201
|
Abstract
Therapeutic resistance and proclivity for metastasis are hallmarks of malignant melanoma. Genetic, epidemiological and genomic investigations are uncovering the spectrum of stereotypical mutations that are associated with melanoma and how these mutations relate to risk factors such as ultraviolet exposure. The ability to validate the pathogenetic relevance of these mutations in the mouse, coupled with advances in rational drug design, has generated optimism for the development of effective prevention programmes, diagnostic measures and targeted therapeutics in the near future.
Collapse
Affiliation(s)
- Lynda Chin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
202
|
Abstract
Today, there is evidence that the cAMP-dependent kinases (PKA) are not the only intracellular receptors involved in intracellular cAMP signalling in eukaryotes. Other cAMP-binding proteins have been recently identified, including some cyclic nucleotide-gated channels and Epac (exchange protein directly activated by cAMP) proteins. All these proteins bind cAMP through conserved cyclic nucleotide monophosphate-binding domains. However, all putative cAMP-binding proteins having such domains, as revealed by computer analysis, do not necessarily bind cAMP, indicating that their presence is not a sufficient criteria to predict cAMP-binding property for a protein.
Collapse
Affiliation(s)
- S Dremier
- IRIBHM, Faculty of Medicine, Free University of Brussels, 808 Route de Lennik, 1070 Brussels, Belgium.
| | | | | | | | | |
Collapse
|
203
|
Maillet M, Robert SJ, Cacquevel M, Gastineau M, Vivien D, Bertoglio J, Zugaza JL, Fischmeister R, Lezoualc'h F. Crosstalk between Rap1 and Rac regulates secretion of sAPPalpha. Nat Cell Biol 2003; 5:633-9. [PMID: 12819788 DOI: 10.1038/ncb1007] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2003] [Accepted: 04/15/2003] [Indexed: 12/26/2022]
Abstract
Cyclic AMP (cAMP) is produced by activation of Gs protein-coupled receptors and regulates many physiological processes through activation of protein kinase A (PKA). However, a large body of evidence indicates that cAMP also regulates specific cellular functions through PKA-independent pathways. Here, we show that a small GTPase of the Rho family, Rac, is regulated by cAMP in a PKA-independent manner. We also show that Rac activation results from activation of Rap1 through the cAMP guanine nucleotide-exchange factor (GEF) Epac1. Activation of the Gs-coupled serotonin 5-HT(4) receptor initiates this signalling cascade in various cell types. Furthermore, we demonstrate that crosstalk between the Ras and Rho GTPase families is involved in cAMP-dependent processing of amyloid precursor protein (APP), a key protein in Alzheimer's disease. Indeed, Epac1 regulates secretion of the non-amyloidogenic soluble form of APP (sAPPalpha) through Rap1 and Rac. Our data identify an unsuspected connection between two families of small GTPases and imply that Rac can function downstream of cAMP/Epac1/Rap1 in a novel signal transduction secretory pathway.
Collapse
Affiliation(s)
- Marjorie Maillet
- Cardiologie Cellulaire et Moléculaire, INSERM U-446, Université Paris-Sud, Faculté de Pharmacie, F-92296 Châtenay-Malabry, France
| | | | | | | | | | | | | | | | | |
Collapse
|
204
|
Mercer KE, Pritchard CA. Raf proteins and cancer: B-Raf is identified as a mutational target. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1653:25-40. [PMID: 12781369 DOI: 10.1016/s0304-419x(03)00016-7] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A recent report has shown that activating mutations in the BRAF gene are present in a large percentage of human malignant melanomas and in a proportion of colon cancers. The vast majority of these mutations represent a single nucleotide change of T-A at nucleotide 1796 resulting in a valine to glutamic acid change at residue 599 within the activation segment of B-Raf. This exciting new discovery is the first time that a direct association between any RAF gene and human cancer has been reported. Raf proteins are also indirectly associated with cancer as effectors of activated Ras proteins, oncogenic forms of which are present in approximately one-third of all human cancers. BRAF and RAS mutations are rarely both present in the same cancers but the cancer types with BRAF mutations are similar to those with RAS mutations. This has been taken as evidence that the inappropriate regulation of the downstream ERKs (the p42/p44 MAP kinases) is a major contributing factor in the development of these cancers. Recent studies in mice with targeted mutations of the raf genes have confirmed that B-Raf is a far stronger activator of ERKs than its better studied Raf-1 homologue, even in cell types in which the protein is barely expressed. The explanation for this lies in a number of key differences in the regulation of B-Raf and Raf-1 activity. Constitutive phosphorylation of serine 445 of B-Raf leads to this protein having a higher basal kinase activity than Raf-1. Phosphorylation of threonine 598 and serine 601 within the activation loop of B-Raf at the plasma membrane also regulates its activity. The V599E mutation is thought to mimic these phosphorylations, resulting in a protein with high activity, leading to constitutive ERK activation. B-Raf now provides a critical new target to which drugs for treating malignant melanoma can be developed and, with this in mind, it is now important to gain clear insight into the biochemical properties of this relatively little characterised protein.
Collapse
Affiliation(s)
- Kathryn E Mercer
- Department of Biochemistry, University of Leicester, University Road, LE1 7RH, Leicester, UK
| | | |
Collapse
|
205
|
Qiao J, Huang F, Lum H. PKA inhibits RhoA activation: a protection mechanism against endothelial barrier dysfunction. Am J Physiol Lung Cell Mol Physiol 2003; 284:L972-80. [PMID: 12588708 DOI: 10.1152/ajplung.00429.2002] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Much evidence indicates that cAMP-dependent protein kinase (PKA) prevents increased endothelial permeability induced by inflammatory mediators. We investigated the hypothesis that PKA inhibits Rho GTPases, which are regulator proteins believed to mediate endothelial barrier dysfunction. Stimulation of human microvascular endothelial cells (HMEC) with thrombin (10 nM) increased activated RhoA (RhoA-GTP) within 1 min, which remained elevated approximately fourfold over control for 15 min. The activation was accompanied by RhoA translocation to the cell membrane. However, thrombin did not activate Cdc42 or Rac1 within similar time points, indicating selectivity of activation responses by Rho GTPases. Pretreatment of HMEC with 10 micro M forskolin plus 1 micro M IBMX (FI) to elevate intracellular cAMP levels inhibited both thrombin-induced RhoA activation and translocation responses. FI additionally inhibited thrombin-mediated dissociation of RhoA from guanine nucleotide dissociation inhibitor (GDI) and enhanced in vivo incorporation of (32)P by GDI. HMEC pretreated in parallel with FI showed >50% reduction in time for the thrombin-mediated resistance drop to return to near baseline and inhibition of approximately 23% of the extent of resistance drop. Infection of HMEC with replication-deficient adenovirus containing the protein kinase A inhibitor gene (PKA inhibitor) blocked both the FI-mediated protective effects on RhoA activation and resistance changes. In conclusion, the results provide evidence that PKA inhibited RhoA activation in endothelial cells, supporting a signaling mechanism of protection against vascular endothelial barrier dysfunction.
