201
|
Funayama M, Ohe K, Amo T, Furuya N, Yamaguchi J, Saiki S, Li Y, Ogaki K, Ando M, Yoshino H, Tomiyama H, Nishioka K, Hasegawa K, Saiki H, Satake W, Mogushi K, Sasaki R, Kokubo Y, Kuzuhara S, Toda T, Mizuno Y, Uchiyama Y, Ohno K, Hattori N. CHCHD2 mutations in autosomal dominant late-onset Parkinson's disease: a genome-wide linkage and sequencing study. Lancet Neurol 2015; 14:274-82. [DOI: 10.1016/s1474-4422(14)70266-2] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
202
|
Verstraeten A, Theuns J, Van Broeckhoven C. Progress in unraveling the genetic etiology of Parkinson disease in a genomic era. Trends Genet 2015; 31:140-9. [PMID: 25703649 DOI: 10.1016/j.tig.2015.01.004] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 01/21/2015] [Accepted: 01/22/2015] [Indexed: 01/30/2023]
Abstract
Parkinson disease (PD) and Parkinson-plus syndromes are genetically heterogeneous neurological diseases. Initial studies into the genetic causes of PD relied on classical molecular genetic approaches in well-documented case families. More recently, these approaches have been combined with exome sequencing and together have identified 15 causal genes. Additionally, genome-wide association studies (GWASs) have discovered over 25 genetic risk factors. Elucidation of the genetic architecture of sporadic and familial parkinsonism, however, has lagged behind that of simple Mendelian conditions, suggesting the existence of features confounding genetic data interpretation. Here we discuss the successes and potential pitfalls of gene discovery in PD and related disorders in the post-genomic era. With an estimated 30% of trait variance currently unexplained, tackling current limitations will further expedite gene discovery and lead to increased application of these genetic insights in molecular diagnostics using gene panel and exome sequencing strategies.
Collapse
Affiliation(s)
- Aline Verstraeten
- Neurodegenerative Brain Diseases Group, Department of Molecular Genetics, VIB, Antwerp, Belgium; Laboratory of Neurogenetics, Institute Born Bunge, University of Antwerp, Antwerp, Belgium
| | - Jessie Theuns
- Neurodegenerative Brain Diseases Group, Department of Molecular Genetics, VIB, Antwerp, Belgium; Laboratory of Neurogenetics, Institute Born Bunge, University of Antwerp, Antwerp, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, Department of Molecular Genetics, VIB, Antwerp, Belgium; Laboratory of Neurogenetics, Institute Born Bunge, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
203
|
Perrett RM, Alexopoulou Z, Tofaris GK. The endosomal pathway in Parkinson's disease. Mol Cell Neurosci 2015; 66:21-8. [PMID: 25701813 DOI: 10.1016/j.mcn.2015.02.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/16/2015] [Accepted: 02/17/2015] [Indexed: 01/22/2023] Open
Abstract
Parkinson's disease is primarily a movement disorder with predilection for the nigral dopaminergic neurons and is often associated with widespread neurodegeneration and diffuse Lewy body deposition. Recent advances in molecular genetics and studies in model organisms have transformed our understanding of Parkinson's pathogenesis and suggested unifying biochemical pathways despite the clinical heterogeneity of the disease. In this review, we summarized the evidence that a number of Parkinson's associated genetic mutations or polymorphisms (LRRK2, VPS35, GBA, ATP13A2, ATP6AP2, DNAJC13/RME-8, RAB7L1, GAK) disrupt protein trafficking and degradation via the endosomal pathway and discussed how such defects could arise from or contribute to the accumulation and misfolding of α-synuclein in Lewy bodies. We propose that an age-related pathological depletion of functional endolysosomes due to neuromelanin deposition in dopaminergic neurons may increase their susceptibility to stochastic molecular defects in this pathway and we discuss how enzymes that regulate ubiquitin signaling, as exemplified by the ubiquitin ligase Nedd4, could provide the missing link between genetic and acquired defects in endosomal trafficking. This article is part of a Special Issue entitled 'Neuronal Protein'.
Collapse
Affiliation(s)
- Rebecca M Perrett
- Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Zoi Alexopoulou
- Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - George K Tofaris
- Nuffield Department of Clinical Neurosciences, University of Oxford, UK.
| |
Collapse
|
204
|
Abstract
Several proteins encoded by PD genes are implicated in synaptic vesicle traffic. Endophilin, a key factor in the endocytosis of synaptic vesicles, was shown to bind to, and be ubiquitinated by, the PD-linked E3 ubiquitin ligase Parkin. Here we report that Parkin's level is specifically upregulated in brain and fibroblasts of endophilin mutant mice due to increased transcriptional regulation. Studies of transfected HEK293T cells show that Parkin ubiquitinates not only endophilin, but also its major binding partners, dynamin and synaptojanin 1. These results converge with the recently reported functional relationship of endophilin to the PD gene LRRK2 and with the identification of a PD-linked synaptojanin 1 mutation, in providing evidence for a link between PD and endocytosis genes.
