201
|
The drug ornidazole inhibits photosynthesis in a different mechanism described for protozoa and anaerobic bacteria. Biochem J 2016; 473:4413-4426. [DOI: 10.1042/bcj20160433] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 09/01/2016] [Accepted: 09/19/2016] [Indexed: 11/17/2022]
Abstract
Ornidazole of the 5-nitroimidazole drug family is used to treat protozoan and anaerobic bacterial infections via a mechanism that involves preactivation by reduction of the nitro group, and production of toxic derivatives and radicals. Metronidazole, another drug family member, has been suggested to affect photosynthesis by draining electrons from the electron carrier ferredoxin, thus inhibiting NADP+ reduction and stimulating radical and peroxide production. Here we show, however, that ornidazole inhibits photosynthesis via a different mechanism. While having a minute effect on the photosynthetic electron transport and oxygen photoreduction, ornidazole hinders the activity of two Calvin cycle enzymes, triose-phosphate isomerase (TPI) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Modeling of ornidazole's interaction with ferredoxin of the protozoan Trichomonas suggests efficient electron tunneling from the iron–sulfur cluster to the nitro group of the drug. A similar docking site of ornidazole at the plant-type ferredoxin does not exist, and the best simulated alternative does not support such efficient tunneling. Notably, TPI was inhibited by ornidazole in the dark or when electron transport was blocked by dichloromethyl diphenylurea, indicating that this inhibition was unrelated to the electron transport machinery. Although TPI and GAPDH isoenzymes are involved in glycolysis and gluconeogenesis, ornidazole's effect on respiration of photoautotrophs is moderate, thus raising its value as an efficient inhibitor of photosynthesis. The scarcity of Calvin cycle inhibitors capable of penetrating cell membranes emphasizes on the value of ornidazole for studying the regulation of this cycle.
Collapse
|
202
|
Effects of overexpressing photosynthetic carbon flux control enzymes in the cyanobacterium Synechocystis PCC 6803. Metab Eng 2016; 38:56-64. [DOI: 10.1016/j.ymben.2016.06.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 05/11/2016] [Accepted: 06/17/2016] [Indexed: 12/19/2022]
|
203
|
Ueno M, Sae-Tang P, Kusama Y, Hihara Y, Matsuda M, Hasunuma T, Nishiyama Y. Moderate Heat Stress Stimulates Repair of Photosystem II During Photoinhibition in Synechocystis sp. PCC 6803. PLANT & CELL PHYSIOLOGY 2016; 57:2417-2426. [PMID: 27565206 DOI: 10.1093/pcp/pcw153] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 08/22/2016] [Indexed: 06/06/2023]
Abstract
Examination of the effects of high temperature on the photoinhibition of photosystem II (PSII) in the cyanobacterium Synechocystis sp. PCC 6803 revealed that the extent of photoinhibition of PSII was lower at moderately high temperatures (35-42 °C) than at 30 °C. Photodamage to PSII, as determined in the presence of chloramphenicol, which blocks the repair of PSII, was accelerated at the moderately high temperatures but the effects of repair were greater than those of photodamage. The synthesis de novo of the D1 protein, which is essential for the repair of PSII, was enhanced at 38 °C. Electron transport and the synthesis of ATP were also enhanced at 38 °C, while levels of reactive oxygen species fell. Inhibition of the Calvin-Benson cycle with glycolaldehyde abolished the enhancement of repair of PSII at 38 °C, suggesting that an increase in the activity of the Calvin-Benson cycle might be required for the enhancement of repair at moderately high temperatures. The synthesis de novo of metabolic intermediates of the Calvin-Benson cycle, such as 3-phosphoglycerate, was also enhanced at 38 °C. We propose that moderate heat stress might enhance the repair of PSII by stimulating the synthesis of ATP and depressing the production of reactive oxygen species, via the stimulation of electron transport and suppression of the accumulation of excess electrons on the acceptor side of photosystem I, which might be driven by an increase in the activity of the Calvin-Benson cycle.
Collapse
Affiliation(s)
- Mamoru Ueno
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Penporn Sae-Tang
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Yuri Kusama
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Yukako Hihara
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
- Institute for Environmental Science and Technology, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Mami Matsuda
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Yoshitaka Nishiyama
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
- Institute for Environmental Science and Technology, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| |
Collapse
|
204
|
Lee J, Cho CH, Park SI, Choi JW, Song HS, West JA, Bhattacharya D, Yoon HS. Parallel evolution of highly conserved plastid genome architecture in red seaweeds and seed plants. BMC Biol 2016; 14:75. [PMID: 27589960 PMCID: PMC5010701 DOI: 10.1186/s12915-016-0299-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/17/2016] [Indexed: 11/10/2022] Open
Abstract
Background The red algae (Rhodophyta) diverged from the green algae and plants (Viridiplantae) over one billion years ago within the kingdom Archaeplastida. These photosynthetic lineages provide an ideal model to study plastid genome reduction in deep time. To this end, we assembled a large dataset of the plastid genomes that were available, including 48 from the red algae (17 complete and three partial genomes produced for this analysis) to elucidate the evolutionary history of these organelles. Results We found extreme conservation of plastid genome architecture in the major lineages of the multicellular Florideophyceae red algae. Only three minor structural types were detected in this group, which are explained by recombination events of the duplicated rDNA operons. A similar high level of structural conservation (although with different gene content) was found in seed plants. Three major plastid genome architectures were identified in representatives of 46 orders of angiosperms and three orders of gymnosperms. Conclusions Our results provide a comprehensive account of plastid gene loss and rearrangement events involving genome architecture within Archaeplastida and lead to one over-arching conclusion: from an ancestral pool of highly rearranged plastid genomes in red and green algae, the aquatic (Florideophyceae) and terrestrial (seed plants) multicellular lineages display high conservation in plastid genome architecture. This phenomenon correlates with, and could be explained by, the independent and widely divergent (separated by >400 million years) origins of complex sexual cycles and reproductive structures that led to the rapid diversification of these lineages. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0299-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- JunMo Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Chung Hyun Cho
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seung In Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Ji Won Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyun Suk Song
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - John A West
- School of Biosciences 2, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Debashish Bhattacharya
- Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
205
|
McClure RS, Overall CC, McDermott JE, Hill EA, Markillie LM, McCue LA, Taylor RC, Ludwig M, Bryant DA, Beliaev AS. Network analysis of transcriptomics expands regulatory landscapes in Synechococcus sp. PCC 7002. Nucleic Acids Res 2016; 44:8810-8825. [PMID: 27568004 PMCID: PMC5062996 DOI: 10.1093/nar/gkw737] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 08/05/2016] [Indexed: 12/29/2022] Open
Abstract
Cyanobacterial regulation of gene expression must contend with a genome organization that lacks apparent functional context, as the majority of cellular processes and metabolic pathways are encoded by genes found at disparate locations across the genome and relatively few transcription factors exist. In this study, global transcript abundance data from the model cyanobacterium Synechococcus sp. PCC 7002 grown under 42 different conditions was analyzed using Context-Likelihood of Relatedness (CLR). The resulting network, organized into 11 modules, provided insight into transcriptional network topology as well as grouping genes by function and linking their response to specific environmental variables. When used in conjunction with genome sequences, the network allowed identification and expansion of novel potential targets of both DNA binding proteins and sRNA regulators. These results offer a new perspective into the multi-level regulation that governs cellular adaptations of the fast-growing physiologically robust cyanobacterium Synechococcus sp. PCC 7002 to changing environmental variables. It also provides a methodological high-throughput approach to studying multi-scale regulatory mechanisms that operate in cyanobacteria. Finally, it provides valuable context for integrating systems-level data to enhance gene grouping based on annotated function, especially in organisms where traditional context analyses cannot be implemented due to lack of operon-based functional organization.
Collapse
Affiliation(s)
- Ryan S McClure
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Christopher C Overall
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Jason E McDermott
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Eric A Hill
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Lye Meng Markillie
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Lee Ann McCue
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Ronald C Taylor
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Marcus Ludwig
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, State College, PA 16802, USA
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, State College, PA 16802, USA Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Alexander S Beliaev
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| |
Collapse
|
206
|
Khetkorn W, Incharoensakdi A, Lindblad P, Jantaro S. Enhancement of poly-3-hydroxybutyrate production in Synechocystis sp. PCC 6803 by overexpression of its native biosynthetic genes. BIORESOURCE TECHNOLOGY 2016; 214:761-768. [PMID: 27213577 DOI: 10.1016/j.biortech.2016.05.014] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/04/2016] [Accepted: 05/05/2016] [Indexed: 06/05/2023]
Abstract
Synechocystis sp. PCC 6803 strains overexpressing pha genes were constructed and characterized for poly-3-hydroxybutyrate (PHB) production. These pha overexpressing strains showed slightly reduced growth rates. Under N-deprived condition, the strains overexpressing (OE) phaAB, phaEC and phaABEC showed significantly higher PHB contents than the wild type. The maximum PHB content, a 2.6-fold increase producing 26% PHB (dcw), was observed in OE phaAB cells grown for 9days in N-deprived medium. Under this condition, these OE phaAB cells increased PHB production to 35% PHB (dcw) upon addition of 0.4% (w/v) acetate. Higher PHB granules in OE phaAB cells were clearly visualized by both Nile red staining and TEM imaging. All OE strains under N-deficient condition had increased glgX transcript levels. Overall results demonstrate an enhanced PHB production in Synechocystis cells overexpressing pha genes, particularly phaA and phaB, when grown in N-deprived medium containing 0.4% (w/v) acetate.
Collapse
Affiliation(s)
- Wanthanee Khetkorn
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Division of Biology, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Thanyaburi, Pathumthani 12110, Thailand
| | - Aran Incharoensakdi
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry - Ångström, Uppsala University, Box 523, SE-75120 Uppsala, Sweden
| | - Saowarath Jantaro
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
207
|
Gonzalez-Esquer CR, Smarda J, Rippka R, Axen SD, Guglielmi G, Gugger M, Kerfeld CA. Cyanobacterial ultrastructure in light of genomic sequence data. PHOTOSYNTHESIS RESEARCH 2016; 129:147-157. [PMID: 27344651 DOI: 10.1007/s11120-016-0286-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 06/14/2016] [Indexed: 06/06/2023]
Abstract
Cyanobacteria are physiologically and morphologically diverse photosynthetic microbes that play major roles in the carbon and nitrogen cycles of the biosphere. Recently, they have gained attention as potential platforms for the production of biofuels and other renewable chemicals. Many cyanobacteria were characterized morphologically prior to the advent of genome sequencing. Here, we catalog cyanobacterial ultrastructure within the context of genomic sequence information, including high-magnification transmission electron micrographs that represent the diversity in cyanobacterial morphology. We place the image data in the context of tabulated protein domains-which are the structural, functional, and evolutionary units of proteins-from the 126 cyanobacterial genomes comprising the CyanoGEBA dataset. In particular, we identify the correspondence between ultrastructure and the occurrence of genes encoding protein domains related to the formation of cyanobacterial inclusions. This compilation of images and genome-level domain occurrence will prove useful for a variety of analyses of cyanobacterial sequence data and provides a guidebook to morphological features.