Collapse
Affiliation(s)
- Jing Qiao
- Department of Pharmacology, Rush Presbyterian St. Luke's Medical Center, Chicago, Illinois 60612, USA
| | | | | |
Collapse
|
206
|
Merighi S, Baraldi PG, Gessi S, Iannotta V, Klotz KN, Leung E, Mirandola P, Tabrizi MA, Varani K, Borea PA. Adenosine receptors and human melanoma. Drug Dev Res 2003. [DOI: 10.1002/ddr.10181] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
207
|
Abstract
Recent years have seen a steady rise in the incidence of cutaneous malignant melanoma worldwide. Although it is now appreciated that the key to understanding the process by which melanocytes are transformed into malignant melanoma lies in the interplay between genetic factors and the ultraviolet (UV) spectrum of sunlight, the nature of this relation has remained obscure. Recently, prospects for elucidating the molecular mechanisms underlying such gene-environment interactions have brightened considerably through the development of UV-responsive experimental animal models of melanoma. Genetically engineered mice and human skin xenografts constitute novel platforms upon which to build studies designed to elucidate the pathogenesis of UV-induced melanomagenesis. The future refinement of these in vivo models should provide a wealth of information on the cellular and genetic targets of UV, the pathways responsible for the repair of UV-induced DNA damage, and the molecular interactions between melanocytes and other skin cells in response to UV. It is anticipated that exploitation of these model systems will contribute significantly toward the development of effective approaches to the prevention and treatment of melanoma.
Collapse
Affiliation(s)
- Chamelli Jhappan
- Molecular Genetics Section, Laboratory of Molecular Biology, National Cancer Institute, Bethesda, MD 20892-4264, USA
| | | | | |
Collapse
|
208
|
Widlund HR, Fisher DE. Microphthalamia-associated transcription factor: a critical regulator of pigment cell development and survival. Oncogene 2003; 22:3035-41. [PMID: 12789278 DOI: 10.1038/sj.onc.1206443] [Citation(s) in RCA: 268] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The microphthalamia-associated transcription factor (MITF) is an integral transcriptional regulator in melanocyte, the lineage from which melanoma cells originate. This basic-helix-loop-helix-leucine-zipper (bHLHzip) protein is critical for melanocyte cell-fate choice during commitment from pluripotent precursor cells in the neural crest. Its role in differentiation pathways has been highlighted by its potent transcriptional and lineage-specific regulation of the three major pigment enzymes: tyrosinase, Tyrp1, and Dct as well as other pigmentation factors. However, the cellular functions of MITF seem to be wider than differentiation and cell-fate pathways alone, since melanocytes and melanoma cells appear to require an expression of this factor. Here, we discuss the transcriptional networks in which MITF is thought to reside and describe signaling pathways in the cell which impinge on MITF. Accumulating evidence supports the notion that MITF is involved in survival pathways during normal development as well as during neoplastic growth of melanoma.
Collapse
Affiliation(s)
- Hans R Widlund
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
209
|
Charles MP, Adamski D, Kholler B, Pelletier L, Berger F, Wion D. Induction of neurite outgrowth in PC12 cells by the bacterial nucleoside N6-methyldeoxyadenosine is mediated through adenosine A2a receptors and via cAMP and MAPK signaling pathways. Biochem Biophys Res Commun 2003; 304:795-800. [PMID: 12727227 DOI: 10.1016/s0006-291x(03)00666-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have previously shown that N(6)-methyldeoxyadenosine (MDA) is an inducer of differentiation in several tumor cells. Here we show that in addition to its ability to induce neurite-outgrowth in PC12 cells, MDA also significantly enhances the nerve-growth factor-mediated neurite outgrowth of these cells. Thus, MDA acts synergistically with NGF to repress cdc2 and cdk2 synthesis and to enhance tyrosine hydroxylase synthesis. To further elucidate the mechanisms of action of MDA, we investigated the effect of this drug on various signaling pathways. The neuritogenesis observed in PC12 following MDA treatment is mediated through activation of adenylyl cyclase in a PKA independent process and through the recruitment of the p44/p42 MAPK pathway. Furthermore, the adenosine A(2a) receptor antagonist ZM 241385 prevents the MDA-induced neuritogenesis, suggesting that MDA mediates its effect via this adenylyl cyclase-coupled A(2a) receptor. Collectively, these findings suggest that, in PC12 cells, the MDA-induced neuritogenesis requires the recruitment of adenosine A(2a) receptor, the stimulation of adenylate cyclase, and the activation of the p44/42MAP kinase cascade.
Collapse
|
210
|
Orellana SA, Quinones AM. The absence of prostaglandin e1 returned confluent cultures of highly proliferative murine polycystic kidney principal cells to a normal proliferation level. In Vitro Cell Dev Biol Anim 2003; 39:199-203. [PMID: 12875614 DOI: 10.1290/1543-706x(2003)039<0199:taoper>2.0.co;2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2002] [Accepted: 07/01/2003] [Indexed: 11/11/2022]
Abstract
Constitutively high proliferation, loss of cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA)-regulated proliferation, and half-normal cAMP levels were observed previously in principal cells from the C57BL/6J- Cyc1\[cf12\]cpk\[cf1\] (cpk) model of autosomal recessive polycystic kidneys disease (PKD) cultured in defined medium supplemented with prostaglandin E1 (PGE1). Because PGE1 can up- or down-regulate renal cAMP production depending upon its receptor coupling; cAMP exerted both PKA-dependent and PKA-independent effects on cell proliferation; proliferation is considered to be a component of cystogenesis; and PGE1 resulted in loss of tubular structures and formation of cystic structures in gel culture of Madin Darby Canine Kidney cells; the effect of removing PGE1 on murine principal cell proliferation was examined. Proliferation was measured in filter-grown cultures of cystic (cpk) and noncystic (C57) principal cells from cpk and C57BL/6J mice, respectively. Lack of PGE1 had no effect on subconfluent C57 and cpk cultures or confluent C57 cultures but had a dramatic effect on confluent cpk cultures. Without PGE1, cpk proliferation was comparable with the low C57 level. In PGE1-deficient medium, differences were observed between confluence conditions and cell types for responses to a cAMP analog and a PKA activity inhibitor that suggested altered regulation of both PKA-dependent and PKA-independent cell proliferation. Cyclic adenosine monophosphate-dependent differences reported here, and previously, support the idea that the combination of mutant PKD gene product, altered PGE1 responsiveness, and altered PKA targeting contributes to activation of a cystogenic signaling pathway that regulates principal cell proliferation and is involved in pathogenesis.
Collapse
Affiliation(s)
- Stephanie A Orellana
- Department of Pediatrics, Case Western Reserve University School of Medicine Cleveland, Ohio 44106-6003, USA.
| | | |
Collapse
|
211
|
Abstract
The Ras superfamily of small G proteins is remarkable for both its diversity and physiological functions. One member, Rap1, has been implicated in a particularly wide range of biological processes, from cell proliferation and differentiation to cell adhesion. But the diversity of Rap1 has lead to contradictory reports of its effects. Originally identified as an antagonist of Ras-induced transformation, Rap1 can oppose other actions of Ras including regulation of cell growth and differentiation, integrin-dependent responses and synaptic plasticity. Furthermore, recent evidence confirms that Rap1, like Ras, can activate the MAP kinase cascade (ERK) in several cell types. These diverse functions of Rap1 underscore that the activation and action of Rap1 are regulated by complex factors that are cell-type specific.
