201
|
Bitekhtina MA, Vekshin NL. [7-aminoactinomycin as a fluorescent probe for DNA unwinding and denaturation]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2008; 34:781-5. [PMID: 19088751 DOI: 10.1134/s1068162008060083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A fluorescent analogue of the antibiotic actinomycin D, 7-aminoactinomycin D (7AAMD), which is widely used in molecular biology, was shown by steady-state, polarization, and phase fluorescent spectroscopy to bind primarily in unwound regions of DNA with a concomitant increase in its emission intensity. The maximum emission intensity of 7AAMD is observed for denatured DNA. Thus, 7AAMD may serve as a good indicator of DNA unwinding, denaturation, and fragmentation.
Collapse
Affiliation(s)
- M A Bitekhtina
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow oblast, 142290 Russia
| | | |
Collapse
|
202
|
Lin W, Ezekwe EAD, Zhao Z, Liman ER, Restrepo D. TRPM5-expressing microvillous cells in the main olfactory epithelium. BMC Neurosci 2008. [PMID: 19025635 DOI: 10.1186/1471‐2202‐9‐114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The main olfactory epithelium (MOE) in the nasal cavity detects a variety of air borne molecules that provide information regarding the presence of food, predators and other relevant social and environmental factors. Within the epithelium are ciliated sensory neurons, supporting cells, basal cells and microvillous cells, each of which is distinct in morphology and function. Arguably, the least understood, are the microvillous cells, a population of cells that are small in number and whose function is not known. We previously found that in a mouse strain in which the TRPM5 promoter drives expression of the green fluorescent protein (GFP), a population of ciliated olfactory sensory neurons (OSNs), as well as a population of cells displaying microvilli-like structures is labeled. Here we examined the morphology and immunocytochemical properties of these microvillous-like cells using immunocytochemical methods. RESULTS We show that the GFP-positive microvillous cells were morphologically diversified and scattered throughout the entire MOE. These cells immunoreacted to an antibody against TRPM5, confirming the expression of this ion channel in these cells. In addition, they showed a Ca2+-activated non-selective cation current in electrophysiological recordings. They did not immunoreact to antibodies that label cell markers and elements of the transduction pathways from olfactory sensory neurons and solitary chemosensory cells of the nasal cavity. Further, the TRPM5-expressing cells did not display axon-like processes and were not labeled with a neuronal marker nor did trigeminal peptidergic nerve fibers innervate these cells. CONCLUSION We provide morphological and immunocytochemical characterization of the TRPM5-expressing microvillous cells in the main olfactory epithelium. Our data demonstrate that these cells are non-neuronal and in terms of chemosensory transduction do not resemble the TRPM5-expressing olfactory sensory neurons and nasal solitary chemosensory cells.
Collapse
Affiliation(s)
- Weihong Lin
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA.
| | | | | | | | | |
Collapse
|
203
|
TRPM5-expressing microvillous cells in the main olfactory epithelium. BMC Neurosci 2008; 9:114. [PMID: 19025635 PMCID: PMC2648980 DOI: 10.1186/1471-2202-9-114] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Accepted: 11/24/2008] [Indexed: 12/04/2022] Open
Abstract
Background The main olfactory epithelium (MOE) in the nasal cavity detects a variety of air borne molecules that provide information regarding the presence of food, predators and other relevant social and environmental factors. Within the epithelium are ciliated sensory neurons, supporting cells, basal cells and microvillous cells, each of which is distinct in morphology and function. Arguably, the least understood, are the microvillous cells, a population of cells that are small in number and whose function is not known. We previously found that in a mouse strain in which the TRPM5 promoter drives expression of the green fluorescent protein (GFP), a population of ciliated olfactory sensory neurons (OSNs), as well as a population of cells displaying microvilli-like structures is labeled. Here we examined the morphology and immunocytochemical properties of these microvillous-like cells using immunocytochemical methods. Results We show that the GFP-positive microvillous cells were morphologically diversified and scattered throughout the entire MOE. These cells immunoreacted to an antibody against TRPM5, confirming the expression of this ion channel in these cells. In addition, they showed a Ca2+-activated non-selective cation current in electrophysiological recordings. They did not immunoreact to antibodies that label cell markers and elements of the transduction pathways from olfactory sensory neurons and solitary chemosensory cells of the nasal cavity. Further, the TRPM5-expressing cells did not display axon-like processes and were not labeled with a neuronal marker nor did trigeminal peptidergic nerve fibers innervate these cells. Conclusion We provide morphological and immunocytochemical characterization of the TRPM5-expressing microvillous cells in the main olfactory epithelium. Our data demonstrate that these cells are non-neuronal and in terms of chemosensory transduction do not resemble the TRPM5-expressing olfactory sensory neurons and nasal solitary chemosensory cells.
Collapse
|
204
|
Yasuo T, Kusuhara Y, Yasumatsu K, Ninomiya Y. Multiple receptor systems for glutamate detection in the taste organ. Biol Pharm Bull 2008; 31:1833-7. [PMID: 18827337 DOI: 10.1248/bpb.31.1833] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
L-Glutamate and 5'-ribonucleotides such as guanosine-5'-monophosphate (GMP) and inosine-5'-monophosphate (IMP) elicit a unique taste called 'umami' that is distinct from the tastes of sweet, salty, sour, and bitter. For umami, like sweet and bitter compounds, taste signaling is initiated by binding of tastants to G-protein-coupled receptors (GPCR) in taste bud cells. To date, several GPCRs for umami compounds have been identified in taste cells, including the heterodimer T1R1/T1R3, and truncated type 1 and 4 metabotropic glutamate receptors missing most of the N-terminal extracellular domain (taste-mGluR4 and truncated-mGluR1). Apparently contradictory data in T1R3 knock-out (KO) mouse models have been reported. One study showed that behavioral preference and taste nerve responses to umami stimuli in T1R3-KO mice were totally abolished, suggesting that T1R1/T1R3 is a sole receptor for umami taste. The other reported reduced but not abolished responses to umami in T1R3-KO mice, suggesting existence of multiple receptors for umami taste. In this paper, we summarized the data from recent studies that further addressed this issue by using different experimental techniques. Some of the studies provided additional evidence for the existence of umami receptor systems mediated by mGluR1 and mGluR4 in addition to T1R1/T1R3. It is proposed that the signal mediated by the pathway involving T1R1/T1R3 may play a different role from that derived from the mGluRs. The former occurs mainly in the anterior tongue, and plays a major role in preference behavior, whereas the latter occurs mainly in the posterior tongue and contributes to behavioral discrimination between umami and other taste compounds.
Collapse
Affiliation(s)
- Toshiaki Yasuo
- Section of Oral Neuroscience, Graduate School of Dental Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | |
Collapse
|
205
|
Primary processes in sensory cells: current advances. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2008; 195:1-19. [PMID: 19011871 DOI: 10.1007/s00359-008-0389-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2008] [Revised: 10/25/2008] [Accepted: 10/25/2008] [Indexed: 12/20/2022]
Abstract
In the course of evolution, the strong and unremitting selective pressure on sensory performance has driven the acuity of sensory organs to its physical limits. As a consequence, the study of primary sensory processes illustrates impressively how far a physiological function can be improved if the survival of a species depends on it. Sensory cells that detect single-photons, single molecules, mechanical motions on a nanometer scale, or incredibly small fluctuations of electromagnetic fields have fascinated physiologists for a long time. It is a great challenge to understand the primary sensory processes on a molecular level. This review points out some important recent developments in the search for primary processes in sensory cells that mediate touch perception, hearing, vision, taste, olfaction, as well as the analysis of light polarization and the orientation in the Earth's magnetic field. The data are screened for common transduction strategies and common transduction molecules, an aspect that may be helpful for researchers in the field.
