201
|
Scott J, Valero C, Mato-López Á, Donaldson IJ, Roldán A, Chown H, Van Rhijn N, Lobo-Vega R, Gago S, Furukawa T, Morogovsky A, Ben Ami R, Bowyer P, Osherov N, Fontaine T, Goldman GH, Mellado E, Bromley M, Amich J. Aspergillus fumigatus Can Display Persistence to the Fungicidal Drug Voriconazole. Microbiol Spectr 2023; 11:e0477022. [PMID: 36912663 PMCID: PMC10100717 DOI: 10.1128/spectrum.04770-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/12/2023] [Indexed: 03/14/2023] Open
Abstract
Aspergillus fumigatus is a filamentous fungus that can infect the lungs of patients with immunosuppression and/or underlying lung diseases. The mortality associated with chronic and invasive aspergillosis infections remain very high, despite availability of antifungal treatments. In the last decade, there has been a worrisome emergence and spread of resistance to the first-line antifungals, the azoles. The mortality caused by resistant isolates is even higher, and patient management is complicated as the therapeutic options are reduced. Nevertheless, treatment failure is also common in patients infected with azole-susceptible isolates, which can be due to several non-mutually exclusive reasons, such as poor drug absorption. In addition, the phenomena of tolerance or persistence, where susceptible pathogens can survive the action of an antimicrobial for extended periods, have been associated with treatment failure in bacterial infections, and their occurrence in fungal infections already proposed. Here, we demonstrate that some isolates of A. fumigatus display persistence to voriconazole. A subpopulation of the persister isolates can survive for extended periods and even grow at low rates in the presence of supra-MIC of voriconazole and seemingly other azoles. Persistence cannot be eradicated with adjuvant drugs or antifungal combinations and seemed to reduce the efficacy of treatment for certain individuals in a Galleria mellonella model of infection. Furthermore, persistence implies a distinct transcriptional profile, demonstrating that it is an active response. We propose that azole persistence might be a relevant and underestimated factor that could influence the outcome of infection in human aspergillosis. IMPORTANCE The phenomena of antibacterial tolerance and persistence, where pathogenic microbes can survive for extended periods in the presence of cidal drug concentrations, have received significant attention in the last decade. Several mechanisms of action have been elucidated, and their relevance for treatment failure in bacterial infections demonstrated. In contrast, our knowledge of antifungal tolerance and, in particular, persistence is still very limited. In this study, we have characterized the response of the prominent fungal pathogen Aspergillus fumigatus to the first-line therapy antifungal voriconazole. We comprehensively show that some isolates display persistence to this fungicidal antifungal and propose various potential mechanisms of action. In addition, using an alternative model of infection, we provide initial evidence to suggest that persistence may cause treatment failure in some individuals. Therefore, we propose that azole persistence is an important factor to consider and further investigate in A. fumigatus.
Collapse
Affiliation(s)
- Jennifer Scott
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Clara Valero
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Álvaro Mato-López
- Mycology Reference Laboratory (Laboratorio de Referencia e Investigación en Micología [LRIM]), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Ian J. Donaldson
- Bioinformatics Core Facility, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Alejandra Roldán
- Mycology Reference Laboratory (Laboratorio de Referencia e Investigación en Micología [LRIM]), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Harry Chown
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Norman Van Rhijn
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Rebeca Lobo-Vega
- Mycology Reference Laboratory (Laboratorio de Referencia e Investigación en Micología [LRIM]), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Sara Gago
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Takanori Furukawa
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Alma Morogovsky
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine Ramat-Aviv, Tel-Aviv, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ronen Ben Ami
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine Ramat-Aviv, Tel-Aviv, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Paul Bowyer
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Nir Osherov
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine Ramat-Aviv, Tel-Aviv, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Thierry Fontaine
- Institut Pasteur, Université de Paris, INRAE, USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Emilia Mellado
- Mycology Reference Laboratory (Laboratorio de Referencia e Investigación en Micología [LRIM]), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
- CiberInfec ISCIII, CIBER en Enfermedades Infecciosas, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Michael Bromley
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Jorge Amich
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Mycology Reference Laboratory (Laboratorio de Referencia e Investigación en Micología [LRIM]), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| |
Collapse
|
202
|
Sladewski TE, Campbell PC, Billington N, D'Ordine A, Cole JL, de Graffenried CL. Cytokinesis in Trypanosoma brucei relies on an orphan kinesin that dynamically crosslinks microtubules. Curr Biol 2023; 33:899-911.e5. [PMID: 36787745 PMCID: PMC10023446 DOI: 10.1016/j.cub.2023.01.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 12/09/2022] [Accepted: 01/18/2023] [Indexed: 02/15/2023]
Abstract