Collapse
Affiliation(s)
- C R Gonzalez-Esquer
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - J Smarda
- Department of Biology, Faculty of Medicine, Masaryk University, University Campus, Building A6, Kamenice 5, 625 00, Brno, Czech Republic
| | - R Rippka
- Unité des Cyanobactéries, Institut Pasteur, Centre National de la Recherche Scientifique (CNRS) Unité de Recherche Associée (URA) 2172, 75724, Paris Cedex 15, France
| | - S D Axen
- Bioinformatics Graduate Group, University of California, San Francisco, CA, 94158, USA
| | - G Guglielmi
- Institut de Biologie de l'ENS, IBENS, Inserm, U1024, CNRS, UMR 8197, Ecole Normale Supérieure, 75005, Paris, France
| | - M Gugger
- Unité des Cyanobactéries, Institut Pasteur, Centre National de la Recherche Scientifique (CNRS) Unité de Recherche Associée (URA) 2172, 75724, Paris Cedex 15, France
| | - C A Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA.
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, CA, USA.
- Berkeley Synthetic Biology Institute, UC Berkeley, Berkeley, CA, USA.
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
208
|
Galmozzi CV, Florencio FJ, Muro-Pastor MI. The Cyanobacterial Ribosomal-Associated Protein LrtA Is Involved in Post-Stress Survival in Synechocystis sp. PCC 6803. PLoS One 2016; 11:e0159346. [PMID: 27442126 PMCID: PMC4956104 DOI: 10.1371/journal.pone.0159346] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 06/30/2016] [Indexed: 02/06/2023] Open
Abstract
A light-repressed transcript encodes the LrtA protein in cyanobacteria. We show that half-life of lrtA transcript from Synechocystis sp. PCC 6803 is higher in dark-treated cells as compared to light-grown cells, suggesting post-transcriptional control of lrtA expression. The lrtA 5´ untranslated leader region is involved in that darkness-dependent regulation. We also found that Synechocystis sp. PCC 6803 LrtA is a ribosome-associated protein present in both 30S and 70S ribosomal particles. In order to investigate the function of this protein we have constructed a deletion mutant of the lrtA gene. Cells lacking LrtA (∆lrtA) had significantly lower amount of 70S particles and a greater amount of 30S and 50S particles, suggesting a role of LrtA in stabilizing 70S particles. Synechocystis strains with different amounts of LrtA protein: wild-type, ∆lrtA, and LrtAS (overexpressing lrtA) showed no differences in their growth rate under standard laboratory conditions. However, a clear LrtA dose-dependent effect was observed in the presence of the antibiotic tylosin, being the LrtAS strains the most sensitive. Similar results were obtained under hyperosmotic stress caused by sorbitol. Conversely, after prolonged periods of starvation, ∆lrtA strains were delayed in their growth with respect to the wild-type and the LrtAS strains. A positive role of LrtA protein in post-stress survival is proposed.
Collapse
Affiliation(s)
- Carla V. Galmozzi
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, Sevilla, Spain
| | - Francisco J. Florencio
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, Sevilla, Spain
| | - M. Isabel Muro-Pastor
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, Sevilla, Spain
- * E-mail:
| |
Collapse
|
209
|
Li T, Zhang Y, Shi M, Pei G, Chen L, Zhang W. A putative magnesium transporter Slr1216 involved in sodium tolerance in cyanobacterium Synechocystis sp. PCC 6803. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
210
|
Fu Y, Chen L, Zhang W. Regulatory mechanisms related to biofuel tolerance in producing microbes. J Appl Microbiol 2016; 121:320-32. [PMID: 27123568 DOI: 10.1111/jam.13162] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/20/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Y. Fu
- Laboratory of Synthetic Microbiology; School of Chemical Engineering & Technology; Tianjin University; Tianjin China
- Key Laboratory of Systems Bioengineering (Ministry of Education); Tianjin University; Tianjin China
- SynBio Research Platform; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin China
| | - L. Chen
- Laboratory of Synthetic Microbiology; School of Chemical Engineering & Technology; Tianjin University; Tianjin China
- Key Laboratory of Systems Bioengineering (Ministry of Education); Tianjin University; Tianjin China
- SynBio Research Platform; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin China
| | - W. Zhang
- Laboratory of Synthetic Microbiology; School of Chemical Engineering & Technology; Tianjin University; Tianjin China
- Key Laboratory of Systems Bioengineering (Ministry of Education); Tianjin University; Tianjin China
- SynBio Research Platform; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin China
| |
Collapse
|
211
|
Kobayashi T, Sasaki S, Utsumi Y, Fujita N, Umeda K, Sawada T, Kubo A, Abe JI, Colleoni C, Ball S, Nakamura Y. Comparison of Chain-Length Preferences and Glucan Specificities of Isoamylase-Type α-Glucan Debranching Enzymes from Rice, Cyanobacteria, and Bacteria. PLoS One 2016; 11:e0157020. [PMID: 27309534 PMCID: PMC4911114 DOI: 10.1371/journal.pone.0157020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 05/22/2016] [Indexed: 01/30/2023] Open
Abstract
It has been believed that isoamylase (ISA)-type α-glucan debranching enzymes (DBEs) play crucial roles not only in α-glucan degradation but also in the biosynthesis by affecting the structure of glucans, although molecular basis on distinct roles of the individual DBEs has not fully understood. In an attempt to relate the roles of DBEs to their chain-length specificities, we analyzed the chain-length distribution of DBE enzymatic reaction products by using purified DBEs from various sources including rice, cyanobacteria, and bacteria. When DBEs were incubated with phytoglycogen, their chain-length specificities were divided into three groups. First, rice endosperm ISA3 (OsISA3) and Eschericia coli GlgX (EcoGlgX) almost exclusively debranched chains having degree of polymerization (DP) of 3 and 4. Second, OsISA1, Pseudomonas amyloderamosa ISA (PsaISA), and rice pullulanase (OsPUL) could debranch a wide range of chains of DP≧3. Third, both cyanobacteria ISAs, Cyanothece ATCC 51142 ISA (CytISA) and Synechococcus elongatus PCC7942 ISA (ScoISA), showed the intermediate chain-length preference, because they removed chains of mainly DP3-4 and DP3-6, respectively, while they could also react to chains of DP5-10 and 7–13 to some extent, respectively. In contrast, all these ISAs were reactive to various chains when incubated with amylopectin. In addition to a great variation in chain-length preferences among various ISAs, their activities greatly differed depending on a variety of glucans. Most strikingly, cyannobacteria ISAs could attack branch points of pullulan to a lesser extent although no such activity was found in OsISA1, OsISA3, EcoGlgX, and PsaISA. Thus, the present study shows the high possibility that varied chain-length specificities of ISA-type DBEs among sources and isozymes are responsible for their distinct functions in glucan metabolism.
Collapse
Affiliation(s)
- Taiki Kobayashi
- Faculty of Bioresource Sciences, Akita Prefectural University, Shimoshinjo-Nakano, Akita, Japan
| | - Satoshi Sasaki
- Faculty of Bioresource Sciences, Akita Prefectural University, Shimoshinjo-Nakano, Akita, Japan
| | - Yoshinori Utsumi
- Faculty of Bioresource Sciences, Akita Prefectural University, Shimoshinjo-Nakano, Akita, Japan
| | - Naoko Fujita
- Faculty of Bioresource Sciences, Akita Prefectural University, Shimoshinjo-Nakano, Akita, Japan
| | - Kazuhiro Umeda
- Faculty of Bioresource Sciences, Akita Prefectural University, Shimoshinjo-Nakano, Akita, Japan
| | - Takayuki Sawada
- Faculty of Bioresource Sciences, Akita Prefectural University, Shimoshinjo-Nakano, Akita, Japan
| | - Akiko Kubo
- Faculty of Bioresource Sciences, Akita Prefectural University, Shimoshinjo-Nakano, Akita, Japan
| | - Jun-ichi Abe
- Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| | - Christophe Colleoni
- Unité de Glycobiologie Structurale et Fonctionnelle, Université des Sciences et Technologies de Lille, Villeneuve d’Ascq, France
| | - Steven Ball
- Unité de Glycobiologie Structurale et Fonctionnelle, Université des Sciences et Technologies de Lille, Villeneuve d’Ascq, France
| | - Yasunori Nakamura
- Faculty of Bioresource Sciences, Akita Prefectural University, Shimoshinjo-Nakano, Akita, Japan
- Akita Natural Science Laboratory, Tennoh, Katagami, Akita, Japan
- * E-mail:
| |
Collapse
|
212
|
Wang X, Xiong X, Sa N, Roje S, Chen S. Metabolic engineering of enhanced glycerol-3-phosphate synthesis to increase lipid production in Synechocystis sp. PCC 6803. Appl Microbiol Biotechnol 2016; 100:6091-101. [PMID: 27154348 DOI: 10.1007/s00253-016-7521-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 04/01/2016] [Indexed: 01/11/2023]
Abstract
With the growing attention to global warming and energy sustainability, biosynthesis of lipids by photosynthetic microorganisms has attracted more interest for the production of renewable transportation fuels. Recently, the cyanobacterium Synechocystis sp. PCC 6803 has been widely used for biofuel production through metabolic engineering because of its efficient photosynthesis and well-developed genetic tools. In lipid biosynthesis, glycerol-3-phosphate (G3P) is a key node for both CO2 fixation and lipid metabolism in cyanobacteria. However, few studies have explored the use of G3P synthesis to improve photosynthetic lipid production. In this study, metabolic engineering combined with flux balance analysis (FBA) was conducted to reveal the effect of G3P synthesis on lipid production. Heterologous genes that encoded glycerol-3-phosphate dehydrogenase (GPD) and diacylglycerol acyltransferase (DGAT) were engineered into Synechocystis sp. PCC 6803 to enhance G3P supply and lipid production. The resultant recombinant Synechocystis produced higher levels of lipids without a significant reduction in cell growth. Compared with the wild-type strain, lipid content and productivity of the engineered cyanobacteria increased by up to 36 and 31 %, respectively, under autotrophic conditions. Lipid production under mixotrophic conditions of the engineered cyanobacteria was also investigated. This work demonstrated that enhanced G3P synthesis was an important factor in photosynthetic lipid production and that introducing heterologous GPD and DGAT genes was an effective strategy to increase lipid production in Synechocystis sp. PCC 6803.