Collapse
|
206
|
Tizzano M, Dvoryanchikov G, Barrows JK, Kim S, Chaudhari N, Finger TE. Expression of Galpha14 in sweet-transducing taste cells of the posterior tongue. BMC Neurosci 2008; 9:110. [PMID: 19014514 PMCID: PMC2596171 DOI: 10.1186/1471-2202-9-110] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2008] [Accepted: 11/13/2008] [Indexed: 12/03/2022] Open
Abstract
Background "Type II"/Receptor cells express G protein-coupled receptors (GPCRs) for sweet, umami (T1Rs and mGluRs) or bitter (T2Rs), as well as the proteins for downstream signalling cascades. Transduction downstream of T1Rs and T2Rs relies on G-protein and PLCβ2-mediated release of stored Ca2+. Whereas Gαgus (gustducin) couples to the T2R (bitter) receptors, which Gα-subunit couples to the sweet (T1R2 + T1R3) receptor is presently not known. We utilized RT-PCR, immunocytochemistry and single-cell gene expression profiling to examine the expression of the Gαq family (q, 11, 14) in mouse taste buds. Results By RT-PCR, Gα14 is expressed strongly and in a taste selective manner in posterior (vallate and foliate), but not anterior (fungiform and palate) taste fields. Gαq and Gα11, although detectable, are not expressed in a taste-selective fashion. Further, expression of Gα14 mRNA is limited to Type II/Receptor cells in taste buds. Immunocytochemistry on vallate papillae using a broad Gαq family antiserum reveals specific staining only in Type II taste cells (i.e. those expressing TrpM5 and PLCβ2). This staining persists in Gαq knockout mice and immunostaining with a Gα11-specific antiserum shows no immunoreactivity in taste buds. Taken together, these data show that Gα14 is the dominant Gαq family member detected. Immunoreactivity for Gα14 strongly correlates with expression of T1R3, the taste receptor subunit present in taste cells responsive to either umami or sweet. Single cell gene expression profiling confirms a tight correlation between the expression of Gα14 and both T1R2 and T1R3, the receptor combination that forms sweet taste receptors. Conclusion Gα14 is co-expressed with the sweet taste receptor in posterior tongue, although not in anterior tongue. Thus, sweet taste transduction may rely on different downstream transduction elements in posterior and anterior taste fields.
Collapse
Affiliation(s)
- Marco Tizzano
- Rocky Mountain Taste & Smell Center, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA.
| | | | | | | | | | | |
Collapse
|
207
|
Caffeine activates mouse TRPA1 channels but suppresses human TRPA1 channels. Proc Natl Acad Sci U S A 2008; 105:17373-8. [PMID: 18988737 DOI: 10.1073/pnas.0809769105] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Caffeine has various well-characterized pharmacological effects, but in mammals there are no known plasma membrane receptors or ion channels activated by caffeine. We observed that caffeine activates mouse transient receptor potential A1 (TRPA1) in heterologous expression systems by Ca(2+)(i) imaging and electrophysiological analyses. These responses to caffeine were confirmed in acutely dissociated dorsal root ganglion sensory neurons from WT mice, which are known to express TRPA1, but were not seen in neurons from TRPA1 KO mice. Expression of TRPA1 was detected immunohistochemically in nerve fibers and bundles in the mouse tongue. Moreover, WT mice, but not KO mice, showed a remarkable aversion to caffeine-containing water. These results demonstrate that mouse TRPA1 channels expressed in sensory neurons cause an aversion to drinking caffeine-containing water, suggesting they mediate the perception of caffeine. Finally, we observed that caffeine does not activate human TRPA1; instead, it suppresses its activity.
Collapse
|
208
|
Quantitative assessment of TRPM5-dependent oral aversiveness of pharmaceuticals using a mouse brief-access taste aversion assay. Behav Pharmacol 2008; 19:673-82. [DOI: 10.1097/fbp.0b013e3283123cd6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
209
|
Bajec MR, Pickering GJ. Thermal taste, PROP responsiveness, and perception of oral sensations. Physiol Behav 2008; 95:581-90. [PMID: 18773913 DOI: 10.1016/j.physbeh.2008.08.009] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 08/07/2008] [Accepted: 08/12/2008] [Indexed: 11/19/2022]
Abstract
Differences between 6-n-propylthiouracil (PROP) taster groups have long been the focus of studies on individual variation in perception of oral sensation. Recently, "thermal taste" was described, the phenomenon whereby some individuals perceive "phantom" taste sensations after thermal stimulation of small areas of the tongue. As with PROP taster status (PTS), thermal taster status (TTS) has been proposed as a proxy for general responsiveness to oral stimuli. Here we examined the influence of PTS and TTS, independently, on the perceived intensity of sweet, sour, salty, bitter, astringent, and metallic stimuli, and temperature on heating or cooling the tongue. Interactions between PTS and TTS were also examined, and fungiform papillae (FP) density and salivary flow rate (SFR) were determined. Both PTS and TTS were associated with perceived stimulus intensities. PROP super-tasters (pSTs) rated all oral stimuli as more intense than PROP non-tasters (pNTs). Thermal tasters (TTs) gave higher logged ratings than thermal non-tasters (TnTs) for all oral sensations including temperature, with the exception of metallic flavour (at low concentration) and PROP. Examination of ETA-squared values showed that PTS had a greater effect on perceived intensities than did TTS for most sensations. No PTSTTS interaction was found for any oral stimuli. In contrast with PTS, TTS was not associated with FP density, and neither PTS nor TTS were associated with SFR. We conclude that pSTs and TTs possess greater responsiveness across a range of taste and trigeminal stimuli and concentrations.
Collapse
Affiliation(s)
- Martha R Bajec
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada L2S 3A1
| | | |
Collapse
|
210
|
Bezençon C, Fürholz A, Raymond F, Mansourian R, Métairon S, Le Coutre J, Damak S. Murine intestinal cells expressing Trpm5 are mostly brush cells and express markers of neuronal and inflammatory cells. J Comp Neurol 2008; 509:514-25. [DOI: 10.1002/cne.21768] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
211
|
Stratford JM, Curtis KS, Contreras RJ. Linoleic acid increases chorda tympani nerve responses to and behavioral preferences for monosodium glutamate by male and female rats. Am J Physiol Regul Integr Comp Physiol 2008; 295:R764-72. [PMID: 18635450 DOI: 10.1152/ajpregu.00916.2007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies suggest that the chorda tympani nerve (CT) is important in transmitting fat taste information to the central nervous system. However, the contribution of the CT in this process may depend upon the presence of other taste stimuli and/or differ in males and females. Accordingly, the present study investigated the role of the CT in free fatty acid taste processing by examining electrophysiological activity of the CT in response to the free fatty acid linoleic acid (LA), as well as by measuring behavioral responses to LA-taste mixtures. We recorded whole nerve responses from the CT in response to lingual application of LA with or without monosodium glutamate (MSG) in anesthetized male and female rats. In addition, we examined preferences for MSG + LA taste mixtures in behavioral tests. Although lingual application of LA alone did not produce CT whole nerve responses, coapplication of LA and MSG elicited greater CT responses than did MSG alone. These findings were paralleled by greater preferences for MSG + LA taste mixtures than for MSG alone. In both cases, the effect was particularly pronounced in male rats. Thus LA enhances CT activity and behavioral responses to LA + MSG taste mixtures, although there are sex differences in the effects. These results suggest that CT input is important in mediating behavioral responses to fat taste, but the effects depend upon other taste stimuli and differ in males and females.