Collapse
|
205
|
Steele JC, Guella I, Szu-Tu C, Lin MK, Thompson C, Evans DM, Sherman HE, Vilariño-Güell C, Gwinn K, Morris H, Dickson DW, Farrer MJ. Defining neurodegeneration on Guam by targeted genomic sequencing. Ann Neurol 2015; 77:458-68. [PMID: 25558820 DOI: 10.1002/ana.24346] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 12/19/2014] [Accepted: 12/24/2014] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Amyotrophic lateral sclerosis/parkinsonism-dementia complex has been described in Guam, Western Papua, and the Kii Peninsula of Japan. The etiology and pathogenesis of this complex neurodegenerative disease remains enigmatic. METHODS In this study, we have used targeted genomic sequencing to evaluate the contribution of genetic variability in the pathogenesis of amyotrophic lateral sclerosis, parkinsonism, and dementia in Guamanian Chamorros. RESULTS Genes previously linked to or associated with amyotrophic lateral sclerosis, parkinsonism, dementia, and related neurodegenerative syndromes were sequenced in Chamorro subjects living in the Mariana Islands. Homozygous PINK1 p.L347P, heterozygous DCTN1 p.T54I, FUS p.P431L, and HTT (42 CAG repeats) were identified as pathogenic mutations. INTERPRETATION The findings explain the clinical, pathologic, and genetic heterogeneity observed in some multi-incident families and contribute to the excess incidence of neurodegeneration previously reported on Guam.
Collapse
|
206
|
Du X, Pang TY. Is Dysregulation of the HPA-Axis a Core Pathophysiology Mediating Co-Morbid Depression in Neurodegenerative Diseases? Front Psychiatry 2015; 6:32. [PMID: 25806005 PMCID: PMC4353372 DOI: 10.3389/fpsyt.2015.00032] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 02/16/2015] [Indexed: 01/19/2023] Open
Abstract
There is increasing evidence of prodromal manifestation of neuropsychiatric symptoms in a variety of neurodegenerative diseases such as Parkinson's disease (PD) and Huntington's disease (HD). These affective symptoms may be observed many years before the core diagnostic symptoms of the neurological condition. It is becoming more apparent that depression is a significant modifying factor of the trajectory of disease progression and even treatment outcomes. It is therefore crucial that we understand the potential pathophysiologies related to the primary condition, which could contribute to the development of depression. The hypothalamic-pituitary-adrenal (HPA)-axis is a key neuroendocrine signaling system involved in physiological homeostasis and stress response. Disturbances of this system lead to severe hormonal imbalances, and the majority of such patients also present with behavioral deficits and/or mood disorders. Dysregulation of the HPA-axis is also strongly implicated in the pathology of major depressive disorder. Consistent with this, antidepressant drugs, such as the selective serotonin reuptake inhibitors have been shown to alter HPA-axis activity. In this review, we will summarize the current state of knowledge regarding HPA-axis pathology in Alzheimer's, PD and HD, differentiating between prodromal and later stages of disease progression when evidence is available. Both clinical and preclinical evidence will be examined, but we highlight animal model studies as being particularly useful for uncovering novel mechanisms of pathology related to co-morbid mood disorders. Finally, we purpose utilizing the preclinical evidence to better inform prospective, intervention studies.
Collapse
Affiliation(s)
- Xin Du
- Mental Health Division, Florey Institute of Neuroscience and Mental Health, University of Melbourne , Melbourne, VIC , Australia
| | - Terence Y Pang
- Behavioural Neurosciences Division, Florey Institute of Neuroscience and Mental Health, University of Melbourne , Melbourne, VIC , Australia
| |
Collapse
|
207
|
Gan-Or Z, Dion PA, Rouleau GA. Genetic perspective on the role of the autophagy-lysosome pathway in Parkinson disease. Autophagy 2015; 11:1443-57. [PMID: 26207393 PMCID: PMC4590678 DOI: 10.1080/15548627.2015.1067364] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/10/2015] [Accepted: 06/24/2015] [Indexed: 02/09/2023] Open
Abstract
Parkinson disease (PD), once considered as a prototype of a sporadic disease, is now known to be considerably affected by various genetic factors, which interact with environmental factors and the normal process of aging, leading to PD. Large studies determined that the hereditary component of PD is at least 27%, and in some populations, single genetic factors are responsible for more than 33% of PD patients. Interestingly, many of these genetic factors, such as LRRK2, GBA, SMPD1, SNCA, PARK2, PINK1, PARK7, SCARB2, and others, are involved in the autophagy-lysosome pathway (ALP). Some of these genes encode lysosomal enzymes, whereas others correspond to proteins that are involved in transport to the lysosome, mitophagy, or other autophagic-related functions. Is it possible that all these factors converge into a single pathway that causes PD? In this review, we will discuss these genetic findings and the role of the ALP in the pathogenesis of PD and will try to answer this question. We will suggest a novel hypothesis for the pathogenic mechanism of PD that involves the lysosome and the different autophagy pathways.