Collapse
Affiliation(s)
- Philip J S Stork
- Vollum Institute, L474 Oregon Health Sciences University, Portland 97201, USA.
| |
Collapse
|
212
|
Alleaume C, Eychène A, Caigneaux E, Muller JM, Philippe M. Vasoactive intestinal peptide stimulates proliferation in HT29 human colonic adenocarcinoma cells: concomitant activation of Ras/Rap1-B-Raf-ERK signalling pathway. Neuropeptides 2003; 37:98-104. [PMID: 12747941 DOI: 10.1016/s0143-4179(03)00020-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The vasoactive intestinal peptide (VIP) has been shown to regulate cell proliferation and differentiation in many cell types. We previously reported that this neuropeptide inhibited proliferation in HT29 adenocarcinoma cells cultured in serum-containing medium. In addition, it has been demonstrated that VIP induced a potent stimulation of intracellular cAMP production in these cells cultured either in the absence or in the presence of serum. We also demonstrated that VIP induced phosphorylation of the small GTPase Rap1 in these cancerogenous cells. In the present study, the effects of VIP on the proliferation of HT29 cells cultured in the absence of growth factors and various concomitant signalling events were investigated. Under serum-free conditions VIP stimulates HT29 cell proliferation and induced a time- and concentration-dependent ERK activation. Furthermore, VIP induced the activation of the small GTPase Rap1 and of a 95 kDa isoform of the serine/threonine kinase B-Raf. Ras GTPase is also activated in VIP-stimulated cells. We hypothesize that VIP-induced proliferation in HT29 adenocarcinoma cells may involve a cAMP-Rap1/Ras-B-Raf-ERK signalling pathway.
Collapse
Affiliation(s)
- Céline Alleaume
- Equipe de Biologie des Interactions Cellulaires, CNRS UMR 6558 LBSC, Université de Poitiers, 40 avenue du Recteur Pineau, 86022, Poitiers Cedex, France
| | | | | | | | | |
Collapse
|
213
|
Cottom J, Salvador LM, Maizels ET, Reierstad S, Park Y, Carr DW, Davare MA, Hell JW, Palmer SS, Dent P, Kawakatsu H, Ogata M, Hunzicker-Dunn M. Follicle-stimulating hormone activates extracellular signal-regulated kinase but not extracellular signal-regulated kinase kinase through a 100-kDa phosphotyrosine phosphatase. J Biol Chem 2003; 278:7167-79. [PMID: 12493768 PMCID: PMC1564188 DOI: 10.1074/jbc.m203901200] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this report we sought to elucidate the mechanism by which the follicle-stimulating hormone (FSH) receptor signals to promote activation of the p42/p44 extracellular signal-regulated protein kinases (ERKs) in granulosa cells. Results show that the ERK kinase MEK and upstream intermediates Raf-1, Ras, Src, and L-type Ca(2+) channels are already partially activated in vehicle-treated cells and that FSH does not further activate them. This tonic stimulatory pathway appears to be restrained at the level of ERK by a 100-kDa phosphotyrosine phosphatase that associates with ERK in vehicle-treated cells and promotes dephosphorylation of its regulatory Tyr residue, resulting in ERK inactivation. FSH promotes the phosphorylation of this phosphotyrosine phosphatase and its dissociation from ERK, relieving ERK from inhibition and resulting in its activation by the tonic stimulatory pathway and consequent translocation to the nucleus. Consistent with this premise, FSH-stimulated ERK activation is inhibited by the cell-permeable protein kinase A-specific inhibitor peptide Myr-PKI as well as by inhibitors of MEK, Src, a Ca(2+) channel blocker, and chelation of extracellular Ca(2+). These results suggest that FSH stimulates ERK activity in immature granulosa cells by relieving an inhibition imposed by a 100-kDa phosphotyrosine phosphatase.
Collapse
Affiliation(s)
- Joshua Cottom
- From the Departments of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611
| | - Lisa M. Salvador
- From the Departments of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611
| | - Evelyn T. Maizels
- From the Departments of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611
| | - Scott Reierstad
- From the Departments of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611
| | - Youngkyu Park
- From the Departments of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611
| | - Daniel W. Carr
- Veterans Affairs Medical Center and Oregon Health Sciences University, Portland, Oregon 97201
| | - Monika A. Davare
- Department of Pharmacology, University of Wisconsin, Madison, Wisconsin 53706
| | - Johannes W. Hell
- Department of Pharmacology, University of Wisconsin, Madison, Wisconsin 53706
| | - Stephen S. Palmer
- Serono Reproductive Biology Institute, Rockland, Massachusetts 02370
| | - Paul Dent
- Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Hisaaki Kawakatsu
- Lung Biology Center, University of California, San Francisco, California 94110, and
| | - Masato Ogata
- Biomedial Research Center, Osaka University Medical School, Osaka 565, Japan
| | - Mary Hunzicker-Dunn
- From the Departments of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611
- To whom correspondence should be addressed: Dept. of Cell and Molecular Biology, Northwestern University Medical School, 303 East Chicago Ave., Chicago, IL 60611. Tel.: 312-503-7459; Fax: 312-503-0566; E-mail:
| |
Collapse
|
214
|
Bouschet T, Perez V, Fernandez C, Bockaert J, Eychene A, Journot L. Stimulation of the ERK pathway by GTP-loaded Rap1 requires the concomitant activation of Ras, protein kinase C, and protein kinase A in neuronal cells. J Biol Chem 2003; 278:4778-85. [PMID: 12473665 DOI: 10.1074/jbc.m204652200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The small GTPases Ras or Rap1 were suggested to mediate the stimulatory effect of some G protein-coupled receptors on ERK activity in neuronal cells. Accordingly, we reported here that pituitary adenylate cyclase-activating polypeptide (PACAP), whose G protein-coupled receptor triggers neuronal differentiation of the PC12 cell line via ERK1/2 activation, transiently activated Ras and induced the sustained GTP loading of Rap1. Ras mediated peak stimulation of ERK by PACAP, whereas Rap1 was necessary for the sustained activation phase. However, PACAP-induced GTP-loading of Rap1 was not sufficient to account for ERK activation by PACAP because 1) PACAP-elicited Rap1 GTP-loading depended only on phospholipase C, whereas maximal stimulation of ERK by PACAP also required the activity of protein kinase A (PKA), protein kinase C (PKC), and calcium-dependent signaling; and 2) constitutively active mutants of Rap1, Rap1A-V12, and Rap1B-V12 only minimally stimulated the ERK pathway compared with Ras-V12. The effect of Rap1A-V12 was dramatically potentiated by the concurrent activation of PKC, the cAMP pathway, and Ras, and this potentiation was blocked by dominant-negative mutants of Ras and Raf. Thus, this set of data indicated that GPCR-elicited GTP loading of Rap1 was not sufficient to stimulate efficiently ERK in PC12 cells and required the permissive co-stimulation of PKA, PKC, or Ras.
Collapse
Affiliation(s)
- Tristan Bouschet
- UPR 9023 CNRS, CCIPE-141, Rue de la Cardonille, 34094 Montpellier Cedex, France
| | | | | | | | | | | |
Collapse
|
215
|
Norum JH, Hart K, Levy FO. Ras-dependent ERK activation by the human G(s)-coupled serotonin receptors 5-HT4(b) and 5-HT7(a). J Biol Chem 2003; 278:3098-104. [PMID: 12446729 DOI: 10.1074/jbc.m206237200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Receptor tyrosine kinases activate mitogen-activated protein (MAP) kinases through Ras, Raf-1, and MEK. Receptor tyrosine kinases can be transactivated by G protein-coupled receptors coupling to G(i) and G(q). The human G protein-coupled serotonin receptors 5-HT(4(b)) and 5-HT(7(a)) couple to G(s) and elevate intracellular cAMP. Certain G(s)-coupled receptors have been shown to activate MAP kinases through a protein kinase A- and Rap1-dependent pathway. We report the activation of the extracellular signal-regulated kinases (ERKs) 1 and 2 (p44 and p42 MAP kinase) through the human serotonin receptors 5-HT(4(b)) and 5-HT(7(a)) in COS-7 and human embryonic kidney HEK293 cells. In transfected HEK293 cells, 5-HT-induced activation of ERK1/2 is sensitive to H89, which indicates a role for protein kinase A. The observed activation of ERK1/2 does not require transactivation of epidermal growth factor receptors. Furthermore, 5-HT induced activation of both Ras and Rap1. Whereas the presence of Rap1GAP1 did not influence the 5-HT-mediated activation of ERK1/2, the activation of ERK1/2 was abolished in the presence of dominant negative Ras (RasN17). ERK1/2 activation was reduced in the presence of "dominant negative" Raf1 (RafS621A) and slightly reduced by dominant negative B-Raf, indicating the involvement of one or more Raf isoforms. These findings suggest that activation of ERK1/2 through the human G(s)-coupled serotonin receptors 5-HT(4(b)) and 5-HT(7(a)) in HEK293 cells is dependent on Ras, but independent of Rap1.