Many single-celled eukaryotes have complex cell morphologies defined by microtubules arranged into higher-order structures. The auger-like shape of the parasitic protist Trypanosoma brucei (T. brucei) is mediated by a parallel array of microtubules that underlies the plasma membrane. The subpellicular array must be partitioned and segregated using a microtubule-based mechanism during cell division. We previously identified an orphan kinesin, KLIF, that localizes to the ingressing cleavage furrow and is essential for the completion of cytokinesis. We have characterized the biophysical properties of a truncated KLIF construct in vitro to gain mechanistic insight into the function of this novel kinesin. We find that KLIF is a non-processive dimeric kinesin that dynamically crosslinks microtubules. Microtubules crosslinked by KLIF in an antiparallel orientation are translocated relative to one another, while microtubules crosslinked parallel to one another remain static, resulting in the formation of organized parallel bundles. In addition, we find that KLIF stabilizes the alignment of microtubule plus ends. These features provide a mechanistic understanding for how KLIF functions to form a new pole of aligned microtubule plus ends that defines the shape of the new cell posterior, which is an essential requirement for the completion of cytokinesis in T. brucei.
Collapse
Affiliation(s)
- Thomas E Sladewski
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA; Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA.
| | - Paul C Campbell
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Neil Billington
- Laboratory of Physiology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda 20892, USA
| | - Alexandra D'Ordine
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - James L Cole
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | | |
Collapse
|
203
|
Morrissette N, Abbaali I, Ramakrishnan C, Hehl AB. The Tubulin Superfamily in Apicomplexan Parasites. Microorganisms 2023; 11:microorganisms11030706. [PMID: 36985278 PMCID: PMC10056924 DOI: 10.3390/microorganisms11030706] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Microtubules and specialized microtubule-containing structures are assembled from tubulins, an ancient superfamily of essential eukaryotic proteins. Here, we use bioinformatic approaches to analyze features of tubulins in organisms from the phylum Apicomplexa. Apicomplexans are protozoan parasites that cause a variety of human and animal infectious diseases. Individual species harbor one to four genes each for α- and β-tubulin isotypes. These may specify highly similar proteins, suggesting functional redundancy, or exhibit key differences, consistent with specialized roles. Some, but not all apicomplexans harbor genes for δ- and ε-tubulins, which are found in organisms that construct appendage-containing basal bodies. Critical roles for apicomplexan δ- and ε-tubulin are likely to be limited to microgametes, consistent with a restricted requirement for flagella in a single developmental stage. Sequence divergence or the loss of δ- and ε-tubulin genes in other apicomplexans appears to be associated with diminished requirements for centrioles, basal bodies, and axonemes. Finally, because spindle microtubules and flagellar structures have been proposed as targets for anti-parasitic therapies and transmission-blocking strategies, we discuss these ideas in the context of tubulin-based structures and tubulin superfamily properties.
Collapse
Affiliation(s)
- Naomi Morrissette
- Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA
- Correspondence: ; Tel.: +1-949-824-9243
| | - Izra Abbaali
- Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Chandra Ramakrishnan
- Institute for Parasitology, University of Zurich, Winterthurerstrasse 266a, 8057 Zürich, Switzerland
| | - Adrian B. Hehl
- Institute for Parasitology, University of Zurich, Winterthurerstrasse 266a, 8057 Zürich, Switzerland
| |
Collapse
|
204
|
Díaz-Hernández M, Javier-Reyna R, Martínez-Valencia D, Montaño S, Orozco E. Dynamic Association of ESCRT-II Proteins with ESCRT-I and ESCRT-III Complexes during Phagocytosis of Entamoeba histolytica. Int J Mol Sci 2023; 24:ijms24065267. [PMID: 36982336 PMCID: PMC10049522 DOI: 10.3390/ijms24065267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 03/12/2023] Open
Abstract
By their active movement and voraux phagocytosis, the trophozoites of Entamoeba histolytica constitute an excellent system to investigate the dynamics of the Endosomal Sorting Complex Required for Transport (ESCRT) protein interactions through phagocytosis. Here, we studied the proteins forming the E. histolytica ESCRT-II complex and their relationship with other phagocytosis-involved molecules. Bioinformatics analysis predicted that EhVps22, EhVps25, and EhVps36 are E. histolytica bona fide orthologues of the ESCRT-II protein families. Recombinant proteins and specific antibodies revealed that ESCRT-II proteins interact with each other, with other ESCRT proteins, and phagocytosis-involved molecules, such as the adhesin (EhADH). Laser confocal microscopy, pull-down assays, and mass spectrometry analysis disclosed that during phagocytosis, ESCRT-II accompanies the red blood cells (RBCs) from their attachment to the trophozoites until their arrival to multivesicular bodies (MVBs), changing their interactive patterns according to the time and place of the process. Knocked-down trophozoites in the Ehvps25 gene presented a 50% lower rate of phagocytosis than the controls and lower efficiency to adhere RBCs. In conclusion, ESCRT-II interacts with other molecules during prey contact and conduction throughout the phagocytic channel and trophozoites membranous system. ESCRT-II proteins are members of the protein chain during vesicle trafficking and are fundamental for the continuity and efficiency of phagocytosis.
