201
|
Xue L, Huang X, Zhang Z, Lin Q, Zhong Q, Zhao Y, Gao Z, Xu C. An Anthocyanin-Related Glutathione S-Transferase, MrGST1, Plays an Essential Role in Fruit Coloration in Chinese Bayberry ( Morella rubra). FRONTIERS IN PLANT SCIENCE 2022; 13:903333. [PMID: 35755659 PMCID: PMC9213753 DOI: 10.3389/fpls.2022.903333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/20/2022] [Indexed: 05/31/2023]
Abstract
Chinese bayberry (Morella rubra) is a fruit tree economically important in China and accumulates abundant amounts of anthocyanins in fruit as it ripens. Owing to the fact that all anthocyanin containing fruit tissues in Chinese bayberry are edible and anthocyanins can provide various health benefits in human body, the mechanisms underpinning anthocyanin accumulation in this fruit are worthy of investigation. It has been known that in plants anthocyanins are synthesized in the cytoplasmic surface of the endoplasmic reticulum and subsequently transported into the vacuole for storage, and glutathione S-transferases (GSTs) have been verified to be involved in this process. But the characterization and functionalization of the GST counterpart in Chinese bayberry is not available. The GST anthocyanin transporter MrGST1 was discovered to be related with anthocyanin accumulation in fruit from distinct developmental stages of "Biqi," a staple cultivar that accumulates over 1 mg/g anthocyanins in ripe fruit. The expression of MrGST1 was well associated with anthocyanin accumulation either in fruit collected at six developmental stages or in ripe fruit from 12 cultivars. MrGST1 was found to be responsible for the transport of anthocyanins but not proanthocyanidins when the Arabidopsis tt19 mutant was functionally complemented. Transient ectopic expression of MrGST1 in combination with MrMYB1.1 and MrbHLH1 dramatically boosted pigmentation in Nicotiana tabacum leaves in contrast to MrMYB1.1 and MrbHLH1. The promoter of MrGST1 comprised eight MYB binding sites (MBSs) according to cis-element analysis. Data from yeast one-hybrid assay and dual-luciferase tests demonstrated that MrMYB1.1 exerted considerable transactivation effect on the MrGST1 promoter by recognizing the MBS4, the fourth MBS from the ATG start site. Our results together provided molecular evidence for the contribution of MrGST1 in regulating anthocyanin accumulation in Chinese bayberry fruit.
Collapse
Affiliation(s)
- Lei Xue
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Xiaorong Huang
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Zehuang Zhang
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Qihua Lin
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Qiuzhen Zhong
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Yun Zhao
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Zhongshan Gao
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Changjie Xu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| |
Collapse
|
202
|
Liao HS, Yang CC, Hsieh MH. Nitrogen deficiency- and sucrose-induced anthocyanin biosynthesis is modulated by HISTONE DEACETYLASE15 in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3726-3742. [PMID: 35182426 DOI: 10.1093/jxb/erac067] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Anthocyanin accumulation is a hallmark response to nitrogen (N) deficiency in Arabidopsis. Although the regulation of anthocyanin biosynthesis has been extensively studied, the roles of chromatin modification in this process are largely unknown. In this study we show that anthocyanin accumulation induced by N deficiency is modulated by HISTONE DEACETYLASE15 (HDA15) in Arabidopsis seedlings. The hda15-1 T-DNA insertion mutant accumulated more anthocyanins than the wild-type when the N supply was limited, and this was caused by up-regulation of anthocyanin biosynthetic and regulatory genes in the mutant. The up-regulated genes also had increased levels of histone acetylation in the mutant. The accumulation of anthocyanins induced by sucrose and methyl jasmonate, but not that induced by H2O2 and phosphate starvation, was also greater in the hda15-1 mutant. While sucrose increased histone acetylation in the hda15-1 mutant in genes in a similar manner to that caused by N deficiency, methyl jasmonate only enhanced histone acetylation in the genes involved in anthocyanin biosynthesis. Our results suggest that different stresses act through distinct regulatory modules to activate anthocyanin biosynthesis, and that HDA15-mediated histone modification modulates the expression of anthocyanin biosynthetic and regulatory genes to avoid overaccumulation in response to N deficiency and other stresses.
Collapse
Affiliation(s)
- Hong-Sheng Liao
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Chien-Chih Yang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| |
Collapse
|
203
|
Zheng T, Han J, Su KX, Sun BY, Liu SM. Regulation mechanisms of flavonoids biosynthesis of Hancheng Dahongpao peels (Zanthoxylum bungeanum Maxim) at different development stages by integrated metabolomics and transcriptomics analysis. BMC PLANT BIOLOGY 2022; 22:251. [PMID: 35596133 PMCID: PMC9123719 DOI: 10.1186/s12870-022-03642-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/10/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Flavonoids have strong free radical scavenging and antioxidant capacity. The high abundance of flavonoids in Chinese prickly ash peels have many benefits to human health. In this study, 'Hancheng Dahongpao', a main cultivar, was taken as materials to investigate the flavonoids biosynthesis mechanism of Zanthoxylum bungeanum Maxim at three key development stages by integration of metabolomics and transcriptomics analysis. RESULTS A total of 19 differentially accumulated metabolites were identified, the key flavonoids compounds were kaempferol, quercetin and their glycoside derivatives, and two major anthocyanins (peonidin O-hexoside and peonidin 3-O-glucoside). 5 gene networks/modules including 15 important candidate genes were identified, which was highly correlated with flavonoids. Among these genes, ZM-163828 and ZM-184209 were strongly correlated with kaempferol and quercetin, and ZM-125833 and ZM-97481 were controlled the anthocyanins biosynthesis. Moreover, it was shown that MYB-ZM1, MYB-ZM3, MYB-ZM5, MYB-ZM6 and MYB-ZM7 coordinately controlled flavonoids accumulation through regulating the structural genes. CONCLUSIONS Generally, this study systematically revealed the flavonoids metabolic pathways and candidate genes involved in flavonoids biosynthesis and laid a foundation for the potential targets for the breeding of new valuable Chinese prickly ash cultivars.
Collapse
Affiliation(s)
- Tao Zheng
- Northwest Agriculture and Forestry University, College of Science, Yangling, 712100, China
| | - Jun Han
- Forestry and Grassland Bureau of Xunhua Salar autonomous county, Xunhua, 811100, China.
| | - Ke-Xing Su
- Northwest Agriculture and Forestry University, College of Science, Yangling, 712100, China
| | - Bing-Yin Sun
- Yangling Vocational &Technical College, Yangling, 712100, China
| | - Shu-Ming Liu
- Northwest Agriculture and Forestry University, College of Science, Yangling, 712100, China.
| |
Collapse
|
204
|
Zhang H, Wang J, Tian S, Hao W, Du L. Two B-Box Proteins, MaBBX20 and MaBBX51, Coordinate Light-Induced Anthocyanin Biosynthesis in Grape Hyacinth. Int J Mol Sci 2022; 23:5678. [PMID: 35628488 PMCID: PMC9146254 DOI: 10.3390/ijms23105678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023] Open
Abstract
Floral colour is an important agronomic trait that influences the commercial value of ornamental plants. Anthocyanins are a class of flavonoids and confer diverse colours, and elucidating the molecular mechanisms that regulate their pigmentation could facilitate artificial manipulation of flower colour in ornamental plants. Here, we investigated the regulatory mechanism of light-induced anthocyanin biosynthesis during flower colouration in grape hyacinth (Muscari spp.). We studied the function of two B-box proteins, MaBBX20 and MaBBX51. The qPCR revealed that MaBBX20 and MaBBX51 were associated with light-induced anthocyanin biosynthesis. Both MaBBX20 and MaBBX51 are transcript factors and are specifically localised in the nucleus. Besides, overexpression of MaBBX20 in tobacco slightly increased the anthocyanin content of the petals, but reduced in MaBBX51 overexpression lines. The yeast one-hybrid assays indicated that MaBBX20 and MaBBX51 did not directly bind to the MaMybA or MaDFR promoters, but MaHY5 did. The BiFC assay revealed that MaBBX20 and MaBBX51 physically interact with MaHY5. A dual luciferase assay further confirmed that the MaBBX20-MaHY5 complex can strongly activate the MaMybA and MaDFR transcription in tobacco. Moreover, MaBBX51 hampered MaBBX20-MaHY5 complex formation and repressed MaMybA and MaDFR transcription by physically interacting with MaHY5 and MaBBX20. Overall, the results suggest that MaBBX20 positively regulates light-induced anthocyanin biosynthesis in grape hyacinth, whereas MaBBX51 is a negative regulator.
Collapse
Affiliation(s)
- Han Zhang
- College of Landscape Architecture and Arts, Northwest A & F University, Yangling 712100, China; (H.Z.); (J.W.); (S.T.); (W.H.)
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A & F University, Yangling 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, China
| | - Jiangyu Wang
- College of Landscape Architecture and Arts, Northwest A & F University, Yangling 712100, China; (H.Z.); (J.W.); (S.T.); (W.H.)
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A & F University, Yangling 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, China
| | - Shuting Tian
- College of Landscape Architecture and Arts, Northwest A & F University, Yangling 712100, China; (H.Z.); (J.W.); (S.T.); (W.H.)
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A & F University, Yangling 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, China
| | - Wenhui Hao
- College of Landscape Architecture and Arts, Northwest A & F University, Yangling 712100, China; (H.Z.); (J.W.); (S.T.); (W.H.)
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A & F University, Yangling 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, China
| | - Lingjuan Du
- College of Landscape Architecture and Arts, Northwest A & F University, Yangling 712100, China; (H.Z.); (J.W.); (S.T.); (W.H.)
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A & F University, Yangling 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, China
| |
Collapse
|
205
|
Zhang Y, Zhao Q, Feng Y, Dong Y, Zhang T, Yang Q, Gu H, Huang J, Li Y. Integrated Transcriptomic and Metabolomic Analyses Reveal the Mechanisms Underlying Anthocyanin Coloration and Aroma Formation in Purple Fennel. Front Nutr 2022; 9:875360. [PMID: 35571884 PMCID: PMC9093692 DOI: 10.3389/fnut.2022.875360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/22/2022] [Indexed: 11/28/2022] Open
Abstract
The color and aroma are the significant traits of vegetables and fruits, but the metabolic and molecular mechanisms underlying anthocyanin accumulation and aroma formation remain almost unknown in fennel (Anethum foeniculum L.), which is a crucial vegetable crop and grown widely for aromatic leaves and bulbs. Here, ten major anthocyanins identified and quantified by ultra-high performance liquid chromatography coupled with quadrupole Orbitrap high-resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS) were mainly responsible for the coloration of purple fennel leaf. With the application of GC-MS, it was found that the reduced volatile phenylpropanoids including isoeugenol, trans-isoeugenol, and apiol chiefly account for the characteristic aroma changes of the purple fennel. Moreover, the characteristic anthocyanin coloration and aroma formation in purple fennel were systematically studied with the integrated transcriptomics and metabolomics. The critical genes associated with the biosynthesis and regulation of anthocyanins and volatile phenylpropanoids were isolated and studied carefully in transiently transfected tobacco cells and transgenic tomato plants. Together with the results of UHPLC-Q-Orbitrap HRMS, RT-qPCR, and yeast two hybrid (Y2H), it is proved that the metabolic flux redirection of phenylpropanoid pathway primarily regulated by a functional MYB-bHLH-WD40 complex consisting of AfTT8, AfMYB7, and AfTTG1 accounts for the characteristic anthocyanin coloration and aroma formation in purple fennel leaf. The systematic understanding of the anthocyanin accumulation and aroma formation will assist in the improvement of fennel resource utilization and breeding.
Collapse
Affiliation(s)
- Yanjie Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Qing Zhao
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Youwei Feng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yuanhang Dong
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Tianjiao Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Qiu Yang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Huihui Gu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Jinyong Huang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yan Li
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China.,The Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
206
|
Su M, Wang S, Liu W, Yang M, Zhang Z, Wang N, Chen X. MdJa2 Participates in the Brassinosteroid Signaling Pathway to Regulate the Synthesis of Anthocyanin and Proanthocyanidin in Red-Fleshed Apple. FRONTIERS IN PLANT SCIENCE 2022; 13:830349. [PMID: 35615132 PMCID: PMC9125324 DOI: 10.3389/fpls.2022.830349] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Anthocyanin and proanthocyanidin play important roles in plant secondary metabolism. Although previous studies identified many transcription factors involved in anthocyanin and proanthocyanidin synthesis, the effects of MADS-box transcription factors are unclear in apple. Brassinosteroids (BRs) are steroid hormones that affect plant flavonoid biosynthesis, but the underlying regulatory mechanism is not yet well established. In this study, we identified a MADS-box transcription factor, MdJa2, which contained a highly conserved MADS-box domain and belonged to the STMADS11 subfamily. Additionally, MdJa2 was responsive to BR signal, and the overexpression of MdJa2 inhibited the synthesis of anthocyanin and proanthocyanidin. The silencing of MdJa2 in "Orin" calli promoted anthocyanin and proanthocyanidin accumulations. Moreover, MdJa2 interacted with MdBZR1. MdJa2 was revealed to independently regulate anthocyanin and proanthocyanidin synthesis pathways. The MdJa2-MdBZR1 complex enhanced the binding of MdJa2 to the promoters of downstream target genes. Our research provides new insights into how MADS-box transcription factors in the BR signaling pathway control the accumulations of anthocyanin and proanthocyanidin in red-fleshed apple.