Collapse
Affiliation(s)
- Jennifer M Stratford
- Dept. of Psychology and Program in Neuroscience, The Florida State Univ., Tallahassee, FL 32306-1270, USA
| | | | | |
Collapse
|
212
|
Ito K, Sugawara T, Shiroishi M, Tokuda N, Kurokawa A, Misaka T, Makyio H, Yurugi-Kobayashi T, Shimamura T, Nomura N, Murata T, Abe K, Iwata S, Kobayashi T. Advanced method for high-throughput expression of mutated eukaryotic membrane proteins in Saccharomyces cerevisiae. Biochem Biophys Res Commun 2008; 371:841-5. [PMID: 18474222 DOI: 10.1016/j.bbrc.2008.04.182] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Accepted: 04/29/2008] [Indexed: 11/20/2022]
Abstract
Crystallization of eukaryotic membrane proteins is a challenging, iterative process. The protein of interest is often modified in an attempt to improve crystallization and diffraction results. To accelerate this process, we took advantage of a GFP-fusion yeast expression system that uses PCR to direct homologous recombination and gene cloning. We explored the possibility of employing more than one PCR fragment to introduce various mutations in a single step, and found that when up to five PCR fragments were co-transformed into yeast, the recombination frequency was maintained as the number of fragments was increased. All transformants expressed the model membrane protein, while the resulting plasmid from each clone contained the designed mutations only. Thus, we have demonstrated a technique allowing the expression of mutant membrane proteins within 5 days, combining a GFP-fusion expression system and yeast homologous recombination.
Collapse
Affiliation(s)
- Keisuke Ito
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
213
|
de Araujo IE, Oliveira-Maia AJ, Sotnikova TD, Gainetdinov RR, Caron MG, Nicolelis MAL, Simon SA. Food reward in the absence of taste receptor signaling. Neuron 2008; 57:930-41. [PMID: 18367093 DOI: 10.1016/j.neuron.2008.01.032] [Citation(s) in RCA: 325] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2007] [Revised: 12/19/2007] [Accepted: 01/24/2008] [Indexed: 10/22/2022]
Abstract
Food palatability and hedonic value play central roles in nutrient intake. However, postingestive effects can influence food preferences independently of palatability, although the neurobiological bases of such mechanisms remain poorly understood. Of central interest is whether the same brain reward circuitry that is responsive to palatable rewards also encodes metabolic value independently of taste signaling. Here we show that trpm5-/- mice, which lack the cellular machinery required for sweet taste transduction, can develop a robust preference for sucrose solutions based solely on caloric content. Sucrose intake induced dopamine release in the ventral striatum of these sweet-blind mice, a pattern usually associated with receipt of palatable rewards. Furthermore, single neurons in this same ventral striatal region showed increased sensitivity to caloric intake even in the absence of gustatory inputs. Our findings suggest that calorie-rich nutrients can directly influence brain reward circuits that control food intake independently of palatability or functional taste transduction.
Collapse
Affiliation(s)
- Ivan E de Araujo
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | | | |
Collapse
|
214
|
McCaughey SA. The taste of sugars. Neurosci Biobehav Rev 2008; 32:1024-43. [PMID: 18499254 DOI: 10.1016/j.neubiorev.2008.04.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 03/27/2008] [Accepted: 04/10/2008] [Indexed: 10/22/2022]
Abstract
Sugars evoke a distinctive perceptual quality ("sweetness" in humans) and are generally highly preferred. The neural basis for these phenomena is reviewed for rodents, in which detailed electrophysiological measurements have been made. A receptor has been identified that binds sweeteners and activates G-protein-mediated signaling in taste receptor cells, which leads to changes in neural firing rates in the brain, where perceptions of taste quality, intensity, and palatability are generated. Most cells in gustatory nuclei are broadly tuned, so quality perception presumably arises from patterns of activity across neural populations. However, some manipulations affect only the most sugar-oriented cells, making it useful to consider them as a distinct neural subtype. Quality perception may also arise partly due to temporal patterns of activity to sugars, especially within sugar-oriented cells that give large but delayed responses. Non-specific gustatory neurons that are excited by both sugars and unpalatable stimuli project to ventral forebrain areas, where neural responses provide a closer match with behavioral preferences. This transition likely involves opposing excitatory and inhibitory influences by different subgroups of gustatory cells. Sweeteners are generally preferred over water, but the strength of this preference can vary across time or between individuals, and higher preferences for sugars are often associated with larger taste-evoked responses.
Collapse
Affiliation(s)
- Stuart A McCaughey
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104-3308, United States.
| |
Collapse
|
215
|
Gulbransen BD, Clapp TR, Finger TE, Kinnamon SC. Nasal solitary chemoreceptor cell responses to bitter and trigeminal stimulants in vitro. J Neurophysiol 2008; 99:2929-37. [PMID: 18417634 DOI: 10.1152/jn.00066.2008] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nasal trigeminal chemosensitivity in mice and rats is mediated in part by epithelial solitary chemoreceptor (chemosensory) cells (SCCs), but the exact role of these cells in chemoreception is unclear. Histological evidence suggests that SCCs express elements of the bitter taste transduction pathway including T2R (bitter taste) receptors, the G protein alpha-gustducin, PLCbeta2, and TRPM5, leading to speculation that SCCs are the receptor cells that mediate trigeminal nerve responses to bitter taste receptor ligands. To test this hypothesis, we used calcium imaging to determine whether SCCs respond to classic bitter-tasting or trigeminal stimulants. SCCs from the anterior nasal cavity were isolated from transgenic mice in which green fluorescent protein (GFP) expression was driven by either TRPM5 or gustducin. Isolated cells were exposed to a variety of test stimuli to determine which substances caused an increase in intracellular Ca2+ ([Ca2+]i). GFP-positive cells respond with increased [Ca2+]i to the bitter receptor ligand denatonium and this response is blocked by the PLC inhibitor U73122. In addition, GFP+ cells respond to the neuromodulators adenosine 5'-triphosphate and acetylcholine but only very rarely to other bitter-tasting or trigeminal stimuli. Our results demonstrate that TRPM5- and gustducin-expressing nasal SCCs respond to the T2R agonist denatonium via a PLC-coupled transduction cascade typical of T2Rs in the taste system.
Collapse
Affiliation(s)
- Brian D Gulbransen
- Rocky Mountain Taste and Smell Center, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA.
| | | | | | | |
Collapse
|
216
|
Intestinal glucose sensing and regulation of intestinal glucose absorption. Biochem Soc Trans 2008; 35:1191-4. [PMID: 17956309 DOI: 10.1042/bst0351191] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
SGLT1 (Na(+)/glucose co-transporter 1) transports the dietary sugars, D-glucose and D-galactose, from the lumen of the intestine into enterocytes. SGLT1 regulation has important consequences for the provision of glucose to the respiring tissues and is therefore essential for maintaining glucose homoeostasis. SGLT1 expression is directly regulated in response to changes in the sugar content of the diet. To monitor these variations, there is a requirement for a glucose-sensing system located on the luminal membrane of gut cells. This short review focuses on recent findings on intestinal sugar sensing and the downstream mechanisms responsible for enhancement in SGLT1 expression.
Collapse
|
217
|
Blednov YA, Walker D, Martinez M, Levine M, Damak S, Margolskee RF. Perception of sweet taste is important for voluntary alcohol consumption in mice. GENES, BRAIN, AND BEHAVIOR 2008; 7:1-13. [PMID: 17376151 PMCID: PMC4408608 DOI: 10.1111/j.1601-183x.2007.00309.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
To directly evaluate the association between taste perception and alcohol intake, we used three different mutant mice, each lacking a gene expressed in taste buds and critical to taste transduction: alpha-gustducin (Gnat3), Tas1r3 or Trpm5. Null mutant mice lacking any of these three genes showed lower preference score for alcohol and consumed less alcohol in a two-bottle choice test, as compared with wild-type littermates. These null mice also showed lower preference score for saccharin solutions than did wild-type littermates. In contrast, avoidance of quinine solutions was less in Gnat3 or Trpm5 knockout mice than in wild-type mice, whereas Tas1r3 null mice were not different from wild type in their response to quinine solutions. There were no differences in null vs. wild-type mice in their consumption of sodium chloride solutions. To determine the cause for reduction of ethanol intake, we studied other ethanol-induced behaviors known to be related to alcohol consumption. There were no differences between null and wild-type mice in ethanol-induced loss of righting reflex, severity of acute ethanol withdrawal or conditioned place preference for ethanol. Weaker conditioned taste aversion (CTA) to alcohol in null mice may have been caused by weaker rewarding value of the conditioned stimulus (saccharin). When saccharin was replaced by sodium chloride, no differences in CTA to alcohol between knockout and wild-type mice were seen. Thus, deletion of any one of three different genes involved in detection of sweet taste leads to a substantial reduction of alcohol intake without any changes in pharmacological actions of ethanol.