Collapse
Affiliation(s)
- Ziv Gan-Or
- The Department of Human Genetics; McGill University; Montreal, QC Canada
- Montreal Neurological Institute; McGill University; Montreal, QC Canada
| | - Patrick A Dion
- The Department of Human Genetics; McGill University; Montreal, QC Canada
- Montreal Neurological Institute; McGill University; Montreal, QC Canada
- The Department of Neurology & Neurosurgery; McGill University; Montreal, QC Canada
| | - Guy A Rouleau
- The Department of Human Genetics; McGill University; Montreal, QC Canada
- Montreal Neurological Institute; McGill University; Montreal, QC Canada
- The Department of Neurology & Neurosurgery; McGill University; Montreal, QC Canada
| |
Collapse
|
208
|
Pesce ER, Blatch GL, Edkins AL. Hsp40 Co-chaperones as Drug Targets: Towards the Development of Specific Inhibitors. TOPICS IN MEDICINAL CHEMISTRY 2015. [DOI: 10.1007/7355_2015_92] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
209
|
Schreij AMA, Chaineau M, Ruan W, Lin S, Barker PA, Fon EA, McPherson PS. LRRK2 localizes to endosomes and interacts with clathrin-light chains to limit Rac1 activation. EMBO Rep 2014; 16:79-86. [PMID: 25427558 DOI: 10.15252/embr.201438714] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of dominant-inherited Parkinson's disease (PD), and yet we do not fully understand the physiological function(s) of LRRK2. Various components of the clathrin machinery have been recently found mutated in familial forms of PD. Here, we provide molecular insight into the association of LRRK2 with the clathrin machinery. We report that through its GTPase domain, LRRK2 binds directly to clathrin-light chains (CLCs). Using genome-edited HA-LRRK2 cells, we localize LRRK2 to endosomes on the degradative pathway, where it partially co-localizes with CLCs. Knockdown of CLCs and/or LRRK2 enhances the activation of the small GTPase Rac1, leading to alterations in cell morphology, including the disruption of neuronal dendritic spines. In Drosphila, a minimal rough eye phenotype caused by overexpression of Rac1, is dramatically enhanced by loss of function of CLC and LRRK2 homologues, confirming the importance of this pathway in vivo. Our data identify a new pathway in which CLCs function with LRRK2 to control Rac1 activation on endosomes, providing a new link between the clathrin machinery, the cytoskeleton and PD.
Collapse
Affiliation(s)
- Andrea M A Schreij
- Department of Neurology and Neurosurgery and McGill Parkinson Program, Montreal Neurological Institute McGill University, Montreal, Quebec, Canada
| | - Mathilde Chaineau
- Department of Neurology and Neurosurgery and McGill Parkinson Program, Montreal Neurological Institute McGill University, Montreal, Quebec, Canada
| | - Wenjing Ruan
- Department of Neurology and Neurosurgery and McGill Parkinson Program, Montreal Neurological Institute McGill University, Montreal, Quebec, Canada
| | - Susan Lin
- Department of Neurology and Neurosurgery and McGill Parkinson Program, Montreal Neurological Institute McGill University, Montreal, Quebec, Canada
| | - Philip A Barker
- Department of Neurology and Neurosurgery and McGill Parkinson Program, Montreal Neurological Institute McGill University, Montreal, Quebec, Canada
| | - Edward A Fon
- Department of Neurology and Neurosurgery and McGill Parkinson Program, Montreal Neurological Institute McGill University, Montreal, Quebec, Canada
| | - Peter S McPherson
- Department of Neurology and Neurosurgery and McGill Parkinson Program, Montreal Neurological Institute McGill University, Montreal, Quebec, Canada
| |
Collapse
|
210
|
Gustavsson EK, Trinh J, Guella I, Vilariño-Güell C, Appel-Cresswell S, Stoessl AJ, Tsui JK, McKeown M, Rajput A, Rajput AH, Aasly JO, Farrer MJ. DNAJC13 genetic variants in parkinsonism. Mov Disord 2014; 30:273-8. [PMID: 25393719 DOI: 10.1002/mds.26064] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 09/15/2014] [Accepted: 09/30/2014] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND A novel mutation (p.N855S) in DNAJC13 has been linked to familial, late-onset Lewy body parkinsonism in a Dutch-German-Russian Mennonite multi-incident kindred. METHODS DNAJC13 was sequenced in 201 patients with parkinsonism and 194 controls from Canada. Rare (minor allele frequency < 0.01) missense variants identified in patients were genotyped in two Parkinson's disease case-controls cohorts. RESULTS Eighteen rare missense mutations were identified; four were observed in controls, three were observed in both patients and controls, and eleven were identified only in patients. Subsequent genotyping showed p.E1740Q and p.L2170W to be more frequent in patients, and p.R1516H being more frequent in controls. Additionally, p.P336A, p.V722L, p.N855S, p.R1266Q were seen in one patient each, and p.T1895M was found in two patients. CONCLUSION Although the contribution of rare genetic variation in DNAJC13 to parkinsonisms remains to be further elucidated, this study suggests that, in addition to p.N855S, other rare variants might affect disease susceptibility.