Collapse
Affiliation(s)
- Xi Wang
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Xiaochao Xiong
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Na Sa
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Sanja Roje
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Shulin Chen
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
213
|
Hasunuma T, Matsuda M, Kondo A. Improved sugar-free succinate production by Synechocystis sp. PCC 6803 following identification of the limiting steps in glycogen catabolism. Metab Eng Commun 2016; 3:130-141. [PMID: 29468119 PMCID: PMC5779724 DOI: 10.1016/j.meteno.2016.04.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/05/2016] [Accepted: 04/29/2016] [Indexed: 12/11/2022] Open
Abstract
Succinate produced by microorganisms can replace currently used petroleum-based succinate but typically requires mono- or poly-saccharides as a feedstock. The cyanobacterium Synechocystis sp. PCC6803 can produce organic acids such as succinate from CO2 not supplemented with sugars under dark anoxic conditions using an unknown metabolic pathway. The TCA cycle in cyanobacteria branches into oxidative and reductive routes. Time-course analyses of the metabolome, transcriptome and metabolic turnover described here revealed dynamic changes in the metabolism of Synechocystis sp. PCC6803 cultivated under dark anoxic conditions, allowing identification of the carbon flow and rate-limiting steps in glycogen catabolism. Glycogen biosynthesized from CO2 assimilated during periods of light exposure is catabolized to succinate via glycolysis, the anaplerotic pathway, and the reductive TCA cycle under dark anoxic conditions. Expression of the phosphoenolpyruvate (PEP) carboxylase gene (ppc) was identified as a rate-limiting step in succinate biosynthesis and this rate limitation was alleviated by ppc overexpression, resulting in improved succinate excretion. The sugar-free succinate production was further enhanced by the addition of bicarbonate. In vivo labeling with NaH13CO3 clearly showed carbon incorporation into succinate via the anaplerotic pathway. Bicarbonate is in equilibrium with CO2. Succinate production by Synechocystis sp. PCC6803 therefore holds significant promise for CO2 capture and utilization. The cyanobacterium Synechocystis produces succinate under dark anoxic condition. Multi-omics revealed dynamic change in metabolism under dark anoxic condition. Carbon flow and rate-limiting steps in glycogen catabolism was elucidated. PEP carboxylase gene overexpression improved Synechocystis succinate production. Bicarbonate addition to medium dramatically improved succinate production.
Collapse
Affiliation(s)
- Tomohisa Hasunuma
- Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Mami Matsuda
- Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Akihiko Kondo
- Biomass Engineering Program, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.,Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| |
Collapse
|
214
|
Hang B, Pan J, Ni D, Zheng Q, Zhang X, Cai J, Huang L, Wei P, Xu Z. High-level production of aquaporin Z in Escherichia coli using maltose-binding protein/polyhistidine dual-affinity tag fusion system. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
215
|
Zerulla K, Ludt K, Soppa J. The ploidy level of Synechocystis sp. PCC 6803 is highly variable and is influenced by growth phase and by chemical and physical external parameters. Microbiology (Reading) 2016; 162:730-739. [DOI: 10.1099/mic.0.000264] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Karolin Zerulla
- Institute for Molecular Biosciences, Biocentre, Goethe-University,Frankfurt,Germany
| | - Katharina Ludt
- Institute for Molecular Biosciences, Biocentre, Goethe-University,Frankfurt,Germany
| | - Jörg Soppa
- Institute for Molecular Biosciences, Biocentre, Goethe-University,Frankfurt,Germany
| |
Collapse
|
216
|
Mueller TJ, Welsh EA, Pakrasi HB, Maranas CD. Identifying Regulatory Changes to Facilitate Nitrogen Fixation in the Nondiazotroph Synechocystis sp. PCC 6803. ACS Synth Biol 2016; 5:250-8. [PMID: 26692191 DOI: 10.1021/acssynbio.5b00202] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The incorporation of biological nitrogen fixation into a nondiazotrophic photosynthetic organism provides a promising solution to the increasing fixed nitrogen demand, but is accompanied by a number of challenges for accommodating two incompatible processes within the same organism. Here we present regulatory influence networks for two cyanobacteria, Synechocystis PCC 6803 and Cyanothece ATCC 51142, and evaluate them to co-opt native transcription factors that may be used to control the nif gene cluster once it is transferred to Synechocystis. These networks were further examined to identify candidate transcription factors for other metabolic processes necessary for temporal separation of photosynthesis and nitrogen fixation, glycogen catabolism and cyanophycin synthesis. Two transcription factors native to Synechocystis, LexA and Rcp1, were identified as promising candidates for the control of the nif gene cluster and other pertinent metabolic processes, respectively. Lessons learned in the incorporation of nitrogen fixation into a nondiazotrophic prokaryote may be leveraged to further progress the incorporation of nitrogen fixation in plants.
Collapse
Affiliation(s)
- Thomas J. Mueller
- Department
of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16801, United States
| | - Eric A. Welsh
- Cancer
Informatics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, United States
| | - Himadri B. Pakrasi
- Department
of Energy, Environmental, and Chemical Engineering, Washington University, St. Louis, Missouri 63130, United States
- Department
of Biology, Washington University, St. Louis, Missouri 63130, United States
| | - Costas D. Maranas
- Department
of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16801, United States
| |
Collapse
|
217
|
Komenda J, Sobotka R. Cyanobacterial high-light-inducible proteins — Protectors of chlorophyll–protein synthesis and assembly. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:288-95. [DOI: 10.1016/j.bbabio.2015.08.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/28/2015] [Accepted: 08/30/2015] [Indexed: 12/24/2022]
|
218
|
Hernández-Prieto MA, Semeniuk TA, Giner-Lamia J, Futschik ME. The Transcriptional Landscape of the Photosynthetic Model Cyanobacterium Synechocystis sp. PCC6803. Sci Rep 2016; 6:22168. [PMID: 26923200 PMCID: PMC4770689 DOI: 10.1038/srep22168] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 02/09/2016] [Indexed: 01/03/2023] Open
Abstract
Cyanobacteria exhibit a great capacity to adapt to different environmental conditions through changes in gene expression. Although this plasticity has been extensively studied in the model cyanobacterium Synechocystis sp. PCC 6803, a detailed analysis of the coordinated transcriptional adaption across varying conditions is lacking. Here, we report a meta-analysis of 756 individual microarray measurements conducted in 37 independent studies-the most comprehensive study of the Synechocystis transcriptome to date. Using stringent statistical evaluation, we characterized the coordinated adaptation of Synechocystis' gene expression on systems level. Evaluation of the data revealed that the photosynthetic apparatus is subjected to greater changes in expression than other cellular components. Nevertheless, network analyses indicated a significant degree of transcriptional coordination of photosynthesis and various metabolic processes, and revealed the tight co-regulation of components of photosystems I, II and phycobilisomes. Detailed inspection of the integrated data led to the discovery a variety of regulatory patterns and novel putative photosynthetic genes. Intriguingly, global clustering analyses suggested contrasting transcriptional response of metabolic and regulatory genes stress to conditions. The integrated Synechocystis transcriptome can be accessed and interactively analyzed via the CyanoEXpress website (http://cyanoexpress.sysbiolab.eu).
Collapse
Affiliation(s)
- Miguel A. Hernández-Prieto
- Systems Biology and Bioinformatics Laboratory, Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
| | - Trudi Ann Semeniuk
- Systems Biology and Bioinformatics Laboratory, Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
| | - Joaquín Giner-Lamia
- Systems Biology and Bioinformatics Laboratory, Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
| | - Matthias E. Futschik
- Systems Biology and Bioinformatics Laboratory, Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
| |
Collapse
|
219
|
Kizawa A, Kawahara A, Takimura Y, Nishiyama Y, Hihara Y. RNA-seq Profiling Reveals Novel Target Genes of LexA in the Cyanobacterium Synechocystis sp. PCC 6803. Front Microbiol 2016; 7:193. [PMID: 26925056 PMCID: PMC4759255 DOI: 10.3389/fmicb.2016.00193] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 02/04/2016] [Indexed: 11/13/2022] Open
Abstract
LexA is a well-established transcriptional repressor of SOS genes induced by DNA damage in Escherichia coli and other bacterial species. However, LexA in the cyanobacterium Synechocystis sp. PCC 6803 has been suggested not to be involved in SOS response. In this study, we performed RNA-seq analysis of the wild-type strain and the lexA-disrupted mutant to obtain the comprehensive view of LexA-regulated genes in Synechocystis. Disruption of lexA positively or negatively affected expression of genes related to various cellular functions such as phototactic motility, accumulation of the major compatible solute glucosylglycerol and subunits of bidirectional hydrogenase, photosystem I, and phycobilisome complexes. We also observed increase in the expression level of genes related to iron and manganese uptake in the mutant at the later stage of cultivation. However, none of the genes related to DNA metabolism were affected by disruption of lexA. DNA gel mobility shift assay using the recombinant LexA protein suggested that LexA binds to the upstream region of pilA7, pilA9, ggpS, and slr1670 to directly regulate their expression, but changes in the expression level of photosystem I genes by disruption of lexA is likely a secondary effect.
Collapse
Affiliation(s)
- Ayumi Kizawa
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University Saitama, Japan
| | - Akihito Kawahara
- Biological Science Laboratories, KAO Corporation Wakayama, Japan
| | - Yasushi Takimura
- Biological Science Laboratories, KAO Corporation Wakayama, Japan
| | - Yoshitaka Nishiyama
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University Saitama, Japan
| | - Yukako Hihara
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama UniversitySaitama, Japan; Core Research of Evolutional Science and Technology, Japan Science and Technology AgencySaitama, Japan
| |
Collapse
|
220
|
D'Agostino PM, Woodhouse JN, Makower AK, Yeung ACY, Ongley SE, Micallef ML, Moffitt MC, Neilan BA. Advances in genomics, transcriptomics and proteomics of toxin-producing cyanobacteria. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:3-13. [PMID: 26663762 DOI: 10.1111/1758-2229.12366] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/10/2015] [Accepted: 12/05/2015] [Indexed: 06/05/2023]
Abstract
A common misconception persists that the genomes of toxic and non-toxic cyanobacterial strains are largely conserved with the exception of the presence or absence of the genes responsible for toxin production. Implementation of -omics era technologies has challenged this paradigm, with comparative analyses providing increased insight into the differences between strains of the same species. The implementation of genomic, transcriptomic and proteomic approaches has revealed distinct profiles between toxin-producing and non-toxic strains. Further, metagenomics and metaproteomics highlight the genomic potential and functional state of toxic bloom events over time. In this review, we highlight how these technologies have shaped our understanding of the complex relationship between these molecules, their producers and the environment at large within which they persist.
