen; Wenbin Duan, Fax ++86-20-87343117; +86-20-877557668214, Email ;
| |
Collapse
|
240
|
Benchama O, Malamas MS, Praveen K, Ethier EC, Williams MK, Makriyannis A, Avraham HK. Inhibition of triple negative breast cancer-associated inflammation and progression by N- acylethanolamine acid amide hydrolase (NAAA). Sci Rep 2022; 12:22255. [PMID: 36564457 PMCID: PMC9789040 DOI: 10.1038/s41598-022-26564-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is associated with high mortality due to the high expression of pro-inflammatory cytokines and lack of targeted therapies. N-acylethanolamine acid amidase (NAAA) is an N-terminal cysteine hydrolase that promotes inflammatory responses through the deactivation of Palmitoylethanolamide (PEA), an endogenous bioactive lipid mediator. Here, we examined NAAA expression in TNBC cells (MDA-MB-231 and MDA-MB-BrM2 cells) and the effects of NAAA inhibition on TNBC tumor growth, using a selective NAAA inhibitor AM11095 (IC50 = 20 nM). TNBC cells expressed elevated levels of full-length and splice mRNAs naaa variants. TNBC cells also express the N-acyl ethanol amides and elevated levels of the two fatty acid cores arachidonic (AA) and docosahexaenoic (DHA). PEA or AM11095 inhibited the secretion of IL-6 and IL-8, reduced the activation of the NF-kB pathway, decreased the expression of VEGF and Placental growth factor (PLGF) in TNBCs, and inhibited tumor cell migration in vitro. Using cellular magnetic resonance imaging (MRI), body images of mice administered with human MDA-MB-BrM2 cells treated with AM11095 showed a significant decrease in tumor numbers with a lower volume of tumors and increased mice survival. Mice untreated or treated with vehicle control showed a high number of tumors with high volumes in multiple organs. Thus, NAAA inhibition may constitute a potential therapeutic approach in the management of TNBC-associated inflammation and tumor growth.
Collapse
Affiliation(s)
- Othman Benchama
- grid.261112.70000 0001 2173 3359Center of Drug Discovery, Northeastern University, Boston, MA 02115 USA
| | - Michael S. Malamas
- grid.261112.70000 0001 2173 3359Center of Drug Discovery, Northeastern University, Boston, MA 02115 USA
| | - Kulkarni Praveen
- grid.261112.70000 0001 2173 3359Center for Translational Neuroimaging, Northeastern University, Boston, MA 02115 USA
| | - Elizabeth C. Ethier
- grid.261112.70000 0001 2173 3359Center of Drug Discovery, Northeastern University, Boston, MA 02115 USA
| | | | - Alexandros Makriyannis
- grid.261112.70000 0001 2173 3359Center of Drug Discovery, Northeastern University, Boston, MA 02115 USA
| | - Hava Karsenty Avraham
- grid.261112.70000 0001 2173 3359Center of Drug Discovery, Northeastern University, Boston, MA 02115 USA
| |
Collapse
|
241
|
Yang XC, Liu H, Liu DC, Tong C, Liang XW, Chen RH. Prognostic value of pan-immune-inflammation value in colorectal cancer patients: A systematic review and meta-analysis. Front Oncol 2022; 12:1036890. [PMID: 36620576 PMCID: PMC9813847 DOI: 10.3389/fonc.2022.1036890] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Background The pan-immune-inflammation value (PIV) has been reported as a novel prognostic biomarker in multiple malignancies. The aim of this study is to investigate the prognostic value of the PIV in patients with colorectal cancer. Methods We comprehensively searched electronic databases including PubMed, Embase and Web of Science up to August 2022. The endpoints were survival outcomes. Hazard ratios (HRs) with 95% confidence intervals (CIs) for survival data were collected for analysis. Results Six studies including 1879 participants were included. A significant heterogeneity in the PIV cut-off value among studies was observed. The combined results indicated that patients in the high baseline PIV group had a worse overall survival (HR=2.09; 95%CI: 1.67-2.61; P<0.0001; I2 = 7%) and progression-free survival (HR=1.82; 95%CI: 1.49-2.22; P<0.0001; I2 = 15%). In addition, early PIV increase after treatment initiation was significantly associated with decreased overall survival (HR=1.79; 95%CI: 1.13-2.93; P=0.01; I2 = 26%), and a trend toward poor progression-free survival (HR=2.00; 95%CI: 0.90-4.41; P=0.09; I2 = 70%). Conclusion Based on existing evidence, the PIV could act as a valuable prognostic index in patients with colorectal cancer. However, the heterogeneity in the PIV cut-off value among studies should be considered when interpreting these findings.