Collapse
Affiliation(s)
- Emil K Gustavsson
- Djavad Mowafaghian Centre for Brain Health, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada; Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway; Department of Neurology, St. Olav's Hospital, Trondheim, Norway
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Petersen MS, Guella I, Bech S, Gustavsson E, Farrer MJ. Parkinson's disease, genetic variability and the Faroe Islands. Parkinsonism Relat Disord 2014; 21:75-8. [PMID: 25466404 DOI: 10.1016/j.parkreldis.2014.10.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 10/10/2014] [Accepted: 10/29/2014] [Indexed: 10/24/2022]
Abstract
INTRODUCTION The Faroe Islands is a geographically isolated population in the North Atlantic with a high prevalence of Parkinson disease (PD). The disease etiology is still unknown, although dietary pollutants are considered a risk factor. The genetic risk underlying disease susceptibility has yet to be elucidated. METHODS Sequence analysis was performed in genes previously linked with PD in 91 patients and 96 healthy control subjects. RESULTS Fourteen missense mutations, of which one was novel, were identified in six genes. One patient (1%) did carry the known pathogenic mutation LRRK2 p.G2019S mutation, 19 patients (22%) did carry mutations of unknown significance while 70 patients (78.0%) did not have any identifiable genetic risk. A total of 14 controls (14.6%) carried mutations of unknown significance. CONCLUSION This study suggests that rare variants in genes previously linked to PD are not major contributors to PD in the Faroe Islands. Further exome sequencing and comparative analyses within and among well-described pedigrees with multi-incident PD are now warranted.
Collapse
Affiliation(s)
- Maria Skaalum Petersen
- Department of Occupational Medicine and Public Health, The Faroese Hospital System, Sigmundargøta 5, Postbox 14, FO-110 Tórshavn, Faroe Islands.
| | - Ilaria Guella
- Djavad Mowafaghian Centre for Brain Health, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.
| | - Sara Bech
- Department of Occupational Medicine and Public Health, The Faroese Hospital System, Sigmundargøta 5, Postbox 14, FO-110 Tórshavn, Faroe Islands.
| | - Emil Gustavsson
- Djavad Mowafaghian Centre for Brain Health, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.
| | - Matthew J Farrer
- Djavad Mowafaghian Centre for Brain Health, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
212
|
The role of the retromer complex in aging-related neurodegeneration: a molecular and genomic review. Mol Genet Genomics 2014; 290:413-27. [PMID: 25332075 DOI: 10.1007/s00438-014-0939-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 10/10/2014] [Indexed: 10/24/2022]
Abstract
The retromer coat complex is a vital component of the intracellular trafficking mechanism sorting cargo from the endosomes to the trans-Golgi network or to the cell surface. In recent years, genes encoding components of the retromer coat complex and members of the vacuolar protein sorting 10 (Vps10) family of receptors, which play pleiotropic functions in protein trafficking and intracellular/intercellular signaling in neuronal and non-neuronal cells and are primary cargos of the retromer complex, have been implicated as genetic risk factors for sporadic and autosomal dominant forms of several neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and frontotemporal lobar degeneration. In addition to their functions in protein trafficking, the members of the Vps10 receptor family (sortilin, SorL1, SorCS1, SorCS2, and SorCS3) modulate neurotrophic signaling pathways. Both sortilin and SorCS2 act as cell surface receptors to mediate acute responses to proneurotrophins. In addition, sortilin can modulate the intracellular response to brain-derived neurotrophic factor (BDNF) by direct control of BDNF levels and regulating anterograde trafficking of Trk receptors to the synapse. This review article summarizes the emerging data from this rapidly growing field of intracellular trafficking signaling in the pathogenesis of neurodegeneration.
Collapse
|
213
|
Appel-Cresswell S, Rajput AH, Sossi V, Thompson C, Silva V, McKenzie J, Dinelle K, McCormick SE, Vilariño-Güell C, Stoessl AJ, Dickson DW, Robinson CA, Farrer MJ, Rajput A. Clinical, positron emission tomography, and pathological studies of DNAJC13 p.N855S Parkinsonism. Mov Disord 2014; 29:1684-7. [PMID: 25186792 DOI: 10.1002/mds.26019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 07/17/2014] [Accepted: 07/22/2014] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Families of Dutch-German-Russian Mennonite descent with multi-incident parkinsonism have been identified as harboring a pathogenic DNAJC13 p.N855S mutation and are awaiting clinical and pathophysiological characterization. METHODS Family members were examined clinically longitudinally, and 5 underwent dopaminergic PET imaging. Four family members came to autopsy. RESULTS Of the 16 symptomatic DNAJC13 mutation carriers, 12 had clinically definite, 3 probable, and 1 possible Parkinson's disease (PD). Symptoms included bradykinesia, tremor, rigidity, and postural instability, with a mean onset of 63 years (range, 40-85) and slow progression. Eight of ten subjects who required treatment had a good levodopa response; motor complications and nonmotor symptoms were observed. Dopaminergic PET imaging revealed rostrocaudal striatal deficits typical for idiopathic PD in established disease and subtle abnormalities in incipient disease. Pathological examinations revealed Lewy body pathology. CONCLUSION PD associated with a DNAJC13 p.N855S mutation presents as late-onset, often slowly progressive, usually dopamine-responsive typical PD.