Collapse
Affiliation(s)
- Mengyu Su
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai’an, China
| | - Shuo Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai’an, China
| | - Wenjun Liu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai’an, China
| | - Ming Yang
- College of Continuing Education, Shandong Agricultural University, Tai’an, China
| | - Zongying Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai’an, China
| | - Nan Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai’an, China
| | - Xuesen Chen
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai’an, China
| |
Collapse
|
207
|
Dutta D, Harper A, Gangopadhyay G. Transcriptomic analysis of high oil-yielding cultivated white sesame and low oil-yielding wild black sesame seeds reveal differentially expressed genes for oil and seed coat colour. THE NUCLEUS 2022. [DOI: 10.1007/s13237-022-00389-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
208
|
Li M, Zhang H, Yang Y, Wang H, Xue Z, Fan Y, Sun P, Zhang H, Zhang X, Jin W. Rosa1, a Transposable Element-Like Insertion, Produces Red Petal Coloration in Rose Through Altering RcMYB114 Transcription. FRONTIERS IN PLANT SCIENCE 2022; 13:857684. [PMID: 35574133 PMCID: PMC9100400 DOI: 10.3389/fpls.2022.857684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
Rose (Rosa sp.) flowers have a rich diversity of colors resulting from the differential accumulation of anthocyanins, flavonols, and carotenoids. However, the genetic and molecular determinants of the red-petal trait in roses remains poorly understood. Here we report that a transposable element-like insertion (Rosa1) into RcMYB114, a R2R3-MYB transcription factor's promoter region causes its transcription, resulting in red petals. In red-petal varieties, RcMYB114 is expressed specifically in flower organs, but is absent from non-red varieties. Sequencing, yeast two-hybrid, transient transformation, and promoter activity assays of RcMYB114 independently confirmed the role of Rosa1 in altering RcMYB114's transcription and downstream effects on flower color. Genetic and molecular evidence confirmed that the Rosa1 transposable element-like insertion, which is a previously unknown DNA transposable element, is different from those in other plants and is a reliable molecular marker to screen red-petal roses.
Collapse
Affiliation(s)
- Maofu Li
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center of Functional Floriculture, Beijing, China
| | - Hui Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Institute of Botany, University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Yang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, China
| | - Hua Wang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center of Functional Floriculture, Beijing, China
| | - Zhen Xue
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Institute of Botany, University of Chinese Academy of Sciences, Beijing, China
| | - Youwei Fan
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center of Functional Floriculture, Beijing, China
| | - Pei Sun
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center of Functional Floriculture, Beijing, China
| | - Hong Zhang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center of Functional Floriculture, Beijing, China
| | - Xinzhu Zhang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center of Functional Floriculture, Beijing, China
| | - Wanmei Jin
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center of Functional Floriculture, Beijing, China
| |
Collapse
|
209
|
Bajgain P, Li C, Anderson JA. Genome-wide association mapping and genomic prediction for kernel color traits in intermediate wheatgrass (Thinopyrum intermedium). BMC PLANT BIOLOGY 2022; 22:218. [PMID: 35477400 PMCID: PMC9047355 DOI: 10.1186/s12870-022-03616-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Intermediate wheatgrass (IWG) is a novel perennial grain crop currently undergoing domestication. It offers important ecosystem benefits while producing grain suitable for human consumption. Several aspects of plant biology and genetic control are yet to be studied in this new crop. To understand trait behavior and genetic characterization of kernel color in IWG breeding germplasm from the University of Minnesota was evaluated for the CIELAB components (L*, a*, b*) and visual differences. Trait values were used in a genome-wide association scan to reveal genomic regions controlling IWG's kernel color. The usability of genomic prediction in predicting kernel color traits was also evaluated using a four-fold cross validation method. RESULTS A wide phenotypic variation was observed for all four kernel color traits with pairwise trait correlations ranging from - 0.85 to 0.27. Medium to high estimates of broad sense trait heritabilities were observed and ranged from 0.41 to 0.78. A genome-wide association scan with single SNP markers detected 20 significant marker-trait associations in 9 chromosomes and 23 associations in 10 chromosomes using multi-allelic haplotype blocks. Four of the 20 significant SNP markers and six of the 23 significant haplotype blocks were common between two or more traits. Evaluation of genomic prediction of kernel color traits revealed the visual score to have highest mean predictive ability (r2 = 0.53); r2 for the CIELAB traits ranged from 0.29-0.33. A search for candidate genes led to detection of seven IWG genes in strong alignment with MYB36 transcription factors from other cereal crops of the Triticeae tribe. Three of these seven IWG genes had moderate similarities with R-A1, R-B1, and R-D1, the three genes that control grain color in wheat. CONCLUSIONS We characterized the distribution of kernel color in IWG for the first time, which revealed a broad phenotypic diversity in an elite breeding germplasm. Identification of genetic loci controlling the trait and a proof-of-concept that genomic selection might be useful in selecting genotypes of interest could help accelerate the breeding of this novel crop towards specific end-use.
Collapse
Affiliation(s)
- Prabin Bajgain
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA.
| | - Catherine Li
- Department of Crop Sciences, University of Illinois, Urbana-Champaign, IL, 61801, USA
| | - James A Anderson
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
| |
Collapse
|
210
|
Li Y, Rárová L, Scarpato S, Çiçek SS, Jordheim M, Štenclová T, Strnad M, Mangoni A, Zidorn C. Seasonal variation of phenolic compounds in Zostera marina (Zosteraceae) from the Baltic Sea. PHYTOCHEMISTRY 2022; 196:113099. [PMID: 35065450 DOI: 10.1016/j.phytochem.2022.113099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Seasonal variations of phenolic compounds, in leaves of Zostera marina L. from the Baltic Sea near Kiel/Germany were investigated. Dominant compounds were mono- and disulfated flavonoids and phenylpropanoic acids, in particular luteolin 7,3'-O-disulfate and diosmetin 7-O-sulfate as well as rosmarinic acid, a dimeric phenylpropanoid. All detected sulfated flavones showed similar seasonal trends: there were two significant concentration peaks in June and November. Moreover, two geographically distinct flavonoid chemotypes were identified based on their respective main flavonoid; one chemotype was characterized by the prevalence of luteolin 7,3'-O-disulfate (German Baltic Sea), and the other by the prevalence of diosmetin 7-O-sulfate (Norwegian North Sea). Furthermore, an undescribed tetrameric phenylpropanoid, 7'',8''-didehydrosalvianolic acid B, was isolated and its structure was established by extensive NMR, MS, and CD experiments. This compound inhibited activity of Na+/K+-ATPase in the micro-molar range without any cytotoxic effects against human cancer and normal cells.
Collapse
Affiliation(s)
- Yan Li
- Pharmazeutisches Institut, Abteilung Pharmazeutische Biologie, Christian-Albrechts-Universität zu Kiel, Gutenbergstraße 76, 24118, Kiel, Germany
| | - Lucie Rárová
- Department of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Silvia Scarpato
- Dipartimento di Farmacia, Università di Napoli Federico II, Via Domenico Montesano 49, 80131, Napoli, Italy
| | - Serhat Sezai Çiçek
- Pharmazeutisches Institut, Abteilung Pharmazeutische Biologie, Christian-Albrechts-Universität zu Kiel, Gutenbergstraße 76, 24118, Kiel, Germany
| | - Monica Jordheim
- Department of Chemistry, University of Bergen, Allégatan 41, N-5007, Bergen, Norway
| | - Tereza Štenclová
- Department of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Faculty of Science, Palacký University, And Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Alfonso Mangoni
- Dipartimento di Farmacia, Università di Napoli Federico II, Via Domenico Montesano 49, 80131, Napoli, Italy
| | - Christian Zidorn
- Pharmazeutisches Institut, Abteilung Pharmazeutische Biologie, Christian-Albrechts-Universität zu Kiel, Gutenbergstraße 76, 24118, Kiel, Germany.
| |
Collapse
|
211
|
Zhu J, Yan X, Liu S, Xia X, An Y, Xu Q, Zhao S, Liu L, Guo R, Zhang Z, Xie DY, Wei C. Alternative splicing of CsJAZ1 negatively regulates flavan-3-ol biosynthesis in tea plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:243-261. [PMID: 35043493 DOI: 10.1111/tpj.15670] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 12/19/2021] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Flavan-3-ols are abundant in the tea plant (Camellia sinensis) and confer tea with flavor and health benefits. We recently found that alternative splicing of genes is likely involved in the regulation of flavan-3-ol biosynthesis; however, the underlying regulatory mechanisms remain unknown. Here, we integrated metabolomics and transcriptomics to construct metabolite-gene networks in tea leaves, collected over five different months and from five spatial positions, and found positive correlations between endogenous jasmonic acid (JA), flavan-3-ols, and numerous transcripts. Transcriptome mining further identified CsJAZ1, which is negatively associated with flavan-3-ols formation and has three CsJAZ1 transcripts, one full-length (CsJAZ1-1), and two splice variants (CsJAZ1-2 and -3) that lacked 3' coding sequences, with CsJAZ1-3 also lacking the coding region for the Jas domain. Confocal microscopy showed that CsJAZ1-1 was localized to the nucleus, while CsJAZ1-2 and CsJAZ1-3 were present in both the nucleus and the cytosol. In the absence of JA, CsJAZ1-1 was bound to CsMYC2, a positive regulator of flavan-3-ol biosynthesis; CsJAZ1-2 functioned as an alternative enhancer of CsJAZ1-1 and an antagonist of CsJAZ1-1 in binding to CsMYC2; and CsJAZ1-3 did not interact with CsMYC2. In the presence of JA, CsJAZ1-3 interacted with CsJAZ1-1 and CsJAZ1-2 to form heterodimers that stabilized the CsJAZ1-1-CsMYC2 and CsJAZ1-2-CsMYC2 complexes, thereby repressing the transcription of four genes that act late in the flavan-3-ol biosynthetic pathway. These data indicate that the alternative splicing variants of CsJAZ1 coordinately regulate flavan-3-ol biosynthesis in the tea plant and improve our understanding of JA-mediated flavan-3-ol biosynthesis.
Collapse
Affiliation(s)
- Junyan Zhu
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, People's Republic of China
| | - Xiaomei Yan
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, People's Republic of China
| | - Shengrui Liu
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, People's Republic of China
| | - Xiaobo Xia
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, People's Republic of China
| | - Yanlin An
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, People's Republic of China
| | - Qingshan Xu
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, People's Republic of China
| | - Shiqi Zhao
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, People's Republic of China
| | - Lu Liu
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, People's Republic of China
| | - Rui Guo
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, People's Republic of China
| | - Zhaoliang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, People's Republic of China
| | - De-Yu Xie
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, People's Republic of China
| |
Collapse
|
212
|
Kim J, Kim DH, Lee JY, Lim SH. The R3-Type MYB Transcription Factor BrMYBL2.1 Negatively Regulates Anthocyanin Biosynthesis in Chinese Cabbage ( Brassica rapa L.) by Repressing MYB-bHLH-WD40 Complex Activity. Int J Mol Sci 2022; 23:ijms23063382. [PMID: 35328800 PMCID: PMC8949199 DOI: 10.3390/ijms23063382] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 02/06/2023] Open
Abstract
Chinese cabbage (Brassica rapa L.) leaves are purple in color due to anthocyanin accumulation and have nutritional and aesthetic value, as well as antioxidant properties. Here, we identified the R3 MYB transcription factor BrMYBL2.1 as a key negative regulator of anthocyanin biosynthesis. A Chinese cabbage cultivar with green leaves harbored a functional BrMYBL2.1 protein, designated BrMYBL2.1-G, with transcriptional repressor activity of anthocyanin biosynthetic genes. By contrast, BrMYBL2.1 from a Chinese cabbage cultivar with purple leaves carried a poly(A) insertion in the third exon of the gene, resulting in the insertion of multiple lysine residues in the predicted protein, designated BrMYBL2.1-P. Although both BrMYBL2.1 variants localized to the nucleus, only BrMYBL2.1-G interacted with its cognate partner BrTT8. Transient infiltration assays in tobacco leaves revealed that BrMYBL2.1-G, but not BrMYBL2.1-P, actively represses pigment accumulation by inhibiting the transcription of anthocyanin biosynthetic genes. Transient promoter activation assay in Arabidopsis protoplasts verified that BrMYBL2.1-G, but not BrMYBL2.1-P, can repress transcriptional activation of BrCHS and BrDFR, which was activated by co-expression with BrPAP1 and BrTT8. We determined that BrMYBL2.1-P may be more prone to degradation than BrMYBL2.1-G via ubiquitination. Taken together, these results demonstrate that BrMYBL2.1-G blocks the activity of the MBW complex and thus represses anthocyanin biosynthesis, whereas the variant BrMYBL2.1-P from purple Chinese cabbage cannot, thus leading to higher anthocyanin accumulation.
Collapse
Affiliation(s)
- JiYeon Kim
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong 17579, Korea; (J.K.); (D.-H.K.)
- Research Institute of International Technology and Information, Hankyong National University, Anseong 17579, Korea
| | - Da-Hye Kim
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong 17579, Korea; (J.K.); (D.-H.K.)
- Research Institute of International Technology and Information, Hankyong National University, Anseong 17579, Korea
| | - Jong-Yeol Lee
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
- Correspondence: (J.-Y.L.); (S.-H.L.); Tel.: +82-31-670-5105 (S.-H.L.)
| | - Sun-Hyung Lim
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong 17579, Korea; (J.K.); (D.-H.K.)