Collapse
Affiliation(s)
- Mitzi Díaz-Hernández
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México City 07360, Mexico
| | - Rosario Javier-Reyna
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México City 07360, Mexico
| | - Diana Martínez-Valencia
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México City 07360, Mexico
| | - Sarita Montaño
- Laboratorio de Modelado Molecular y Bioinformática, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria s/n, Culiacán 80010, Mexico
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México City 07360, Mexico
- Correspondence:
| |
Collapse
|
205
|
Lippi CA, Rund SSC, Ryan SJ. Characterizing the Vector Data Ecosystem. JOURNAL OF MEDICAL ENTOMOLOGY 2023; 60:247-254. [PMID: 36752771 PMCID: PMC9989832 DOI: 10.1093/jme/tjad009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Indexed: 06/18/2023]
Abstract
A growing body of information on vector-borne diseases has arisen as increasing research focus has been directed towards the need for anticipating risk, optimizing surveillance, and understanding the fundamental biology of vector-borne diseases to direct control and mitigation efforts. The scope and scale of this information, in the form of data, comprising database efforts, data storage, and serving approaches, means that it is distributed across many formats and data types. Data ranges from collections records to molecular characterization, geospatial data to interactions of vectors and traits, infection experiments to field trials. New initiatives arise, often spanning the effort traditionally siloed in specific research disciplines, and other efforts wane, perhaps in response to funding declines, different research directions, or lack of sustained interest. Thusly, the world of vector data - the Vector Data Ecosystem - can become unclear in scope, and the flows of data through these various efforts can become stymied by obsolescence, or simply by gaps in access and interoperability. As increasing attention is paid to creating FAIR (Findable Accessible Interoperable, and Reusable) data, simply characterizing what is 'out there', and how these existing data aggregation and collection efforts interact, or interoperate with each other, is a useful exercise. This study presents a snapshot of current vector data efforts, reporting on level of accessibility, and commenting on interoperability using an illustration to track a specimen through the data ecosystem to understand where it occurs for the database efforts anticipated to describe it (or parts of its extended specimen data).
Collapse
Affiliation(s)
- Catherine A Lippi
- Quantitative Disease Ecology and Conservation (QDEC) Lab Group, Department of Geography, University of Florida, Gainesville, FL 32611, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
| | - Samuel S C Rund
- Center for Research Computing, Department of Biological Sciences, & Eck Institute for Global HealthUniversity of Notre Dame, Notre Dame, IN 46556, USA
| | | |
Collapse
|
206
|
Klug D, Gautier A, Calvo E, Marois E, Blandin SA. The salivary protein Saglin facilitates efficient midgut colonization of Anopheles mosquitoes by malaria parasites. PLoS Pathog 2023; 19:e1010538. [PMID: 36862755 PMCID: PMC10013899 DOI: 10.1371/journal.ppat.1010538] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 03/14/2023] [Accepted: 02/08/2023] [Indexed: 03/03/2023] Open
Abstract
Malaria is caused by the unicellular parasite Plasmodium which is transmitted to humans through the bite of infected female Anopheles mosquitoes. To initiate sexual reproduction and to infect the midgut of the mosquito, Plasmodium gametocytes are able to recognize the intestinal environment after being ingested during blood feeding. A shift in temperature, pH change and the presence of the insect-specific compound xanthurenic acid have been shown to be important stimuli perceived by gametocytes to become activated and proceed to sexual reproduction. Here we report that the salivary protein Saglin, previously proposed to be a receptor for the recognition of salivary glands by sporozoites, facilitates Plasmodium colonization of the mosquito midgut, but does not contribute to salivary gland invasion. In mosquito mutants lacking Saglin, Plasmodium infection of Anopheles females is reduced, resulting in impaired transmission of sporozoites at low infection densities. Interestingly, Saglin can be detected in high amounts in the midgut of mosquitoes after blood ingestion, possibly indicating a previously unknown host-pathogen interaction between Saglin and midgut stages of Plasmodium. Furthermore, we were able to show that saglin deletion has no fitness cost in laboratory conditions, suggesting this gene would be an interesting target for gene drive approaches.