Collapse
Affiliation(s)
- Xiao-Chuan Yang
- Department of Interventional Radiology, Central South University, Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, Hainan, China
| | - Hui Liu
- Department of Interventional Radiology, Central South University, Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, Hainan, China
| | - Ding-Cheng Liu
- Department of Interventional Radiology, Central South University, Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, Hainan, China
| | - Chao Tong
- Department of Interventional Radiology, Central South University, Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, Hainan, China
| | - Xian-Wen Liang
- Department of Hepatobiliary Surgery, Hainan General Hospital, Haikou, Hainan, China
| | - Ri-Hui Chen
- Department of Interventional Radiology, Central South University, Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, Hainan, China
| |
Collapse
|
242
|
Qiao DR, Shan GY, Wang S, Cheng JY, Yan WQ, Li HJ. The mononuclear phagocyte system in hepatocellular carcinoma. World J Gastroenterol 2022; 28:6345-6355. [PMID: 36533105 PMCID: PMC9753057 DOI: 10.3748/wjg.v28.i45.6345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/10/2022] [Accepted: 11/17/2022] [Indexed: 12/02/2022] Open
Abstract
The mononuclear phagocyte system (MPS) consists of monocytes, dendritic cells and macrophages, which play vital roles in innate immune defense against cancer. Hepatocellular carcinoma (HCC) is a complex disease that is affected or initiated by many factors, including chronic hepatitis B virus infection, hepatitis C virus infection, metabolic disorders or alcohol consumption. Liver function, tumor stage and the performance status of patients affect HCC clinical outcomes. Studies have shown that targeted treatment of tumor microenvironment disorders may improve the efficacy of HCC treatments. Cytokines derived from the innate immune response can regulate T-cell differentiation, thereby shaping adaptive immunity, which is associated with the prognosis of HCC. Therefore, it is important to elucidate the function of the MPS in the progression of HCC. In this review, we outline the impact of HCC on the MPS. We illustrate how HCC reshapes MPS cell phenotype remodeling and the production of associated cytokines and characterize the function and impairment of the MPS in HCC.
Collapse
Affiliation(s)
- Duan-Rui Qiao
- Department of Bioengineering, Pharmacy School of Jilin University, Changchun 130021, Jilin Province, China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| | - Guan-Yue Shan
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| | - Shuai Wang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
- Department of Students Affairs, China-Japan Union Hospital of Jilin University, Changchun 130031, Jilin Province, China
| | - Jun-Ya Cheng
- Department of Bioengineering, Pharmacy School of Jilin University, Changchun 130021, Jilin Province, China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| | - Wei-Qun Yan
- Department of Bioengineering, Pharmacy School of Jilin University, Changchun 130021, Jilin Province, China
| | - Hai-Jun Li
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
- Institute of Liver Diseases, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| |
Collapse
|
243
|