- Research Institute of International Technology and Information, Hankyong National University, Anseong 17579, Korea
- Correspondence: (J.-Y.L.); (S.-H.L.); Tel.: +82-31-670-5105 (S.-H.L.)
| |
Collapse
|
213
|
Chili Pepper AN2 (CaAN2): A Visible Selection Marker for Nondestructive Monitoring of Transgenic Plants. PLANTS 2022; 11:plants11060820. [PMID: 35336702 PMCID: PMC8955877 DOI: 10.3390/plants11060820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/11/2022] [Accepted: 03/18/2022] [Indexed: 11/17/2022]
Abstract
Selecting transformed plants is generally time consuming and laborious. To develop a method for transgenic plant selection without the need for antibiotics or herbicides, we evaluated the suitability of the R2R3 MYB transcription factor gene CaAN2 from purple chili pepper (Capsicum annuum) for use as a visible selection marker. CaAN2 positively regulates anthocyanin biosynthesis. Transient expression assays in tobacco (Nicotiana tabacum) leaves revealed that CaAN2 actively induced sufficient pigment accumulation for easy detection without the need for a basic helix-loop-helix (bHLH) protein as a cofactor; similar results were obtained for tobacco leaves transiently co-expressing the anthocyanin biosynthesis regulators bHLH B-Peru from maize and R2R3 MYB mPAP1D from Arabidopsis. Tobacco plants harboring CaAN2 were readily selected based on their red color at the shoot regeneration stage due to anthocyanin accumulation without the need to impose selective pressure from herbicides. Transgenic tobacco plants harboring CaAN2 showed strong pigment accumulation throughout the plant body. The ectopic expression of CaAN2 dramatically promoted the transcription of anthocyanin biosynthetic genes as well as regulators of this process. The red coloration of tobacco plants harboring CaAN2 was stably transferred to the next generation. Therefore, anthocyanin accumulation due to CaAN2 expression is a useful visible trait for stable transformation, representing an excellent alternative selection system for transgenic plants.
Collapse
|
214
|
Jiang H, Li Z, Jiang X, Qin Y. Comparison of Metabolome and Transcriptome of Flavonoid Biosynthesis in Two Colors of Coreopsis tinctoria Nutt. FRONTIERS IN PLANT SCIENCE 2022; 13:810422. [PMID: 35356116 PMCID: PMC8959828 DOI: 10.3389/fpls.2022.810422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Coreopsis tinctoria Nutt. (C. tinctoria) has a long history of application and high economic and medicinal value. Flavonoids, the main active components of C. tinctoria, are widely studied in pharmacology and food development. However, the flavonoid biosynthesis pathway in C. tinctoria is unclear. In this study, we comprehensively compared the transcriptomes and metabolite profiles of two colors of C. tinctoria flowers (LS and JS) at different flowering stages. A total of 165 flavonoids (46 flavonoids, 42 flavonols, 22 anthocyanins, 18 chalcones, 12 dihydroflavonols, nine isoflavones, eight dihydroflavonoids, six flavanols, and two tannins) were identified in LS and JS at different flowering stages. Thirty-three metabolites (11 anthocyanins, 11 flavonols, seven flavonoids, two dihydroflavonols, one dihydroflavone, and one chalcone) were found to be statistically significantly different in the LS vs. JS groups. LS flowers accumulated higher levels of 10 anthocyanins (seven cyanidins and three pelargonidins) than JS flowers. Furthermore, candidate genes related to the regulation of flavonoid and anthocyanin synthesis were identified and included 28 structural genes (especially F3H, Cluster-28756.299649, and 3GT, Cluster-28756.230942) in LS and JS, six key differentially expressed transcription factors (especially MYB90a, Cluster-28756.143139) in LS and JS, and 17 other regulators (mainly including transporter proteins and others) in LS. Our results provide valuable information for further studies on the mechanism underlying flavonoid biosynthesis in C. tinctoria.
Collapse
Affiliation(s)
| | | | | | - Yong Qin
- College of Horticulture, Xinjiang Agricultural University, Xinjiang, China
| |
Collapse
|
215
|
Wu Y, Zhang C, Huang Z, Lyu L, Li W, Wu W. Integrative analysis of the metabolome and transcriptome provides insights into the mechanisms of flavonoid biosynthesis in blackberry. Food Res Int 2022; 153:110948. [DOI: 10.1016/j.foodres.2022.110948] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 11/28/2022]
|
216
|
Jeon S, Han J, Kim CW, Kim JG, Moon JH, Kim S. Identification of a candidate gene responsible for the G locus determining chartreuse bulb color in onion (Allium cepa L.) using bulked segregant RNA-Seq. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1025-1036. [PMID: 35034161 DOI: 10.1007/s00122-021-04016-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
A gene encoding a laccase responsible for chartreuse onion bulb color was identified. Markers tagging this gene showed perfect linkage with bulb colors among diverse germplasm. To identify a casual gene for the G locus determining chartreuse bulb color in onion (Allium cepa L.), bulked segregant RNA-Seq (BSR-Seq) was performed using yellow and chartreuse individuals of a segregating population. Through single nucleotide polymorphism (SNP) and differentially expressed gene (DEG) screening processes, 163 and 143 transcripts were selected, respectively. One transcript encoding a laccase-like protein was commonly identified from SNP and DEG screening. This transcript contained four highly conserved copper-binding domains known to be signature sequences of laccases. This gene was designated AcLAC12 since it showed high homology with Arabidopsis AtLAC12. A 4-bp deletion creating a premature stop codon was identified in exon 5 of the chartreuse allele. Another mutant allele in which an intact LTR-retrotransposon was transposed in exon 5 was identified from other chartreuse breeding lines. Genotypes of molecular markers tagging AcLAC12 were perfectly matched with bulb color phenotypes in segregating populations and diverse breeding lines. All chartreuse breeding lines contained inactive alleles of DFR-A gene determining red bulb color, indicating that chartreuse color appeared when both DFR-A and AcLAC12 genes were inactivated. Linkage maps showed that AcLAC12 was positioned at the end of chromosome 7. Transcription levels of structural genes encoding enzymes in anthocyanin biosynthesis pathway were generally reduced in chartreuse bulk compared with yellow bulk. Concentrations of total quercetins were also reduced in chartreuse onion. However, significant amounts of quercetins were detected in chartreuse onion, implying that AcLAC12 might be involved in modification of quercetin derivatives in onion.
Collapse
Affiliation(s)
- SeongChan Jeon
- Department of Horticulture, Biotechnology Research Institute, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - JiWon Han
- National Institute of Horticultural and Herbal Science, RDA, Muan, 58545, Republic of Korea
| | - Cheol-Woo Kim
- National Institute of Horticultural and Herbal Science, RDA, Muan, 58545, Republic of Korea
| | - Ju-Gyeong Kim
- Department of Food Science and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jae-Hak Moon
- Department of Food Science and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sunggil Kim
- Department of Horticulture, Biotechnology Research Institute, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
217
|
Wang S, Li LX, Zhang Z, Fang Y, Li D, Chen XS, Feng SQ. Ethylene precisely regulates anthocyanin synthesis in apple via a module comprising MdEIL1, MdMYB1, and MdMYB17. HORTICULTURE RESEARCH 2022; 9:uhac034. [PMID: 35184186 PMCID: PMC9039505 DOI: 10.1093/hr/uhac034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/29/2021] [Accepted: 12/25/2021] [Indexed: 05/26/2023]
Abstract
Ethylene regulates anthocyanin synthesis in ripening apple fruit via the antagonistic activities of the R2R3-MYB repressors and activators. However, the molecular mechanism underlying this process remains unknown. In this study, ethylene significantly induced the expression of the R2R3-MYB gene MdMYB17 in apple fruit. Moreover, MdMYB17 was revealed to be an important repressor of anthocyanin synthesis. Specifically, MdMYB17 binds directly to the promoters of the ethylene-induced genes MdMYB1 and MdEIL1, which encode positive regulators of anthocyanin synthesis, and represses their expression. Additionally, MdMYB1 and MdEIL1 bind to the MdMYB17 promoter to activate its expression. Thus, MdMYB17, MdMYB1, and MdEIL1 form a regulatory module that controls the expression of the corresponding genes. MdMYB17 interacts with MdEIL1. The interaction between MdMYB17 and MdEIL1 attenuates the regulatory effects of MdMYB17 on MdMYB1 and MdEIL1 as well as the regulatory effects of MdEIL1 on MdMYB17. Overall, our results reveal the molecular mechanisms by which MdMYB17, MdMYB1, and MdEIL1 finely mediate ethylene-regulated anthocyanin synthesis in apple fruit.
Collapse
Affiliation(s)
- Shuo Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
- State Key Laboratory of Crop Biology, Tai’an, Shandong 271018, China
| | - Li-Xian Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
- State Key Laboratory of Crop Biology, Tai’an, Shandong 271018, China
| | - Zhen Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
- State Key Laboratory of Crop Biology, Tai’an, Shandong 271018, China
| | - Yue Fang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
- State Key Laboratory of Crop Biology, Tai’an, Shandong 271018, China
| | - Dan Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
- State Key Laboratory of Crop Biology, Tai’an, Shandong 271018, China
| | - Xue-Sen Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
- State Key Laboratory of Crop Biology, Tai’an, Shandong 271018, China
| | - Shou-Qian Feng
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
- State Key Laboratory of Crop Biology, Tai’an, Shandong 271018, China
| |
Collapse
|
218
|
Identification of the Regulatory Genes of UV-B-Induced Anthocyanin Biosynthesis in Pepper Fruit. Int J Mol Sci 2022; 23:ijms23041960. [PMID: 35216077 PMCID: PMC8879456 DOI: 10.3390/ijms23041960] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/30/2022] [Accepted: 02/03/2022] [Indexed: 11/16/2022] Open
Abstract
Fruit peels of certain pepper (Capsicum annum L.) varieties accumulate a large amount of anthocyanins and exhibit purple color under medium-wave ultraviolet (UV-B) conditions, which severely impacts the commodity value of peppers. However, the regulatory mechanism of the above process has not been well studied so far. To explore which key genes are involved in this regulatory mechanism, pepper variety 19Q6100, the fruit peels of which turn purple under UV-B conditions, was investigated in this study. Transcription factors with expression levels significantly impacted by UV-B were identified by RNA-seq. Those genes may be involved in the regulation of UV-B-induced anthocyanin biosynthesis. Yeast one-hybrid results revealed that seven transcription factors, CabHLH143, CaMYB113, CabHLH137, CaMYBG, CaWRKY41, CaWRKY44 and CaWRKY53 directly bound to the putative promotor regions of the structural genes in the anthocyanin biosynthesis pathway. CaMYB113 was found to interact with CabHLH143 and CaHY5 by yeast two-hybrid assay, and those three genes may participate collaboratively in UV-B-induced anthocyanin biosynthesis in pepper fruit. Virus-induced gene silencing (VIGS) indicated that fruit peels of CaMYB113-silenced plants were unable to turn purple under UV-B conditions. These findings could deepen our understanding of UV-B-induced anthocyanin biosynthesis in pepper.
Collapse
|
219
|
Hu H, Fei X, He B, Luo Y, Qi Y, Wei A. Integrated Analysis of Metabolome and Transcriptome Data for Uncovering Flavonoid Components of Zanthoxylum bungeanum Maxim. Leaves Under Drought Stress. Front Nutr 2022; 8:801244. [PMID: 35187022 PMCID: PMC8855068 DOI: 10.3389/fnut.2021.801244] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/03/2021] [Indexed: 12/30/2022] Open
Abstract
Zanthoxylum bungeanum Maxim. leaves (ZBLs) are rich in flavonoids and have become popular in nutrition, foods and medicine. However, the flavonoid components in ZBLs and the mechanism of flavonoid biosynthesis under drought stress have received little attention. Here, we performed an integrative analysis of the metabolome and transcriptome of ZBLs from HJ (Z. bungeanum cv. “Hanjiao”) and FJ (Z. bungeanum cv. “Fengjiao”) at four drought stages. A total of 231 individual flavonoids divided into nine classes were identified and flavones and flavonols were considered the most abundant flavonoid components in ZBLs. The total flavonoid content of ZBLs was higher in FJ; it increased in FJ under drought stress but decreased in HJ. Nine-quadrant analysis identified five and eight differentially abundant flavonoids in FJ and HJ leaves, respectively, under drought stress. Weighted gene correlation network analysis (WGCNA) identified nine structural genes and eight transcription factor genes involved in the regulation of flavonoid biosynthesis. Moreover, qRT-PCR results verified the accuracy of the transcriptome data and the reliability of the candidate genes. Taken together, our results reveal the flavonoid components of ZBLs and document changes in flavonoid metabolism under drought stress, providing valuable information for nutrition value and food utilization of ZBLs.
Collapse
Affiliation(s)
- Haichao Hu
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Xianyang, China
| | - Xitong Fei
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Xianyang, China
| | - Beibei He
- College of Horticulture, Northwest Agriculture and Forestry University, Xianyang, China
| | - Yingli Luo
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Xianyang, China
| | - Yichen Qi
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Xianyang, China
| | - Anzhi Wei
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Xianyang, China
- *Correspondence: Anzhi Wei
| |
Collapse
|
220
|
Ariyarathne MA, Wone BWM. Overexpression of the Selaginella lepidophylla bHLH transcription factor enhances water-use efficiency, growth, and development in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 315:111129. [PMID: 35067299 DOI: 10.1016/j.plantsci.2021.111129] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/12/2021] [Accepted: 11/21/2021] [Indexed: 05/20/2023]
Abstract
Abiotic stresses have the greatest impact on the growth and productivity of crops, especially under current and future extreme weather events due to climate change. Thus, it is vital to explore novel strategies to improve crop plant abiotic stress tolerance to feed an ever-growing world population. Selaginella lepidophylla is a desiccation-tolerant spike moss with specialized adaptations that allow it to tolerate water loss down to 4% relative water content. A candidate basic helix-loop-helix (bHLH) transcription factor was highly expressed at 4% relative water content in S. lepidophylla (SlbHLH). This SlbHLH gene was codon-optimized (SlbHLHopt) and overexpressed in Arabidopsis for functional characterization. Overexpression of the SlbHLHopt gene not only significantly increased plant growth, development, and integrated water-use efficiency, but also significantly increased seed germination and green cotyledon emergence rates under water-deficit stress and salt stress conditions. Under a 150 mM NaCl salt stress condition, SlbHLHopt-overexpressing lines increased primary root length, the number of lateral roots, and fresh and dry biomass at the seedling stage compared to control lines. Interestingly, SlbHLHopt-overexpressing lines also have significantly higher flavonoid content. Altogether, these results suggest that SlbHLH functions as an important regulator of plant growth, development, abiotic stress tolerance, and water-use efficiency.