Collapse
Affiliation(s)
- Dennis Klug
- Université de Strasbourg, CNRS UPR9022, INSERM U1257, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
- * E-mail:
| | - Amandine Gautier
- Université de Strasbourg, CNRS UPR9022, INSERM U1257, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Eric Calvo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Eric Marois
- Université de Strasbourg, CNRS UPR9022, INSERM U1257, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Stéphanie A. Blandin
- Université de Strasbourg, CNRS UPR9022, INSERM U1257, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| |
Collapse
|
207
|
Pilling OA, Reis-Cunha JL, Grace CA, Berry ASF, Mitchell MW, Yu JA, Malekshahi CR, Krespan E, Go CK, Lombana C, Song YS, Amorim CF, Lago AS, Carvalho LP, Carvalho EM, Brisson D, Scott P, Jeffares DC, Beiting DP. Selective whole-genome amplification reveals population genetics of Leishmania braziliensis directly from patient skin biopsies. PLoS Pathog 2023; 19:e1011230. [PMID: 36940219 PMCID: PMC10063166 DOI: 10.1371/journal.ppat.1011230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 03/30/2023] [Accepted: 02/22/2023] [Indexed: 03/21/2023] Open
Abstract
In Brazil, Leishmania braziliensis is the main causative agent of the neglected tropical disease, cutaneous leishmaniasis (CL). CL presents on a spectrum of disease severity with a high rate of treatment failure. Yet the parasite factors that contribute to disease presentation and treatment outcome are not well understood, in part because successfully isolating and culturing parasites from patient lesions remains a major technical challenge. Here we describe the development of selective whole genome amplification (SWGA) for Leishmania and show that this method enables culture-independent analysis of parasite genomes obtained directly from primary patient skin samples, allowing us to circumvent artifacts associated with adaptation to culture. We show that SWGA can be applied to multiple Leishmania species residing in different host species, suggesting that this method is broadly useful in both experimental infection models and clinical studies. SWGA carried out directly on skin biopsies collected from patients in Corte de Pedra, Bahia, Brazil, showed extensive genomic diversity. Finally, as a proof-of-concept, we demonstrated that SWGA data can be integrated with published whole genome data from cultured parasite isolates to identify variants unique to specific geographic regions in Brazil where treatment failure rates are known to be high. SWGA provides a relatively simple method to generate Leishmania genomes directly from patient samples, unlocking the potential to link parasite genetics with host clinical phenotypes.