Collapse
Affiliation(s)
- Paul M D'Agostino
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Biological Sciences Building D26, Sydney, NSW, 2052, Australia
| | - Jason N Woodhouse
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Biological Sciences Building D26, Sydney, NSW, 2052, Australia
| | - A Katharina Makower
- Department of Microbiology, Institute for Biochemistry and Biology, University of Potsdam, Potsdam-Golm, 14476, Germany
| | - Anna C Y Yeung
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Biological Sciences Building D26, Sydney, NSW, 2052, Australia
| | - Sarah E Ongley
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Biological Sciences Building D26, Sydney, NSW, 2052, Australia
| | - Melinda L Micallef
- School of Science and Health, University of Western Sydney, Sydney, NSW, 2571, Australia
| | - Michelle C Moffitt
- School of Science and Health, University of Western Sydney, Sydney, NSW, 2571, Australia
| | - Brett A Neilan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Biological Sciences Building D26, Sydney, NSW, 2052, Australia
| |
Collapse
|
221
|
Kanwal S, Incharoensakdi A. Characterization of glutamate decarboxylase from Synechocystis sp. PCC6803 and its role in nitrogen metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 99:59-65. [PMID: 26730883 DOI: 10.1016/j.plaphy.2015.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 12/15/2015] [Accepted: 12/15/2015] [Indexed: 06/05/2023]
Abstract
Glutamate decarboxylase (GAD) (EC 4.1.1.15), an enzyme responsible for the synthesis of γ-aminobutyric acid (GABA), from Synechocystis sp. PCC6803 was cloned and overexpressed in Escherichia coli BL21(DE3). The purified enzyme was expressed as a monomeric protein with a molecular mass of 53 and 55 kDa as determined by SDS-PAGE and gel filtration chromatography, respectively. The enzyme activity was pyridoxal-5'-phosphate dependent with an optimal activity at pH 6.0 and 30 °C. The catalytic properties of this enzyme were, Km = 19.6 mM; kcat = 100.7 s(-1); and kcat/Km = 5.1 mM(-1) s(-1). The transcription levels of genes involved in nitrogen metabolism were up-regulated in the Δgad strain. The mutant showed approximately 4- and 8-fold increases in the transcript levels of kgd and gabdh encoding a novel α-ketoglutarate decarboxylase and γ-aminobutanal dehydrogenase, respectively. Overall results suggested that in Synechocystis lacking a functional GAD, the γ-aminobutanal dehydrogenase might serve as an alternative catalytic pathway for GABA synthesis.
Collapse
Affiliation(s)
- Simab Kanwal
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Aran Incharoensakdi
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
222
|
Zavřel T, Knoop H, Steuer R, Jones PR, Červený J, Trtílek M. A quantitative evaluation of ethylene production in the recombinant cyanobacterium Synechocystis sp. PCC 6803 harboring the ethylene-forming enzyme by membrane inlet mass spectrometry. BIORESOURCE TECHNOLOGY 2016; 202:142-51. [PMID: 26708481 DOI: 10.1016/j.biortech.2015.11.062] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 05/04/2023]
Abstract
The prediction of the world's future energy consumption and global climate change makes it desirable to identify new technologies to replace or augment fossil fuels by environmentally sustainable alternatives. One appealing sustainable energy concept is harvesting solar energy via photosynthesis coupled to conversion of CO2 into chemical feedstock and fuel. In this work, the production of ethylene, the most widely used petrochemical produced exclusively from fossil fuels, in the model cyanobacterium Synechocystis sp. PCC 6803 is studied. A novel instrumentation setup for quantitative monitoring of ethylene production using a combination of flat-panel photobioreactor coupled to a membrane-inlet mass spectrometer is introduced. Carbon partitioning is estimated using a quantitative model of cyanobacterial metabolism. The results show that ethylene is produced under a wide range of light intensities with an optimum at modest irradiances. The results allow production conditions to be optimized in a highly controlled setup.
Collapse
Affiliation(s)
- Tomáš Zavřel
- Department of Adaptive Biotechnologies, Global Change Research Centre, Academy of Science of the Czech Republic, Drásov, Czech Republic.
| | - Henning Knoop
- Institut für Theoretische Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ralf Steuer
- Institut für Theoretische Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Patrik R Jones
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Jan Červený
- Department of Adaptive Biotechnologies, Global Change Research Centre, Academy of Science of the Czech Republic, Drásov, Czech Republic
| | - Martin Trtílek
- Photon Systems Instruments, spol. s r.o., Drásov, Czech Republic
| |
Collapse
|
223
|
Shirai T, Osanai T, Kondo A. Designing intracellular metabolism for production of target compounds by introducing a heterologous metabolic reaction based on a Synechosystis sp. 6803 genome-scale model. Microb Cell Fact 2016; 15:13. [PMID: 26783098 PMCID: PMC4717628 DOI: 10.1186/s12934-016-0416-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 01/07/2016] [Indexed: 12/18/2022] Open
Abstract
Background Designing optimal intracellular metabolism is essential for using microorganisms to produce useful compounds. Computerized calculations for flux balance analysis utilizing a genome-scale model have been performed for such designs. Many genome-scale models have been developed for different microorganisms. However, optimal designs of intracellular metabolism aimed at producing a useful compound often utilize metabolic reactions of only the host microbial cells. In the present study, we added reactions other than the metabolic reactions with Synechosystis sp. 6803 as a host to its genome-scale model, and constructed a metabolic model of hybrid cells (SyHyMeP) using computerized analysis. Using this model provided a metabolic design that improves the theoretical yield of succinic acid, which is a useful compound. Results Constructing the SyHyMeP model enabled new metabolic designs for producing useful compounds. In the present study, we developed a metabolic design that allowed for improved theoretical yield in the production of succinic acid during glycogen metabolism by Synechosystis sp. 6803. The theoretical yield of succinic acid production using a genome-scale model of these cells was 1.00 mol/mol-glucose, but use of the SyHyMeP model enabled a metabolic design with which a 33 % increase in theoretical yield is expected due to the introduction of isocitrate lyase, adding activations of endogenous tree reactions via D-glycerate in Synechosystis sp. 6803. Conclusions The SyHyMeP model developed in this study has provided a new metabolic design that is not restricted only to the metabolic reactions of individual microbial cells. The concept of construction of this model requires only replacement of the genome-scale model of the host microbial cells and can thus be applied to various useful microorganisms for metabolic design to produce compounds. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0416-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tomokazu Shirai
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
| | - Takashi Osanai
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan. .,Department of Agricultural Chemistry, School of Agriculture, Meiji University, 1-1-1, Higashimita, Tamaku, Kawasaki, Kanagawa, 214-8571, Japan.
| | - Akihiko Kondo
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan. .,Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe, 657-8501, Japan. .,Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada, Kobe, 657-8501, Japan.
| |
Collapse
|
224
|
Ardiccioni C, Clarke OB, Tomasek D, Issa HA, von Alpen DC, Pond HL, Banerjee S, Rajashankar KR, Liu Q, Guan Z, Li C, Kloss B, Bruni R, Kloppmann E, Rost B, Manzini MC, Shapiro L, Mancia F. Structure of the polyisoprenyl-phosphate glycosyltransferase GtrB and insights into the mechanism of catalysis. Nat Commun 2016; 7:10175. [PMID: 26729507 PMCID: PMC4728340 DOI: 10.1038/ncomms10175] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 11/11/2015] [Indexed: 11/08/2022] Open
Abstract
The attachment of a sugar to a hydrophobic polyisoprenyl carrier is the first step for all extracellular glycosylation processes. The enzymes that perform these reactions, polyisoprenyl-glycosyltransferases (PI-GTs) include dolichol phosphate mannose synthase (DPMS), which generates the mannose donor for glycosylation in the endoplasmic reticulum. Here we report the 3.0 Å resolution crystal structure of GtrB, a glucose-specific PI-GT from Synechocystis, showing a tetramer in which each protomer contributes two helices to a membrane-spanning bundle. The active site is 15 Å from the membrane, raising the question of how water-soluble and membrane-embedded substrates are brought into apposition for catalysis. A conserved juxtamembrane domain harbours disease mutations, which compromised activity in GtrB in vitro and in human DPM1 tested in zebrafish. We hypothesize a role of this domain in shielding the polyisoprenyl-phosphate for transport to the active site. Our results reveal the basis of PI-GT function, and provide a potential molecular explanation for DPM1-related disease.
Collapse
Affiliation(s)
- Chiara Ardiccioni
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York 10032, USA
| | - Oliver B. Clarke
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
| | - David Tomasek
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York 10032, USA
| | - Habon A. Issa
- Department of Pharmacology and Physiology, George Washington University, Washington, District of Columbia 20037, USA
- Department of Integrative Systems Biology, George Washington University, Washington, District of Columbia 20037, USA
| | - Desiree C. von Alpen
- Department of Pharmacology and Physiology, George Washington University, Washington, District of Columbia 20037, USA
- Department of Integrative Systems Biology, George Washington University, Washington, District of Columbia 20037, USA
| | - Heather L. Pond
- Department of Pharmacology and Physiology, George Washington University, Washington, District of Columbia 20037, USA
- Department of Integrative Systems Biology, George Washington University, Washington, District of Columbia 20037, USA
| | - Surajit Banerjee
- NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Kanagalaghatta R. Rajashankar
- NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Qun Liu
- New York Structural Biology Center, X4 Beamlines, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Chijun Li
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Brian Kloss
- New York Consortium on Membrane Protein Structure, New York Structural Biology Center, New York, New York 10027, USA
| | - Renato Bruni
- New York Consortium on Membrane Protein Structure, New York Structural Biology Center, New York, New York 10027, USA
| | - Edda Kloppmann
- Department of Informatics, Bioinformatics and Computational Biology, Garching 85748, Germany
- Institute for Advanced Study (TUM-IAS), TUM (Technische Universität München), Garching 85748, Germany
| | - Burkhard Rost
- Department of Informatics, Bioinformatics and Computational Biology, Garching 85748, Germany
- Institute for Advanced Study (TUM-IAS), TUM (Technische Universität München), Garching 85748, Germany
| | - M. Chiara Manzini
- Department of Pharmacology and Physiology, George Washington University, Washington, District of Columbia 20037, USA
- Department of Integrative Systems Biology, George Washington University, Washington, District of Columbia 20037, USA
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York 10032, USA
| |
Collapse
|
225
|
A novel periplasmic protein (Slr0280) tunes photomixotrophic growth of the cyanobacterium, Synechocystis sp. PCC 6803. Gene 2016; 575:313-20. [DOI: 10.1016/j.gene.2015.09.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 08/28/2015] [Accepted: 09/02/2015] [Indexed: 11/20/2022]
|
226
|
Abstract
Cyanobacteria carry out oxygenic photosynthesis and share many features with chloroplasts, including thylakoid membranes, which are mainly composed of membrane lipids and protein complexes that mediate photosynthetic electron transport. Although the functions of the various thylakoid protein complexes have been well characterized, the details underlying the biogenesis of thylakoid membranes remain unclear. Galactolipids are the major constituents of the thylakoid membrane system, and all the genes involved in galactolipid biosynthesis were recently identified. In this chapter, I summarize recent advances in our understanding of the factors involved in thylakoid development, including regulatory proteins and enzymes that mediate lipid biosynthesis.