Collapse
|
221
|
Zhang S, Sun F, Zhang C, Zhang M, Wang W, Zhang C, Xi Y. Anthocyanin Biosynthesis and a Regulatory Network of Different-Colored Wheat Grains Revealed by Multiomics Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:887-900. [PMID: 35029408 DOI: 10.1021/acs.jafc.1c05029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Colored wheat has always been a popular research area because of its high performance in the field and significant medical uses. Progress has been made mapping the genes of purple or blue grains; however, the reason why different grain colors form in wheat is not well understood. We created wheat lines with different grain colors (purple and blue) using the white grain cultivar Xiaoyan22 and located the candidate region related to the purple and blue grains in chromosome 2A, 2B, and 4D, 2A, respectively, by the bulked segregant RNA-seq. The transcriptomic and metabolomic analyses of the three grains at different developmental stages indicated that the upregulation of flavonoid 3'-hydroxylase/flavonoid 3',5'hydroxylase 2 and TaMYC1/TaMYC4 was important for the formation of purple/blue grains. The blue TaMYC4 had 16 nonsynonymous single nucleotide variants verified by Sanger sequencing and possessed a different splicing mode in the bHLH_MYC_N domain compared with the reference database. Targeted high-performance liquid chromatography-mass spectrometry/mass spectrometry analysis of anthocyanins found that the purple and blue grains contained more pelargonidin, cyanidin, and delphinidin, respectively. This study provides a comprehensive understanding of the different color formations of wheat grains and useful information about genetic improvements in wheat and other crops.
Collapse
Affiliation(s)
- Shumeng Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fengli Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chuqiu Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingting Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Weiwei Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chao Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yajun Xi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
222
|
Jiao Y, Zeng H, Xia H, Wang Y, Wang J, Jin C. RNA-seq and phytohormone analysis reveals the culm color variation of Bambusa oldhamii Munro. PeerJ 2022; 10:e12796. [PMID: 35070510 PMCID: PMC8761368 DOI: 10.7717/peerj.12796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 12/23/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The clumping bamboo Bambusa oldhamii Munro, known as "green bamboo", is famous for its edible bamboo shoots and fast-growing timber. The green and yellow striped-culm B. oldhamii variety, named B. oldhamii f. revoluta W.T. Lin & J. Y. Lin, is an attractive system for researching the culm color variation of B. oldhamii. METHODS Millions of clean reads were generated and assembled into 604,900 transcripts, and 383,278 unigenes were acquired with RNA-seq technology. The quantification of ABA, IAA, JA, GA1, GA3, GA4, and GA7 was performed using HPLC-MS/MS platforms. RESULTS Differential expression analysis showed that 449 unigenes were differentially expressed genes (DEGs), among which 190 DEGs were downregulated and 259 DEGs were upregulated in B. oldhamii f. revoluta. Phytohormone contents, especially GA1 and GA7, were higher in B. oldhamii. Approximately 21 transcription factors (TFs) were differentially expressed between the two groups: the bZIP, MYB, and NF-YA transcription factor families had the most DEGs, indicating that those TFs play important roles in B. oldhamii culm color variation. RNA-seq data were confirmed by quantitative RT-PCR analysis of the selected genes; moreover, phytohormone contents, especially those of ABA, GA1 and GA7, were differentially accumulated between the groups. Our study provides a basal gene expression and phytohormone analysis of B. oldhamii culm color variation, which could provide a solid fundamental theory for investigating bamboo culm color variation.
Collapse
Affiliation(s)
- Yulian Jiao
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, Zhejiang, China,Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-efficiency Utilization, Lin’an, Zhejiang, China
| | - Hu Zeng
- Wuhan Metware Biotechnology Co., Ltd, Wuhan, China
| | - Haitao Xia
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, Zhejiang, China
| | - Yueying Wang
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, Zhejiang, China
| | - Jinwang Wang
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, Zhejiang, China
| | - Chuan Jin
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, Zhejiang, China
| |
Collapse
|
223
|
Liu X, Duan J, Huo D, Li Q, Wang Q, Zhang Y, Niu L, Luo J. The Paeonia qiui R2R3-MYB Transcription Factor PqMYB113 Positively Regulates Anthocyanin Accumulation in Arabidopsis thaliana and Tobacco. FRONTIERS IN PLANT SCIENCE 2022; 12:810990. [PMID: 35095984 PMCID: PMC8789887 DOI: 10.3389/fpls.2021.810990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Paeonia qiui is a wild species of tree peony native to China. Its leaves are purplish red from the bud germination to the flowering stage, and anthocyanin is the main pigment in purplish red leaves. However, the anthocyanin synthesis regulation mechanism in tree peony leaves remains unclear. In this study, an R2R3-MYB, PqMYB113 was identified from the leaves of P. qiui. Phylogenetic analysis revealed that PqMYB113 clustered with Liquidambar LfMYB113 and grape VvMYBA6. Subcellular location analysis showed that PqMYB113 was located in the cell nucleus. The transient reporter assay suggested that PqMYB113 was a transcriptional activator. The overexpression of PqMYB113 in Arabidopsis thaliana and tobacco (Nicotiana tabacum) resulted in increased anthocyanin accumulation and the upregulation of CHS, F3H, F3'H, DFR, and ANS. The dual luciferase reporter assay showed that PqMYB113 could activate the promoters of PqDFR and PqANS. Bimolecular fluorescence complementation assays and yeast two-hybrid assays suggested that PqMYB113 could form a ternary MBW complex with PqbHLH1 and PqWD40 cofactors. These results provide insight into the regulation of anthocyanin biosynthesis in tree peony leaves.
Collapse
Affiliation(s)
- Xiaokun Liu
- College of Landscape Architecture and Arts, Northwest A&F University, Xianyang, China
- National Engineering Research Center for Oil Peony, Yangling, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resource, Shanghai, China
| | - Jingjing Duan
- College of Landscape Architecture and Arts, Northwest A&F University, Xianyang, China
- National Engineering Research Center for Oil Peony, Yangling, China
- College of Plant Science, Tarim University, Alar, China
| | - Dan Huo
- College of Landscape Architecture and Arts, Northwest A&F University, Xianyang, China
- National Engineering Research Center for Oil Peony, Yangling, China
| | - Qinqin Li
- College of Landscape Architecture and Arts, Northwest A&F University, Xianyang, China
- National Engineering Research Center for Oil Peony, Yangling, China
| | - Qiaoyun Wang
- College of Landscape Architecture and Arts, Northwest A&F University, Xianyang, China
- National Engineering Research Center for Oil Peony, Yangling, China
| | - Yanlong Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Xianyang, China
- National Engineering Research Center for Oil Peony, Yangling, China
| | - Lixin Niu
- College of Landscape Architecture and Arts, Northwest A&F University, Xianyang, China
- National Engineering Research Center for Oil Peony, Yangling, China
| | - Jianrang Luo
- College of Landscape Architecture and Arts, Northwest A&F University, Xianyang, China
- National Engineering Research Center for Oil Peony, Yangling, China
| |
Collapse
|
224
|
Laoué J, Fernandez C, Ormeño E. Plant Flavonoids in Mediterranean Species: A Focus on Flavonols as Protective Metabolites under Climate Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11020172. [PMID: 35050060 PMCID: PMC8781291 DOI: 10.3390/plants11020172] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/27/2021] [Accepted: 01/05/2022] [Indexed: 05/03/2023]
Abstract
Flavonoids are specialized metabolites largely widespread in plants where they play numerous roles including defense and signaling under stress conditions. These compounds encompass several chemical subgroups such as flavonols which are one the most represented classes. The most studied flavonols are kaempferol, quercetin and myricetin to which research attributes antioxidative properties and a potential role in UV-defense through UV-screening mechanisms making them critical for plant adaptation to climate change. Despite the great interest in flavonol functions in the last decades, some functional aspects remain under debate. This review summarizes the importance of flavonoids in plant defense against climate stressors and as signal molecules with a focus on flavonols in Mediterranean plant species. The review emphasizes the relationship between flavonol location (at the organ, tissue and cellular scales) and their function as defense metabolites against climate-related stresses. It also provides evidence that biosynthesis of flavonols, or flavonoids as a whole, could be a crucial process allowing plants to adapt to climate change, especially in the Mediterranean area which is considered as one of the most sensitive regions to climate change over the globe.
Collapse
|
225
|
Liu L, Wang D, Zhang C, Liu H, Guo H, Cheng H, Liu E, Su X. The heat shock factor GhHSFA4a positively regulates cotton resistance to Verticillium dahliae. FRONTIERS IN PLANT SCIENCE 2022; 13:1050216. [PMID: 36407619 PMCID: PMC9669655 DOI: 10.3389/fpls.2022.1050216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/19/2022] [Indexed: 05/16/2023]
Abstract
Heat shock factors (HSFs) play a crucial role in the environmental stress responses of numerous plant species, including defense responses to pathogens; however, their role in cotton resistance to Verticillium dahliae remains unclear. We have previously identified several differentially expressed genes (DEGs) in Arabidopsis thaliana after inoculation with V. dahliae. Here, we discovered that GhHSFA4a in Gossypium hirsutum (cotton) after inoculation with V. dahliae shares a high identity with a DEG in A. thaliana in response to V. dahliae infection. Quantitative real-time PCR (qRT-PCR) analysis indicated that GhHSFA4a expression was rapidly induced by V. dahliae and ubiquitous in cotton roots, stems, and leaves. In a localization analysis using transient expression, GhHSFA4a was shown to be localized to the nucleus. Virus-induced gene silencing (VIGS) revealed that downregulation of GhHSFA4a significantly increased cotton susceptibility to V. dahliae. To investigate GhHSFA4a-mediated defense, 814 DEGs were identified between GhHSFA4a-silenced plants and controls using comparative RNA-seq analysis. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that DEGs were enriched in "flavonoid biosynthesis", "sesquiterpenoid and triterpenoid biosynthesis", "linoleic acid metabolism" and "alpha-linolenic acid metabolism". The expression levels of marker genes for these four pathways were triggered after inoculation with V. dahliae. Moreover, GhHSFA4a-overexpressing lines of A. thaliana displayed enhanced resistance against V. dahliae compared to that of the wild type. These results indicate that GhHSFA4a is involved in the synthesis of secondary metabolites and signal transduction, which are indispensable for innate immunity against V. dahliae in cotton.
Collapse
Affiliation(s)
- Lu Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Di Wang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Chao Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life Science, Hebei Agricultural University, Baoding, China
| | - Haiyang Liu
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Huiming Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Hainan Yazhou Bay Seed Lab, Sanya, China
| | - Hongmei Cheng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Hainan Yazhou Bay Seed Lab, Sanya, China
| | - Enliang Liu
- Institute of Grain Crops, Xinjiang Academy of Agricultural ScienceS, Urumqi, China
- *Correspondence: Xiaofeng Su, ; Enliang Liu,
| | - Xiaofeng Su
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Hainan Yazhou Bay Seed Lab, Sanya, China
- *Correspondence: Xiaofeng Su, ; Enliang Liu,
| |
Collapse
|
226
|
Ahmad S, Chen J, Chen G, Huang J, Zhou Y, Zhao K, Lan S, Liu Z, Peng D. Why Black Flowers? An Extreme Environment and Molecular Perspective of Black Color Accumulation in the Ornamental and Food Crops. FRONTIERS IN PLANT SCIENCE 2022; 13:885176. [PMID: 35498642 PMCID: PMC9047182 DOI: 10.3389/fpls.2022.885176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/23/2022] [Indexed: 05/04/2023]
Abstract
Pollinators are attracted to vibrant flower colors. That is why flower color is the key agent to allow successful fruit set in food or ornamental crops. However, black flower color is the least attractive to pollinators, although a number of plant species produce black flowers. Cyanidin-based anthocyanins are thought to be the key agents to induce black color in the ornamental and fruit crops. R2R3-MYB transcription factors (TFs) play key roles for the tissue-specific accumulation of anthocyanin. MYB1 and MYB11 are the key TFs regulating the expression of anthocyanin biosynthesis genes for black color accumulation. Post-transcriptional silencing of flavone synthase II (FNS) gene is the technological method to stimulate the accumulation of cyanidin-based anthocyanins in black cultivars. Type 1 promoter of DvIVS takes the advantage of FNS silencing to produce large amounts of black anthocyanins. Exogenous ethylene application triggers anthocyanin accumulation in the fruit skin at ripening. Environment cues have been the pivotal regulators to allow differential accumulation of anthocyanins to regulate black color. Heat stress is one of the most important environmental stimulus that regulates concentration gradient of anthocyanins in various plant parts, thereby affecting the color pattern of flowers. Stability of black anthocyanins in the extreme environments can save the damage, especially in fruits, caused by abiotic stress. White flowers without anthocyanin face more damages from abiotic stress than dark color flowers. The intensity and pattern of flower color accumulation determine the overall fruit set, thereby controlling crop yield and human food needs. This review paper presents comprehensive knowledge of black flower regulation as affected by high temperature stress, and the molecular regulators of anthocyanin for black color in ornamental and food crops. It also discusses the black color-pollination interaction pattern affected by heat stress for food and ornamental crops.