Collapse
Affiliation(s)
- Olivia A. Pilling
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - João L. Reis-Cunha
- Department of Biology, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Cooper A. Grace
- Department of Biology, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Alexander S. F. Berry
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Matthew W. Mitchell
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jane A. Yu
- Computer Science Division, University of California, Berkeley, Berkeley, California, United States of America
| | - Clara R. Malekshahi
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Elise Krespan
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Christina K. Go
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Cláudia Lombana
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Yun S. Song
- Computer Science Division, University of California, Berkeley, Berkeley, California, United States of America
- Department of Statistics, University of California, Berkeley, Berkeley, California, United States of America
| | - Camila F. Amorim
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Alexsandro S. Lago
- Serviço de Imunologia, Complexo Hospitalar Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Bahia, Brazil
- Laboratório de Pesquisas Clínicas do Instituto de Pesquisas Gonçalo Moniz, Fiocruz Bahia, Brazil
| | - Lucas P. Carvalho
- Serviço de Imunologia, Complexo Hospitalar Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Bahia, Brazil
- Laboratório de Pesquisas Clínicas do Instituto de Pesquisas Gonçalo Moniz, Fiocruz Bahia, Brazil
| | - Edgar M. Carvalho
- Serviço de Imunologia, Complexo Hospitalar Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Bahia, Brazil
- Laboratório de Pesquisas Clínicas do Instituto de Pesquisas Gonçalo Moniz, Fiocruz Bahia, Brazil
| | - Dustin Brisson
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Phillip Scott
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Daniel C. Jeffares
- Department of Biology, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Daniel P. Beiting
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
208
|
Urán Landaburu L, Didier Garnham M, Agüero F. Targeting trypanosomes: how chemogenomics and artificial intelligence can guide drug discovery. Biochem Soc Trans 2023; 51:195-206. [PMID: 36606702 DOI: 10.1042/bst20220618] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 01/07/2023]
Abstract
Trypanosomatids are protozoan parasites that cause human and animal neglected diseases. Despite global efforts, effective treatments are still much needed. Phenotypic screens have provided several chemical leads for drug discovery, but the mechanism of action for many of these chemicals is currently unknown. Recently, chemogenomic screens assessing the susceptibility or resistance of parasites carrying genome-wide modifications started to define the mechanism of action of drugs at large scale. In this review, we discuss how genomics is being used for drug discovery in trypanosomatids, how integration of chemical and genomics data from these and other organisms has guided prioritisations of candidate therapeutic targets and additional chemical starting points, and how these data can fuel the expansion of drug discovery pipelines into the era of artificial intelligence.
Collapse
Affiliation(s)
- Lionel Urán Landaburu
- Instituto de Investigaciones Biotecnológicas (IIB), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Argentina
- Escuela de Bio y Nanociencias (EByN), Universidad Nacional de San Martín, San Martín, Argentina
| | - Mercedes Didier Garnham
- Instituto de Investigaciones Biotecnológicas (IIB), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Argentina
- Escuela de Bio y Nanociencias (EByN), Universidad Nacional de San Martín, San Martín, Argentina
| | - Fernán Agüero
- Instituto de Investigaciones Biotecnológicas (IIB), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Argentina
- Escuela de Bio y Nanociencias (EByN), Universidad Nacional de San Martín, San Martín, Argentina
| |
Collapse
|
209
|
Beneke T, Dobramysl U, Catta-Preta CMC, Mottram JC, Gluenz E, Wheeler RJ. Genome sequence of Leishmania mexicana MNYC/BZ/62/M379 expressing Cas9 and T7 RNA polymerase. Wellcome Open Res 2023; 7:294. [PMID: 36874584 PMCID: PMC9975418 DOI: 10.12688/wellcomeopenres.18575.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
We present the genome sequence of Leishmania mexicana MNYC/BZ/62/M379 modified to express Cas9 and T7 RNA-polymerase, revealing high similarity to the reference genome (MHOM/GT2001/U1103). Through RNAseq-based annotation of coding sequences and untranslated regions, we provide primer sequences for construct and sgRNA template generation for CRISPR-assisted gene deletion and endogenous tagging.
Collapse
Affiliation(s)
- Tom Beneke
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Department of Cell and Developmental Biology, Biocentre, University of Würzburg, Würzburg, 97074, Germany
| | - Ulrich Dobramysl
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | | - Eva Gluenz
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Richard J. Wheeler
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
210
|