Collapse
Affiliation(s)
- Jens Henrik Norum
- Merck Sharp and Dohme Cardiovascular Research Center, Institute for Surgical Research and Department of Pharmacology, Rikshospitalet University Hospital, University of Oslo, N-0316 Oslo, Norway
| | | | | |
Collapse
|
216
|
Quilliam LA, Rebhun JF, Castro AF. A growing family of guanine nucleotide exchange factors is responsible for activation of Ras-family GTPases. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2003; 71:391-444. [PMID: 12102558 DOI: 10.1016/s0079-6603(02)71047-7] [Citation(s) in RCA: 222] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
GTPases of the Ras subfamily regulate a diverse array of cellular-signaling pathways, coupling extracellular signals to the intracellular response machinery. Guanine nucleotide exchange factors (GEFs) are primarily responsible for linking cell-surface receptors to Ras protein activation. They do this by catalyzing the dissociation of GDP from the inactive Ras proteins. GTP can then bind and induce a conformational change that permits interaction with downstream effectors. Over the past 5 years, approximately 20 novel Ras-family GEFs have been identified and characterized. These data indicate that a variety of different signaling mechanisms can be induced to activate Ras, enabling tyrosine kinases, G-protein-coupled receptors, adhesion molecules, second messengers, and various protein-interaction modules to relocate and/or activate GEFs and elevate intracellular Ras-GTP levels. This review discusses the structure and function of the catalytic or CDC25 homology domain common to almost all Ras-family GEFs. It also details our current knowledge about the regulation and function of this rapidly growing family of enzymes that include Sos1 and 2, GRF1 and 2, CalDAG-GEF/GRP1-4, C3G, cAMP-GEF/Epac 1 and 2, PDZ-GEFs, MR-GEF, RalGDS family members, RalGPS, BCAR3, Smg GDS, and phospholipase C(epsilon).
Collapse
Affiliation(s)
- Lawrence A Quilliam
- Department of Biochemistry and Molecular, Biology and Walther Oncology Center, Indiana University School of Medicine, Indianapolis 46202, USA
| | | | | |
Collapse
|
217
|
Pollock PM, Harper UL, Hansen KS, Yudt LM, Stark M, Robbins CM, Moses TY, Hostetter G, Wagner U, Kakareka J, Salem G, Pohida T, Heenan P, Duray P, Kallioniemi O, Hayward NK, Trent JM, Meltzer PS. High frequency of BRAF mutations in nevi. Nat Genet 2003; 33:19-20. [PMID: 12447372 DOI: 10.1038/ng1054] [Citation(s) in RCA: 1188] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2002] [Accepted: 10/29/2002] [Indexed: 11/08/2022]
Abstract
To evaluate the timing of mutations in BRAF (v-raf murine sarcoma viral oncogene homolog B1) during melanocytic neoplasia, we carried out mutation analysis on microdissected melanoma and nevi samples. We observed mutations resulting in the V599E amino-acid substitution in 41 of 60 (68%) melanoma metastases, 4 of 5 (80%) primary melanomas and, unexpectedly, in 63 of 77 (82%) nevi. These data suggest that mutational activation of the RAS/RAF/MAPK pathway in nevi is a critical step in the initiation of melanocytic neoplasia but alone is insufficient for melanoma tumorigenesis.
Collapse
Affiliation(s)
- Pamela M Pollock
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, 50 South Drive, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
218
|
Ding WQ, Dong M, Ninova D, Holicky EL, Stegall MD, Miller LJ. Forskolin suppresses insulin gene transcription in islet beta-cells through a protein kinase A-independent pathway. Cell Signal 2003; 15:27-35. [PMID: 12401517 DOI: 10.1016/s0898-6568(02)00051-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This work was designed to evaluate the effect of cAMP on insulin gene regulation. We studied the effects of forskolin on insulin gene transcription in the INS-1 beta-cell line, confirming key results in primary cultures of human islet cells. Forskolin increased intracellular cAMP and cAMP-responsive element-binding activity. Insulin gene transcription was studied using a reporter construct in which the human insulin promoter was fused to luciferase. When cells were treated with forskolin for 12 h, insulin promoter activity was decreased 2- to 3-fold, whereas islet amyloid polypeptide promoter activity was significantly increased. This effect of forskolin on the insulin gene was time- and concentration-dependent, and was mimicked by 8-bromo-cAMP. Mutagenesis of the CRE-like elements in the insulin promoter had no effect on the forskolin-induced suppression, but dramatically decreased basal insulin promoter activity. Inhibition of PKA with H-89 also did not reverse the forskolin-induced suppression of insulin transcription. However, this effect was completely reversed by inhibition of cellular MAP kinase activity with PD98059 or U0126. These results demonstrate that forskolin suppresses insulin transcription in INS-1 cells through a PKA-independent mechanism that probably involves MAP kinase signalling.
Collapse
Affiliation(s)
- Wei-Qun Ding
- Department of Medicine, Center for Basic Research in Digestive Diseases, Mayo Clinic and Foundation, Guggenheim 17, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|
219
|
Kagawa T, Varticovski L, Sai Y, Arias IM. Mechanism by which cAMP activates PI3-kinase and increases bile acid secretion in WIF-B9 cells. Am J Physiol Cell Physiol 2002; 283:C1655-66. [PMID: 12388099 DOI: 10.1152/ajpcell.00041.2002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies in rat bile canalicular membrane vesicles and WIF-B9 cells revealed that cAMP-induced trafficking of ATP-binding cassette (ABC) transporters to the canalicular membrane and their activation require phosphoinositide 3-kinase (PI3-K) products. In the present studies, canalicular secretion of fluorescein isothiocyanate-glycocholate in WIF-B9 cells was increased by cAMP and a decapeptide that enhances PI3-K activity; these effects were inhibited by wortmannin. To determine the mechanism(s) whereby cAMP activates PI3-K, we examined signal transduction pathways in WIF-B9 and COS-7 cells. cAMP activated PI3-K in both cell lines in a phosphotyrosine-independent manner. PI3-K activity increased in association with p110 beta in both cell lines. The effect of cAMP was KT-5720 sensitive, suggesting involvement of protein kinase A. Expression of a dominant-negative beta-adrenergic receptor kinase COOH terminus (beta-ARKct), which blocks G beta gamma signaling, decreased PI3-K activation in both cell lines. cAMP increased GTP-bound Ras in COS-7 but not WIF-B9 cells. Expression of dominant-negative Ras abolished cAMP-mediated PI3-K, which suggests that the effect is downstream of Ras and G beta gamma. These data indicate that cAMP activates PI3-K in a cell type-specific manner and provide insight regarding mechanisms of PI3-K activation required for bile acid secretion.