Penco-Campillo M, Molina C, Piris P, Soufi N, Carré M, Pagnuzzi-Boncompagni M, Picco V, Dufies M, Ronco C, Benhida R, Martial S, Pagès G. Targeting of the ELR+CXCL/CXCR1/2 Pathway Is a Relevant Strategy for the Treatment of Paediatric Medulloblastomas. Cells 2022; 11:cells11233933. [PMID: 36497191 PMCID: PMC9738107 DOI: 10.3390/cells11233933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Medulloblastoma (MB) is the most common and aggressive paediatric brain tumour. Although the cure rate can be as high as 70%, current treatments (surgery, radio- and chemotherapy) excessively affect the patients' quality of life. Relapses cannot be controlled by conventional or targeted treatments and are usually fatal. The strong heterogeneity of the disease (four subgroups and several subtypes) is related to innate or acquired resistance to reference treatments. Therefore, more efficient and less-toxic therapies are needed. Here, we demonstrated the efficacy of a novel inhibitor (C29) of CXCR1/2 receptors for ELR+CXCL cytokines for the treatment of childhood MB. The correlation between ELR+CXCL/CXCR1/2 expression and patient survival was determined using the R2: Genomics Analysis and Visualization platform. In vitro efficacy of C29 was evaluated by its ability to inhibit proliferation, migration, invasion, and pseudo-vessel formation of MB cell lines sensitive or resistant to radiotherapy. The growth of experimental MB obtained by MB spheroids on organotypic mouse cerebellar slices was also assayed. ELR+CXCL/CXCR1/2 levels correlated with shorter survival. C29 inhibited proliferation, clone formation, CXCL8/CXCR1/2-dependent migration, invasion, and pseudo-vessel formation by sensitive and radioresistant MB cells. C29 reduced experimental growth of MB in the ex vivo organotypic mouse model and crossed the blood-brain barrier. Targeting CXCR1/2 represents a promising therapeutic strategy for the treatment of paediatric MB in first-line treatment or after relapse following conventional therapy.
Collapse
Affiliation(s)
- Manon Penco-Campillo
- Institute for Research on Cancer and Aging (IRCAN), Université Côte d’Azur, CNRS UMR 7284 and INSERM U1081, 33 Avenue de Valombrose, 06107 Nice, France
| | - Clément Molina
- Institute for Research on Cancer and Aging (IRCAN), Université Côte d’Azur, CNRS UMR 7284 and INSERM U1081, 33 Avenue de Valombrose, 06107 Nice, France
| | - Patricia Piris
- Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli Calmettes, Aix-Marseille Université, Inserm U1068, CNRS UMR 758, 27 Boulevard Jean Moulin, 13273 Marseille, France
| | - Nouha Soufi
- Institute for Research on Cancer and Aging (IRCAN), Université Côte d’Azur, CNRS UMR 7284 and INSERM U1081, 33 Avenue de Valombrose, 06107 Nice, France
| | - Manon Carré
- Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli Calmettes, Aix-Marseille Université, Inserm U1068, CNRS UMR 758, 27 Boulevard Jean Moulin, 13273 Marseille, France
| | | | - Vincent Picco
- Centre Scientifique de Monaco (CSM), Biomedical Department, 98000 Monaco, Monaco
| | - Maeva Dufies
- Institute for Research on Cancer and Aging (IRCAN), Université Côte d’Azur, CNRS UMR 7284 and INSERM U1081, 33 Avenue de Valombrose, 06107 Nice, France
- Roca Therapeutics, 06000 Nice, France
| | - Cyril Ronco
- Roca Therapeutics, 06000 Nice, France
- Institut de Chimie de Nice UMR 7272, Université Côte d’Azur, Centre National de Recherche Scientifique (CNRS), 06108 Nice, France
| | - Rachid Benhida
- Roca Therapeutics, 06000 Nice, France
- Institut de Chimie de Nice UMR 7272, Université Côte d’Azur, Centre National de Recherche Scientifique (CNRS), 06108 Nice, France
| | - Sonia Martial
- Institute for Research on Cancer and Aging (IRCAN), Université Côte d’Azur, CNRS UMR 7284 and INSERM U1081, 33 Avenue de Valombrose, 06107 Nice, France
- Correspondence: ; Tel.: +33-4-92-03-12-29
| | - Gilles Pagès
- Institute for Research on Cancer and Aging (IRCAN), Université Côte d’Azur, CNRS UMR 7284 and INSERM U1081, 33 Avenue de Valombrose, 06107 Nice, France
- Centre Scientifique de Monaco (CSM), Biomedical Department, 98000 Monaco, Monaco