Collapse
Affiliation(s)
- Silke Appel-Cresswell
- Pacific Parkinson's Research Center, Division of Neurology, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
214
|
Tardiff DF, Khurana V, Chung CY, Lindquist S. From yeast to patient neurons and back again: powerful new discovery platform. Mov Disord 2014; 29:1231-40. [PMID: 25131316 DOI: 10.1002/mds.25989] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/10/2014] [Accepted: 07/14/2014] [Indexed: 12/27/2022] Open
Abstract
No disease-modifying therapies are available for synucleinopathies, including Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple systems atrophy (MSA). The lack of therapies has been impeded by a paucity of validated drug targets and problematic cell-based model systems. New approaches are therefore needed to identify genes and compounds that directly target the underlying cellular pathologies elicited by the pathological protein, α-synuclein (α-syn). This small, lipid-binding protein impinges on evolutionarily conserved processes such as vesicle trafficking and mitochondrial function. For decades, the genetically tractable, single-cell eukaryote, budding yeast, has been used to study nearly all aspects of cell biology. More recently, yeast has revealed key insights into the underlying cellular pathologies caused by α-syn. The robust cellular toxicity caused by α-syn expression facilitates unbiased high-throughput small-molecule screening. Critically, one must validate the discoveries made in yeast in disease-relevant neuronal models. Here, we describe two recent reports that together establish yeast-to-human discovery platforms for synucleinopathies. In this exemplar, genes and small molecules identified in yeast were validated in patient-derived neurons that present the same cellular phenotypes initially discovered in yeast. On validation, we returned to yeast, where unparalleled genetic approaches facilitated the elucidation of a small molecule's mode of action. This approach enabled the identification and neuronal validation of a previously unknown "druggable" node that interfaces with the underlying, precipitating pathologies caused by α-syn. Such platforms can provide sorely needed leads and fresh ideas for disease-modifying therapy for these devastating diseases.
Collapse
Affiliation(s)
- Daniel F Tardiff
- Whitehead Institute for Biomedical Research (WIBR), Cambridge, Massachusetts, USA
| | | | | | | |
Collapse
|
215
|
VPS35 and DNAJC13 disease-causing variants in essential tremor. Eur J Hum Genet 2014; 23:887-8. [PMID: 25118025 DOI: 10.1038/ejhg.2014.164] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 07/01/2014] [Accepted: 07/09/2014] [Indexed: 11/08/2022] Open
Abstract
Exome-sequencing analyses have identified vacuolar protein sorting 35 homolog (VPS35) and DnaJ (Hsp40) homolog, subfamily C, member 13 (DNAJC13) harboring disease-causing variants for Parkinson disease (PD). Owing to the suggested clinical, pathological and genetic overlap between PD and essential tremor (ET) we assessed the presence of two VPS35 and DNAJC13 disease-causing variants in ET patients. TaqMan probes were used to genotype VPS35 c.1858G>A (p.(D620N)) (rs188286943) and DNAJC13 c.2564A>G (p.(N855S)) (rs387907571) in 571 ET patients of European descent, and microsatellite markers were used to define the disease haplotype in variant carriers. Genotyping of DNAJC13 identified two ET patients harboring the c.2564A>G (p.(N855S)) variant previously identified in PD patients. Both patients appear to share the disease haplotype previously reported. ET patients with the VPS35 c.1858G>A (p.(D620N)) variants were not observed. Although a genetic link between PD and ET has been suggested, DNAJC13 c.2564A>G (p.(N855S)) represents the first disease-causing variant identified in both, and suggests the regulation of clathrin dynamics and endosomal trafficking in the pathophysiology of a subset of ET patients.
Collapse
|
216
|
Miura E, Hasegawa T, Konno M, Suzuki M, Sugeno N, Fujikake N, Geisler S, Tabuchi M, Oshima R, Kikuchi A, Baba T, Wada K, Nagai Y, Takeda A, Aoki M. VPS35 dysfunction impairs lysosomal degradation of α-synuclein and exacerbates neurotoxicity in a Drosophila model of Parkinson's disease. Neurobiol Dis 2014; 71:1-13. [PMID: 25107340 DOI: 10.1016/j.nbd.2014.07.014] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 07/07/2014] [Accepted: 07/28/2014] [Indexed: 12/31/2022] Open
Abstract
Mutations in vacuolar protein sorting 35 (VPS35) have been linked to familial Parkinson's disease (PD). VPS35, a component of the retromer, mediates the retrograde transport of cargo from the endosome to the trans-Golgi network. Here we showed that retromer depletion increases the lysosomal turnover of the mannose 6-phosphate receptor, thereby affecting the trafficking of cathepsin D (CTSD), a lysosome protease involved in α-synuclein (αSYN) degradation. VPS35 knockdown perturbed the maturation step of CTSD in parallel with the accumulation of αSYN in the lysosomes. Furthermore, we found that the knockdown of Drosophila VPS35 not only induced the accumulation of the detergent-insoluble αSYN species in the brain but also exacerbated both locomotor impairments and mild compound eye disorganization and interommatidial bristle loss in flies expressing human αSYN. These findings indicate that the retromer may play a crucial role in αSYN degradation by modulating the maturation of CTSD and might thereby contribute to the pathogenesis of the disease.