Collapse
Affiliation(s)
- Y A Blednov
- Waggoner Center for Alcohol and Addiction Research, 1 University Station A4800, Austin, TX 78712-0159, USA.
| | | | | | | | | | | |
Collapse
|
218
|
Talavera K, Yasumatsu K, Yoshida R, Margolskee RF, Voets T, Ninomiya Y, Nilius B. The taste transduction channel TRPM5 is a locus for bitter-sweet taste interactions. FASEB J 2007; 22:1343-55. [PMID: 18070821 DOI: 10.1096/fj.07-9591com] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Ordinary gustatory experiences, which are usually evoked by taste mixtures, are determined by multiple interactions between different taste stimuli. The most studied model for these gustatory interactions is the suppression of the responses to sweeteners by the prototype bitter compound quinine. Here we report that TRPM5, a cation channel involved in sweet taste transduction, is inhibited by quinine (EC(50)=50 microM at -50 mV) owing to a decrease in the maximal whole-cell TRPM5 conductance and an acceleration of channel closure. Notably, quinine inhibits the gustatory responses of sweet-sensitive gustatory nerves in wild-type (EC(50)= approximately 1.6 mM) but not in Trpm5 knockout mice. Quinine induces a dose- and time-dependent inhibition of TRPM5-dependent responses of single sweet-sensitive fibers to sucrose, according to the restricted diffusion of the drug into the taste tissue. Quinidine, the stereoisomer of quinine, has similar effects on TRPM5 currents and on sweet-induced gustatory responses. In contrast, the chemically unrelated bitter compound denatonium benzoate has an approximately 100-fold weaker effect on TRPM5 currents and, accordingly, at 10 mM it does not alter gustatory responses to sucrose. The inhibition of TRPM5 by bitter compounds constitutes the molecular basis of a novel mechanism of taste interactions, whereby the bitter tastant inhibits directly the sweet transduction pathway.
Collapse
Affiliation(s)
- Karel Talavera
- Laboratory of Ion Channel Research, Dept. of Molecular Cell Biology, Herestraat 49, Campus Gasthuisberg, O&N1, KU Leuven, B-3000 Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
219
|
Hisatsune C, Yasumatsu K, Takahashi-Iwanaga H, Ogawa N, Kuroda Y, Yoshida R, Ninomiya Y, Mikoshiba K. Abnormal taste perception in mice lacking the type 3 inositol 1,4,5-trisphosphate receptor. J Biol Chem 2007; 282:37225-31. [PMID: 17925404 DOI: 10.1074/jbc.m705641200] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inositol 1,4,5-trisphosphate receptor (IP3R) is one of the important calcium channels expressed in the endoplasmic reticulum and has been shown to play crucial roles in various physiological phenomena. Type 3 IP3R is expressed in taste cells, but the physiological relevance of this receptor in taste perception in vivo is still unknown. Here, we show that mice lacking IP3R3 show abnormal behavioral and electrophysiological responses to sweet, umami, and bitter substances that trigger G-protein-coupled receptor activation. In contrast, responses to salty and acid tastes are largely normal in the mutant mice. We conclude that IP3R3 is a principal mediator of sweet, bitter, and umami taste perception and would be a missing molecule linking phospholipase C beta2 to TRPM5 activation.
Collapse
Affiliation(s)
- Chihiro Hisatsune
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako city, Saitama 351-0198, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
220
|
Sclafani A, Zukerman S, Glendinning JI, Margolskee RF. Fat and carbohydrate preferences in mice: the contribution of alpha-gustducin and Trpm5 taste-signaling proteins. Am J Physiol Regul Integr Comp Physiol 2007; 293:R1504-13. [PMID: 17652359 PMCID: PMC2375390 DOI: 10.1152/ajpregu.00364.2007] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Trpm5 and alpha-gustducin are key to the transduction of tastes of sugars, amino acids, and bitter compounds. This study investigated the role of these signaling proteins in the preference for fat, starch, and starch-derived polysaccharides (Polycose), using Trpm5 knockout (Trpm5 KO) and alpha-gustducin knockout (Gust KO) mice. In initial two-bottle tests (24 h/day), Trpm5 KO mice showed no preference for soybean oil emulsions (0.313-2.5%), Polycose solutions (0.5-4%), or starch suspensions (0.5-4%). Gust KO mice displayed an attenuated preference for Polycose, but their preferences for soybean oil and starch were comparable to those of C57BL/6J wild-type (WT) mice. Gust KO mice preferred starch to Polycose, whereas WT mice had the opposite preference. After extensive experience with soybean oil emulsions (Intralipid) and Polycose solutions, the Trpm5 KO mice developed preferences comparable to the WT mice, although their absolute intakes remained suppressed. Similarly, Gust KO mice developed a strong Polycose preference with experience, but they continued to consume less than the WT mice. These results implicate alpha-gustducin and Trpm5 as mediators of polysaccharide taste and Trpm5 in fat taste. The disruption in Polycose, but not starch, preference in Gust KO mice indicates that distinct sensory signaling pathways mediate the response to these carbohydrates. The experience-induced rescue of fat and Polycose preferences in the KO mice likely reflects the action of a postoral-conditioning mechanism, which functions in the absence of alpha-gustducin and Trpm5.
Collapse
Affiliation(s)
- Anthony Sclafani
- Dept. of Psychology, Brooklyn College of the City University of New York, Brooklyn, NY 11210, USA.
| | | | | | | |
Collapse
|
221
|
Ogura T, Margolskee RF, Tallini YN, Shui B, Kotlikoff MI, Lin W. Immuno-localization of vesicular acetylcholine transporter in mouse taste cells and adjacent nerve fibers: indication of acetylcholine release. Cell Tissue Res 2007; 330:17-28. [PMID: 17704949 DOI: 10.1007/s00441-007-0470-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 07/11/2007] [Indexed: 10/22/2022]
Abstract
Acetylcholine (ACh) is well established as a neurotransmitter and/or neuromodulator in various organs. Previously, it has been shown by Ogura (J Neurophysiol 87:2643-2649, 2002) that in both physiological and immunohistochemical studies the muscarinic acetylcholine (ACh) receptor is present in taste receptor cells. However, it has not been determined if ACh is released locally from taste receptor cells and/or surrounding nerve fibers. In this study we investigated the sites of ACh release in mouse taste tissue using the antisera against vesicular ACh transporter (VAChT), a key element of ACh-containing vesicles. Our data show that VAChT-immunoreactivity is present in many taste receptor cells, including cells expressing the transient receptor potential channel M5 (TRPM5). In taste cells, VAChT-immunoreactivity was colocalized with the immunoreactivity to choline-acetyltransferase (ChAT), which synthesizes ACh. Additionally, enhanced green fluorescent protein (eGFP) was detected in the taste cells of BAC-transgenic mice, in which eGFP was placed under the control of endogenous ChAT transcriptional regulatory elements (ChAT(BAC)-eGFP mice). Furthermore, many ChAT-immunolabeled taste cells also reacted to an antibody against the vesicle-associated membrane protein synaptobrevin-2. These data suggest that ACh-containing vesicles are present in taste receptor cells and ACh release from taste cells may play a role in autocrine and/or paracrine cell-to-cell communication. In addition, certain nerve fibers surrounding or within taste buds were immunoreactive for the VAChT antibody. Some of these fibers were also immunolabeled with antibody against calcitonin gene-related peptide (CGRP), a marker for trigeminal peptidergic fibers. Thus, functions of taste receptor cells could be modulated by trigeminal fibers via ACh release as well.