Late Embryogenesis Abundant Proteins Contribute to the Resistance of Toxoplasma gondii Oocysts against Environmental Stresses. mBio 2023; 14:e0286822. [PMID: 36809045 PMCID: PMC10128015 DOI: 10.1128/mbio.02868-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Toxoplasma gondii oocysts, which are shed in large quantities in the feces from infected felines, are very stable in the environment, resistant to most inactivation procedures, and highly infectious. The oocyst wall provides an important physical barrier for sporozoites contained inside oocysts, protecting them from many chemical and physical stressors, including most inactivation procedures. Furthermore, sporozoites can withstand large temperature changes, even freeze-thawing, as well as desiccation, high salinity, and other environmental insults; however, the genetic basis for this environmental resistance is unknown. Here, we show that a cluster of four genes encoding Late Embryogenesis Abundant (LEA)-related proteins are required to provide Toxoplasma sporozoites resistance to environmental stresses. Toxoplasma LEA-like genes (TgLEAs) exhibit the characteristic features of intrinsically disordered proteins, explaining some of their properties. Our in vitro biochemical experiments using recombinant TgLEA proteins show that they have cryoprotective effects on the oocyst-resident lactate dehydrogenase enzyme and that induced expression in E. coli of two of them leads to better survival after cold stress. Oocysts from a strain in which the four LEA genes were knocked out en bloc were significantly more susceptible to high salinity, freezing, and desiccation compared to wild-type oocysts. We discuss the evolutionary acquisition of LEA-like genes in Toxoplasma and other oocyst-producing apicomplexan parasites of the Sarcocystidae family and discuss how this has likely contributed to the ability of sporozoites within oocysts to survive outside the host for extended periods. Collectively, our data provide a first molecular detailed view on a mechanism that contributes to the remarkable resilience of oocysts against environmental stresses. IMPORTANCE Toxoplasma gondii oocysts are highly infectious and may survive in the environment for years. Their resistance against disinfectants and irradiation has been attributed to the oocyst and sporocyst walls by acting as physical and permeability barriers. However, the genetic basis for their resistance against stressors like changes in temperature, salinity, or humidity, is unknown. We show that a cluster of four genes encoding Toxoplasma Late Embryogenesis Abundant (TgLEA)-related proteins are important for this resistance to environmental stresses. TgLEAs have features of intrinsically disordered proteins, explaining some of their properties. Recombinant TgLEA proteins show cryoprotective effects on the parasite's lactate dehydrogenase, an abundant enzyme in oocysts, and expression in E. coli of two TgLEAs has a beneficial effect on growth after cold stress. Moreover, oocysts from a strain lacking all four TgLEA genes were more susceptible to high salinity, freezing, and desiccation compared to wild-type oocysts, highlighting the importance of the four TgLEAs for oocyst resilience.
Collapse
|
211
|
Raghavan M, Kalantar KL, Duarte E, Teyssier N, Takahashi S, Kung AF, Rajan JV, Rek J, Tetteh KKA, Drakeley C, Ssewanyana I, Rodriguez-Barraquer I, Greenhouse B, DeRisi JL. Antibodies to repeat-containing antigens in Plasmodium falciparum are exposure-dependent and short-lived in children in natural malaria infections. eLife 2023; 12:e81401. [PMID: 36790168 PMCID: PMC10005774 DOI: 10.7554/elife.81401] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 02/14/2023] [Indexed: 02/16/2023] Open
Abstract
Protection against Plasmodium falciparum, which is primarily antibody-mediated, requires recurrent exposure to develop. The study of both naturally acquired limited immunity and vaccine induced protection against malaria remains critical for ongoing eradication efforts. Towards this goal, we deployed a customized P. falciparum PhIP-seq T7 phage display library containing 238,068 tiled 62-amino acid peptides, covering all known coding regions, including antigenic variants, to systematically profile antibody targets in 198 Ugandan children and adults from high and moderate transmission settings. Repeat elements - short amino acid sequences repeated within a protein - were significantly enriched in antibody targets. While breadth of responses to repeat-containing peptides was twofold higher in children living in the high versus moderate exposure setting, no such differences were observed for peptides without repeats, suggesting that antibody responses to repeat-containing regions may be more exposure dependent and/or less durable in children than responses to regions without repeats. Additionally, short motifs associated with seroreactivity were extensively shared among hundreds of antigens, potentially representing cross-reactive epitopes. PfEMP1 shared motifs with the greatest number of other antigens, partly driven by the diversity of PfEMP1 sequences. These data suggest that the large number of repeat elements and potential cross-reactive epitopes found within antigenic regions of P. falciparum could contribute to the inefficient nature of malaria immunity.