Collapse
Affiliation(s)
- Tatehiro Kagawa
- Department of Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | |
Collapse
|
220
|
Vig M, George A, Sen R, Durdik J, Rath S, Bal V. Commitment of activated T cells to secondary responsiveness is enhanced by signals mediated by cAMP-dependent protein kinase A-I. Mol Pharmacol 2002; 62:1471-81. [PMID: 12435816 DOI: 10.1124/mol.62.6.1471] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Modalities that induce specific differentiation to T cell memory in immune responses are important for vaccine design, but there is a paucity of well characterized molecular pathways useful to target for this purpose. We have shown previously that pentoxifylline (PF), a phosphodiesterase (PDE) inhibitor in common clinical use, enhances the commitment of in vitro allo-primed human T cells to secondary responsiveness, a characteristic crucial for memory T cells, which are key determinants of the longevity of the immune response. We now show that this effect can also be mediated by activation of adenylate cyclase (AC) and involves PDE4, but not PDE3 or PDE7. PF-mediated enhancement of T-cell priming is inhibited by blocking AC, is specifically signaled via cAMP-dependent protein kinase A (PKA) isoform I, and is probably independent of both nuclear factor-kappaB and the mitogen-activated protein kinase cascade. Furthermore, known pharmacological inhibitors of AC or PKA by themselves cannot block T-cell priming in the absence of PF or rolipram (Rm), and enhancement of priming requires the presence of PF only relatively late during a 4-day priming in vitro (at 48-96 h), suggesting that pharmacological extension of cAMP-mediated signaling can bring about an event critical for T cell commitment to memory. Furthermore, PF and Rm prevent induction of caspase activation and apoptosis in anti-CD3-activated human T cells. Together, our data suggest that PKA-I-mediated signals triggered by prolonging the half-life of cAMP induced during T-cell priming increase survival of activated T cells and enhance memory T cell commitment.
Collapse
Affiliation(s)
- Monika Vig
- National Institute of Immunology, New Delhi, India
| | | | | | | | | | | |
Collapse
|
221
|
Piiper A, Dikic I, Lutz MP, Leser J, Kronenberger B, Elez R, Cramer H, Müller-Esterl W, Zeuzem S. Cyclic AMP induces transactivation of the receptors for epidermal growth factor and nerve growth factor, thereby modulating activation of MAP kinase, Akt, and neurite outgrowth in PC12 cells. J Biol Chem 2002; 277:43623-30. [PMID: 12218049 DOI: 10.1074/jbc.m203926200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In PC12 cells, a well studied model for neuronal differentiation, an elevation in the intracellular cAMP level increases cell survival, stimulates neurite outgrowth, and causes activation of extracellular signal-regulated protein kinase 1 and 2 (ERK1/2). Here we show that an increase in the intracellular cAMP concentration induces tyrosine phosphorylation of two receptor tyrosine kinases, i.e. the epidermal growth factor (EGF) receptor and the high affinity receptor for nerve growth factor (NGF), also termed Trk(A). cAMP-induced tyrosine phosphorylation of the EGF receptor is rapid and correlates with ERK1/2 activation. It occurs also in Panc-1, but not in human mesangial cells. cAMP-induced tyrosine phosphorylation of the NGF receptor is slower and correlates with Akt activation. Inhibition of EGF receptor tyrosine phosphorylation, but not of the NGF receptor, reduces cAMP-induced neurite outgrowth. Expression of dominant-negative Akt does not abolish cAMP-induced survival in serum-free media, but increases cAMP-induced ERK1/2 activation and neurite outgrowth. Together, our results demonstrate that cAMP induces dual signaling in PC12 cells: transactivation of the EGF receptor triggering the ERK1/2 pathway and neurite outgrowth; and transactivation of the NGF receptor promoting Akt activation and thereby modulating ERK1/2 activation and neurite outgrowth.
Collapse
Affiliation(s)
- Albrecht Piiper
- Department of Internal Medicine and Institute for Biochemistry II, Johann Wolfgang Goethe-University, D-60590 Frankfurt, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
222
|
Schmitt JM, Stork PJS. Galpha and Gbeta gamma require distinct Src-dependent pathways to activate Rap1 and Ras. J Biol Chem 2002; 277:43024-32. [PMID: 12221082 DOI: 10.1074/jbc.m204006200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The Src tyrosine kinase is necessary for activation of extracellular signal-regulated kinases (ERKs) by the beta-adrenergic receptor agonist, isoproterenol. In this study, we examined the role of Src in the stimulation of two small G proteins, Ras and Rap1, that have been implicated in isoproterenol's signaling to ERKs. We demonstrate that the activation of isoproterenol of both Rap1 and Ras requires Src. In HEK293 cells, isoproterenol activates Rap1, stimulates Rap1 association with B-Raf, and activates ERKs, all via PKA. In contrast, the activation by isoproterenol of Ras requires Gbetagamma subunits, is independent of PKA, and results in the phosphoinositol 3-kinase-dependent activation of AKT. Interestingly, beta-adrenergic stimulation of both Rap1 and ERKs, but not Ras and AKT, can be blocked by a Src mutant (SrcS17A) that is incapable of being phosphorylated and activated by PKA. Furthermore, a Src mutant (SrcS17D), which mimics PKA phosphorylation at serine 17, stimulates Rap1 activation, Rap1/B-Raf association, and ERK activation but does not stimulate Ras or AKT. These data suggest that Rap1 activation, but not that of Ras, is mediated through the direct phosphorylation of Src by PKA. We propose that the beta(2)-adrenergic receptor activates Src via two independent mechanisms to mediate distinct signaling pathways, one through Galpha(s) to Rap1 and ERKs and the other through Gbetagamma to Ras and AKT.
Collapse
Affiliation(s)
- John M Schmitt
- Vollum Institute, and the Department of Cell and Developmental Biology, Oregon Health Sciences University, Portland, Oregon 97201, USA
| | | |
Collapse
|
223
|
Enserink JM, Christensen AE, de Rooij J, van Triest M, Schwede F, Genieser HG, Døskeland SO, Blank JL, Bos JL. A novel Epac-specific cAMP analogue demonstrates independent regulation of Rap1 and ERK. Nat Cell Biol 2002; 4:901-6. [PMID: 12402047 DOI: 10.1038/ncb874] [Citation(s) in RCA: 583] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2002] [Revised: 08/01/2002] [Accepted: 09/04/2002] [Indexed: 01/23/2023]
Abstract
cAMP is involved in a wide variety of cellular processes that were thought to be mediated by protein kinase A (PKA). However, cAMP also directly regulates Epac1 and Epac2, guanine nucleotide-exchange factors (GEFs) for the small GTPases Rap1 and Rap2 (refs 2,3). Unfortunately, there is an absence of tools to discriminate between PKA- and Epac-mediated effects. Therefore, through rational drug design we have developed a novel cAMP analogue, 8-(4-chloro-phenylthio)-2'-O-methyladenosine-3',5'-cyclic monophosphate (8CPT-2Me-cAMP), which activates Epac, but not PKA, both in vitro and in vivo. Using this analogue, we tested the widespread model that Rap1 mediates cAMP-induced regulation of the extracellular signal-regulated kinase (ERK). However, both in cell lines in which cAMP inhibits growth-factor-induced ERK activation and in which cAMP activates ERK, 8CPT-2Me-cAMP did not affect ERK activity. Moreover, in cell lines in which cAMP activates ERK, inhibition of PKA and Ras, but not Rap1, abolished cAMP-mediated ERK activation. We conclude that cAMP-induced regulation of ERK and activation of Rap1 are independent processes.