Collapse
Affiliation(s)
- Koichiro Awai
- Department of Biological Science, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
- Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, 432-8011, Japan.
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| |
Collapse
|
227
|
Ohbayashi R, Akai H, Yoshikawa H, Hess WR, Watanabe S. A tightly inducible riboswitch system in Synechocystis sp. PCC 6803. J GEN APPL MICROBIOL 2016; 62:154-9. [DOI: 10.2323/jgam.2016.02.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Ryudo Ohbayashi
- Department of Bioscience, Tokyo University of Agriculture
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST)
| | - Hideto Akai
- Department of Bioscience, Tokyo University of Agriculture
| | - Hirofumi Yoshikawa
- Department of Bioscience, Tokyo University of Agriculture
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST)
| | - Wolfgang R. Hess
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg
| | | |
Collapse
|
228
|
Han X, Zhu X, Zhu S, Wei L, Hong Z, Guo L, Chen H, Chi B, Liu Y, Feng L, Ren Y, Wan J. A Rational Design, Synthesis, Biological Evaluation and Structure--Activity Relationship Study of Novel Inhibitors against Cyanobacterial Fructose-1,6-bisphosphate Aldolase. J Chem Inf Model 2015; 56:73-81. [PMID: 26669534 DOI: 10.1021/acs.jcim.5b00618] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the present study, a series of novel maleimide derivatives were rationally designed and optimized, and their inhibitory activities against cyanobacteria class-II fructose-1,6-bisphosphate aldolase (Cy-FBA-II) and Synechocystis sp. PCC 6803 were further evaluated. The experimental results showed that the introduction of a bigger group (Br, Cl, CH3, or C6H3-o-F) on the pyrrole-2',5'-dione ring resulted in a decrease in the Cy-FBA-II inhibitory activity of the hit compounds. Generally, most of the hit compounds with high Cy-FBA-II inhibitory activities could also exhibit high in vivo activities against Synechocystis sp. PCC 6803. Especially, compound 10 not only shows a high Cy-FBA-II activity (IC50 = 1.7 μM) but also has the highest in vivo activity against Synechocystis sp. PCC 6803 (EC50 = 0.6 ppm). Thus, compound 10 was selected as a representative molecule, and its probable interactions with the surrounding important residues in the active site of Cy-FBA-II were elucidated by the joint use of molecular docking, molecular dynamics simulations, ONIOM calculations, and enzymatic assays to provide new insight into the binding mode of the inhibitors and Cy-FBA-II. The positive results indicate that the design strategy used in the present study is very likely to be a promising way to find novel lead compounds with high inhibitory activities against Cy-FBA-II in the future. The enzymatic and algal inhibition assays suggest that Cy-FBA-II is very likely to be a promising target for the design, synthesis, and development of novel specific algicides to solve cyanobacterial harmful algal blooms.
Collapse
Affiliation(s)
- Xinya Han
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University , Wuhan, Hubei 430079, China
| | - Xiuyun Zhu
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University , Wuhan, Hubei 430079, China
| | - Shuaihua Zhu
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University , Wuhan, Hubei 430079, China
| | - Lin Wei
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University , Wuhan, Hubei 430079, China
| | - Zongqin Hong
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University , Wuhan, Hubei 430079, China
| | - Li Guo
- Hubei Environmental Monitoring Central Station , Wuhan, Hubei 430072, China
| | - Haifeng Chen
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University , Wuhan, Hubei 430079, China
| | - Bo Chi
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University , Wuhan, Hubei 430079, China
| | - Yan Liu
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University , Wuhan, Hubei 430079, China
| | - Lingling Feng
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University , Wuhan, Hubei 430079, China
| | - Yanliang Ren
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University , Wuhan, Hubei 430079, China
| | - Jian Wan
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University , Wuhan, Hubei 430079, China
| |
Collapse
|
229
|
Vuorijoki L, Isojärvi J, Kallio P, Kouvonen P, Aro EM, Corthals GL, Jones PR, Muth-Pawlak D. Development of a Quantitative SRM-Based Proteomics Method to Study Iron Metabolism of Synechocystis sp. PCC 6803. J Proteome Res 2015; 15:266-79. [DOI: 10.1021/acs.jproteome.5b00800] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Linda Vuorijoki
- Molecular
Plant Biology, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Janne Isojärvi
- Molecular
Plant Biology, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Pauli Kallio
- Molecular
Plant Biology, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Petri Kouvonen
- Turku
Proteomics Facility, Centre for Biotechnology, University of Turku and Åbo Akademi University, FI-20014 Turku, Finland
| | - Eva-Mari Aro
- Molecular
Plant Biology, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Garry L. Corthals
- Turku
Proteomics Facility, Centre for Biotechnology, University of Turku and Åbo Akademi University, FI-20014 Turku, Finland
- Van’t
Hoff Institute for Molecular Sciences, University of Amsterdam, 1018 WV Amsterdam, The Netherlands
| | - Patrik R. Jones
- Department
of Life Sciences, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, United Kingdom
| | - Dorota Muth-Pawlak
- Molecular
Plant Biology, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
- Turku
Proteomics Facility, Centre for Biotechnology, University of Turku and Åbo Akademi University, FI-20014 Turku, Finland
| |
Collapse
|
230
|
Chirality Matters: Synthesis and Consumption of the d-Enantiomer of Lactic Acid by Synechocystis sp. Strain PCC6803. Appl Environ Microbiol 2015; 82:1295-1304. [PMID: 26682849 DOI: 10.1128/aem.03379-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/09/2015] [Indexed: 12/19/2022] Open
Abstract
Both enantiomers of lactic acid, l-lactic acid and d-lactic acid, can be produced in a sustainable way by a photosynthetic microbial cell factory and thus from CO2, sunlight, and water. Several properties of polylactic acid (a polyester of polymerized lactic acid) depend on the controlled blend of these two enantiomers. Recently, cyanobacterium Synechocystis sp. strain PCC6803 was genetically modified to allow formation of either of these two enantiomers. This report elaborates on the d-lactic acid production achieved by the introduction of a d-specific lactate dehydrogenase from the lactic acid bacterium Leuconostoc mesenteroides into Synechocystis. A typical batch culture of this recombinant strain initially shows lactic acid production, followed by a phase of lactic acid consumption, until production "outcompetes" consumption at later growth stages. We show that Synechocystis is able to use d-lactic acid, but not l-lactic acid, as a carbon source for growth. Deletion of the organism's putative d-lactate dehydrogenase (encoded by slr1556), however, does not eliminate this ability with respect to d-lactic acid consumption. In contrast, d-lactic acid consumption does depend on the presence of glycolate dehydrogenase GlcD1 (encoded by sll0404). Accordingly, this report highlights the need to match a product of interest of a cyanobacterial cell factory with the metabolic network present in the host used for its synthesis and emphasizes the need to understand the physiology of the production host in detail.
Collapse
|
231
|
Liou YF, Vasylenko T, Yeh CL, Lin WC, Chiu SH, Charoenkwan P, Shu LS, Ho SY, Huang HL. SCMMTP: identifying and characterizing membrane transport proteins using propensity scores of dipeptides. BMC Genomics 2015; 16 Suppl 12:S6. [PMID: 26677931 PMCID: PMC4682407 DOI: 10.1186/1471-2164-16-s12-s6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Identifying putative membrane transport proteins (MTPs) and understanding the transport mechanisms involved remain important challenges for the advancement of structural and functional genomics. However, the transporter characters are mainly acquired from MTP crystal structures which are hard to crystalize. Therefore, it is desirable to develop bioinformatics tools for the effective large-scale analysis of available sequences to identify novel transporters and characterize such transporters. RESULTS This work proposes a novel method (SCMMTP) based on the scoring card method (SCM) using dipeptide composition to identify and characterize MTPs from an existing dataset containing 900 MTPs and 660 non-MTPs which are separated into a training dataset consisting 1,380 proteins and an independent dataset consisting 180 proteins. The SCMMTP produced estimating propensity scores for amino acids and dipeptides as MTPs. The SCMMTP training and test accuracy levels respectively reached 83.81% and 76.11%. The test accuracy of support vector machine (SVM) using a complicated classification method with a low possibility for biological interpretation and position-specific substitution matrix (PSSM) as a protein feature is 80.56%, thus SCMMTP is comparable to SVM-PSSM. To identify MTPs, SCMMTP is applied to three datasets including: 1) human transmembrane proteins, 2) a photosynthetic protein dataset, and 3) a human protein database. MTPs showing α-helix rich structure is agreed with previous studies. The MTPs used residues with low hydration energy. It is hypothesized that, after filtering substrates, the hydrated water molecules need to be released from the pore regions. CONCLUSIONS SCMMTP yields estimating propensity scores for amino acids and dipeptides as MTPs, which can be used to identify novel MTPs and characterize transport mechanisms for use in further experiments. AVAILABILITY http://iclab.life.nctu.edu.tw/iclab_webtools/SCMMTP/.
Collapse
Affiliation(s)
- Yi-Fan Liou
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
| | - Tamara Vasylenko
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
| | - Chia-Lun Yeh
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
| | - Wei-Chun Lin
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
| | - Shih-Hsiang Chiu
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
| | - Phasit Charoenkwan
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
| | - Li-Sun Shu
- Department of Information Management, Overseas Chinese University, Taichung, Taiwan
| | - Shinn-Ying Ho
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Center for Bioinformatics Research, National Chiao Tung University, Hsinchu City, Taiwan
| | - Hui-Ling Huang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Center for Bioinformatics Research, National Chiao Tung University, Hsinchu City, Taiwan
| |
Collapse
|
232
|
Gao L, Wang J, Ge H, Fang L, Zhang Y, Huang X, Wang Y. Toward the complete proteome of Synechocystis sp. PCC 6803. PHOTOSYNTHESIS RESEARCH 2015; 126:203-219. [PMID: 25862646 DOI: 10.1007/s11120-015-0140-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 04/02/2015] [Indexed: 06/04/2023]
Abstract
The proteome of the photosynthetic model organism Synechocystis sp. PCC 6803 has been extensively analyzed in the last 15 years for the purpose of identifying proteins specifically expressed in subcellular compartments or differentially expressed in different environmental or internal conditions. This review summarizes the progress achieved so far with the emphasis on the impact of different techniques, both in sample preparation and protein identification, on the increasing coverage of proteome identification. In addition, this review evaluates the current completeness of proteome identification, and provides insights on the potential factors that could affect the complete identification of the Synechocystis proteome.