Collapse
Affiliation(s)
- Madhura Raghavan
- University of California, San FranciscoSan FranciscoUnited States
| | | | - Elias Duarte
- University of California, BerkeleyBerkeleyUnited States
| | - Noam Teyssier
- University of California, San FranciscoSan FranciscoUnited States
| | - Saki Takahashi
- University of California, San FranciscoSan FranciscoUnited States
| | - Andrew F Kung
- University of California, San FranciscoSan FranciscoUnited States
| | - Jayant V Rajan
- University of California, San FranciscoSan FranciscoUnited States
| | - John Rek
- Infectious Diseases Research CollaborationKampalaUganda
| | - Kevin KA Tetteh
- London School of Hygiene and Tropical MedicineLondonUnited Kingdom
| | - Chris Drakeley
- London School of Hygiene and Tropical MedicineLondonUnited Kingdom
| | - Isaac Ssewanyana
- Infectious Diseases Research CollaborationKampalaUganda
- London School of Hygiene and Tropical MedicineLondonUnited Kingdom
| | - Isabel Rodriguez-Barraquer
- University of California, San FranciscoSan FranciscoUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Bryan Greenhouse
- University of California, San FranciscoSan FranciscoUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Joseph L DeRisi
- University of California, San FranciscoSan FranciscoUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| |
Collapse
|
212
|
Bunkofske ME, Perumal N, White B, Strauch EM, Tarleton R. Epitopes in the Glycosylphosphatidylinositol Attachment Signal Peptide of Trypanosoma cruzi Mucin Proteins Generate Robust but Delayed and Nonprotective CD8+ T Cell Responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:420-430. [PMID: 36603035 PMCID: PMC9898211 DOI: 10.4049/jimmunol.2200723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023]
Abstract
Infection with the protozoan parasite Trypanosoma cruzi elicits substantial CD8+ T cell responses that disproportionately target epitopes encoded in the large trans-sialidase (TS) gene family. Within the C57BL/6 infection model, a significant proportion (30-40%) of the T. cruzi-specific CD8+ T cell response targets two immunodominant TS epitopes, TSKb18 and TSKb20. However, both TS-specific CD8+ T cell responses are dispensable for immune control, and TS-based vaccines have no demonstrable impact on parasite persistence, a determinant of disease. Besides TS, the specificity and protective capacity of CD8+ T cells that mediate immune control of T. cruzi infection are unknown. With the goal of identifying alternative CD8+ T cell targets, we designed and screened a representative set of genome-wide, in silico-predicted epitopes. Our screen identified a previously uncharacterized, to our knowledge, T cell epitope MUCKb25, found within mucin family proteins, the third most expanded large gene family in T. cruzi. The MUCKb25-specific response was characterized by delayed kinetics, relative to TS-specific responses, and extensive cross-reactivity with a large number of endogenous epitope variants. Similar to TS-specific responses, the MUCKb25 response was dispensable for control of the infection, and vaccination to generate MUCK-specific CD8+ T cells failed to confer protection. The lack of protection by MUCK vaccination was partly attributed to the fact that MUCKb25-specific T cells exhibit limited recognition of T. cruzi-infected host cells. Overall, these results indicate that the CD8+ T cell compartment in many T. cruzi-infected mice is occupied by cells with minimal apparent effector potential.
Collapse
Affiliation(s)
- Molly E. Bunkofske
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Natasha Perumal
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Brooke White
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Eva-Maria Strauch
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, USA
| | - Rick Tarleton
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
213
|
Adipokinetic hormone signaling in the malaria vector Anopheles gambiae facilitates Plasmodium falciparum sporogony. Commun Biol 2023; 6:171. [PMID: 36782045 PMCID: PMC9924834 DOI: 10.1038/s42003-023-04518-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 01/23/2023] [Indexed: 02/15/2023] Open
Abstract
An obligatory step in the complex life cycle of the malaria parasite is sporogony, which occurs during the oocyst stage in adult female Anopheles mosquitoes. Sporogony is metabolically demanding, and successful oocyst maturation is dependent on host lipids. In insects, lipid energy reserves are mobilized by adipokinetic hormones (AKHs). We hypothesized that Plasmodium falciparum infection activates Anopheles gambiae AKH signaling and lipid mobilization. We profiled the expression patterns of AKH pathway genes and AgAkh1 peptide levels in An. gambiae during starvation, after blood feeding, and following infection and observed a significant time-dependent up-regulation of AKH pathway genes and peptide levels during infection. Depletion of AgAkh1 and AgAkhR by RNAi reduced salivary gland sporozoite production, while synthetic AgAkh1 peptide supplementation rescued sporozoite numbers. Inoculation of uninfected female mosquitoes with supernatant from P. falciparum-infected midguts activated AKH signaling. Clearly, identifying the parasite molecules mediating AKH signaling in P. falciparum sporogony is paramount.