Collapse
Affiliation(s)
- Jorrit M Enserink
- Department of Physiological Chemistry and Centre for Biomedical Genetics, University Medical Center Utrecht, Universiteitsweg 100, 3584CG Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
224
|
Pak Y, Pham N, Rotin D. Direct binding of the beta1 adrenergic receptor to the cyclic AMP-dependent guanine nucleotide exchange factor CNrasGEF leads to Ras activation. Mol Cell Biol 2002; 22:7942-52. [PMID: 12391161 PMCID: PMC134719 DOI: 10.1128/mcb.22.22.7942-7952.2002] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) can indirectly activate Ras primarily through the betagamma subunits of G proteins, which recruit c-Src, phosphatidylinositol 3-kinase, and Grb2-SOS. However, a direct interaction between a Ras activator (guanine nucleotide exchange factor [GEF]) and GPCRs that leads to Ras activation has never been demonstrated. We report here a novel mechanism for a direct GPCR-mediated Ras activation. The beta1 adrenergic receptor (beta1-AR) binds to the PDZ domain of the cyclic AMP (cAMP)-dependent Ras exchange factor, CNrasGEF, via its C-terminal SkV motif. In cells heterologously expressing beta1-AR and CNrasGEF, Ras is activated by the beta1-AR agonist isoproterenol, and this activation is abolished in beta1-AR mutants that cannot bind CNrasGEF or in CNrasGEF mutants lacking the catalytic CDC25 domain or cAMP-binding domain. Moreover, the activation is transduced via Gsalpha and not via Gbetagamma. In contrast to beta1-AR, the beta2-AR neither binds CNrasGEF nor activates Ras via CNrasGEF after agonist stimulation. These results suggest a model whereby the physical interaction between the beta1-AR and CNrasGEF facilitates the transduction of Gsalpha-induced cAMP signal into the activation of Ras. The present study provides the first demonstration of direct physical association between a Ras activator and a GPCR, leading to agonist-induced Ras activation
Collapse
MESH Headings
- Animals
- Cell Line
- Cyclic AMP/metabolism
- GTP-Binding Protein alpha Subunits, Gs/metabolism
- Green Fluorescent Proteins
- Guanine Nucleotide Exchange Factors/metabolism
- Humans
- Ligands
- Luminescent Proteins/metabolism
- Models, Biological
- Nerve Tissue Proteins
- Protein Binding
- Protein Structure, Tertiary
- Protein Subunits
- Rats
- Receptors, Adrenergic, beta-1/genetics
- Receptors, Adrenergic, beta-1/metabolism
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Swine
- ras Proteins/metabolism
Collapse
Affiliation(s)
- Youngshil Pak
- Program in Cell Biology, The Hospital for Sick Children, and Biochemistry Department, University of Toronto, Toronto, M5G 1X8 Ontario, Canada
| | | | | |
Collapse
|
225
|
Vaudry D, Chen Y, Hsu CM, Eiden LE. PC12 cells as a model to study the neurotrophic activities of PACAP. Ann N Y Acad Sci 2002; 971:491-6. [PMID: 12438169 DOI: 10.1111/j.1749-6632.2002.tb04513.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- David Vaudry
- Section on Molecular Neuroscience, National Institute of Mental Health Intramural Research Program, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
226
|
Merighi S, Mirandola P, Milani D, Varani K, Gessi S, Klotz KN, Leung E, Baraldi PG, Borea PA. Adenosine receptors as mediators of both cell proliferation and cell death of cultured human melanoma cells. J Invest Dermatol 2002; 119:923-33. [PMID: 12406340 DOI: 10.1046/j.1523-1747.2002.00111.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Adenosine displays contradictory effects on cell growth: it improves cell proliferation, but it may also induce apoptosis and impair cell survival. Following the pharmacologic characterization of adenosine receptor expression on the human melanoma cell line A375, we chose A375 as our cellular model to define how the extracellular adenosine signals are conveyed from each receptor. By using selective adenosine receptor agonists or antagonists, we found that A2A stimulation reduced cell viability and cell clone formation, whereas, at the same time, it improved cell proliferation. In support of this finding we demonstrated that the stimulation of A2A adenosine receptors stably expressed in Chinese hamster ovary cell clone reproduced deleterious effects observed in human melanoma cells. A3 stimulation counteracted A2A-induced cell death but also reduced cell proliferation. Furthermore, we found that A3 stimulation ensures cell survival. We demonstrated that adenosine triggers a survival signal via A3 receptor activation and it kills the cell through A2A receptor inducing a signaling pathway that involves protein kinase C and mitogen-activated protein kinases.
Collapse
Affiliation(s)
- Stefania Merighi
- Department of Clinical and Experimental Medicine, Pharmacology Unit, University of Ferrara, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
227
|
Khaled M, Larribere L, Bille K, Aberdam E, Ortonne JP, Ballotti R, Bertolotto C. Glycogen synthase kinase 3beta is activated by cAMP and plays an active role in the regulation of melanogenesis. J Biol Chem 2002; 277:33690-7. [PMID: 12093801 DOI: 10.1074/jbc.m202939200] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In human and mouse, cAMP plays a key role in the control of pigmentation. cAMP, through the activation of protein kinase A, increases the expression of microphthalmia-associated transcription factor (MITF), which in turn stimulates tyrosinase gene expression, to allow melanin synthesis. Beyond this simplified scheme, cAMP inhibits phosphatidylinositol 3-kinase (PI3K), and inhibition of PI3K, by a specific inhibitor, stimulates melanogenesis. However, the link between the PI3K pathway and melanogenesis remained to be elucidated. In this report, we showed that cAMP, through a protein kinase A-independent mechanism, led to inhibition of AKT phosphorylation and activity. Consistent with the role of AKT in the regulation of glycogen synthase kinase 3beta (GSK3beta), cAMP decreased the phosphorylation of GSK3beta and stimulated its activity. Further, experiments were performed to investigate the role of GSK3beta in the regulation of MITF expression and function. We observed that GSK3beta regulated neither MITF promoter activity nor the intrinsic transcriptional activity of MITF but synergized with MITF to activate the tyrosinase promoter. Additionally, lithium, a GSK3beta inhibitor, impaired the response of the tyrosinase promoter to cAMP, and cAMP increased the binding of MITF to the M-box. Taking into account that GSK3beta phosphorylates MITF and increases the ability of MITF to bind its target sequence, our results indicate that activation of GSK3beta by cAMP facilitates MITF binding to the tyrosinase promoter, thereby leading to stimulation of melanogenesis.
Collapse
Affiliation(s)
- Mehdi Khaled
- INSERM U385, Biologie et Physiopathologie de la peau, IFR 50, 28 avenue de Valombrose, 06107 NICE Cedex 2, France
| | | | | | | | | | | | | |
Collapse
|
228
|
Klinger M, Kudlacek O, Seidel MG, Freissmuth M, Sexl V. MAP kinase stimulation by cAMP does not require RAP1 but SRC family kinases. J Biol Chem 2002; 277:32490-7. [PMID: 12082090 DOI: 10.1074/jbc.m200556200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The small G protein RAP1 and the kinase B-RAF have been proposed to link elevations of cAMP to activation of ERK/mitogen-activated protein (MAP) kinase. In order to delineate signaling pathways that link receptor-generated cAMP to the activation of MAP kinase, the human A(2A)-adenosine receptor, a prototypical G(s)-coupled receptor, was heterologously expressed in Chinese hamster ovary cells (referred as CHO-A(2A) cells). In CHO-A(2A) cells, the stimulation of the A(2A)-receptor resulted in an activation of RAP1 and formation of RAP1-B-RAF complexes. However, overexpression of a RAP1 GTPase-activating protein (RAP1GAP), which efficiently clamped cellular RAP1 in the inactive GDP-bound form, did not affect A(2A)-agonist-mediated MAP kinase stimulation. In contrast, the inhibitor of protein kinase A H89 efficiently suppressed A(2A)-agonist-mediated MAP kinase stimulation. Neither dynamin-dependent receptor internalization nor receptor-promoted shedding of matrix-bound growth factors accounted for A(2A)-receptor-dependent MAP kinase activation. PP1, an inhibitor of SRC family kinases, blunted both the A(2A)-receptor- and the forskolin-induced MAP kinase stimulation (IC(50) = 50 nm); this was also seen in PC12 cells, which express the A(2A)-receptor endogenously, and in NIH3T3 fibroblasts, in which cAMP causes MAP kinase stimulation. In the corresponding murine fibroblast cell line SYF, which lacks the ubiquitously expressed SRC family kinases SRC, YES, and FYN, forskolin barely stimulated MAP kinase; this reduction was reversed in cells in which c-SRC had been reintroduced. These findings show that activation of MAP kinase by cAMP requires a SRC family kinase that lies downstream of protein kinase A. A role for RAP1, as documented for the beta(2)-adrenergic receptor, is apparently contingent on receptor endocytosis.