Collapse
Affiliation(s)
- Emiko Miura
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Takafumi Hasegawa
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan.
| | - Masatoshi Konno
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan; Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira 187-8502, Japan
| | - Mari Suzuki
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira 187-8502, Japan
| | - Naoto Sugeno
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Nobuhiro Fujikake
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira 187-8502, Japan
| | - Sven Geisler
- Laboratory of Functional Neurogenetics, Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, German Centre for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
| | - Mitsuaki Tabuchi
- Laboratory of Applied Molecular Cell Biology, Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan
| | - Ryuji Oshima
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Akio Kikuchi
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Toru Baba
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Keiji Wada
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira 187-8502, Japan
| | - Yoshitaka Nagai
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira 187-8502, Japan
| | - Atsushi Takeda
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan; Department of Neurology, National Hospital Organization Sendai-Nishitaga Hospital, Sendai 982-8555, Japan
| | - Masashi Aoki
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| |
Collapse
|
217
|
McGough IJ, Steinberg F, Jia D, Barbuti PA, McMillan KJ, Heesom KJ, Whone AL, Caldwell MA, Billadeau DD, Rosen MK, Cullen PJ. Retromer binding to FAM21 and the WASH complex is perturbed by the Parkinson disease-linked VPS35(D620N) mutation. Curr Biol 2014; 24:1670-1676. [PMID: 24980502 PMCID: PMC4110399 DOI: 10.1016/j.cub.2014.06.024] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 05/16/2014] [Accepted: 06/10/2014] [Indexed: 11/16/2022]
Abstract
Retromer is a protein assembly that plays a central role in orchestrating export of transmembrane-spanning cargo proteins from endosomes into retrieval pathways destined for the Golgi apparatus and the plasma membrane [1]. Recently, a specific mutation in the retromer component VPS35, VPS35(D620N), has linked retromer dysfunction to familial autosomal dominant and sporadic Parkinson disease [2, 3]. However, the effect of this mutation on retromer function remains poorly characterized. Here we established that in cells expressing VPS35(D620N) there is a perturbation in endosome-to-TGN transport but not endosome-to-plasma membrane recycling, which we confirm in patient cells harboring the VPS35(D620N) mutation. Through comparative stable isotope labeling by amino acids in cell culture (SILAC)-based analysis of wild-type VPS35 versus the VPS35(D620N) mutant interactomes, we establish that the major defect of the D620N mutation lies in the association to the actin-nucleating Wiskott-Aldrich syndrome and SCAR homolog (WASH) complex. Moreover, using isothermal calorimetry, we establish that the primary defect of the VPS35(D620N) mutant is a 2.2 ± 0.5-fold decrease in affinity for the WASH complex component FAM21. These data define the primary molecular defect in retromer assembly that arises from the VPS35(D620N) mutation and, by revealing functional effects on retromer-mediated endosome-to-TGN transport, provide new insight into retromer deregulation in Parkinson disease.
Collapse
Affiliation(s)
- Ian J McGough
- The Henry Wellcome Integrated Signaling Laboratories, School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Florian Steinberg
- The Henry Wellcome Integrated Signaling Laboratories, School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Da Jia
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Peter A Barbuti
- Henry Wellcome Laboratory for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
| | - Kirsty J McMillan
- The Henry Wellcome Integrated Signaling Laboratories, School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Kate J Heesom
- Proteomics Facility, School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Alan L Whone
- Institute of Clinical Neurosciences, University of Bristol, Frenchay Hospital, Bristol BS16 1LE, UK
| | - Maeve A Caldwell
- Henry Wellcome Laboratory for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
| | - Daniel D Billadeau
- Departments of Biochemistry and Molecular Biology and Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Michael K Rosen
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Peter J Cullen
- The Henry Wellcome Integrated Signaling Laboratories, School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK.