Collapse
Affiliation(s)
- Tatsuya Ogura
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA.
| | | | | | | | | | | |
Collapse
|
222
|
Roper SD. Signal transduction and information processing in mammalian taste buds. Pflugers Arch 2007; 454:759-76. [PMID: 17468883 PMCID: PMC3723147 DOI: 10.1007/s00424-007-0247-x] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2006] [Accepted: 01/04/2007] [Indexed: 10/23/2022]
Abstract
The molecular machinery for chemosensory transduction in taste buds has received considerable attention within the last decade. Consequently, we now know a great deal about sweet, bitter, and umami taste mechanisms and are gaining ground rapidly on salty and sour transduction. Sweet, bitter, and umami tastes are transduced by G-protein-coupled receptors. Salty taste may be transduced by epithelial Na channels similar to those found in renal tissues. Sour transduction appears to be initiated by intracellular acidification acting on acid-sensitive membrane proteins. Once a taste signal is generated in a taste cell, the subsequent steps involve secretion of neurotransmitters, including ATP and serotonin. It is now recognized that the cells responding to sweet, bitter, and umami taste stimuli do not possess synapses and instead secrete the neurotransmitter ATP via a novel mechanism not involving conventional vesicular exocytosis. ATP is believed to excite primary sensory afferent fibers that convey gustatory signals to the brain. In contrast, taste cells that do have synapses release serotonin in response to gustatory stimulation. The postsynaptic targets of serotonin have not yet been identified. Finally, ATP secreted from receptor cells also acts on neighboring taste cells to stimulate their release of serotonin. This suggests that there is important information processing and signal coding taking place in the mammalian taste bud after gustatory stimulation.
Collapse
Affiliation(s)
- Stephen D Roper
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| |
Collapse
|
223
|
TRPM5, a taste-signaling transient receptor potential ion-channel, is a ubiquitous signaling component in chemosensory cells. BMC Neurosci 2007; 8:49. [PMID: 17610722 PMCID: PMC1931605 DOI: 10.1186/1471-2202-8-49] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Accepted: 07/04/2007] [Indexed: 11/26/2022] Open
Abstract
Background A growing number of TRP channels have been identified as key players in the sensation of smell, temperature, mechanical forces and taste. TRPM5 is known to be abundantly expressed in taste receptor cells where it participates in sweet, amino acid and bitter perception. A role of TRPM5 in other sensory systems, however, has not been studied so far. Results Here, we systematically investigated the expression of TRPM5 in rat and mouse tissues. Apart from taste buds, where we found TRPM5 to be predominantly localized on the basolateral surface of taste receptor cells, TRPM5 immunoreactivity was seen in other chemosensory organs – the main olfactory epithelium and the vomeronasal organ. Most strikingly, we found solitary TRPM5-enriched epithelial cells in all parts of the respiratory and gastrointestinal tract. Based on their tissue distribution, the low cell density, morphological features and co-immunostaining with different epithelial markers, we identified these cells as brush cells (also known as tuft, fibrillovesicular, multivesicular or caveolated cells). In terms of morphological characteristics, brush cells resemble taste receptor cells, while their origin and biological role are still under intensive debate. Conclusion We consider TRPM5 to be an intrinsic signaling component of mammalian chemosensory organs, and provide evidence for brush cells being an important cellular correlate in the periphery.
Collapse
|
224
|
|
225
|
Abstract
Tight junctions operate as semipermeable barriers in epithelial tissue, separating the apical from the basolateral sides of the cells. Membrane proteins of the claudin family represent the major tight junction constituents, and some reinforce permeability barriers, whereas others create pores based on solute size and ion selectivity. To outline paracellular permeability pathways in gustatory tissue, all claudins expressed in mouse taste buds and in human fungiform papillae have been characterized. Twelve claudins are expressed in murine taste-papillae-enriched tissue, and five of those are expressed in human fungiform papillae. A subset of the claudins expressed in mouse papillae is uniquely found in taste buds. By immunohistochemistry, claudin 4 has been found in mouse taste epithelium, with high abundance around the taste pore. Claudin 6 is explicitly detected inside the pore, claudin 7 was found at the basolateral side of taste cells, and claudin 8 was found around the pore. With the ion permeability features of the different claudins, a highly specific permeability pattern for paracellular diffusion is apparent, which indicates a peripheral mechanism for taste coding.
Collapse
Affiliation(s)
- Stéphanie Michlig
- Nestlé Research Center, Vers-chez-les-Blanc, Lausanne 1000, Switzerland
| | | | | |
Collapse
|
226
|
Oike H, Nagai T, Furuyama A, Okada S, Aihara Y, Ishimaru Y, Marui T, Matsumoto I, Misaka T, Abe K. Characterization of ligands for fish taste receptors. J Neurosci 2007; 27:5584-92. [PMID: 17522303 PMCID: PMC6672760 DOI: 10.1523/jneurosci.0651-07.2007] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recent progress in the molecular biology of taste reception has revealed that in mammals, the heteromeric receptors T1R1/3 and T1R2/3 respond to amino acids and sweeteners, respectively, whereas T2Rs are receptors for bitter tastants. Similar taste receptors have also been characterized in fish, but their ligands have not been identified yet. In the present study, we conducted a series of experiments to identify the fish taste receptor ligands. Facial nerve recordings in zebrafish (Danio rerio) demonstrated that the fish perceived amino acids and even denatonium, which is a representative of aversive bitter compounds for mammals and Drosophila. Calcium imaging analysis of T1Rs in zebrafish and medaka fish (Oryzias latipes) using an HEK293T heterologous expression system revealed that both T1R1/3 and a series of T1R2/3 responded to amino acids but not to sugars. A triple-labeling, in situ hybridization analysis demonstrated that cells expressing T1R1/3 and T1R2/3s exist in PLCbeta2-expressing taste bud cells of medaka fish. Functional analysis using T2Rs showed that zfT2R5 and mfT2R1 responded to denatonium. Behavior observations confirmed that zebrafish prefer amino acids and avoid denatonium. These results suggest that, although there may be some fish-specific way of discriminating ligands, vertebrates could have a conserved gustatory mechanism by which T1Rs and T2Rs respond to attractive and aversive tastants, respectively.