Collapse
Affiliation(s)
- Sagheer Ahmad
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jinliao Chen
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guizhen Chen
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jie Huang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuzhen Zhou
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kai Zhao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Siren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhongjian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Zhongjian Liu,
| | - Donghui Peng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- Donghui Peng,
| |
Collapse
|
227
|
Yang W, Chen L, Zhao J, Wang J, Li W, Yang T, Dong J, Ma Y, Zhou L, Chen J, Wu W, Zhang S, Liu B. Genome-Wide Association Study of Pericarp Color in Rice Using Different Germplasm and Phenotyping Methods Reveals Different Genetic Architectures. FRONTIERS IN PLANT SCIENCE 2022; 13:841191. [PMID: 35356125 PMCID: PMC8959774 DOI: 10.3389/fpls.2022.841191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/02/2022] [Indexed: 05/08/2023]
Abstract
Pericarp colors (PC) in rice are determined by the types and content of flavonoids in the pericarp. The flavonoid compounds have strong antioxidant activities and are beneficial to human health. However, the genetic basis of PC in rice is still not well-understood. In this study, a genome-wide association study (GWAS) of PC was performed in a diverse rice collection consisting of 442 accessions using different phenotyping methods in two locations over 2 years. In the whole population consisting of white and colored pericarp rice, a total of 11 quantitative trait loci (QTLs) were identified using two phenotyping methods. Among these QTLs, nine were identified using the phenotypes represented by the presence and absence of pigmentation in pericarp, while 10 were identified using phenotypes of the degree of PC (DPC), in which eight are common QTLs identified using the two phenotyping methods. Using colored rice accessions and phenotypes based on DPC, four QTLs were identified, and they were totally different from the QTLs identified using the whole population, suggesting the masking effects of major genes on minor genes. Compared with the previous studies, 10 out of the 15 QTLs are first reported in this study. Based on the differential expression analysis of the predicted genes within the QTL region by both RNA-seq and real-time PCR (RT-PCR) and the gene functions in previous studies, LOC_Os01g49830, encoding a RAV transcription factor was considered as the candidate gene underlying qPC-1, a novel QTL with a large effect in this study. Our results provide a new insight into the genetic basis of PC in rice and contribute to developing the value-added rice with optimized flavonoid content through molecular breeding.
Collapse
Affiliation(s)
- Wu Yang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
| | - Luo Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
| | - Junliang Zhao
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
| | - Jian Wang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
| | - Wenhui Li
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
| | - Tifeng Yang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
| | - Jingfang Dong
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
| | - Yamei Ma
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
| | - Lian Zhou
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
| | - Jiansong Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
| | - Wei Wu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
| | - Shaohong Zhang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
- *Correspondence: Shaohong Zhang,
| | - Bin Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
- Bin Liu,
| |
Collapse
|
228
|
Geng F, Nie R, Yang N, Cai L, Hu Y, Chen S, Cheng X, Wang Z, Chen L. Integrated transcriptome and metabolome profiling of Camellia reticulata reveal mechanisms of flower color differentiation. Front Genet 2022; 13:1059717. [PMID: 36482888 PMCID: PMC9725097 DOI: 10.3389/fgene.2022.1059717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 10/31/2022] [Indexed: 03/19/2023] Open
Abstract
Camellia reticulata (Lindl.) is an important ornamental plant in China. Long-term natural or artificial selections have resulted in diverse phenotypes, especially for flower colors. Modulating flower colors can enhance the visual appeal and economic value in ornamental plants. In this study, we investigated the molecular mechanisms underlying flower color differentiation in C. reticulata. We performed a combined transcriptome and metabolome analysis of the petals of a popular variety C. reticulata (HHYC) (red), and its two cultivars "Xuejiao" (XJ) (pink) and "Tongzimian" (TZM) (white). Targeted metabolome profiling identified 310 flavonoid compounds of which 18 anthocyanins were differentially accumulated among the three samples with an accumulation pattern of HHYC > XJ > TZM. Likewise, transcriptome analysis showed that carotenoid and anthocyanin biosynthetic structural genes were mostly expressed in order of HHYC > XJ > TZM. Two genes (gene-LOC114287745765 and gene-LOC114289234) encoding for anthocyanidin 3-O-glucosyltransferase are predicted to be responsible for red coloration in HHYC and XJ. We also detected 42 MYB and 29 bHLH transcription factors as key regulators of anthocyanin-structural genes. Overall, this work showed that flavonoids, particularly anthocyanins contents are the major determinants of flower color differentiation among the 3 C. reticulata samples. In addition, the main regulatory and structural genes modulating anthocyanin contents in C. reticulata have been unveiled. Our results will help in the development of Camellia varieties with specific flower color and quality.
Collapse
Affiliation(s)
- Fang Geng
- College of Landscape Architecture and Horticulture Sciences, Southwest Landscape Architecture Engineering Technology Research Center of National Forestry and Grassland Administration, Yunnan Functional Flower Resources and Industrialization Technology Engineering Research Center, Southwest Forestry University, Kunming, Yunnan, China
| | - Ruimin Nie
- College of Landscape Architecture and Horticulture Sciences, Southwest Landscape Architecture Engineering Technology Research Center of National Forestry and Grassland Administration, Yunnan Functional Flower Resources and Industrialization Technology Engineering Research Center, Southwest Forestry University, Kunming, Yunnan, China
| | - Nan Yang
- College of Landscape Architecture and Horticulture Sciences, Southwest Landscape Architecture Engineering Technology Research Center of National Forestry and Grassland Administration, Yunnan Functional Flower Resources and Industrialization Technology Engineering Research Center, Southwest Forestry University, Kunming, Yunnan, China
| | - Lei Cai
- Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan, China
| | - YunChong Hu
- College of Landscape Architecture and Horticulture Sciences, Southwest Landscape Architecture Engineering Technology Research Center of National Forestry and Grassland Administration, Yunnan Functional Flower Resources and Industrialization Technology Engineering Research Center, Southwest Forestry University, Kunming, Yunnan, China
| | - Shengtong Chen
- College of Landscape Architecture and Horticulture Sciences, Southwest Landscape Architecture Engineering Technology Research Center of National Forestry and Grassland Administration, Yunnan Functional Flower Resources and Industrialization Technology Engineering Research Center, Southwest Forestry University, Kunming, Yunnan, China
| | - Xiaomao Cheng
- College of Landscape Architecture and Horticulture Sciences, Southwest Landscape Architecture Engineering Technology Research Center of National Forestry and Grassland Administration, Yunnan Functional Flower Resources and Industrialization Technology Engineering Research Center, Southwest Forestry University, Kunming, Yunnan, China
| | - Zhonglang Wang
- Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan, China
| | - Longqing Chen
- College of Landscape Architecture and Horticulture Sciences, Southwest Landscape Architecture Engineering Technology Research Center of National Forestry and Grassland Administration, Yunnan Functional Flower Resources and Industrialization Technology Engineering Research Center, Southwest Forestry University, Kunming, Yunnan, China
| |
Collapse
|
229
|
Wang Y, Zhou LJ, Wang Y, Geng Z, Liu S, Chen C, Chen S, Jiang J, Chen F. CmMYB9a activates floral coloration by positively regulating anthocyanin biosynthesis in chrysanthemum. PLANT MOLECULAR BIOLOGY 2022; 108:51-63. [PMID: 34714494 DOI: 10.1007/s11103-021-01206-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
KEY MESSAGE An R2R3-MYB transcription factor, CmMYB9a, activates floral coloration in chrysanthemum by positively regulating CmCHS, CmDFR and CmFNS, but inhibiting the expression of CmFLS. Chrysanthemum is one of the most popular ornamental plants worldwide. Flavonoids, such as anthocyanins, flavones, and flavonols, are important secondary metabolites for coloration and are involved in many biological processes in plants, like petunia, snapdragon, Gerbera hybrida, as well as chrysanthemum. However, the metabolic regulation of flavonoids contributing to chrysanthemum floral coloration remains largely unexplored. Here, an R2R3-MYB transcription factor, CmMYB9a, was found to be involved in flavonoid biosynthesis. Phylogenetic analysis and amino acid sequence analysis suggested that CmMYB9a belonged to subgroup 7. Transient overexpression of CmMYB9a in flowers of chrysanthemum cultivar 'Anastasia Pink' upregulated the anthocyanin-related and flavone-related genes and downregulated CmFLS, which led to the accumulation of anthocyanins and flavones. We further demonstrated that CmMYB9a independently activates the expression of CmCHS, CmDFR and CmFNS, but inhibits the expression of CmFLS. Overexpression of CmMYB9a in tobacco resulted in increased anthocyanins and decreased flavonols in the petals by upregulating NtDFR and downregulating NtFLS. These results suggest that CmMYB9a facilitates metabolic flux into anthocyanin and flavone biosynthesis. Taken together, this study functionally characterizes the role of CmMYB9a in regulating the branched pathways of flavonoids in chrysanthemum flowers.
Collapse
Affiliation(s)
- Yiguang Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Li-Jie Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Yuxi Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Zhiqiang Geng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Shenhui Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Chuwen Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu Province, People's Republic of China.
| |
Collapse
|
230
|
ZHANG Y, LU X, JIA L, JIN H, CHENG Y. Metabolome and transcriptome sequencing analysis reveals anthocyanins in the red flowers of black locust (Robinia pseudoacacia L.). FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.08922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Xi LU
- Luoyang Normal University, China
| | | | | | | |
Collapse
|
231
|
Yudina RS, Gordeeva EI, Shoeva OY, Tikhonova MA, Khlestkina EK. [Anthocyanins as functional food components]. Vavilovskii Zhurnal Genet Selektsii 2021; 25:178-189. [PMID: 34901716 PMCID: PMC8627879 DOI: 10.18699/vj21.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/17/2020] [Accepted: 10/18/2020] [Indexed: 11/19/2022] Open
Abstract
Среди встречающихся в природе пигментов антоцианы являются, пожалуй, одной из наиболее изученных групп. Начиная с первых исследований о физико-химических свойствах антоцианов, проведенных еще
в XVII в. британским естествоиспытателем Р. Бойлем, наука об этих уникальных соединениях сделала огромный
шаг вперед. На сегодняшний день достаточно хорошо исследованы структура и функции антоцианов в растительных клетках, а путь их биосинтеза – один из самых полно охарактеризованных путей биосинтеза вторичных метаболитов как на биохимическом, так и на генетическом уровне. Наряду с этими фундаментальными
достижениями, мы начинаем осознавать потенциал антоцианов как соединений промышленного значения, как
пигментов самих по себе, а также в качестве компонентов функционального питания, способствующих предупреждению и снижению риска развития хронических заболеваний. Долгое время биологическая активность
антоцианов была недооценена, в частности, из-за данных об их низкой биодоступности. Однако в ходе исследований было показано, что в организме человека и животных эти соединения активно метаболизируются и
биодоступность, оцененная с учетом их метаболитов, превышала 12 %. Экспериментально подтверждено, что
антоцианы обладают антиоксидантными, противовоспалительными, гипогликемическими, антимутагенными,
антидиабетическими, противораковыми, нейропротекторными свойствами, а также полезны для здоровья
глаз. Однако проведенные исследования не всегда могут объяснить молекулярные механизмы действия антоцианов в организме человека. По некоторым данным, наблюдаемые эффекты объясняются действием не
антоцианов, а их метаболитов, которые, благодаря своей повышенной биодоступности, могут быть более биологически активными, чем исходные соединения. Высказывается также предположение о положительном эффекте на здоровье человека всего комплекса полифенольных соединений, поступающего в организм в составе
растительной пищи. В представленном обзоре суммированы результаты основных направлений исследований
антоцианов в качестве компонентов функционального питания. Отдельное внимание уделено результатам генетических исследований синтеза пигментов, данные которых приобретают особую важность в связи с актуализацией селекционных программ, направленных на повышение содержания антоцианов у культурных растений.
Ключевые слова: растения; пигменты; вторичные метаболиты; флавоноиды; антоцианы; регуляторные гены;
структурные гены; антиоксиданты; биологическая активность.
Collapse
Affiliation(s)
- R S Yudina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E I Gordeeva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - O Yu Shoeva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - M A Tikhonova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia
| | - E K Khlestkina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia
| |
Collapse
|
232
|
Hosaka GK, Correr FH, da Silva CC, Sforça DA, Barreto FZ, Balsalobre TWA, Pasha A, de Souza AP, Provart NJ, Carneiro MS, Margarido GRA. Temporal Gene Expression in Apical Culms Shows Early Changes in Cell Wall Biosynthesis Genes in Sugarcane. FRONTIERS IN PLANT SCIENCE 2021; 12:736797. [PMID: 34966397 PMCID: PMC8710541 DOI: 10.3389/fpls.2021.736797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
Multiple genes in sugarcane control sucrose accumulation and the biosynthesis of cell wall components; however, it is unclear how these genes are expressed in its apical culms. To better understand this process, we sequenced mRNA from +1 stem internodes collected from four genotypes with different concentrations of soluble solids. Culms were collected at four different time points, ranging from six to 12-month-old plants. Here we show differentially expressed genes related to sucrose metabolism and cell wall biosynthesis, including genes encoding invertases, sucrose synthase and cellulose synthase. Our results showed increased expression of invertases in IN84-58, the genotype with lower sugar and higher fiber content, as well as delayed expression of secondary cell wall-related cellulose synthase for the other genotypes. Interestingly, genes involved with hormone metabolism were differentially expressed across time points in the three genotypes with higher soluble solids content. A similar result was observed for genes controlling maturation and transition to reproductive stages, possibly a result of selection against flowering in sugarcane breeding programs. These results indicate that carbon partitioning in apical culms of contrasting genotypes is mainly associated with differential cell wall biosynthesis, and may include early modifications for subsequent sucrose accumulation. Co-expression network analysis identified transcription factors related to growth and development, showing a probable time shift for carbon partitioning occurred in 10-month-old plants.