- Roca Therapeutics, 06000 Nice, France
| |
Collapse
|
244
|
Deletion of TNF in Winnie- APCMin/+ Mice Reveals Its Dual Role in the Onset and Progression of Colitis-Associated Colorectal Cancer. Int J Mol Sci 2022; 23:ijms232315145. [PMID: 36499472 PMCID: PMC9737576 DOI: 10.3390/ijms232315145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Colorectal cancer (CRC) is among the best examples for depicting the relationship between inflammation and cancer. The introduction of new therapeutics targeting inflammatory mediators showed a marked decrease in the overall risk of CRC, although their chemopreventive potential is still debated. Specifically, a monoclonal antibody that blocks tumor necrosis factor (TNF), infliximab, increases CRC risk in inflammatory bowel disease patients. To address the axis between TNF and CRC development and progression, we depleted the Tnf from our previously established murine model of colitis-associated cancer (CAC), the Winnie-ApcMin/+ line. We characterized the new Winnie-APCMin/+-TNF-KO line through macroscopical and microscopical analyses. Surprisingly, the latter demonstrated that the deletion of Tnf in Winnie-ApcMin/+ mice resulted in an initial reduction in dysplastic lesion incidence in 5-week-old mice followed by a faster disease progression at 8 weeks. Histological data were confirmed by the molecular profiling obtained from both the real-time PCR analysis of the whole tissue and the RNA sequencing of the macrodissected tumoral lesions from Winnie-APCMin/+-TNF-KO distal colon at 8 weeks. Our results highlight that TNF could exert a dual role in CAC, supporting the promotion of neoplastic lesions onset in the early stage of the disease while inducing their reduction during disease progression.
Collapse
|
245
|
Fatima M, Karwasra R, Almalki WH, Sahebkar A, Kesharwani P. Galactose engineered nanocarriers: Hopes and hypes in cancer therapy. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
246
|
Banna GL, Friedlaender A, Tagliamento M, Mollica V, Cortellini A, Rebuzzi SE, Prelaj A, Naqash AR, Auclin E, Garetto L, Mezquita L, Addeo A. Biological Rationale for Peripheral Blood Cell-Derived Inflammatory Indices and Related Prognostic Scores in Patients with Advanced Non-Small-Cell Lung Cancer. Curr Oncol Rep 2022; 24:1851-1862. [PMID: 36255605 DOI: 10.1007/s11912-022-01335-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2022] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW To describe the biological rationale of peripheral blood cells (PBC)-derived inflammatory indexes and assess the related prognostic scores for patients with advanced non-small cell lung cancer (aNSCLC) treated with immune-checkpoint inhibitors (ICI). RECENT FINDINGS Inflammatory indexes based on PBC may indicate a pro-inflammatory condition affecting the immune response to cancer. The lung immune prognostic index (LIPI), consisting of derived neutrophils-to-lymphocyte ratio (NLR) and lactate dehydrogenase, is a validated prognostic tool, especially for pretreated aNSCLC patients, where the combination of NLR and PD-L1 tumour expression might also be predictive of immunotherapy benefit. In untreated high-PD-L1 aNSCLC patients, the Lung-Immune-Prognostic score (LIPS), including NLR, ECOG PS and concomitant steroids, is prognostic, and its modified version might indicate patients with favourable outcomes despite an ECOG PS of 2. NLR times platelets (i.e., SII), included in the NHS-Lung score, might improve the prognostication for combined chemoimmunotherapy. PBC-derived inflammatory indexes and related scores represent accurate, reproducible and non-expensive prognostic tools with clinical and research utility.