Collapse
Affiliation(s)
- Hideaki Oike
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan, and
| | - Toshitada Nagai
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan, and
| | - Akira Furuyama
- Department of Oral Function and Molecular Biology, Ohu University School of Dentistry, Tomita-machi, Koriyama, Fukushima 963-8611, Japan
| | - Shinji Okada
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan, and
| | - Yoshiko Aihara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan, and
| | - Yoshiro Ishimaru
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan, and
| | - Takayuki Marui
- Department of Oral Function and Molecular Biology, Ohu University School of Dentistry, Tomita-machi, Koriyama, Fukushima 963-8611, Japan
| | - Ichiro Matsumoto
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan, and
| | - Takumi Misaka
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan, and
| | - Keiko Abe
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan, and
| |
Collapse
|
227
|
Zhang Z, Zhao Z, Margolskee R, Liman E. The transduction channel TRPM5 is gated by intracellular calcium in taste cells. J Neurosci 2007; 27:5777-86. [PMID: 17522321 PMCID: PMC6672777 DOI: 10.1523/jneurosci.4973-06.2007] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bitter, sweet, and umami tastants are detected by G-protein-coupled receptors that signal through a common second-messenger cascade involving gustducin, phospholipase C beta2, and the transient receptor potential M5 (TRPM5) ion channel. The mechanism by which phosphoinositide signaling activates TRPM5 has been studied in heterologous cell types with contradictory results. To resolve this issue and understand the role of TRPM5 in taste signaling, we took advantage of mice in which the TRPM5 promoter drives expression of green fluorescent protein and mice that carry a targeted deletion of the TRPM5 gene to unequivocally identify TRPM5-dependent currents in taste receptor cells. Our results show that brief elevation of intracellular inositol trisphosphate or Ca2+ is sufficient to gate TRPM5-dependent currents in intact taste cells, but only intracellular Ca2+ is able to activate TRPM5-dependent currents in excised patches. Detailed study in excised patches showed that TRPM5 forms a nonselective cation channel that is half-activated by 8 microM Ca2+ and that desensitizes in response to prolonged exposure to intracellular Ca2+. In addition to channels encoded by the TRPM5 gene, we found that taste cells have a second type of Ca2+-activated nonselective cation channel that is less sensitive to intracellular Ca2+. These data constrain proposed models for taste transduction and suggest a link between receptor signaling and membrane potential in taste cells.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Biological Sciences and Program in Neuroscience, University of Southern California, Los Angeles, California 90089, USA
| | | | | | | |
Collapse
|
228
|
Rohacs T, Nilius B. Regulation of transient receptor potential (TRP) channels by phosphoinositides. Pflugers Arch 2007; 455:157-68. [PMID: 17479281 DOI: 10.1007/s00424-007-0275-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Accepted: 04/13/2007] [Indexed: 11/28/2022]
Abstract
This review summarizes the modulation of transient receptor potential (TRP) channels, by phosphoinositides. TRP channels are characterized by polymodal activation and a surprising complexity of regulation mechanisms. Possibly, most if not all TRP channels are modulated by phosphoinositides. Modulation by phosphatidylinositol 4,5-biphosphate (PIP(2)) has been shown in detail for TRP vanilloid (TRPV) 1, TRPV5, TRP melastatin (TRPM) 4, TRPM5, TRPM7, TRPM8, TRP polycystin 2, and the Drosophila TPR-like (TRPL) channels. This review describes mechanisms of modulation of TRP channels mainly by PIP(2) and discusses some future challenges of this fascinating topic.
Collapse
Affiliation(s)
- Tibor Rohacs
- Department of Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, NJ, 07103, USA.
| | | |
Collapse
|
229
|
Roper SD. Signal transduction and information processing in mammalian taste buds. PFLUGERS ARCHIV : EUROPEAN JOURNAL OF PHYSIOLOGY 2007. [PMID: 17468883 DOI: 10.1007/s00424‐007‐0247‐x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The molecular machinery for chemosensory transduction in taste buds has received considerable attention within the last decade. Consequently, we now know a great deal about sweet, bitter, and umami taste mechanisms and are gaining ground rapidly on salty and sour transduction. Sweet, bitter, and umami tastes are transduced by G-protein-coupled receptors. Salty taste may be transduced by epithelial Na channels similar to those found in renal tissues. Sour transduction appears to be initiated by intracellular acidification acting on acid-sensitive membrane proteins. Once a taste signal is generated in a taste cell, the subsequent steps involve secretion of neurotransmitters, including ATP and serotonin. It is now recognized that the cells responding to sweet, bitter, and umami taste stimuli do not possess synapses and instead secrete the neurotransmitter ATP via a novel mechanism not involving conventional vesicular exocytosis. ATP is believed to excite primary sensory afferent fibers that convey gustatory signals to the brain. In contrast, taste cells that do have synapses release serotonin in response to gustatory stimulation. The postsynaptic targets of serotonin have not yet been identified. Finally, ATP secreted from receptor cells also acts on neighboring taste cells to stimulate their release of serotonin. This suggests that there is important information processing and signal coding taking place in the mammalian taste bud after gustatory stimulation.
Collapse
Affiliation(s)
- Stephen D Roper
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| |
Collapse
|
230
|
Huang YJ, Maruyama Y, Dvoryanchikov G, Pereira E, Chaudhari N, Roper SD. The role of pannexin 1 hemichannels in ATP release and cell-cell communication in mouse taste buds. Proc Natl Acad Sci U S A 2007; 104:6436-41. [PMID: 17389364 PMCID: PMC1851090 DOI: 10.1073/pnas.0611280104] [Citation(s) in RCA: 459] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ATP has been shown to be a taste bud afferent transmitter, but the cells responsible for, and the mechanism of, its release have not been identified. Using CHO cells expressing high-affinity neurotransmitter receptors as biosensors, we show that gustatory stimuli cause receptor cells to secrete ATP through pannexin 1 hemichannels in mouse taste buds. ATP further stimulates other taste cells to release a second transmitter, serotonin. These results provide a mechanism to link intracellular Ca(2+) release during taste transduction to secretion of afferent transmitter, ATP, from receptor cells. They also indicate a route for cell-cell communication and signal processing within the taste bud.
Collapse
Affiliation(s)
| | | | | | | | - Nirupa Chaudhari
- *Department of Physiology and Biophysics and
- Program in Neurosciences, Miller School of Medicine, University of Miami, 1600 NW 10th Street, Miami, FL 33136
| | - Stephen D. Roper
- *Department of Physiology and Biophysics and
- Program in Neurosciences, Miller School of Medicine, University of Miami, 1600 NW 10th Street, Miami, FL 33136
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
231
|
Lin W, Margolskee R, Donnert G, Hell SW, Restrepo D. Olfactory neurons expressing transient receptor potential channel M5 (TRPM5) are involved in sensing semiochemicals. Proc Natl Acad Sci U S A 2007; 104:2471-6. [PMID: 17267604 PMCID: PMC1892929 DOI: 10.1073/pnas.0610201104] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Olfactory sensory neurons (OSNs) in the main olfactory epithelium respond to environmental odorants. Recent studies reveal that these OSNs also respond to semiochemicals such as pheromones and that main olfactory input modulates animal reproduction, but the transduction mechanism for these chemosignals is not fully understood. Previously, we determined that responses to putative pheromones in the main olfactory system were reduced but not eliminated in mice defective for the canonical cAMP transduction pathway, and we suggested, on the basis of pharmacology, an involvement of phospholipase C. In the present study, we find that a downstream signaling component of the phospholipase C pathway, the transient receptor potential channel M5 (TRPM5), is coexpressed with the cyclic nucleotide-gated channel subunit A2 in a subset of mature OSNs. These neurons project axons primarily to the ventral olfactory bulb, where information from urine and other socially relevant signals is processed. We find that these chemosignals activate a subset of glomeruli targeted by TRPM5-expressing OSNs. Our data indicate that TRPM5-expressing OSNs that project axons to glomeruli in the ventral area of the main olfactory bulb are involved in processing of information from semiochemicals.
Collapse
Affiliation(s)
- Weihong Lin
- *Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250
| | - Robert Margolskee
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029
| | - Gerald Donnert
- Department of Biophotonics, Max Planck Institute for Biophysical Chemistry, 37070 Göttingen, Germany; and
| | - Stefan W. Hell
- Department of Biophotonics, Max Planck Institute for Biophysical Chemistry, 37070 Göttingen, Germany; and
| | - Diego Restrepo
- Department of Cell and Developmental Biology, Neuroscience Program, and Rocky Mountain Taste and Smell Center, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045
- To whom correspondence should be addressed at:
Department of Cell and Developmental Biology, University of Colorado at Denver and Health Sciences Center at Fitzsimons, Mail Stop 8108, Building RC1, Room L18-11119, 12801 East 17th Avenue, P.O. Box 6511, Aurora, CO 80045. E-mail:
| |
Collapse
|
232
|
Freichel M, Flockerzi V. Biological functions of TRPs unravelled by spontaneous mutations and transgenic animals. Biochem Soc Trans 2007; 35:120-3. [PMID: 17233616 DOI: 10.1042/bst0350120] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The identification of the biological functions of TRP (transient receptor potential) proteins requires genetic approaches because a selective TRP channel pharmacology to unravel the roles of TRPs is not available so far for most TRPs. A survey is therefore presented of transgenic animal models carrying mutations in TRP genes, as well as of those TRP genes that when mutated result in human disease; the chromosomal locations of TRP channel genes in the human and mouse are also presented.