Collapse
Affiliation(s)
- Guilherme Kenichi Hosaka
- Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, Brazil
| | - Fernando Henrique Correr
- Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, Brazil
| | - Carla Cristina da Silva
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil
| | - Danilo Augusto Sforça
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil
| | - Fernanda Zatti Barreto
- Plant Biotechnology Laboratory, Centre for Agricultural Sciences, Federal University of São Carlos (CCA-UFSCar), Araras, Brazil
| | | | - Asher Pasha
- Department of Cell and Systems Biology, Centre for the Analysis of the Genome Evolution and Function, University of Toronto, Toronto, ON, Canada
| | - Anete Pereira de Souza
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil
| | - Nicholas James Provart
- Department of Cell and Systems Biology, Centre for the Analysis of the Genome Evolution and Function, University of Toronto, Toronto, ON, Canada
| | - Monalisa Sampaio Carneiro
- Plant Biotechnology Laboratory, Centre for Agricultural Sciences, Federal University of São Carlos (CCA-UFSCar), Araras, Brazil
| | | |
Collapse
|
233
|
Zheng Y, Chen Y, Liu Z, Wu H, Jiao F, Xin H, Zhang L, Yang L. Important Roles of Key Genes and Transcription Factors in Flower Color Differences of Nicotianaalata. Genes (Basel) 2021; 12:1976. [PMID: 34946925 PMCID: PMC8701347 DOI: 10.3390/genes12121976] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/26/2022] Open
Abstract
Nicotiana alata is an ornamental horticultural plant with a variety of flower colors and a long flowering period. The genes in four different colored N. alata (white, purple, red, and lemon green) were analyzed to explain the differences in flower color using transcriptomes. A total of 32 differential expression genes in the chlorophyll biosynthesis pathway and 41 in the anthocyanin biosynthesis pathway were identified. The enrichment analysis showed that the chlorophyll biosynthesis pathway and anthocyanin biosynthesis pathway play critical roles in the color differences of N. alata. The HEMA of the chlorophyll biosynthesis pathway was up-regulated in lemon green flowers. Compared with white flowers, in the red and purple flowers, F3H, F3'5'H and DFR were significantly up-regulated, while FLS was significantly down-regulated. Seventeen differential expression genes homologous to transcription factor coding genes were obtained, and the homologues of HY5, MYB12, AN1 and AN4 were also involved in flower color differences. The discovery of these candidate genes related to flower color differences is significant for further research on the flower colors formation mechanism and color improvements of N. alata.
Collapse
Affiliation(s)
- Yalin Zheng
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai’an 271018, China; (Y.Z.); (Y.C.); (Z.L.); (H.W.); (L.Z.)
| | - Yudong Chen
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai’an 271018, China; (Y.Z.); (Y.C.); (Z.L.); (H.W.); (L.Z.)
| | - Zhiguo Liu
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai’an 271018, China; (Y.Z.); (Y.C.); (Z.L.); (H.W.); (L.Z.)
| | - Hui Wu
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai’an 271018, China; (Y.Z.); (Y.C.); (Z.L.); (H.W.); (L.Z.)
| | - Fangchan Jiao
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China;
| | - Haiping Xin
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China;
| | - Li Zhang
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai’an 271018, China; (Y.Z.); (Y.C.); (Z.L.); (H.W.); (L.Z.)
| | - Long Yang
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai’an 271018, China; (Y.Z.); (Y.C.); (Z.L.); (H.W.); (L.Z.)
| |
Collapse
|
234
|
Li D, Wang Z, Sun S, Xiao K, Cao M, Li X, Ma C, Zhang C, Wang L, Lian H, Wang S. VvMYB15 and VvWRKY40 Positively Co-regulated Anthocyanin Biosynthesis in Grape Berries in Response to Root Restriction. FRONTIERS IN PLANT SCIENCE 2021; 12:789002. [PMID: 34956287 PMCID: PMC8695491 DOI: 10.3389/fpls.2021.789002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/08/2021] [Indexed: 06/14/2023]
Abstract
In most grapevine planting regions, especially in south of China, plenty of rainfall and high water level underground are the characteristic of the area, a series of problem during fruit ripening easily caused poor color quality. Thereby affecting fruit quality, yield and economic benefits. The accumulation of anthocyanin is regulated by transcriptional regulatory factor and a series of cultivation measures, root restriction can make plants in the environment of stress and stress relief, root restriction induced the higher expression of VvMYB15 and VvWRKY40, and consistent with anthocyanin accumulation. Whether and how root restriction-inducible VvMYB15 and VvWRKY40 transcription factor regulate anthocyanin synthesis in grape berry is still unclear. In this study, we identified that the transient overexpression of VvMYB15 and VvWRKY40 alone or both in strawberry fruits and grape berries can promote anthocyanin accumulation and increase the expression level of anthocyanin biosynthetic genes, indicating VvMYB15 and VvWRKY40 play a positive regulator of anthocyanin biosynthesis. Furthermore, we confirmed that both VvMYB15 and VvWRKY40 specifically bind to the promoter region of VvF3'5'H and VvUFGT, and the expression of VvF3'5'H and VvUFGT is further activated through the heterodimer formation between VvMYB15 and VvWRKY40. Finally, we confirmed that VvMYB15 promoted anthocyanin accumulation by interacting with VvWRKY40 in grape berries, our findings provide insights into a mechanism involving the synergistic regulation of root restriction-dependent coloration and biosynthesis via a VvMYB15 and VvWRKY40 alone or both in grape berries.
Collapse
Affiliation(s)
- Dongmei Li
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenping Wang
- School of Agriculture and Biology, Ningxia University, Yinchuan, China
| | - Sijie Sun
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Kun Xiao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Minghao Cao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangyi Li
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Chao Ma
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Caixi Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hongli Lian
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shiping Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Institute of Agro-Food Science and Technology, Key Laboratory of Agro-Products Processing Technology of Shandong, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
235
|
Zhang YL, Lin-Wang K, Albert NW, Elborough C, Espley RV, Andre CM, Fang ZZ. Identification of a Strong Anthocyanin Activator, VbMYBA, From Berries of Vaccinium bracteatum Thunb. FRONTIERS IN PLANT SCIENCE 2021; 12:697212. [PMID: 34938303 PMCID: PMC8685453 DOI: 10.3389/fpls.2021.697212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 11/09/2021] [Indexed: 05/27/2023]
Abstract
Wufanshu (Vaccinium bracteatum Thunb.), which is a wild member of the genus Vaccinium, accumulates high concentration of anthocyanin in its berries. In this study, the accumulated anthocyanins and their derivatives in Wufanshu berries were identified through UHPLC-MS/MS analysis. Candidate anthocyanin biosynthetic genes were identified from the transcriptome of Wufanshu berries. qRT-PCR analyses showed that the expression of anthocyanin structural genes correlated with anthocyanin accumulation in berries. The R2R3-MYB, VbMYBA, which is a homolog of anthocyanin promoting R2R3-MYBs from other Vaccinium species, was also identified. Transient expression of VbMYBA in Nicotiana tabacum leaves confirmed its role as an anthocyanin regulator, and produced a higher anthocyanin concentration when compared with blueberry VcMYBA expression. Dual-luciferase assays further showed that VbMYBA can activate the DFR and UFGT promoters from other Vaccinium species. VbMYBA has an additional 23 aa at the N terminus compared with blueberry VcMYBA, but this was shown not to affect the ability to regulate anthocyanins. Taken together, our results provide important information on the molecular mechanisms responsible for the high anthocyanin content in Wufanshu berries.
Collapse
Affiliation(s)
- Ya-Ling Zhang
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Kui Lin-Wang
- The New Zealand Institute for Plant and Food Research Limited, Mt Albert Research Centre, Auckland, New Zealand
| | - Nick W. Albert
- The New Zealand Institute for Plant and Food Research Limited, Mt Albert Research Centre, Auckland, New Zealand
| | - Caitlin Elborough
- The New Zealand Institute for Plant and Food Research Limited, Mt Albert Research Centre, Auckland, New Zealand
| | - Richard V. Espley
- The New Zealand Institute for Plant and Food Research Limited, Mt Albert Research Centre, Auckland, New Zealand
| | - Christelle M. Andre
- The New Zealand Institute for Plant and Food Research Limited, Mt Albert Research Centre, Auckland, New Zealand
| | - Zhi-Zhen Fang
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| |
Collapse
|
236
|
Upadhyaya G, Das A, Ray S. A rice R2R3-MYB (OsC1) transcriptional regulator improves oxidative stress tolerance by modulating anthocyanin biosynthesis. PHYSIOLOGIA PLANTARUM 2021; 173:2334-2349. [PMID: 34625959 DOI: 10.1111/ppl.13583] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
The R2R3 type MYB transcription factors participate in controlling flavonoid production in plants, including anthocyanin and proanthocyanin. Black rice with high anthocyanin content is an important candidate for understanding R2R3-MYB-based regulation of the anthocyanin biosynthesis pathway (ABP). This study was undertaken to draw the functional relationship of an R2R3-MYB protein with anthocyanin biosynthesis and oxidative stress tolerance in plants. The expression levels of the late ABP genes in the panicle stage of black rice were in good agreement with the accumulation of anthocyanin, especially cyanidin 3-glucoside. Among all MYB genes present in rice, an R2R3 type (C1) regulates anthocyanin biosynthesis and was studied further. The positive correlation between the expression of ABP genes and OsC1 along with the nuclear localization of OsC1 are in line with its possible involvement as a transcriptional regulator of ABP genes. Interestingly, OsC1 overexpressed in white rice plants triggered anthocyanin production through augmentation of the transcript level of late ABP genes. Moreover, OsC1-transformed plants exhibited a lower amount of reactive oxygen species upon exposure to oxidative stress. The increased anthocyanin content in white rice seedlings resulted in higher photosynthetic efficiency, less membrane damage and consequently lower oxidative stress. The OsC1 transcriptional regulator helps to ameliorate oxidative stresses in plants owing to its anthocyanin modulating ability.
Collapse
Affiliation(s)
- Gouranga Upadhyaya
- Plant Functional Genomics Laboratory, Department of Botany, University of Calcutta, Kolkata, India
| | - Arup Das
- Plant Functional Genomics Laboratory, Department of Botany, University of Calcutta, Kolkata, India
| | - Sudipta Ray
- Plant Functional Genomics Laboratory, Department of Botany, University of Calcutta, Kolkata, India
| |
Collapse
|
237
|
Ma D, Wang C, Feng J, Xu B. Wheat grain phenolics: a review on composition, bioactivity, and influencing factors. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:6167-6185. [PMID: 34312865 DOI: 10.1002/jsfa.11428] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/13/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Wheat (Triticum aestivum L.) is a widely cultivated crop and one of the most commonly consumed food grains in the world. It possesses several nutritional elements. Increasing attention to wheat grain phenolics bioactivity is due to the increasing demand for foods with natural antioxidants. To provide a comprehensive understanding of phenolics in wheat grain, this review first summarizes the phenolics' form and distribution and the phenolic components identified in wheat grain. In particular, the biosynthesis path for phenolics is discussed, identifying some candidate genes involved in the biosynthesis of phenolic acids and flavonoids. After discussing the methods for determining antioxidant activity, the effect of genotypes, environmental conditions, and cultivation systems on grain phenolic component content are explored. Finally, the bioavailability of phenolics under different food processing method are reported and discussed. Future research is recommended to increase wheat grain phenolic content by genetic engineering, and to improve its bioavailability through proper food processing. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dongyun Ma
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, China
- The National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Chenyang Wang
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, China
- The National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Jianchao Feng
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, China
| | - Beiming Xu
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
238
|
Shi K, Liu X, Pan X, Liu J, Gong W, Gong P, Cao M, Jia S, Wang Z. Unveiling the Complexity of Red Clover ( Trifolium pratense L.) Transcriptome and Transcriptional Regulation of Isoflavonoid Biosynthesis Using Integrated Long- and Short-Read RNAseq. Int J Mol Sci 2021; 22:ijms222312625. [PMID: 34884432 PMCID: PMC8658037 DOI: 10.3390/ijms222312625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022] Open
Abstract
Red clover (Trifolium pratense L.) is used as forage and contains a high level of isoflavonoids. Although isoflavonoids in red clover were discovered a long time ago, the transcriptional regulation of isoflavonoid biosynthesis is virtually unknown because of the lack of accurate and comprehensive characterization of the transcriptome. Here, we used a combination of long-read (PacBio Iso-Seq) and short-read (Illumina) RNAseq sequencing to develop a more comprehensive full-length transcriptome in four tissues (root, stem, leaf, and flower) and to identify transcription factors possibly involved in isoflavonoid biosynthesis in red clover. Overall, we obtained 50,922 isoforms, including 19,860 known genes and 2817 novel isoforms based on the annotation of RefGen Tp_v2.0. We also found 1843 long non-coding RNAs, 1625 fusion genes, and 34,612 alternatively spliced events, with some transcript isoforms validated experimentally. A total of 16,734 differentially expressed genes were identified in the four tissues, including 43 isoflavonoid-biosynthesis-related genes, such as stem-specific expressed TpPAL, TpC4H, and Tp4CL and root-specific expressed TpCHS, TpCHI1, and TpIFS. Further, weighted gene co-expression network analysis and a targeted compound assay were combined to investigate the association between the isoflavonoid content and the transcription factors expression in the four tissues. Twelve transcription factors were identified as key genes for isoflavonoid biosynthesis. Among these transcription factors, the overexpression of TpMYB30 or TpRSM1-2 significantly increased the isoflavonoid content in tobacco. In particular, the glycitin was increased by 50-100 times in the plants overexpressing TpRSM1-2, in comparison to that in the WT plants. Our study provides a comprehensive and accurate annotation of the red clover transcriptome and candidate genes to improve isoflavonoid biosynthesis and accelerate research into molecular breeding in red clover or other crops.