Collapse
Affiliation(s)
- Liyan Gao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Rd, Beijing, 100101, China
| | - Jinlong Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Rd, Beijing, 100101, China
| | - Haitao Ge
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, China
| | - Longfa Fang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Rd, Beijing, 100101, China
| | - Yuanya Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Rd, Beijing, 100101, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Rd, Beijing, 100101, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Rd, Beijing, 100101, China.
| |
Collapse
|
233
|
Polyviou D, Hitchcock A, Baylay AJ, Moore CM, Bibby TS. Phosphite utilization by the globally important marine diazotroph Trichodesmium. ENVIRONMENTAL MICROBIOLOGY REPORTS 2015; 7:824-30. [PMID: 26081517 DOI: 10.1111/1758-2229.12308] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 06/05/2015] [Indexed: 05/15/2023]
Abstract
Species belonging to the filamentous cyanobacterial genus Trichodesmium are responsible for a significant fraction of oceanic nitrogen fixation. The availability of phosphorus (P) likely constrains the growth of Trichodesmium in certain regions of the ocean. Moreover, Trichodesmium species have recently been shown to play a role in an emerging oceanic phosphorus redox cycle, further highlighting the key role these microbes play in many biogeochemical processes in the contemporary ocean. Here, we show that Trichodesmium erythraeum IMS101 can grow on the reduced inorganic compound phosphite as its sole source of P. The components responsible for phosphite utilization are identified through heterologous expression of the T. erythraeum IMS101 Tery_0365-0368 genes, encoding a putative adenosine triphosphate (ATP)-binding cassette transporter and nicotinamide adenine dinucleotide (NAD)-dependent dehydrogenase, in the model cyanobacteria Synechocystis sp. PCC6803. We demonstrate that only combined expression of both the transporter and the dehydrogenase enables Synechocystis to utilize phosphite, confirming the function of Tery_0365-0367 as a phosphite uptake system (PtxABC) and Tery_0368 as a phosphite dehydrogenase (PtxD). Our findings suggest that reported uptake of phosphite by Trichodesmium consortia in the field likely reflects an active biological process by Trichodesmium. These results highlight the diversity of phosphorus sources available to Trichodesmium in a resource-limited ocean.
Collapse
Affiliation(s)
- Despo Polyviou
- Ocean and Earth Sciences, National Oceanography Centre Southampton, University of Southampton, Waterfront Campus, European Way, Southampton, SO14 3ZH, UK
| | - Andrew Hitchcock
- Ocean and Earth Sciences, National Oceanography Centre Southampton, University of Southampton, Waterfront Campus, European Way, Southampton, SO14 3ZH, UK
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Alison J Baylay
- Ocean and Earth Sciences, National Oceanography Centre Southampton, University of Southampton, Waterfront Campus, European Way, Southampton, SO14 3ZH, UK
| | - C Mark Moore
- Ocean and Earth Sciences, National Oceanography Centre Southampton, University of Southampton, Waterfront Campus, European Way, Southampton, SO14 3ZH, UK
| | - Thomas S Bibby
- Ocean and Earth Sciences, National Oceanography Centre Southampton, University of Southampton, Waterfront Campus, European Way, Southampton, SO14 3ZH, UK
| |
Collapse
|
234
|
Nishijima Y, Kanesaki Y, Yoshikawa H, Ogawa T, Sonoike K, Nishiyama Y, Hihara Y. Analysis of spontaneous suppressor mutants from the photomixotrophically grown pmgA-disrupted mutant in the cyanobacterium Synechocystis sp. PCC 6803. PHOTOSYNTHESIS RESEARCH 2015; 126:465-475. [PMID: 25869635 DOI: 10.1007/s11120-015-0143-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/05/2015] [Indexed: 06/04/2023]
Abstract
The pmgA-disrupted (ΔpmgA) mutant in the cyanobacterium Synechocystis sp. PCC 6803 suffers severe growth inhibition under photomixotrophic conditions. In order to elucidate the key factors enabling the cells to grow under photomixotrophic conditions, we isolated spontaneous suppressor mutants from the ΔpmgA mutant derived from a single colony. When the ΔpmgA mutant was spread on a BG11 agar plate supplemented with glucose, colonies of suppressor mutants appeared after the bleaching of the background cells. We identified the mutation site of these suppressor mutants and found that 11 mutants out of 13 had a mutation in genes related to the type 1 NAD(P)H dehydrogenase (NDH-1) complex. Among them, eight mutants had mutations within the ndhF3 (sll1732) gene: R32stop, W62stop, V147I, G266V, G354W, G586C, and deletion of 7 bp within the coding region. One mutant had one base insertion in the putative -10 box of the ndhC (slr1279) gene, leading to the decrease in the transcripts of the ndhCKJ operon. Two mutants had one base insertion and deletion in the coding region of cupA (sll1734), which is co-transcribed with ndhF3 and ndhD3 and comprises together a form of NDH-1 complex (NDH-1MS complex) involved in inducible high-affinity CO2 uptake. The results indicate that the loss of the activity of this complex effectively rescues the ΔpmgA mutant under photomixotrophic condition with 1 % CO2. However, little difference among WT and mutants was observed in the activities ascribed to the NDH-1MS complex, i.e., CO2 uptake and cyclic electron transport. This may suggest that the NDH-1MS complex has the third, currently unknown function under photomixotrophic conditions.
Collapse
Affiliation(s)
- Yoshiki Nishijima
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| | - Yu Kanesaki
- Nodai Genome Research Center, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Hirofumi Yoshikawa
- Nodai Genome Research Center, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
- CREST, Japan Science and Technology Agency (JST), Saitama, 332-0012, Japan
| | - Takako Ogawa
- Faculty of Education and Integrated Arts and Sciences, Waseda University, Tokyo, 162-8480, Japan
- Japan Society for the Promotion of Science, Tokyo, 102-0083, Japan
| | - Kintake Sonoike
- Faculty of Education and Integrated Arts and Sciences, Waseda University, Tokyo, 162-8480, Japan.
| | - Yoshitaka Nishiyama
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| | - Yukako Hihara
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
- CREST, Japan Science and Technology Agency (JST), Saitama, 332-0012, Japan
| |
Collapse
|
235
|
Inactivation of the Deg protease family in the cyanobacterium Synechocystis sp. PCC 6803 has impact on the outer cell layers. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 152:383-94. [DOI: 10.1016/j.jphotobiol.2015.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 05/12/2015] [Accepted: 05/15/2015] [Indexed: 12/13/2022]
|
236
|
Pinto F, Pacheco CC, Oliveira P, Montagud A, Landels A, Couto N, Wright PC, Urchueguía JF, Tamagnini P. Improving a Synechocystis-based photoautotrophic chassis through systematic genome mapping and validation of neutral sites. DNA Res 2015; 22:425-37. [PMID: 26490728 PMCID: PMC4675711 DOI: 10.1093/dnares/dsv024] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 09/15/2015] [Indexed: 01/04/2023] Open
Abstract
The use of microorganisms as cell factories frequently requires extensive molecular manipulation. Therefore, the identification of genomic neutral sites for the stable integration of ectopic DNA is required to ensure a successful outcome. Here we describe the genome mapping and validation of five neutral sites in the chromosome of Synechocystis sp. PCC 6803, foreseeing the use of this cyanobacterium as a photoautotrophic chassis. To evaluate the neutrality of these loci, insertion/deletion mutants were produced, and to assess their functionality, a synthetic green fluorescent reporter module was introduced. The constructed integrative vectors include a BioBrick-compatible multiple cloning site insulated by transcription terminators, constituting robust cloning interfaces for synthetic biology approaches. Moreover, Synechocystis mutants (chassis) ready to receive purpose-built synthetic modules/circuits are also available. This work presents a systematic approach to map and validate chromosomal neutral sites in cyanobacteria, and that can be extended to other organisms.
Collapse
Affiliation(s)
- Filipe Pinto
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto 4150-180, Portugal Faculdade de Ciências, Departamento de Biologia, Universidade do Porto, Porto 4150-171, Portugal
| | - Catarina C Pacheco
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto 4150-180, Portugal
| | - Paulo Oliveira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto 4150-180, Portugal
| | - Arnau Montagud
- Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, Valencia 46022, Spain
| | - Andrew Landels
- ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S10 2TN, UK
| | - Narciso Couto
- ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S10 2TN, UK
| | - Phillip C Wright
- ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S10 2TN, UK
| | - Javier F Urchueguía
- Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, Valencia 46022, Spain
| | - Paula Tamagnini
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto 4150-180, Portugal Faculdade de Ciências, Departamento de Biologia, Universidade do Porto, Porto 4150-171, Portugal
| |
Collapse
|
237
|
Koskinen S, Hakkila K, Gunnelius L, Kurkela J, Wada H, Tyystjärvi T. In vivorecruitment analysis and a mutant strain without any group 2 σ factor reveal roles of different σ factors in cyanobacteria. Mol Microbiol 2015; 99:43-54. [DOI: 10.1111/mmi.13214] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2015] [Indexed: 10/23/2022]
Affiliation(s)
- Satu Koskinen
- Department of Biochemistry; University of Turku; FIN-20014 Turku Finland
| | - Kaisa Hakkila
- Department of Biochemistry; University of Turku; FIN-20014 Turku Finland
| | - Liisa Gunnelius
- Department of Biochemistry; University of Turku; FIN-20014 Turku Finland
| | - Juha Kurkela
- Department of Biochemistry; University of Turku; FIN-20014 Turku Finland
| | - Hajime Wada
- Department of Life Sciences; University of Tokyo; Komaba 3-8-1, Meguro-ku Tokyo 153-8902 Japan
| | - Taina Tyystjärvi
- Department of Biochemistry; University of Turku; FIN-20014 Turku Finland
| |
Collapse
|
238
|
Cyanobacterial Alkanes Modulate Photosynthetic Cyclic Electron Flow to Assist Growth under Cold Stress. Sci Rep 2015; 5:14894. [PMID: 26459862 PMCID: PMC4602277 DOI: 10.1038/srep14894] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/11/2015] [Indexed: 12/20/2022] Open
Abstract
All cyanobacterial membranes contain diesel-range C15-C19 hydrocarbons at concentrations similar to chlorophyll. Recently, two universal but mutually exclusive hydrocarbon production pathways in cyanobacteria were discovered. We engineered a mutant of Synechocystis sp. PCC 6803 that produces no alkanes, which grew poorly at low temperatures. We analyzed this defect by assessing the redox kinetics of PSI. The mutant exhibited enhanced cyclic electron flow (CEF), especially at low temperature. CEF raises the ATP:NADPH ratio from photosynthesis and balances reductant requirements of biosynthesis with maintaining the redox poise of the electron transport chain. We conducted in silico flux balance analysis and showed that growth rate reaches a distinct maximum for an intermediate value of CEF equivalent to recycling 1 electron in 4 from PSI to the plastoquinone pool. Based on this analysis, we conclude that the lack of membrane alkanes causes higher CEF, perhaps for maintenance of redox poise. In turn, increased CEF reduces growth by forcing the cell to use less energy-efficient pathways, lowering the quantum efficiency of photosynthesis. This study highlights the unique and universal role of medium-chain hydrocarbons in cyanobacterial thylakoid membranes: they regulate redox balance and reductant partitioning in these oxygenic photosynthetic cells under stress.