Collapse
Affiliation(s)
- M Freichel
- Experimentelle und Klinische Pharmakologie und Toxikologie, Gebäude 46, Medizinische Fakultät, Universität des Saarlandes, 66421 Homburg, Germany.
| | | |
Collapse
|
233
|
Abstract
The emerging picture of taste coding at the periphery is one of elegant simplicity. Contrary to what was generally believed, it is now clear that distinct cell types expressing unique receptors are tuned to detect each of the five basic tastes: sweet, sour, bitter, salty and umami. Importantly, receptor cells for each taste quality function as dedicated sensors wired to elicit stereotypic responses.
Collapse
Affiliation(s)
- Jayaram Chandrashekar
- Howard Hughes Medical Institute and Departments of Neurobiology and Neurosciences, University of California at San Diego, La Jolla, California 92093-0649, USA
| | | | | | | |
Collapse
|
234
|
Abstract
The transient receptor potential (TRP) ion channels are named after the role of the channels in Drosophila phototransduction. Mammalian TRP channel subunit proteins are encoded by at least 28 genes. TRP cation channels display an extraordinary assortment of selectivities and activation mechanisms, some of which represent previously unrecognized modes of regulating ion channels. In addition, the biological roles of TRP channels appear to be equally diverse and range from roles in thermosensation and pain perception to Ca2+ and Mg2+ absorption, endothelial permeability, smooth muscle proliferation and gender-specific behaviour.
Collapse
Affiliation(s)
- V Flockerzi
- Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany.
| |
Collapse
|
235
|
Abstract
Many human diseases are caused by mutations in ion channels. Dissecting the pathogenesis of these 'channelopathies' has yielded important insights into the regulation of vital biological processes by ions and has become a productive tool of modern ion channel biology. One of the best examples of a synergism between the clinical and basic science aspects of a modern biological topic is cystic fibrosis. Not only did the identification of the ion channel mutated in cystic fibrosis pinpoint the root cause of this disease, but it also has significantly advanced our understanding of basic biological processes as diverse as protein folding and epithelial fluid and electrolyte secretion. The list of confirmed 'channelopathies' is growing and several members of the TRP family of ion channels have been implicated in human diseases such as mucolipidosis type IV (MLIV), autosomal dominant polycystic kidney disease (ADPKD), familial focal segmental glomerulosclerosis (FSG), hypomagnesemia with secondary hypocalcaemia (HSH), and several forms of cancer. Analysing pathogenesis of the diseases linked to TRP dysregulation provides an exciting means of identifying novel functions of TRP channels.
Collapse
Affiliation(s)
- Kirill Kiselyov
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA.
| | | | | |
Collapse
|
236
|
Oike H, Wakamori M, Mori Y, Nakanishi H, Taguchi R, Misaka T, Matsumoto I, Abe K. Arachidonic acid can function as a signaling modulator by activating the TRPM5 cation channel in taste receptor cells. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:1078-84. [PMID: 16935556 DOI: 10.1016/j.bbalip.2006.07.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Revised: 07/06/2006] [Accepted: 07/13/2006] [Indexed: 11/26/2022]
Abstract
Vertebrate sensory cells such as vomeronasal neurons and Drosophila photoreceptor cells use TRP channels to respond to exogenous stimuli. In mammalian taste cells, bitter and sweet substances as well as some amino acids are received by G protein-coupled receptors (T2Rs or T1Rs). As a result of activation of G protein and phospholipase Cbeta2, the TRPM5 channel is activated. Intracellular Ca(2+) is known to be a TRPM5 activator, but the participation of lipid activators remains unreported. To clarify the effect of arachidonic acid on TRPM5 in taste cells, we investigated the expression profile of a series of enzymes involved in controlling the intracellular free arachidonic acid level, with the result that in a subset of taste bud cells, monoglyceride lipase (MGL) and cyclooxygenase-2 (COX-2) are expressed as well as the previously reported group IIA phospholipase A(2) (PLA(2)-IIA). Double-labeling analysis revealed that MGL, COX-2 and PLA(2)-IIA are co-expressed in some cells that express TRPM5. We then investigated whether arachidonic acid activates TRPM5 via a heterologous expression system in HEK293 cells, and found that its activation occurred at 10 microM arachidonic acid. These results strongly suggest the possibility that arachidonic acid acts as a modulator of TRPM5 in taste signaling pathways.
Collapse
Affiliation(s)
- Hideaki Oike
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | |
Collapse
|
237
|
Geran LC, Travers SP. Single neurons in the nucleus of the solitary tract respond selectively to bitter taste stimuli. J Neurophysiol 2006; 96:2513-27. [PMID: 16899635 DOI: 10.1152/jn.00607.2006] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Molecular data suggest that receptors for all bitter ligands are coexpressed in the same taste receptor cells (TRCs), whereas physiological results indicate that individual TRCs respond to only a subset of bitter stimuli. It is also unclear to what extent bitter-responsive neurons are stimulated by nonbitter stimuli. To explore these issues, single neuron responses were recorded from the rat nucleus of the solitary tract (NST) during whole mouth stimulation with a variety of bitter compounds: 10 microM cycloheximide, 7 mM propylthiouracil, 10 mM denatonium benzoate, and 3 mM quinine hydrochloride at intensities matched for behavioral effectiveness. Stimuli representing the remaining putative taste qualities were also tested. Particular emphasis was given to activating taste receptors in the foliate papillae innervated by the quinine-sensitive glossopharyngeal nerve. This method revealed a novel population of bitter-best (B-best) cells with foliate receptive fields and significant selectivity for bitter tastants. Across all neurons, multidimensional scaling depicted bitter stimuli as loosely clustered yet clearly distinct from nonbitter tastants. When neurons with posterior receptive fields were analyzed alone, bitter stimuli formed a tighter cluster. Nevertheless, responses to bitter stimuli were variable across B-best neurons, with cycloheximide the most, and quinine the least frequent optimal stimulus. These results indicate heterogeneity for the processing of ionic and nonionic bitter tastants, which is dependent on receptive field. Further, they suggest that neurons selective for bitter substances could contribute to taste coding.
Collapse
Affiliation(s)
- Laura C Geran
- Section of Oral Biology, College of Dentistry, Ohio State University, 305 W. 12th Ave. Postle Hall, Columbus, OH 43210, USA
| | | |
Collapse
|
238
|
Ishimaru Y, Inada H, Kubota M, Zhuang H, Tominaga M, Matsunami H. Transient receptor potential family members PKD1L3 and PKD2L1 form a candidate sour taste receptor. Proc Natl Acad Sci U S A 2006; 103:12569-74. [PMID: 16891422 PMCID: PMC1531643 DOI: 10.1073/pnas.0602702103] [Citation(s) in RCA: 377] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Animals use their gustatory systems to evaluate the nutritious value, toxicity, sodium content, and acidity of food. Although characterization of molecular identities that receive taste chemicals is essential, molecular receptors underlying sour taste sensation remain unclear. Here, we show that two transient receptor potential (TRP) channel members, PKD1L3 and PKD2L1, are coexpressed in a subset of taste receptor cells in specific taste areas. Cells expressing these molecules are distinct from taste cells having receptors for bitter, sweet, or umami tastants. The PKD2L1 proteins are accumulated at the taste pore region, where taste chemicals are detected. PKD1L3 and PKD2L1 proteins can interact with each other, and coexpression of the PKD1L3 and PKD2L1 is necessary for their functional cell surface expression. Finally, PKD1L3 and PKD2L1 are activated by various acids when coexpressed in heterologous cells but not by other classes of tastants. These results suggest that PKD1L3 and PKD2L1 heteromers may function as sour taste receptors.