Collapse
Affiliation(s)
| | - Alex Friedlaender
- Department of Oncology, Clinique Générale Beaulieu, Geneva, Switzerland
- Department of Oncology, University Hospital of Geneva, Geneva, Switzerland
| | - Marco Tagliamento
- Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genoa, Genoa, Italy
| | - Veronica Mollica
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy
| | - Alessio Cortellini
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - Sara Elena Rebuzzi
- Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genoa, Genoa, Italy
- Medical Oncology Unit, Ospedale San Paolo, Savona, Italy
| | - Arsela Prelaj
- Medical Oncology Department 1, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
- Department of Electronics, Information, and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Abdul Rafeh Naqash
- Medical Oncology/TSET Phase 1 Program, Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
| | - Edouard Auclin
- Medical Oncology, Hôpital Européen Georges Pompidou, AP-HP, Université Paris Cité, Paris, France
| | - Lucia Garetto
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Laura Mezquita
- Medical Oncology Department, Hospital Clinic of Barcelona, Barcelona, Spain
- Laboratory of Translational Genomics and Targeted Therapies in Solid Tumors, IDIBAPS, Barcelona, Spain
- Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Alfredo Addeo
- Department of Oncology, University Hospital of Geneva, Geneva, Switzerland
| |
Collapse
|
247
|
Larsson SC, Spyrou N, Mantzoros CS. Body fatness associations with cancer: evidence from recent epidemiological studies and future directions. Metabolism 2022; 137:155326. [PMID: 36191637 DOI: 10.1016/j.metabol.2022.155326] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 12/12/2022]
Abstract
This narrative review highlights current evidence linking greater body fatness to risk of various cancers, with focus on evidence from recent large cohort studies and pooled analyses of cohort studies as well as Mendelian randomization studies (which utilized genetic variants associated with body mass index to debrief the causal effect of higher body fatness on cancer risk). This review also provides insights into the biological mechanisms underpinning the associations. Data from both observational and Mendelian randomization studies support the associations of higher body mass index with increased risk of many cancers with the strongest evidence for digestive system cancers, including esophageal, stomach, colorectal, liver, gallbladder, and pancreatic cancer, as well as kidney, endometrial, and ovarian (weak association) cancer. Evidence from observational studies suggests that greater body fatness has contrasting effects on breast cancer risk depending on menopausal status and on prostate cancer risk depending on disease stage. Experimental and Mendelian randomization studies indicate that adiponectin, insulin, and sex hormone pathways play an important role in mediating the link between body fatness and cancer risk. The possible role of specific factors and pathways, such as other adipocytokines and hormones and the gut microbiome in mediating the associations between greater body fatness and cancer risk is yet uncertain and needs investigation in future studies. With rising prevalence of overweight and obesity worldwide, the proportion of cancer caused by excess body fatness is expected to increase. There is thus an urgent need to identify efficient ways at the individual and societal level to improve diet and physical activity patterns to reduce the burden of obesity and accompanying comorbidities, including cancer.
Collapse
Affiliation(s)
- Susanna C Larsson
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
| | - Nikolaos Spyrou
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, USA; Section of Endocrinology, VA Boston Healthcare System, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
248
|
Marangio A, Biccari A, D’Angelo E, Sensi F, Spolverato G, Pucciarelli S, Agostini M. The Study of the Extracellular Matrix in Chronic Inflammation: A Way to Prevent Cancer Initiation? Cancers (Basel) 2022; 14:cancers14235903. [PMID: 36497384 PMCID: PMC9741172 DOI: 10.3390/cancers14235903] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 12/04/2022] Open
Abstract
Bidirectional communication between cells and their microenvironment has a key function in normal tissue homeostasis, and in disease initiation, progression and a patient's prognosis, at the very least. The extracellular matrix (ECM), as an element of all tissues and cellular microenvironment, is a frequently overlooked component implicated in the pathogenesis and progression of several diseases. In the inflammatory microenvironment (IME), different alterations resulting from remodeling processes can affect ECM, progressively inducing cancer initiation and the passage toward a tumor microenvironment (TME). Indeed, it has been demonstrated that altered ECM components interact with a variety of surface receptors triggering intracellular signaling that affect cellular pathways in turn. This review aims to support the notion that the ECM and its alterations actively participate in the promotion of chronic inflammation and cancer initiation. In conclusion, some data obtained in cancer research with the employment of decellularized ECM (dECM) models are described. The reported results encourage the application of dECM models to investigate the short circuits contributing to the creation of distinct IME, thus representing a potential tool to avoid the progression toward a malignant lesion.