| |
Collapse
|
218
|
FBXO7 Y52C polymorphism as a potential protective factor in Parkinson's disease. PLoS One 2014; 9:e101392. [PMID: 25029497 PMCID: PMC4100735 DOI: 10.1371/journal.pone.0101392] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 06/06/2014] [Indexed: 12/30/2022] Open
Abstract
Mutations in the F-box only protein 7 gene (FBXO7), the substrate-specifying subunit of SCF E3 ubiquitin ligase complex, cause Parkinson's disease (PD)-15 (PARK15). To identify new variants, we sequenced FBXO7 cDNA in 80 Taiwanese early onset PD patients (age at onset ≤50) and only two known variants, Y52C (c.155A>G) and M115I (c.345G>A), were found. To assess the association of Y52C and M115I with the risk of PD, we conducted a case–control study in a cohort of PD and ethnically matched controls. There was a nominal difference in the Y52C G allele frequency between PD and controls (p = 0.045). After combining data from China [1], significant difference in the Y52C G allele frequency between PD and controls (p = 0.012) and significant association of G allele with decreased PD risk (p = 0.017) can be demonstrated. Upon expressing EGFP-tagged Cys52 FBXO7 in cells, a significantly reduced rate of FBXO7 protein decay was observed when compared with cells expressing Tyr52 FBXO7. In silico modeling of Cys52 exhibited a more stable feature than Tyr52. In cells expressing Cys52 FBXO7, the level of TNF receptor-associated factor 2 (TRAF2) was significantly reduced. Moreover, Cys52 FBXO7 showed stronger interaction with TRAF2 and promoted TRAF2 ubiquitination, which may be responsible for the reduced TRAF2 expression in Cys52 cells. After induced differentiation, SH-SY5Y cells expressing Cys52 FBXO7 displayed increased neuronal outgrowth. We therefore hypothesize that Cys52 variant of FBXO7 may contribute to reduced PD susceptibility in Chinese.
Collapse
|
219
|
Koutras C, Braun JEA. J protein mutations and resulting proteostasis collapse. Front Cell Neurosci 2014; 8:191. [PMID: 25071450 PMCID: PMC4086201 DOI: 10.3389/fncel.2014.00191] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 06/21/2014] [Indexed: 01/20/2023] Open
Abstract
Despite a century of intensive investigation the effective treatment of protein aggregation diseases remains elusive. Ordinarily, molecular chaperones ensure that proteins maintain their functional conformation. The appearance of misfolded proteins that aggregate implies the collapse of the cellular chaperone quality control network. That said, the cellular chaperone network is extensive and functional information regarding the detailed action of specific chaperones is not yet available. J proteins (DnaJ/Hsp40) are a family of chaperone cofactors that harness Hsc70 (heat shock cognate protein of 70 kDa) for diverse conformational cellular tasks and, as such, represent novel clinically relevant targets for diseases resulting from the disruption of proteostasis. Here we review incisive reports identifying mutations in individual J protein chaperones and the proteostasis collapse that ensues.
Collapse
Affiliation(s)
- Carolina Koutras
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of CalgaryCalgary, AB, Canada
| | - Janice E. A. Braun
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of CalgaryCalgary, AB, Canada
| |
Collapse
|
220
|
Abstract
Parkinson’s disease (PD) is a progressively debilitating neurodegenerative syndrome. Although best described as a movement disorder, the condition has prominent autonomic, cognitive, psychiatric, sensory and sleep components. Striatal dopaminergic innervation and nigral neurons are progressively lost, with associated Lewy pathology readily apparent on autopsy. Nevertheless, knowledge of the molecular events leading to this pathophysiology is limited. Current therapies offer symptomatic benefit but they fail to slow progression and patients continue to deteriorate. Recent discoveries in sporadic, Mendelian and more complex forms of parkinsonism provide novel insight into disease etiology; 28 genes, including those encoding alpha-synuclein (SNCA), leucine-rich repeat kinase 2 (LRRK2) and microtubule-associated protein tau (MAPT), have been linked and/or associated with PD. A consensus regarding the affected biological pathways and molecular processes has also started to emerge. In early-onset and more a typical PD, deficits in mitophagy pathways and lysosomal function appear to be prominent. By contrast, in more typical late-onset PD, chronic, albeit subtle, dysfunction in synaptic transmission, early endosomal trafficking and receptor recycling, as well as chaperone-mediated autophagy, provide a unifying synthesis of the molecular pathways involved. Disease-modification (neuroprotection) is no longer such an elusive goal given the unparalleled opportunity for diagnosis, translational neuroscience and therapeutic development provided by genetic discovery.
Collapse
Affiliation(s)
- Michelle K Lin
- Djavad Mowafaghian Centre for Brain Health, Centre for Applied Neurogenetics, Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Matthew J Farrer
- Djavad Mowafaghian Centre for Brain Health, Centre for Applied Neurogenetics, Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
221
|
Seaman MN, Freeman CL. Analysis of the Retromer complex-WASH complex interaction illuminates new avenues to explore in Parkinson disease. Commun Integr Biol 2014; 7:e29483. [PMID: 25067992 PMCID: PMC4106150 DOI: 10.4161/cib.29483] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 06/05/2014] [Indexed: 01/15/2023] Open
Abstract
The retromer complex mediates endosomal protein sorting by concentrating membrane proteins (cargo) into nascent tubules formed through the action of sorting nexin (SNX) proteins. The WASH complex is recruited to endosomes by binding to the VPS35 subunit of retromer and facilitates cargo protein sorting by promoting formation of endosomally-localized F-actin. The VPS35 protein is mutated in Parkinson disease (PD) and a recent report has revealed that the PD-causing mutation impairs the association of retromer with the WASH complex leading to perturbed endosomal protein sorting. Another important player in endosomal protein sorting is the DNAJC13/RME-8 protein, which associates with SNX1 and has also recently been linked to PD. An additional recent report has now shown that RME-8 also interacts with the WASH complex thus establishing retromer and WASH complex-mediated endosomal protein sorting as a key pathway linked to the pathology of PD and providing new avenues to explore in the search for insights into the disease mechanism.