Collapse
Affiliation(s)
| | - Hitoshi Inada
- Section of Cell Signaling, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan; and
| | - Momoka Kubota
- Departments of *Molecular Genetics and Microbiology and
| | - Hanyi Zhuang
- Departments of *Molecular Genetics and Microbiology and
| | - Makoto Tominaga
- Section of Cell Signaling, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan; and
- Department of Physiological Sciences, Graduate University for Advanced Studies, Okazaki 444-8585, Japan
| | - Hiroaki Matsunami
- Departments of *Molecular Genetics and Microbiology and
- Neurobiology, Duke University Medical Center, Research Drive, Durham, NC 27710
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
239
|
Dietrich A, Chubanov V, Kalwa H, Rost BR, Gudermann T. Cation channels of the transient receptor potential superfamily: their role in physiological and pathophysiological processes of smooth muscle cells. Pharmacol Ther 2006; 112:744-60. [PMID: 16842858 DOI: 10.1016/j.pharmthera.2006.05.013] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Accepted: 05/30/2006] [Indexed: 10/24/2022]
Abstract
Smooth muscle cells (SMC) are essential components of many tissues of the body. Ion channels regulate their membrane potential, the intracellular Ca(2+) concentration ([Ca(2+)](i)) and their contractility. Among the ion channels expressed in SMC cation channels of the transient receptor potential (TRP) superfamily allow the entry of Na(+), Ca(2+) and Mg(2+). Members of the TRP superfamily are essential constituents of tonically active channels (TAC), receptor-operated channels (ROC), store-operated channels (SOC) and stretch-activated channels (SAC). This review focusses on TRP channels (TRPC1, TRPC3, TRPC4, TRPC5, TRPC6, TRPC7, TRPV2, TRPV4, TRPM4, TRPM7, TRPP2) whose physiological functions in SMC were dissected by downregulating channel activity in isolated tissues or by the analysis of gene-deficient mouse models. Their possible functional role and physiological regulation as homomeric or heteromeric channels in SMC are discussed. Moreover, TRP channels may also be responsible for pathophysiological processes involving SMC-like airway hyperresponsiveness and pulmonary hypertension. Therefore, they present important drug targets for future pharmacological interventions.
Collapse
Affiliation(s)
- Alexander Dietrich
- Institut für Pharmakologie und Toxikologie, Philipps-Universität Marburg, Karl-von-Frisch Str. 1, 35043 Marburg, Germany.
| | | | | | | | | |
Collapse
|
240
|
DeFazio RA, Dvoryanchikov G, Maruyama Y, Kim JW, Pereira E, Roper SD, Chaudhari N. Separate populations of receptor cells and presynaptic cells in mouse taste buds. J Neurosci 2006; 26:3971-80. [PMID: 16611813 PMCID: PMC3712837 DOI: 10.1523/jneurosci.0515-06.2006] [Citation(s) in RCA: 239] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2005] [Revised: 03/02/2006] [Accepted: 03/02/2006] [Indexed: 11/21/2022] Open
Abstract
Taste buds are aggregates of 50-100 cells, only a fraction of which express genes for taste receptors and intracellular signaling proteins. We combined functional calcium imaging with single-cell molecular profiling to demonstrate the existence of two distinct cell types in mouse taste buds. Calcium imaging revealed that isolated taste cells responded with a transient elevation of cytoplasmic Ca2+ to either tastants or depolarization with KCl, but never both. Using single-cell reverse transcription (RT)-PCR, we show that individual taste cells express either phospholipase C beta2 (PLCbeta2) (an essential taste transduction effector) or synaptosomal-associated protein 25 (SNAP25) (a key component of calcium-triggered transmitter exocytosis). The two functional classes revealed by calcium imaging mapped onto the two gene expression classes determined by single-cell RT-PCR. Specifically, cells responding to tastants expressed PLCbeta2, whereas cells responding to KCl depolarization expressed SNAP25. We demonstrate this by two methods: first, through sequential calcium imaging and single-cell RT-PCR; second, by performing calcium imaging on taste buds in slices from transgenic mice in which PLCbeta2-expressing taste cells are labeled with green fluorescent protein. To evaluate the significance of the SNAP25-expressing cells, we used RNA amplification from single cells, followed by RT-PCR. We show that SNAP25-positive cells also express typical presynaptic proteins, including a voltage-gated calcium channel (alpha1A), neural cell adhesion molecule, synapsin-II, and the neurotransmitter-synthesizing enzymes glutamic acid decarboxylase and aromatic amino acid decarboxylase. No synaptic markers were detected in PLCbeta2 cells by either amplified RNA profiling or by immunocytochemistry. These data demonstrate the existence of at least two molecularly distinct functional classes of taste cells: receptor cells and synapse-forming cells.
Collapse
|
241
|
Clapp TR, Medler KF, Damak S, Margolskee RF, Kinnamon SC. Mouse taste cells with G protein-coupled taste receptors lack voltage-gated calcium channels and SNAP-25. BMC Biol 2006; 4:7. [PMID: 16573824 PMCID: PMC1444931 DOI: 10.1186/1741-7007-4-7] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Accepted: 03/30/2006] [Indexed: 12/02/2022] Open
Abstract
Background Taste receptor cells are responsible for transducing chemical stimuli from the environment and relaying information to the nervous system. Bitter, sweet and umami stimuli utilize G-protein coupled receptors which activate the phospholipase C (PLC) signaling pathway in Type II taste cells. However, it is not known how these cells communicate with the nervous system. Previous studies have shown that the subset of taste cells that expresses the T2R bitter receptors lack voltage-gated Ca2+ channels, which are normally required for synaptic transmission at conventional synapses. Here we use two lines of transgenic mice expressing green fluorescent protein (GFP) from two taste-specific promoters to examine Ca2+ signaling in subsets of Type II cells: T1R3-GFP mice were used to identify sweet- and umami-sensitive taste cells, while TRPM5-GFP mice were used to identify all cells that utilize the PLC signaling pathway for transduction. Voltage-gated Ca2+ currents were assessed with Ca2+ imaging and whole cell recording, while immunocytochemistry was used to detect expression of SNAP-25, a presynaptic SNARE protein that is associated with conventional synapses in taste cells. Results Depolarization with high K+ resulted in an increase in intracellular Ca2+ in a small subset of non-GFP labeled cells of both transgenic mouse lines. In contrast, no depolarization-evoked Ca2+ responses were observed in GFP-expressing taste cells of either genotype, but GFP-labeled cells responded to the PLC activator m-3M3FBS, suggesting that these cells were viable. Whole cell recording indicated that the GFP-labeled cells of both genotypes had small voltage-dependent Na+ and K+ currents, but no evidence of Ca2+ currents. A subset of non-GFP labeled taste cells exhibited large voltage-dependent Na+ and K+ currents and a high threshold voltage-gated Ca2+ current. Immunocytochemistry indicated that SNAP-25 was expressed in a separate population of taste cells from those expressing T1R3 or TRPM5. These data indicate that G protein-coupled taste receptors and conventional synaptic signaling mechanisms are expressed in separate populations of taste cells. Conclusion The taste receptor cells responsible for the transduction of bitter, sweet, and umami stimuli are unlikely to communicate with nerve fibers by using conventional chemical synapses.
Collapse
Affiliation(s)
- Tod R Clapp
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
- Rocky Mountain Taste and Smell Center, UCDHSC, Aurora, CO, USA
| | - Kathryn F Medler
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
- Rocky Mountain Taste and Smell Center, UCDHSC, Aurora, CO, USA
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA
| | - Sami Damak
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY, USA
- SD, Nestle Research Center, Vers-chez-les-Blanc, Lausanne, Switzerland
| | - Robert F Margolskee
- Dept. of Physiology and Biophysics, Mount. Sinai School of Medicine, New York, NY, USA
| | - Sue C Kinnamon
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
- Rocky Mountain Taste and Smell Center, UCDHSC, Aurora, CO, USA
| |
Collapse
|