Collapse
Affiliation(s)
- Markus Klinger
- Institute of Pharmacology, University of Vienna, Währinger Strasse 13a, A-1090 Vienna, Austria
| | | | | | | | | |
Collapse
|
229
|
Shapiro P. Ras-MAP kinase signaling pathways and control of cell proliferation: relevance to cancer therapy. Crit Rev Clin Lab Sci 2002; 39:285-330. [PMID: 12385501 DOI: 10.1080/10408360290795538] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The mitogen-activated protein (MAP) kinase pathways represent several families of signal transduction cascades that mediate information provided by extracellular stimuli. MAP kinase pathways regulate a wide range of physiological responses, including cell proliferation, apoptosis, cell differentiation, and tissue development. Constitutive activation of MAP kinase proteins in experimental models has been shown to cause cell transformation and is implicated in tumorigenesis. Of clinical importance, MAP kinase pathways are regulated by Ras G-proteins, which are found to be mutated and constitutively active in approximately 30% of all human cancers. Thus, a major goal in the treatment of cancer is the development of specific compounds that target Ras and critical downstream signaling proteins responsible for uncontrolled cell growth. A variety of biochemical, molecular, and structural approaches have been used to develop drug compounds that target signaling proteins important for MAP kinase pathway activation. These compounds have been useful tools for identifying the mechanisms of MAP kinase pathway signaling and hold promise for clinical use. This review will present an overview of the major proteins involved in Ras and MAP kinase signaling pathways and their function in regulating cell cycle events and proliferation. In addition, some of the relevant compounds that have been developed to inhibit the activities of these proteins and MAP kinase signaling are discussed.
Collapse
Affiliation(s)
- Paul Shapiro
- Department of Pharmaceutical Sciences, University of Maryland-School of Pharmacy, Baltimore 21201, USA
| |
Collapse
|
230
|
Wang T, Yamashita K, Iwata K, Hayakawa T. Both tissue inhibitors of metalloproteinases-1 (TIMP-1) and TIMP-2 activate Ras but through different pathways. Biochem Biophys Res Commun 2002; 296:201-5. [PMID: 12147251 DOI: 10.1016/s0006-291x(02)00741-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Tissue inhibitors of metalloproteinases-1 (TIMP-1) and TIMP-2 have growth-stimulating activity for a wide range of cell types. Ras, which comprises a family of three members, i.e, Ha-Ras, Ki-Ras, and H-Ras, is known to participate in growth control in all its facets, including cell proliferation, transformation, differentiation, and apoptosis. In this study, we tested the hypothesis that Ras might be involved in the cell growth-promoting activity of TIMPs. Using MG-63 human osteosarcoma cells, we demonstrated that both TIMP-1 and TIMP-2 caused an increase in the Ras-GTP level in a dose-dependent manner. Our previous results indicated that TIMP-1 activity is mediated through the tyrosine kinase (TYK)/mitogen-activated protein kinase (MAPK) pathway. Here, we demonstrated that Ras activation by TIMP-1 was inhibited by a specific TYK inhibitor, herbimycin A, suggesting that the TYK/MAPK signaling pathway was involved in Ras activation by TIMP-1. However, the activation of Ras by TIMP-2 was inhibited by an inhibitor specific for cyclic AMP-dependent protein kinase (PKA), H89, suggesting the involvement of the PKA-mediated pathway. Furthermore, TIMP-2 promoted the formation of a complex between Ras-GTP and phosphoinositide 3-kinase.
Collapse
Affiliation(s)
- Ting Wang
- Department of Biochemistry, School of Dentistry, Aichi-Gakuin University, 464-8650, Nagoya, Japan
| | | | | | | |
Collapse
|
231
|
Abstract
Using a genome-scanning approach to search for oncogenes, a recent report identifies somatic mutations in the signaling gene BRAF that are particularly prevalent in melanoma.
Collapse
Affiliation(s)
- Pamela M Pollock
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
232
|
Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A, Stevens C, Watt S, Hooper S, Wilson R, Jayatilake H, Gusterson BA, Cooper C, Shipley J, Hargrave D, Pritchard-Jones K, Maitland N, Chenevix-Trench G, Riggins GJ, Bigner DD, Palmieri G, Cossu A, Flanagan A, Nicholson A, Ho JWC, Leung SY, Yuen ST, Weber BL, Seigler HF, Darrow TL, Paterson H, Marais R, Marshall CJ, Wooster R, Stratton MR, Futreal PA. Mutations of the BRAF gene in human cancer. Nature 2002; 417:949-54. [PMID: 12068308 DOI: 10.1038/nature00766] [Citation(s) in RCA: 7602] [Impact Index Per Article: 345.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cancers arise owing to the accumulation of mutations in critical genes that alter normal programmes of cell proliferation, differentiation and death. As the first stage of a systematic genome-wide screen for these genes, we have prioritized for analysis signalling pathways in which at least one gene is mutated in human cancer. The RAS RAF MEK ERK MAP kinase pathway mediates cellular responses to growth signals. RAS is mutated to an oncogenic form in about 15% of human cancer. The three RAF genes code for cytoplasmic serine/threonine kinases that are regulated by binding RAS. Here we report BRAF somatic missense mutations in 66% of malignant melanomas and at lower frequency in a wide range of human cancers. All mutations are within the kinase domain, with a single substitution (V599E) accounting for 80%. Mutated BRAF proteins have elevated kinase activity and are transforming in NIH3T3 cells. Furthermore, RAS function is not required for the growth of cancer cell lines with the V599E mutation. As BRAF is a serine/threonine kinase that is commonly activated by somatic point mutation in human cancer, it may provide new therapeutic opportunities in malignant melanoma.
Collapse
Affiliation(s)
- Helen Davies
- Cancer Genome Project, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1SA, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
233
|
|
234
|
Pursiheimo JP, Kieksi A, Jalkanen M, Salmivirta M. Protein kinase A balances the growth factor-induced Ras/ERK signaling. FEBS Lett 2002; 521:157-64. [PMID: 12067709 DOI: 10.1016/s0014-5793(02)02864-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Protein kinase A (PKA) has been proposed to regulate the signal transduction through the Ras/extracellular-regulated kinase (ERK) pathway. Here we demonstrate that when the PKA activity was inhibited prior to growth factor stimulus the signal flow through the Ras/ERK pathway was significantly increased. Furthermore, the data indicated that this PKA-mediated regulation was simultaneously targeted to the upstream kinase Raf-1 and to the ERK-specific phosphatase mitogen-activated protein kinase phosphatase-1 (MKP-1). Moreover, our data suggested that the level of PKA activity determined the transcription rate of mkp-1 gene, whereas the Ras/ERK signal was required to protect the MKP-1 protein against degradation. These results point to a tight regulatory relationship between PKA and the growth factor signaling, and further suggest an important role for basal PKA activity in such regulation. We propose that PKA adjusts the activity of the Ras/ERK pathway and maintains it within a physiologically appropriate level.