Collapse
Affiliation(s)
- Asia Marangio
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, 35129 Padova, Italy
| | - Andrea Biccari
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, 35129 Padova, Italy
| | - Edoardo D’Angelo
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, 35129 Padova, Italy
| | - Francesca Sensi
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, 35129 Padova, Italy
- Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy
| | - Gaya Spolverato
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Salvatore Pucciarelli
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Marco Agostini
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, 35129 Padova, Italy
- Correspondence: ; Tel.: +39-049-964-0160
| |
Collapse
|
249
|
Devoy C, Flores Bueso Y, Tangney M. Understanding and harnessing triple-negative breast cancer-related microbiota in oncology. Front Oncol 2022; 12:1020121. [PMID: 36505861 PMCID: PMC9730816 DOI: 10.3389/fonc.2022.1020121] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022] Open
Abstract
Bacterial inhabitants of the body have the potential to play a role in various stages of cancer initiation, progression, and treatment. These bacteria may be distal to the primary tumour, such as gut microbiota, or local to the tissue, before or after tumour growth. Breast cancer is well studied in this context. Amongst breast cancer types, Triple Negative Breast Cancer (TNBC) is more aggressive, has fewer treatment options than receptor-positive breast cancers, has an overall worse prognosis and higher rates of reoccurrence. Thus, an in-depth understanding of the bacterial influence on TNBC progression and treatment is of high value. In this regard, the Gut Microbiota (GM) can be involved in various stages of tumour progression. It may suppress or promote carcinogenesis through the release of carcinogenic metabolites, sustenance of proinflammatory environments and/or the promotion of epigenetic changes in our genome. It can also mediate metastasis and reoccurrence through interactions with the immune system and has been recently shown to influence chemo-, radio-, and immune-therapies. Furthermore, bacteria have also been found to reside in normal and malignant breast tissue. Several studies have now described the breast and breast tumour microbiome, with the tumour microbiota of TNBC having the least taxonomic diversity among all breast cancer types. Here, specific conditions of the tumour microenvironment (TME) - low O2, leaky vasculature and immune suppression - are supportive of tumour selective bacterial growth. This innate bacterial ability could enable their use as delivery agents for various therapeutics or as diagnostics. This review aims to examine the current knowledge on bacterial relevance to TNBC and potential uses while examining some of the remaining unanswered questions regarding mechanisms underpinning observed effects.
Collapse
Affiliation(s)
- Ciaran Devoy
- Cancer Research@UCC, College of Medicine and Health, University College Cork, Cork, Ireland,SynBio Center, University College Cork, Cork, Ireland,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Yensi Flores Bueso
- Cancer Research@UCC, College of Medicine and Health, University College Cork, Cork, Ireland,SynBio Center, University College Cork, Cork, Ireland,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Mark Tangney
- Cancer Research@UCC, College of Medicine and Health, University College Cork, Cork, Ireland,SynBio Center, University College Cork, Cork, Ireland,APC Microbiome Ireland, University College Cork, Cork, Ireland,School of Pharmacy, College of Medicine and Health, University College Cork, Cork, Ireland,*Correspondence: Mark Tangney,
| |
Collapse
|
250
|
Ten Years of CRISPRing Cancers In Vitro. Cancers (Basel) 2022; 14:cancers14235746. [PMID: 36497228 PMCID: PMC9738354 DOI: 10.3390/cancers14235746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022] Open
Abstract
Cell lines have always constituted a good investigation tool for cancer research, allowing scientists to understand the basic mechanisms underlying the complex network of phenomena peculiar to the transforming path from a healthy to cancerous cell. The introduction of CRISPR in everyday laboratory activity and its relative affordability greatly expanded the bench lab weaponry in the daily attempt to better understand tumor biology with the final aim to mitigate cancer's impact in our lives. In this review, we aim to report how this genome editing technique affected in the in vitro modeling of different aspects of tumor biology, its several declinations, and analyze the advantages and drawbacks of each of them.
Collapse
|