Collapse
Affiliation(s)
- Kun Shi
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (K.S.); (X.L.); (J.L.); (S.J.)
| | - Xiqiang Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (K.S.); (X.L.); (J.L.); (S.J.)
| | - Xinyi Pan
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Jia Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (K.S.); (X.L.); (J.L.); (S.J.)
| | - Wenlong Gong
- Pratacultural College, Gansu Agricultural University, Lanzhou 730070, China;
| | - Pan Gong
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Mingshu Cao
- Grasslands Research Centre, AgResearch Limited, Palmerston North 4410, New Zealand;
| | - Shangang Jia
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (K.S.); (X.L.); (J.L.); (S.J.)
| | - Zan Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (K.S.); (X.L.); (J.L.); (S.J.)
- Correspondence:
| |
Collapse
|
239
|
Manivannan A, Han K, Lee SY, Lee HE, Hong JP, Kim J, Lee YR, Lee ES, Kim DS. Genome-Wide Analysis of MYB10 Transcription Factor in Fragaria and Identification of QTLs Associated with Fruit Color in Octoploid Strawberry. Int J Mol Sci 2021; 22:ijms222212587. [PMID: 34830464 PMCID: PMC8620777 DOI: 10.3390/ijms222212587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/24/2022] Open
Abstract
The genus Fragaria encompass fruits with diverse colors influenced by the distribution and accumulation of anthocyanin. Particularly, the fruit colors of strawberries with different ploidy levels are determined by expression and natural variations in the vital structural and regulatory genes involved in the anthocyanin pathway. Among the regulatory genes, MYB10 transcription factor is crucial for the expression of structural genes in the anthocyanin pathway. In the present study, we performed a genome wide investigation of MYB10 in the diploid and octoploid Fragaria species. Further, we identified seven quantitative trait loci (QTLs) associated with fruit color in octoploid strawberry. In addition, we predicted 20 candidate genes primarily influencing the fruit color based on the QTL results and transcriptome analysis of fruit skin and flesh tissues of light pink, red, and dark red strawberries. Moreover, the computational and transcriptome analysis of MYB10 in octoploid strawberry suggests that the difference in fruit colors could be predominantly influenced by the expression of MYB10 from the F. iinumae subgenome. The outcomes of the present endeavor will provide a platform for the understanding and tailoring of anthocyanin pathway in strawberry for the production of fruits with aesthetic colors.
Collapse
|
240
|
Yan Y, Pico J, Sun B, Pratap-Singh A, Gerbrandt E, Diego Castellarin S. Phenolic profiles and their responses to pre- and post-harvest factors in small fruits: a review. Crit Rev Food Sci Nutr 2021:1-28. [PMID: 34766521 DOI: 10.1080/10408398.2021.1990849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The consumption of small fruits has increased in recent years. Besides their appealing flavor, the commercial success of small fruits has been partially attributed to their high contents of phenolic compounds with multiple health benefits. The phenolic profiles and contents in small fruits vary based on the genetic background, climate, growing conditions, and post-harvest handling techniques. In this review, we critically compare the profiles and contents of phenolics such as anthocyanins, flavonols, flavan-3-ols, and phenolic acids that have been reported in bilberries, blackberries, blueberries, cranberries, black and red currants, raspberries, and strawberries during fruit development and post-harvest storage. This review offers researchers and breeders a general guideline for the improvement of phenolic composition in small fruits while considering the critical factors that affect berry phenolics from cultivation to harvest and to final consumption.
Collapse
Affiliation(s)
- Yifan Yan
- Wine Research Centre, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Joana Pico
- Wine Research Centre, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Bohan Sun
- Wine Research Centre, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Anubhav Pratap-Singh
- Food, Nutrition, and Health, Faculty of Land & Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Eric Gerbrandt
- British Columbia Blueberry Council, Abbotsford, British Columbia, Canada
| | | |
Collapse
|
241
|
Luo X, Sun D, Wang S, Luo S, Fu Y, Niu L, Shi Q, Zhang Y. Integrating full-length transcriptomics and metabolomics reveals the regulatory mechanisms underlying yellow pigmentation in tree peony (Paeonia suffruticosa Andr.) flowers. HORTICULTURE RESEARCH 2021; 8:235. [PMID: 34719694 PMCID: PMC8558324 DOI: 10.1038/s41438-021-00666-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/08/2021] [Accepted: 07/27/2021] [Indexed: 06/02/2023]
Abstract
Tree peony (Paeonia suffruticosa Andr.) is a popular ornamental plant in China due to its showy and colorful flowers. However, yellow-colored flowers are rare in both wild species and domesticated cultivars. The molecular mechanisms underlying yellow pigmentation remain poorly understood. Here, petal tissues of two tree peony cultivars, "High Noon" (yellow flowers) and "Roufurong" (purple-red flowers), were sampled at five developmental stages (S1-S5) from early flower buds to full blooms. Five petal color indices (brightness, redness, yellowness, chroma, and hue angle) and the contents of ten different flavonoids were determined. Compared to "Roufurong," which accumulated abundant anthocyanins at S3-S5, the yellow-colored "High Noon" displayed relatively higher contents of tetrahydroxychalcone (THC), flavones, and flavonols but no anthocyanin production. The contents of THC, flavones, and flavonols in "High Noon" peaked at S3 and dropped gradually as the flower bloomed, consistent with the color index patterns. Furthermore, RNA-seq analyses at S3 showed that structural genes such as PsC4Hs, PsDFRs, and PsUFGTs in the flavonoid biosynthesis pathway were downregulated in "High Noon," whereas most PsFLSs, PsF3Hs, and PsF3'Hs were upregulated. Five transcription factor (TF) genes related to flavonoid biosynthesis were also upregulated in "High Noon." One of these TFs, PsMYB111, was overexpressed in tobacco, which led to increased flavonols but decreased anthocyanins. Dual-luciferase assays further confirmed that PsMYB111 upregulated PsFLS. These results improve our understanding of yellow pigmentation in tree peony and provide a guide for future molecular-assisted breeding experiments in tree peony with novel flower colors.
Collapse
Affiliation(s)
- Xiaoning Luo
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Daoyang Sun
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Shu Wang
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Sha Luo
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Yaqi Fu
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Lixin Niu
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Qianqian Shi
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China.
| | - Yanlong Zhang
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China.
| |
Collapse
|
242
|
Kim DH, Yang J, Ha SH, Kim JK, Lee JY, Lim SH. An OsKala3, R2R3 MYB TF, Is a Common Key Player for Black Rice Pericarp as Main Partner of an OsKala4, bHLH TF. FRONTIERS IN PLANT SCIENCE 2021; 12:765049. [PMID: 34777449 PMCID: PMC8585765 DOI: 10.3389/fpls.2021.765049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/04/2021] [Indexed: 05/27/2023]
Abstract
Rice (Oryza sativa) pericarp exhibits various colors due to the accumulation of anthocyanins and/or proanthocyanidins. Previous work revealed that the two basic helix-loop-helix (bHLH) transcription factors OsKala4 and OsRc are key regulators for the black and red pericarp traits, respectively, and their inactivation results in rice with white pericarp. However, their pericarp-specific R2R3 MYB partner remained unknown. Here, we characterized the role of the R2R3 MYB gene OsKala3 in rice pericarp pigmentation through genetic and molecular approaches. A rice protoplast transfection assay showed that OsKala3 is a nuclear-localized protein. Furthermore, OsKala3 physically interacted with OsKala4 in a yeast two-hybrid analysis. Co-transfection assays in rice protoplasts revealed that OsKala3 and OsKala4 mediate the activation of anthocyanin biosynthetic genes. Notably, the OsKala3 promoter region exhibited an insertion polymorphism specifically in rice cultivars with black pericarp, creating two tandem repeats while red and white varieties harbor only one. The number of repeats within the OsKala3 promoter correlated with increased transactivation by OsKala3, thus providing a rationale for the black pericarp characteristic of cultivars with two repeats. These results thus provide evidence for the molecular basis of anthocyanin biosynthesis in rice pericarp and may facilitate the introduction of this beneficial trait to other rice cultivars through marker-assisted breeding.
Collapse
Affiliation(s)
- Da-Hye Kim
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong, South Korea
- National Academy of Agricultural Science, Rural Development Administration, Jeonju, South Korea
| | - JuHee Yang
- National Academy of Agricultural Science, Rural Development Administration, Jeonju, South Korea
| | - Sun-Hwa Ha
- Department of Genetic Engineering, Graduate School of Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Jae Kwang Kim
- Division of Life Sciences, Bio-Resource and Environmental Center, Incheon National University, Incheon, South Korea
| | - Jong-Yeol Lee
- National Academy of Agricultural Science, Rural Development Administration, Jeonju, South Korea
| | - Sun-Hyung Lim
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong, South Korea
| |
Collapse
|
243
|
Li X, Fan J, Luo S, Yin L, Liao H, Cui X, He J, Zeng Y, Qu J, Bu Z. Comparative transcriptome analysis identified important genes and regulatory pathways for flower color variation in Paphiopedilum hirsutissimum. BMC PLANT BIOLOGY 2021; 21:495. [PMID: 34706650 PMCID: PMC8549352 DOI: 10.1186/s12870-021-03256-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/08/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND Paphiopedilum hirsutissimum is a member of Orchidaceae family that is famous for its ornamental value around the globe, it is vulnerable due to over-exploitation and was listed in Appendix I of the Convention on International Trade in Endangered Species of Wild Fauna and Flora, which prevents its trade across borders. Variation in flower color that gives rise to different flower patterns is a major trait contributing to its high ornamental value. However, the molecular mechanism underlying color formation in P. hirsutissimum still remains unexplored. In the present study, we exploited natural variation in petal and labellum color of Paphiopedilum plants and used comparative transcriptome analysis as well as pigment measurements to explore the important genes, metabolites and regulatory pathways linked to flower color variation in P. hirsutissimum. RESULT We observed that reduced anthocyanin and flavonoid contents along with slightly higher carotenoids are responsible for albino flower phenotype. Comparative transcriptome analysis identified 3287 differentially expressed genes (DEGs) among normal and albino labellum, and 3634 DEGs between normal and albino petals. Two genes encoding for flavanone 3-hydroxylase (F3H) and one gene encoding for chalcone synthase (CHS) were strongly downregulated in albino labellum and petals compared to normal flowers. As both F3H and CHS catalyze essentially important steps in anthocyanin biosynthesis pathway, downregulation of these genes is probably leading to albino flower phenotype via down-accumulation of anthocyanins. However, we observed the downregulation of major carotenoid biosynthesis genes including VDE, NCED and ABA2 which was inconsistent with the increased carotenoid accumulation in albino flowers, suggesting that carotenoid accumulation was probably controlled at post-transcriptional or translational level. In addition, we identified several key transcription factors (MYB73, MYB61, bHLH14, bHLH106, MADS-SOC1, AP2/ERF1, ERF26 and ERF87) that may regulate structural genes involved in flower color formation in P. hirsutissimum. Importantly, over-expression of some of these candidate TFs increased anthocyanin accumulation in tobacco leaves which provided important evidence for the role of these TFs in flower color formation probably via regulating key structural genes of the anthocyanin pathway. CONCLUSION The genes identified here could be potential targets for breeding P. hirsutissimum with different flower color patterns by manipulating the anthocyanin and carotenoid biosynthesis pathways.
Collapse
Affiliation(s)
- Xiuling Li
- Flower Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
| | - Jizheng Fan
- Flower Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
| | - Shuming Luo
- Flower Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
| | - Ling Yin
- Guangxi Key Crop Genetic Improvement and Biotechnology Laboratory, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
| | - Hongying Liao
- Flower Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
| | - Xueqiang Cui
- Flower Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
| | - Jingzhou He
- Flower Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
| | - Yanhua Zeng
- Flower Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
| | - Junjie Qu
- Guangxi Key Crop Genetic Improvement and Biotechnology Laboratory, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China.
| | - Zhaoyang Bu
- Flower Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China.
| |
Collapse
|
244
|
Lu S, Wang J, Zhuge Y, Zhang M, Liu C, Jia H, Fang J. Integrative Analyses of Metabolomes and Transcriptomes Provide Insights into Flavonoid Variation in Grape Berries. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12354-12367. [PMID: 34632763 DOI: 10.1021/acs.jafc.1c02703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Flavonoids in grapes contribute the quality of the berry, but the flavonoid diversity and the regulatory networks underlying the variation require a further investigation. In this study, we integrated multi-omics data to systematically explore the global metabolic and transcriptional profiles in the skins and pulps of three grape cultivars. The results revealed large-scale differences involved in the flavonoid metabolic pathway. A total of 133 flavonoids, including flavone and flavone C-glycosides, were identified. Beyond the visible differences of anthocyanins, there was large variation in other sub-branched flavonoids, most of which were positively correlated with anthocyanins in grapes. The expressions of most flavonoid biosynthetic genes and the major regulators MYBA1 were strongly consistent with the changes in flavonoids. Integrative analysis identified two novel transcription factors (MYB24 and MADS5) and two ubiquitin proteins (RHA2) as promising regulatory candidates for flavonoid biosynthesis in grapes. Further verification in various grape accessions indicated that five major genes including flavonol 3'5'-hydroxylase (F3'5'H), UDP-glucose:flavonoid 3-O-glycosyl-transferase, anthocyanin O-methyltransferase, acyltransferase (3AT), and glutathione S-transferase (GST4) controlled flavonoid variation in grape berries. These findings provide valuable information for understanding the mechanism of flavonoid biosynthesis in grape berries and the further development of grape health products.