Collapse
Affiliation(s)
- Juha-Pekka Pursiheimo
- Turku Centre for Biotechnology, University of Turku, and Abo Akademi University, Tykistökatu 6B, BioCity, 20520 Turku, Finland.
| | | | | | | |
Collapse
|
235
|
Mutations of the BRAF gene in human cancer. Nature 2002. [DOI: 10.1038/nature00766 or not 8774=8774# vmxj] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
236
|
Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A, Stevens C, Watt S, Hooper S, Wilson R, Jayatilake H, Gusterson BA, Cooper C, Shipley J, Hargrave D, Pritchard-Jones K, Maitland N, Chenevix-Trench G, Riggins GJ, Bigner DD, Palmieri G, Cossu A, Flanagan A, Nicholson A, Ho JWC, Leung SY, Yuen ST, Weber BL, Seigler HF, Darrow TL, Paterson H, Marais R, Marshall CJ, Wooster R, Stratton MR, Futreal PA. Mutations of the BRAF gene in human cancer. Nature 2002. [DOI: 10.1038/nature00766 or not 6850=8715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
237
|
Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A, Stevens C, Watt S, Hooper S, Wilson R, Jayatilake H, Gusterson BA, Cooper C, Shipley J, Hargrave D, Pritchard-Jones K, Maitland N, Chenevix-Trench G, Riggins GJ, Bigner DD, Palmieri G, Cossu A, Flanagan A, Nicholson A, Ho JWC, Leung SY, Yuen ST, Weber BL, Seigler HF, Darrow TL, Paterson H, Marais R, Marshall CJ, Wooster R, Stratton MR, Futreal PA. Mutations of the BRAF gene in human cancer. Nature 2002. [DOI: 10.1038/nature00766 and 2488=2043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
238
|
Mutations of the BRAF gene in human cancer. Nature 2002. [DOI: 10.1038/nature00766 or not 4972=9115# gwoi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
239
|
Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A, Stevens C, Watt S, Hooper S, Wilson R, Jayatilake H, Gusterson BA, Cooper C, Shipley J, Hargrave D, Pritchard-Jones K, Maitland N, Chenevix-Trench G, Riggins GJ, Bigner DD, Palmieri G, Cossu A, Flanagan A, Nicholson A, Ho JWC, Leung SY, Yuen ST, Weber BL, Seigler HF, Darrow TL, Paterson H, Marais R, Marshall CJ, Wooster R, Stratton MR, Futreal PA. Mutations of the BRAF gene in human cancer. Nature 2002. [DOI: 10.1038/nature00766 or not 8774=8774-- vdql] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
240
|
Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A, Stevens C, Watt S, Hooper S, Wilson R, Jayatilake H, Gusterson BA, Cooper C, Shipley J, Hargrave D, Pritchard-Jones K, Maitland N, Chenevix-Trench G, Riggins GJ, Bigner DD, Palmieri G, Cossu A, Flanagan A, Nicholson A, Ho JWC, Leung SY, Yuen ST, Weber BL, Seigler HF, Darrow TL, Paterson H, Marais R, Marshall CJ, Wooster R, Stratton MR, Futreal PA. Mutations of the BRAF gene in human cancer. Nature 2002. [DOI: 10.1038/nature00766 and 1636=5494# ebax] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
241
|
Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A, Stevens C, Watt S, Hooper S, Wilson R, Jayatilake H, Gusterson BA, Cooper C, Shipley J, Hargrave D, Pritchard-Jones K, Maitland N, Chenevix-Trench G, Riggins GJ, Bigner DD, Palmieri G, Cossu A, Flanagan A, Nicholson A, Ho JWC, Leung SY, Yuen ST, Weber BL, Seigler HF, Darrow TL, Paterson H, Marais R, Marshall CJ, Wooster R, Stratton MR, Futreal PA. Mutations of the BRAF gene in human cancer. Nature 2002. [DOI: 10.1038/nature00766 and 1169=(select (case when (1169=1169) then 1169 else (select 1395 union select 8872) end))-- thsu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
242
|
Mutations of the BRAF gene in human cancer. Nature 2002. [DOI: 10.1038/nature00766 or not 8774=8774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
243
|
Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A, Stevens C, Watt S, Hooper S, Wilson R, Jayatilake H, Gusterson BA, Cooper C, Shipley J, Hargrave D, Pritchard-Jones K, Maitland N, Chenevix-Trench G, Riggins GJ, Bigner DD, Palmieri G, Cossu A, Flanagan A, Nicholson A, Ho JWC, Leung SY, Yuen ST, Weber BL, Seigler HF, Darrow TL, Paterson H, Marais R, Marshall CJ, Wooster R, Stratton MR, Futreal PA. Mutations of the BRAF gene in human cancer. Nature 2002. [DOI: 10.1038/nature00766 and 7967=7967#] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
244
|
Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A, Stevens C, Watt S, Hooper S, Wilson R, Jayatilake H, Gusterson BA, Cooper C, Shipley J, Hargrave D, Pritchard-Jones K, Maitland N, Chenevix-Trench G, Riggins GJ, Bigner DD, Palmieri G, Cossu A, Flanagan A, Nicholson A, Ho JWC, Leung SY, Yuen ST, Weber BL, Seigler HF, Darrow TL, Paterson H, Marais R, Marshall CJ, Wooster R, Stratton MR, Futreal PA. Mutations of the BRAF gene in human cancer. Nature 2002. [DOI: 10.1038/nature00766 and 8880=5188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
245
|
Mutations of the BRAF gene in human cancer. Nature 2002. [DOI: 10.1038/nature00766 or not 2226=4443-- whlf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
246
|
Mutations of the BRAF gene in human cancer. Nature 2002. [DOI: 10.1038/nature00766 and 5375=4145-- wmjx] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
247
|
Mutations of the BRAF gene in human cancer. Nature 2002. [DOI: 10.1038/nature00766 and 7177=5702#] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
248
|
Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A, Stevens C, Watt S, Hooper S, Wilson R, Jayatilake H, Gusterson BA, Cooper C, Shipley J, Hargrave D, Pritchard-Jones K, Maitland N, Chenevix-Trench G, Riggins GJ, Bigner DD, Palmieri G, Cossu A, Flanagan A, Nicholson A, Ho JWC, Leung SY, Yuen ST, Weber BL, Seigler HF, Darrow TL, Paterson H, Marais R, Marshall CJ, Wooster R, Stratton MR, Futreal PA. Mutations of the BRAF gene in human cancer. Nature 2002. [DOI: 10.1038/nature00766 and 5027=5027# aayd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
249
|
|
250
|
Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A, Stevens C, Watt S, Hooper S, Wilson R, Jayatilake H, Gusterson BA, Cooper C, Shipley J, Hargrave D, Pritchard-Jones K, Maitland N, Chenevix-Trench G, Riggins GJ, Bigner DD, Palmieri G, Cossu A, Flanagan A, Nicholson A, Ho JWC, Leung SY, Yuen ST, Weber BL, Seigler HF, Darrow TL, Paterson H, Marais R, Marshall CJ, Wooster R, Stratton MR, Futreal PA. Mutations of the BRAF gene in human cancer. Nature 2002. [DOI: 10.1038/nature00766 and 3019=3019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|