Collapse
|
239
|
Ding Q, Chen G, Wang Y, Wei D. Identification of Specific Variations in a Non-Motile Strain of Cyanobacterium Synechocystis sp. PCC 6803 Originated from ATCC 27184 by Whole Genome Resequencing. Int J Mol Sci 2015; 16:24081-93. [PMID: 26473841 PMCID: PMC4632739 DOI: 10.3390/ijms161024081] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 09/23/2015] [Accepted: 09/29/2015] [Indexed: 11/25/2022] Open
Abstract
Cyanobacterium Synechocystis sp. PCC 6803 is a widely used model organism in basic research and biofuel biotechnology application. Here, we report the genomic sequence of chromosome and seven plasmids of a glucose-tolerant, non-motile strain originated from ATCC 27184, GT-G, in use at Guangzhou. Through high-throughput genome re-sequencing and verification by Sanger sequencing, eight novel variants were identified in its chromosome and plasmids. The eight novel variants, especially the five non-silent mutations might have interesting effects on the phenotype of GT-G strains, for example the truncated Sll1895 and Slr0322 protein. These resequencing data provide background information for further research and application based on the GT-G strain and also provide evidence to study the evolution and divergence of Synechocystis 6803 globally.
Collapse
Affiliation(s)
- Qinglong Ding
- College of Light Industry and Food Sciences, South China University of Technology, 381 Wushan Road, 510641 Guangzhou, China.
| | - Gu Chen
- College of Light Industry and Food Sciences, South China University of Technology, 381 Wushan Road, 510641 Guangzhou, China.
| | - Yuling Wang
- College of Light Industry and Food Sciences, South China University of Technology, 381 Wushan Road, 510641 Guangzhou, China.
| | - Dong Wei
- College of Light Industry and Food Sciences, South China University of Technology, 381 Wushan Road, 510641 Guangzhou, China.
| |
Collapse
|
240
|
Premethylation of foreign DNA improves integrative transformation efficiency in Synechocystis sp. strain PCC 6803. Appl Environ Microbiol 2015; 81:8500-6. [PMID: 26452551 DOI: 10.1128/aem.02575-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 09/22/2015] [Indexed: 01/11/2023] Open
Abstract
Restriction digestion of foreign DNA is one of the key biological barriers against genetic transformation in microorganisms. To establish a high-efficiency transformation protocol in the model cyanobacterium, Synechocystis sp. strain PCC 6803 (Synechocystis 6803), we investigated the effects of premethylation of foreign DNA on the integrative transformation of this strain. In this study, two type II methyltransferase-encoding genes, i.e., sll0729 (gene M) and slr0214 (gene C), were cloned from the chromosome of Synechocystis 6803 and expressed in Escherichia coli harboring an integration plasmid. After premethylation treatment in E. coli, the integration plasmid was extracted and used for transformation of Synechocystis 6803. The results showed that although expression of methyltransferase M had little impact on the transformation of Synechocystis 6803, expression of methyltransferase C resulted in 11- to 161-fold-higher efficiency in the subsequent integrative transformation of Synechocystis 6803. Effective expression of methyltransferase C, which could be achieved by optimizing the 5' untranslated region, was critical to efficient premethylation of the donor DNA and thus high transformation efficiency in Synechocystis 6803. Since premethylating foreign DNA prior to transforming Synechocystis avoids changing the host genetic background, the study thus provides an improved method for high-efficiency integrative transformation of Synechocystis 6803.
Collapse
|
241
|
Osanai T, Shirai T, Iijima H, Nakaya Y, Okamoto M, Kondo A, Hirai MY. Genetic manipulation of a metabolic enzyme and a transcriptional regulator increasing succinate excretion from unicellular cyanobacterium. Front Microbiol 2015; 6:1064. [PMID: 26500619 PMCID: PMC4594341 DOI: 10.3389/fmicb.2015.01064] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 09/15/2015] [Indexed: 11/13/2022] Open
Abstract
Succinate is a building block compound that the U.S. Department of Energy (DOE) has declared as important in biorefineries, and it is widely used as a commodity chemical. Here, we identified the two genes increasing succinate production of the unicellular cyanobacterium Synechocystis sp. PCC 6803. Succinate was excreted under dark, anaerobic conditions, and its production level increased by knocking out ackA, which encodes an acetate kinase, and by overexpressing sigE, which encodes an RNA polymerase sigma factor. Glycogen catabolism and organic acid biosynthesis were enhanced in the mutant lacking ackA and overexpressing sigE, leading to an increase in succinate production reaching five times of the wild-type levels. Our genetic and metabolomic analyses thus demonstrated the effect of genetic manipulation of a metabolic enzyme and a transcriptional regulator on succinate excretion from this cyanobacterium with the data based on metabolomic technique.
Collapse
Affiliation(s)
- Takashi Osanai
- RIKEN Center for Sustainable Resource Science Yokohama, Japan ; Department of Agricultural Chemistry, School of Agriculture, Meiji University Kawasaki, Japan
| | | | - Hiroko Iijima
- RIKEN Center for Sustainable Resource Science Yokohama, Japan ; Department of Agricultural Chemistry, School of Agriculture, Meiji University Kawasaki, Japan
| | - Yuka Nakaya
- RIKEN Center for Sustainable Resource Science Yokohama, Japan ; Biomass Engineering Program, RIKEN Yokohama, Japan
| | - Mami Okamoto
- Biomass Engineering Program, RIKEN Yokohama, Japan
| | - Akihiko Kondo
- Biomass Engineering Program, RIKEN Yokohama, Japan ; Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University Kobe, Japan
| | - Masami Y Hirai
- RIKEN Center for Sustainable Resource Science Yokohama, Japan
| |
Collapse
|
242
|
Nesbit AD, Whippo C, Hangarter RP, Kehoe DM. Translation initiation factor 3 families: what are their roles in regulating cyanobacterial and chloroplast gene expression? PHOTOSYNTHESIS RESEARCH 2015; 126:147-59. [PMID: 25630975 DOI: 10.1007/s11120-015-0074-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 01/02/2015] [Indexed: 05/09/2023]
Abstract
Initiation is a key control point for the regulation of translation in prokaryotes and prokaryotic-like translation systems such as those in plant chloroplasts. Genome sequencing and biochemical studies are increasingly demonstrating differences in many aspects of translation between well-studied microbes such as Escherichia coli and lesser studied groups such as cyanobacteria. Analyses of chloroplast translation have revealed its prokaryotic origin but also uncovered many unique aspects that do not exist in E. coli. Recently, a novel form of posttranscriptional regulation by light color was discovered in the filamentous cyanobacterium Fremyella diplosiphon that requires a putative stem-loop and involves the use of two different prokaryotic translation initiation factor 3s (IF3s). Multiple (up to five) putative IF3s have now been found to be encoded in 22 % of sequenced cyanobacterial genomes and 26 % of plant nuclear genomes. The lack of similar light-color regulation of gene expression in most of these species suggests that IF3s play roles in regulating gene expression in response to other environmental and developmental cues. In the plant Arabidopsis, two nuclear-encoded IF3s have been shown to localize to the chloroplasts, and the mRNA levels encoding these vary significantly in certain organ and tissue types and during several phases of development. Collectively, the accumulated data suggest that in about one quarter of photosynthetic prokaryotes and eukaryotes, IF3 gene families are used to regulate gene expression in addition to their traditional roles in translation initiation. Models for how this might be accomplished in prokaryotes versus eukaryotic plastids are presented.
Collapse
Affiliation(s)
- April D Nesbit
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
- Department of Biology/Chemistry, Purdue University North Central, 1401 S. US 421, Westville, IN, 46391, USA
| | - Craig Whippo
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
- Department of Natural Science, Dickinson State University, Dickinson, ND, 58601, USA
| | - Roger P Hangarter
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - David M Kehoe
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA.
- Indiana Molecular Biology Institute, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
243
|
Chen Z, Zhan J, Chen Y, Yang M, He C, Ge F, Wang Q. Effects of Phosphorylation of β Subunits of Phycocyanins on State Transition in the Model Cyanobacterium Synechocystis sp. PCC 6803. PLANT & CELL PHYSIOLOGY 2015; 56:1997-2013. [PMID: 26315596 DOI: 10.1093/pcp/pcv118] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/09/2015] [Indexed: 05/22/2023]
Abstract
Synechocystis sp. PCC 6803 (hereafter Synechocystis) is a model cyanobacterium and has been used extensively for studies concerned with photosynthesis and environmental adaptation. Although dozens of protein kinases and phosphatases with specificity for Ser/Thr/Tyr residues have been predicted, only a few substrate proteins are known in Synechocystis. In this study, we report 194 in vivo phosphorylation sites from 149 proteins in Synechocystis, which were identified using a combination of peptide pre-fractionation, TiO(2) enrichment and liquid chromatograpy-tandem mass spectrometry (LC-MS/MS) analysis. These phosphorylated proteins are implicated in diverse biological processes, such as photosynthesis. Among all identified phosphoproteins involved in photosynthesis, the β subunits of phycocyanins (CpcBs) were found to be phosphorylated on Ser22, Ser49, Thr94 and Ser154. Four non-phosphorylated mutants were constructed by using site-directed mutagenesis. The in vivo characterization of the cpcB mutants showed a slower growth under high light irradiance and displayed fluorescence quenching to a lower level and less efficient energy transfer inside the phycobilisome (PBS). Notably, the non-phosphorylated mutants exhibited a slower state transition than the wild type. The current results demonstrated that the phosphorylation status of CpcBs affects the energy transfer and state transition of photosynthesis in Synechocystis. This study provides novel insights into the molecular mechanisms of protein phosphorylation in the regulation of photosynthesis in cyanobacteria and may facilitate the elucidation of the entire regulatory network by linking kinases to their physiological substrates.
Collapse
Affiliation(s)
- Zhuo Chen
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China These authors contributed equally to this work.
| | - Jiao Zhan
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China University of Chinese Academy of Sciences, Beijing 100094, China These authors contributed equally to this work.
| | - Ying Chen
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China
| | - Mingkun Yang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China
| | - Chenliu He
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China
| | - Feng Ge
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China
| | - Qiang Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China
| |
Collapse
|
244
|
Battchikova N, Angeleri M, Aro EM. Proteomic approaches in research of cyanobacterial photosynthesis. PHOTOSYNTHESIS RESEARCH 2015; 126:47-70. [PMID: 25359503 DOI: 10.1007/s11120-014-0050-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 10/18/2014] [Indexed: 05/03/2023]
Abstract
Oxygenic photosynthesis in cyanobacteria, algae, and plants is carried out by a fabulous pigment-protein machinery that is amazingly complicated in structure and function. Many different approaches have been undertaken to characterize the most important aspects of photosynthesis, and proteomics has become the essential component in this research. Here we describe various methods which have been used in proteomic research of cyanobacteria, and demonstrate how proteomics is implemented into on-going studies of photosynthesis in cyanobacterial cells.