Collapse
Affiliation(s)
- Suwen Lu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiayang Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yaxian Zhuge
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengwei Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Chang Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Haifeng Jia
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
245
|
Ma H, Yang T, Li Y, Zhang J, Wu T, Song T, Yao Y, Tian J. The long noncoding RNA MdLNC499 bridges MdWRKY1 and MdERF109 function to regulate early-stage light-induced anthocyanin accumulation in apple fruit. THE PLANT CELL 2021; 33:3309-3330. [PMID: 34270784 PMCID: PMC8505877 DOI: 10.1093/plcell/koab188] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 07/12/2021] [Indexed: 05/24/2023]
Abstract
Anthocyanin pigments contribute to plant coloration and are valuable sources of antioxidants in the human diet as components of fruits and vegetables. Their production is known to be induced by light in apple fruit (Malus domestica); however, the underlying molecular mechanism responsible for early-stage light-induced anthocyanin biosynthesis remains unclear. Here, we identified an ethylene response factor (ERF) protein, ERF109, involved in light-induced anthocyanin biosynthesis and found that it promotes coloration by directly binding to anthocyanin-related gene promoters. Promoter::β-glucuronidase reporter analysis and Hi-C sequencing showed that a long noncoding RNA, MdLNC499, located nearby MdERF109, induces the expression of MdERF109. A W-box cis-element in the MdLNC499 promoter was found to be regulated by a transcription factor, MdWRKY1. Transient expression in apple fruit and stable transformation of apple calli allowed us to reconstruct a MdWRKY1-MdLNC499-MdERF109 transcriptional cascade in which MdWRKY1 is activated by light to increase the transcription of MdLNC499, which in turn induces MdERF109. The MdERF109 protein induces the expression of anthocyanin-related genes and the accumulation of anthocyanins in the early stages of apple coloration. Our results provide a platform for better understanding the various regulatory mechanisms involved in light-induced apple fruit coloration.
Collapse
Affiliation(s)
- Huaying Ma
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Tuo Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Yu Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Jie Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing 102206, China
| | - Tingting Song
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Yuncong Yao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Ji Tian
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| |
Collapse
|
246
|
Kim DH, Lee J, Rhee J, Lee JY, Lim SH. Loss of the R2R3 MYB Transcription Factor RsMYB1 Shapes Anthocyanin Biosynthesis and Accumulation in Raphanus sativus. Int J Mol Sci 2021; 22:10927. [PMID: 34681588 PMCID: PMC8535906 DOI: 10.3390/ijms222010927] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/03/2021] [Accepted: 10/04/2021] [Indexed: 11/26/2022] Open
Abstract
The red or purple color of radish (Raphanus sativus L.) taproots is due to anthocyanins, which have nutritional and aesthetic value, as well as antioxidant properties. Moreover, the varied patterns and levels of anthocyanin accumulation in radish roots make them an interesting system for studying the transcriptional regulation of anthocyanin biosynthesis. The R2R3 MYB transcription factor RsMYB1 is a key positive regulator of anthocyanin biosynthesis in radish. Here, we isolated an allele of RsMYB1, named RsMYB1Short, in radish cultivars with white taproots. The RsMYB1Short allele carried a 4 bp insertion in the first exon causing a frame-shift mutation of RsMYB1, generating a truncated protein with only a partial R2 domain at the N-terminus. Unlike RsMYB1Full, RsMYB1Short was localized to the nucleus and the cytoplasm and failed to interact with their cognate partner RsTT8. Transient expression of genomic or cDNA sequences for RsMYB1Short in radish cotyledons failed to induce anthocyanin accumulation, but that for RsMYB1Full activated it. Additionally, RsMYB1Short showed the lost ability to induce pigment accumulation and to enhance the transcript level of anthocyanin biosynthetic genes, while RsMYB1Full promoted both processes when co-expressed with RsTT8 in tobacco leaves. As the result of the transient assay, co-expressing RsTT8 and RsMYB1Full, but not RsMYB1Short, also enhanced the promoter activity of RsCHS and RsDFR. We designed a molecular marker for RsMYB1 genotyping, and revealed that the RsMYB1Short allele is common in white radish cultivars, underscoring the importance of variation at the RsMYB1 locus in anthocyanin biosynthesis in the radish taproot. Together, these results indicate that the nonsense mutation of RsMYB1 generated the truncated protein, RsMYB1Short, that had the loss of ability to regulate anthocyanin biosynthesis. Our findings highlight that the frame shift mutation of RsMYB1 plays a key role in anthocyanin biosynthesis in the radish taproot.
Collapse
Affiliation(s)
- Da-Hye Kim
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong 17579, Korea;
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea;
| | - Jundae Lee
- Department of Horticulture, Institute of Agricultural Science & Technology, Jeonbuk National University, Jeonju 54896, Korea;
| | - JuHee Rhee
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea;
| | - Jong-Yeol Lee
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea;
| | - Sun-Hyung Lim
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong 17579, Korea;
| |
Collapse
|
247
|
Xu Z, Wang M, Ren T, Li K, Li Y, Marowa P, Zhang C. Comparative transcriptome analysis reveals the molecular mechanism of salt tolerance in Apocynum venetum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:816-830. [PMID: 34530326 DOI: 10.1016/j.plaphy.2021.08.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 05/24/2023]
Abstract
Apocynum venetum is a traditional Chinese medicinal herb with tolerance to various abiotic stresses, especially, salinity. However, only a few studies have investigated the salt-tolerant mechanism of this non-halophyte under salt stress at phenotypic and physiological levels. To explore the molecular mechanism of salinity tolerance in A. venetum, the global transcriptome profiles of seedling leaves under different salt-stress durations, using 200 mM NaCl, were analyzed. De novo assembly of approximately 715 million high-quality reads and approximately 105.61 Gb sequence data was performed. In total, 2822 differentially expressed genes (DEGs) were identified. DEGs were significantly enriched in flavonoid metabolism-related pathways such as "flavonoid biosynthesis" and "phenylpropanoid biosynthesis". Most of these DEGs were downregulated under salt stress. However, genes encoding the non-selective cation channels and antioxidants were upregulated under salt stress, whereas most cell wall-related DEGs were downregulated. Consequently, the concentration of flavonoids decreased, whereas that of Na+ increased with exposure time. Thus, we hypothesized that the accumulation of Na+ in the leaves, which resulted in reduced flavonoid concentration under salt stress, directly led to a decrease in the salt tolerance of A. venetum. This was verified by overexpressing four flavonoid synthesis pathway genes in Arabidopsis. The transgenic plants showed higher salt tolerance than the wild-type plants due to the accumulation of total flavonoids. These physiological and transcriptome analyses of A. venetum revealed major molecular underpinnings contributing to the responses of A. venetum to salt stress, thereby improving our understanding of the molecular mechanisms underlying salt tolerance in A. venetum and plants in general. The findings serve as a basis for functional studies on and engineering strategies for plant salinity tolerance.
Collapse
Affiliation(s)
- Zongchang Xu
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| | - Meng Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Tingting Ren
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| | - Keyang Li
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China.
| | - Yiqiang Li
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| | - Prince Marowa
- Department of Plant Production Sciences and Technologies, University of Zimbabwe, Harare, 00263, Zimbabwe.
| | - Chengsheng Zhang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| |
Collapse
|
248
|
Comparative Transcriptome Analysis of the Accumulation of Anthocyanins Revealed the Underlying Metabolic and Molecular Mechanisms of Purple Pod Coloration in Okra ( Abelmoschus esculentus L.). Foods 2021; 10:foods10092180. [PMID: 34574288 PMCID: PMC8471371 DOI: 10.3390/foods10092180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/05/2021] [Accepted: 09/10/2021] [Indexed: 11/17/2022] Open
Abstract
Color is an essential agronomic trait and the consumption of high anthocyanin containing vegetables in daily diet does provide benefits to human health, but the mechanisms on anthocyanin accumulation in tender pods of okra (Abelmoschus esculentus L.) were totally unknown. In this study, a wide characterization and quantitation of anthocyanins and flavonols in tender pods of 15 okra varieties were performed by UHPLC-Q-Orbitrap HRMS for the first time. Two major anthocyanins (delphinidin 3-O-sambubioside and cyanidin 3-O-sambubioside) and six kinds of flavonol glycosides (most are quercetin-based) were identified and quantified. The coloration of the purple okra pod mainly arises from the accumulation of both delphinidin 3-O-sambubioside and cyanidin 3-O-sambubioside in most of purple varieties (Hong Yu, Bowling Red and Burgundy), except Jing Orange. The significant differences in the compositions and contents of anthocyanins are responsible for the pod color ranging from brick-red to purplish-red among the various okra cultivars. Furthermore, four representative okra cultivars exhibiting obvious differences in anthocyanin accumulation were further analyzed with transcriptome and more than 4000 conserved differentially expressed genes were identified across the three compared groups (B vs. BR, B vs. HY and B vs. JO). Based on the comprehensive analysis of transcriptomic data, it was indicated that MBW complex consisting of AeMYB114, AeTT8, and AeTTG1 and other transcriptional factors coordinately regulate the accumulation of anthocyanins via the transcriptional regulation of structural genes. Moreover, four independent working models explaining the diversities of anthocyanin pigmentation in okra pods were also proposed. Altogether, these results improved our understanding on anthocyanin accumulation in okra pods, and provided strong supports for the development of okra pod as a functional food in the future.
Collapse
|
249
|
RNA-Seq-Based Profiling of pl Mutant Reveals Transcriptional Regulation of Anthocyanin Biosynthesis in Rice ( Oryza sativa L.). Int J Mol Sci 2021; 22:ijms22189787. [PMID: 34575968 PMCID: PMC8466560 DOI: 10.3390/ijms22189787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 11/17/2022] Open
Abstract
Purple-colored leaves in plants attain much interest for their important biological functions and could be a potential source of phenotypic marker in selecting individuals in breeding. The transcriptional profiling helps to precisely identify mechanisms of leaf pigmentation in crop plants. In this study, two genetically unlike rice genotypes, the mutant purple leaf (pl) and wild (WT) were selected for RNA-sequencing and identifying the differentially expressed genes (DEGs) that are regulating purple leaf color. In total, 609 DEGs were identified, of which 513 and 96 genes were up- and down-regulated, respectively. The identified DEGs are categorized into metabolic process, carboxylic acid biosynthesis, phenylpropanoids, and phenylpropanoid biosynthesis process enrichment by GO analysis. Kyoto Encyclopedia of Genes and Genomes (KEGG) confirmed their association with phenylpropanoid synthesis, flavonoid synthesis, and phenylalanine metabolism. To explore molecular mechanism of purple leaf color, a set of anthocyanin biosynthetic and regulatory gene expression patterns were checked by qPCR. We found that OsPAL (Os02g0626100, Os02g0626400, Os04g0518400, Os05g0427400 and Os02g0627100), OsF3H (Os03g0122300), OsC4HL (Os05g0320700), and Os4CL5 (Os08g0448000) are associated with anthocyanin biosynthesis, and they were up-regulated in pl leaves. Two members of regulatory MYB genes (OsMYB55; Os05g0553400 and Os08g0428200), two bHLH genes (Os01g0196300 and Os04g0300600), and two WD40 genes (Os11g0132700 and Os11g0610700) also showed up-regulation in pl mutant. These genes might have significant and vital roles in pl leaf coloration and could provide reference materials for further experimentation to confirm the molecular mechanisms of anthocyanin biosynthesis in rice.
Collapse
|
250
|
Anwar M, Chen L, Xiao Y, Wu J, Zeng L, Li H, Wu Q, Hu Z. Recent Advanced Metabolic and Genetic Engineering of Phenylpropanoid Biosynthetic Pathways. Int J Mol Sci 2021; 22:9544. [PMID: 34502463 PMCID: PMC8431357 DOI: 10.3390/ijms22179544] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 12/11/2022] Open
Abstract
The MYB transcription factors (TFs) are evolving as critical role in the regulation of the phenylpropanoid and tanshinones biosynthetic pathway. MYB TFs relate to a very important gene family, which are involved in the regulation of primary and secondary metabolisms, terpenoids, bioactive compounds, plant defense against various stresses and cell morphology. R2R3 MYB TFs contained a conserved N-terminal domain, but the domain at C-terminal sorts them different regarding their structures and functions. MYB TFs suppressors generally possess particular repressive motifs, such as pdLNLD/ELxiG/S and TLLLFR, which contribute to their suppression role through a diversity of complex regulatory mechanisms. A novel flower specific "NF/YWSV/MEDF/LW" conserved motif has a great potential to understand the mechanisms of flower development. In the current review, we summarize recent advanced progress of MYB TFs on transcription regulation, posttranscriptional, microRNA, conserved motif and propose directions to future prospective research. We further suggest there should be more focus on the investigation for the role of MYB TFs in microalgae, which has great potential for heterologous protein expression system for future perspectives.
Collapse
Affiliation(s)
- Muhammad Anwar
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (M.A.); (L.C.); (Y.X.); (H.L.); (Q.W.)
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Liu Chen
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (M.A.); (L.C.); (Y.X.); (H.L.); (Q.W.)
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yibo Xiao
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (M.A.); (L.C.); (Y.X.); (H.L.); (Q.W.)
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jinsong Wu
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China;
| | - Lihui Zeng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Hui Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (M.A.); (L.C.); (Y.X.); (H.L.); (Q.W.)
| | - Qingyu Wu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (M.A.); (L.C.); (Y.X.); (H.L.); (Q.W.)
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China;
| | - Zhangli Hu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (M.A.); (L.C.); (Y.X.); (H.L.); (Q.W.)
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China;
| |
Collapse
|