Collapse
Affiliation(s)
- Matthew Nj Seaman
- University of Cambridge; Cambridge Institute for Medical Research; Wellcome Trust/MRC Building; Addenbrookes Hospital; Cambridge UK
| | - Caroline L Freeman
- University of Cambridge; Cambridge Institute for Medical Research; Wellcome Trust/MRC Building; Addenbrookes Hospital; Cambridge UK
| |
Collapse
|
222
|
Zavodszky E, Seaman MN, Moreau K, Jimenez-Sanchez M, Breusegem SY, Harbour ME, Rubinsztein DC. Mutation in VPS35 associated with Parkinson's disease impairs WASH complex association and inhibits autophagy. Nat Commun 2014; 5:3828. [PMID: 24819384 PMCID: PMC4024763 DOI: 10.1038/ncomms4828] [Citation(s) in RCA: 333] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 04/07/2014] [Indexed: 12/13/2022] Open
Abstract
Endosomal protein sorting controls the localization of many physiologically important proteins and is linked to several neurodegenerative diseases. VPS35 is a component of the retromer complex, which mediates endosome-to-Golgi retrieval of membrane proteins such as the cation-independent mannose 6-phosphate receptor. Furthermore, retromer is also required for the endosomal recruitment of the actin nucleation promoting WASH complex. The VPS35 D620N mutation causes a rare form of autosomal-dominant Parkinson's disease (PD). Here we show that this mutant associates poorly with the WASH complex and impairs WASH recruitment to endosomes. Autophagy is impaired in cells expressing PD-mutant VPS35 or lacking WASH. The autophagy defects can be explained, at least in part, by abnormal trafficking of the autophagy protein ATG9A. Thus, the PD-causing D620N mutation in VPS35 restricts WASH complex recruitment to endosomes, and reveals a novel role for the WASH complex in autophagosome formation.
Collapse
Affiliation(s)
- Eszter Zavodszky
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge Biomedical Campus, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
- These authors contributed equally to this work
| | - Matthew N.J. Seaman
- Department of Clinical Biochemistry, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Addenbrooke’s Hospital, Cambridge CB2 0XY, UK
- These authors contributed equally to this work
| | - Kevin Moreau
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge Biomedical Campus, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Maria Jimenez-Sanchez
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge Biomedical Campus, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Sophia Y. Breusegem
- Department of Clinical Biochemistry, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Addenbrooke’s Hospital, Cambridge CB2 0XY, UK
| | - Michael E. Harbour
- Department of Clinical Biochemistry, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Addenbrooke’s Hospital, Cambridge CB2 0XY, UK
| | - David C. Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge Biomedical Campus, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|
223
|
|
224
|
Freeman CL, Hesketh G, Seaman MNJ. RME-8 coordinates the activity of the WASH complex with the function of the retromer SNX dimer to control endosomal tubulation. J Cell Sci 2014; 127:2053-70. [PMID: 24643499 DOI: 10.1242/jcs.144659] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Retromer is a vital element of the endosomal protein sorting machinery and comprises two subcomplexes that operate together to sort membrane proteins (cargo) and tubulate membranes. Tubules are formed by a dimer of sorting nexins, a key component of which is SNX1. Cargo selection is mediated by the VPS35-VPS29-VPS26 trimer, which additionally recruits the WASH complex through VPS35 binding to the WASH complex subunit FAM21. Loss of function of the WASH complex leads to dysregulation of endosome tubulation, although it is unclear how this occurs. Here, we show that FAM21 also binds to the SNX1-interacting DNAJ protein RME-8. Loss of RME-8 causes altered kinetics of SNX1 membrane association and a pronounced increase in highly branched endosomal tubules. Building on previous observations from other laboratories, we show that these tubules contain membrane proteins that are dependent upon WASH complex activity for their localization to the plasma membrane. Therefore, we propose that the interaction between RME-8 and the WASH complex provides a means to coordinate the activity of the WASH complex with the membrane-tubulating function of the sorting nexins at sites where retromer-mediated endosomal protein sorting occurs.
Collapse
Affiliation(s)
- Caroline L Freeman
- University of Cambridge, Cambridge Institute for Medical Research/Department of Clinical Biochemistry, Wellcome Trust/MRC Building, Addenbrooke's Hospital, Cambridge CB2 0XY, UK
| | | | | |
Collapse
|