Collapse
Affiliation(s)
- Natalia Battchikova
- Laboratory of Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014, Turku, Finland.
| | - Martina Angeleri
- Laboratory of Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014, Turku, Finland
| | - Eva-Mari Aro
- Laboratory of Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014, Turku, Finland
| |
Collapse
|
245
|
Davison M, Hall E, Zare R, Bhaya D. Challenges of metagenomics and single-cell genomics approaches for exploring cyanobacterial diversity. PHOTOSYNTHESIS RESEARCH 2015; 126:135-146. [PMID: 25515769 DOI: 10.1007/s11120-014-0066-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 12/10/2014] [Indexed: 06/04/2023]
Abstract
Cyanobacteria have played a crucial role in the history of early earth and continue to be instrumental in shaping our planet, yet applications of cutting edge technology have not yet been widely used to explore cyanobacterial diversity. To provide adequate background, we briefly review current sequencing technologies and their innovative uses in genomics and metagenomics. Next, we focus on current cell capture technologies and the challenges of using them with cyanobacteria. We illustrate the utility in coupling breakthroughs in DNA amplification with cell capture platforms, with an example of microfluidic isolation and subsequent targeted amplicon sequencing from individual terrestrial thermophilic cyanobacteria. Single cells of thermophilic, unicellular Synechococcus sp. JA-2-3-B'a(2-13) (Syn OS-B') were sorted in a microfluidic device, lysed, and subjected to whole genome amplification by multiple displacement amplification. We amplified regions from specific CRISPR spacer arrays, which are known to be highly diverse, contain semi-palindromic repeats which form secondary structure, and can be difficult to amplify. Cell capture, lysis, and genome amplification on a microfluidic device have been optimized, setting a stage for further investigations of individual cyanobacterial cells isolated directly from natural populations.
Collapse
Affiliation(s)
- Michelle Davison
- Department of Plant Biology, Carnegie Institution of Science, 260 Panama Street, Stanford, CA, 94305, USA.
| | - Eric Hall
- SRI International, 333 Ravenswood Ave, Menlo Park, CA, 94025, USA
| | - Richard Zare
- Department of Chemistry, Stanford University, 333 Campus Drive Mudd Building, Room 121, Stanford, CA, 94305-4401, USA
| | - Devaki Bhaya
- Department of Plant Biology, Carnegie Institution of Science, 260 Panama Street, Stanford, CA, 94305, USA
| |
Collapse
|
246
|
Cardona T. A fresh look at the evolution and diversification of photochemical reaction centers. PHOTOSYNTHESIS RESEARCH 2015; 126:111-34. [PMID: 25512103 PMCID: PMC4582080 DOI: 10.1007/s11120-014-0065-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 12/05/2014] [Indexed: 05/18/2023]
Abstract
In this review, I reexamine the origin and diversification of photochemical reaction centers based on the known phylogenetic relations of the core subunits, and with the aid of sequence and structural alignments. I show, for example, that the protein folds at the C-terminus of the D1 and D2 subunits of Photosystem II, which are essential for the coordination of the water-oxidizing complex, were already in place in the most ancestral Type II reaction center subunit. I then evaluate the evolution of reaction centers in the context of the rise and expansion of the different groups of bacteria based on recent large-scale phylogenetic analyses. I find that the Heliobacteriaceae family of Firmicutes appears to be the earliest branching of the known groups of phototrophic bacteria; however, the origin of photochemical reaction centers and chlorophyll synthesis cannot be placed in this group. Moreover, it becomes evident that the Acidobacteria and the Proteobacteria shared a more recent common phototrophic ancestor, and this is also likely for the Chloroflexi and the Cyanobacteria. Finally, I argue that the discrepancies among the phylogenies of the reaction center proteins, chlorophyll synthesis enzymes, and the species tree of bacteria are best explained if both types of photochemical reaction centers evolved before the diversification of the known phyla of phototrophic bacteria. The primordial phototrophic ancestor must have had both Type I and Type II reaction centers.
Collapse
Affiliation(s)
- Tanai Cardona
- Department of Life Sciences, Imperial College London, Exhibition Road, London, SW7 2AZ, UK.
| |
Collapse
|
247
|
Pardo YA, Florez C, Baker KM, Schertzer JW, Mahler GJ. Detection of outer membrane vesicles in Synechocystis PCC 6803. FEMS Microbiol Lett 2015; 362:fnv163. [PMID: 26363014 DOI: 10.1093/femsle/fnv163] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2015] [Indexed: 12/16/2022] Open
Abstract
It has been well established that many species of Gram-negative bacteria release nanoscale outer membrane vesicles (OMVs) during normal growth. Furthermore, the roles of these structures in heterotrophic bacteria have been extensively characterized. However, little is known about the existence or function of OMVs in photoautotrophs. In the present study, we report for the first time the production of OMVs by the model photosynthetic organism Synechocystis sp. PCC 6803, a species of biotechnological importance. We detected extracellular proteins and lipids in cell-free supernatants derived from Synechocystis culture, yet the cytoplasmic and thylakoid membrane markers NADH oxidase and chlorophyll were absent. This indicated that the extracellular proteins and lipids derived from the outer membrane, and not from cell lysis. Furthermore, we identified spherical structures within the expected size range of OMVs in Synechocystis culture using scanning electron microscopy. Taken together, these results suggest that the repertoire of Gram-negative bacteria that are known to produce OMVs may be expanded to include Synechocystis PCC6803. Because of the considerable genetic characterization of Synechocystis in particular, our discovery has the potential to support novel biotechnological applications as well.
Collapse
Affiliation(s)
- Yehudah A Pardo
- Department of Biomedical Engineering, Binghamton University, PO Box 6000, Binghamton, NY 13902, USA
| | - Catalina Florez
- Department of Biological Sciences, Binghamton University, PO Box 6000, Binghamton, NY 13902, USA Binghamton Biofilm Research Center, Binghamton University, PO Box 6000, Binghamton, NY 13902, USA
| | - Kristopher M Baker
- STEM and Health Professions Division, SUNY Rockland Community College, Technology Center, 145 College Road, Suffern, NY 10901, USA
| | - Jeffrey W Schertzer
- Department of Biological Sciences, Binghamton University, PO Box 6000, Binghamton, NY 13902, USA Binghamton Biofilm Research Center, Binghamton University, PO Box 6000, Binghamton, NY 13902, USA
| | - Gretchen J Mahler
- Department of Biomedical Engineering, Binghamton University, PO Box 6000, Binghamton, NY 13902, USA Binghamton Biofilm Research Center, Binghamton University, PO Box 6000, Binghamton, NY 13902, USA
| |
Collapse
|
248
|
Yoo SH, Lee BH, Li L, Perris SDN, Spalding MH, Han SY, Jane JL. Biocatalytic role of potato starch synthase III for α-glucan biosynthesis in Synechocystis sp. PCC6803 mutants. Int J Biol Macromol 2015; 81:710-7. [PMID: 26358554 DOI: 10.1016/j.ijbiomac.2015.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 09/02/2015] [Accepted: 09/04/2015] [Indexed: 11/24/2022]
Abstract
A potato starch synthase III (PSSIII) was expressed in the Synechocystis mutants deficient in either glycogen synthase I (M1) or II (M2) to replenish α-(1,4) linkage synthesizing activity, resulting in new mutants, PM1 and PM2, respectively. These mutants were applied to study the role of exogenous plant starch synthase for starch/glycogen biosynthesis mechanism established in the cyanobacteria. The remaining glycogen synthase genes in PM1 and PM2 were further disrupted to make the mutants PM12 and PM21 which contained PSSIII as the sole glycogen/starch synthase. Among wild type and mutants, there were no significant differences in the amount of α-glucan produced. All the mutants harboring active PSSIII produced α-glucans with relatively much shorter and less longer α-1,4 chains than wild-type glycogen, which was exactly in accordance with the increase in glycogen branching enzyme activity. In fact, α-glucan structure of PM1 was very similar to those of PM12 and PM21, and PM2 had more intermediate chains than M2. This result suggests PSSIII may have distributive elongation property during α-glucan synthesis. In conclusion, the Synechocystis as an expression model system of plant enzymes can be applied to determine the role of starch synthesizing enzymes and their association during α-glucan synthesis.
Collapse
Affiliation(s)
- Sang-Ho Yoo
- Department of Food Science & Technology and Carbohydrate Bioproduct Research Center, Sejong University, 98 Gunja-Dong, Gwangjin-Gu, Seoul 143-747, South Korea.
| | - Byung-Hoo Lee
- Department of Food Science & Biotechnology, College of BioNano Technology, Gachon University, Seongnam 461-701, South Korea
| | - Li Li
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA
| | | | | | - Sang Yun Han
- Department of Nanochemistry, College of BioNano Technology, Gachon University, Seongnam 461-701, South Korea
| | - Jay-lin Jane
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
249
|
Gao L, Pei G, Chen L, Zhang W. A global network-based protocol for functional inference of hypothetical proteins in Synechocystis sp. PCC 6803. J Microbiol Methods 2015; 116:44-52. [DOI: 10.1016/j.mimet.2015.06.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 06/24/2015] [Accepted: 06/25/2015] [Indexed: 01/15/2023]
|
250
|
Regulation of the scp Genes in the Cyanobacterium Synechocystis sp. PCC 6803--What is New? Molecules 2015; 20:14621-37. [PMID: 26274949 PMCID: PMC6331805 DOI: 10.3390/molecules200814621] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 08/05/2015] [Accepted: 08/07/2015] [Indexed: 11/18/2022] Open
Abstract
In the cyanobacterium Synechocystis sp. PCC 6803 there are five genes encoding small CAB-like (SCP) proteins, which have been shown to be up-regulated under stress. Analyses of the promoter sequences of the scp genes revealed the existence of an NtcA binding motif in two scp genes, scpB and scpE. Binding of NtcA, the key transcriptional regulator during nitrogen stress, to the promoter regions was shown by electrophoretic mobility shift assay. The metabolite 2-oxoglutarate did not increase the affinity of NtcA for binding to the promoters of scpB and scpE. A second motif, the HIP1 palindrome 5ʹ GGCGATCGCC 3ʹ, was detected in the upstream regions of scpB and scpC. The transcription factor encoded by sll1130 has been suggested to recognize this motif to regulate heat-responsive genes. Our data suggest that HIP1 is not a regulatory element within the scp genes. Further, the presence of the high light regulatory (HLR1) motif was confirmed in scpB-E, in accordance to their induced transcriptions in cells exposed to high light. The HLR1 motif was newly discovered in eight additional genes.
Collapse
|