Collapse
|
214
|
Barrett CF, Ramachandran D, Chen CH, Corbett CW, Huebner CD, Sinn BT, Yu WB, Suetsugu K. Mitochondrial genome sequencing and analysis of the invasive Microstegium vimineum: a resource for systematics, invasion history, and management. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.10.527995. [PMID: 36798355 PMCID: PMC9934601 DOI: 10.1101/2023.02.10.527995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Premise of the Research Plants remain underrepresented among species with sequenced mitochondrial genomes (mitogenomes), due to the difficulty in assembly with short-read technology. Invasive species lag behind crops and other economically important species in this respect, representing a lack of tools for management and land conservation efforts. Methodology The mitogenome of Microstegium vimineum, one of the most damaging invasive plant species in North America, was sequenced and analyzed using long-read data, providing a resource for biologists and managers. We conducted analyses of genome content, phylogenomic analyses among grasses and relatives based on mitochondrial coding regions, and an analysis of mitochondrial single nucleotide polymorphism in this invasive grass species. Pivotal Results The assembly is 478,010 bp in length and characterized by two large, inverted repeats, and a large, direct repeat. However, the genome could not be circularized, arguing against a "master circle" structure. Long-read assemblies with data subsets revealed several alternative genomic conformations, predominantly associated with large repeats. Plastid-like sequences comprise 2.4% of the genome, with further evidence of Class I and Class II transposable element-like sequences. Phylogenetic analysis placed M. vimineum with other Microstegium species, excluding M. nudum, but with weak support. Analysis of polymorphic sites across 112 accessions of M. vimineum from the native and invasive ranges revealed a complex invasion history. Conclusions We present an in-depth analysis of mitogenome structure, content, phylogenetic relationships, and range-wide genomic variation in M. vimineum's invasive US range. The mitogenome of M. vimineum is typical of other andropogonoid grasses, yet mitochondrial sequence variation across the invasive and native ranges is extensive. Our findings suggest multiple introductions to the US over the last century, with subsequent spread, secondary contact, long-distance dispersal, and possibly post-invasion selection on awn phenotypes. Efforts to produce genomic resources for invasive species, including sequenced mitochondrial genomes, will continue to provide tools for their effective management, and to help predict and prevent future invasions.
Collapse
Affiliation(s)
- Craig F. Barrett
- Department of Biology, West Virginia University, 53 Campus Drive, Morgantown, West Virginia, USA 26506
| | - Dhanushya Ramachandran
- Department of Biology, West Virginia University, 53 Campus Drive, Morgantown, West Virginia, USA 26506
| | - Chih-Hui Chen
- Endemic Species Research Institute, 1 Ming-Sheng East Road, Jiji, Nantou 552, Taiwan
| | - Cameron W. Corbett
- Department of Biology, West Virginia University, 53 Campus Drive, Morgantown, West Virginia, USA 26506
| | - Cynthia D. Huebner
- Department of Biology, West Virginia University, 53 Campus Drive, Morgantown, West Virginia, USA 26506
- USDA Forest Service, Northern Research Station, 180 Canfield Street, Morgantown, West Virginia, USA 26505
- Division of Plant and Soil Sciences, West Virginia University, 204 Evansdale Greenhouse, Morgantown, West Virginia, USA 26506
| | - Brandon T. Sinn
- Department of Biology and Earth Science, Otterbein University, 1 South Grove Street, Westerville, OH USA 43081
- Faculty of Biology, University of Latvia, 1 Jelgavas iela, Riga, Latvia LV-1004
| | - Wen-Bin Yu
- Center for Integrative Conservation Xishuangbanna Tropical Botanical Garden, CAS Mengla, Yunnan 666303, China
| | - Kenji Suetsugu
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501, Japan
| |
Collapse
|
215
|
Smoniewski CM, Borujeni PM, Petersen A, Hampton M, Salavati R, Zimmer SL. Circular mitochondrial-encoded mRNAs are a distinct subpopulation of mitochondrial mRNA in Trypanosoma brucei. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.10.528059. [PMID: 36798374 DOI: 10.1101/2023.01.18.524644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Since the first identification of circular RNA (circRNA) in viral-like systems, reports of circRNAs and their functions in various organisms, cell types, and organelles have greatly expanded. Here, we report the first evidence of circular mRNA in the mitochondrion of the eukaryotic parasite, Trypanosoma brucei . While using a circular RT-PCR technique developed to sequence mRNA tails of mitochondrial transcripts, we found that some mRNAs are circularized without an in vitro circularization step normally required to produce PCR products. Starting from total in vitro circularized RNA and in vivo circRNA, we high-throughput sequenced three transcripts from the 3' end of the coding region, through the 3' tail, to the 5' start of the coding region. We found that fewer reads in the circRNA libraries contained tails than in the total RNA libraries. When tails were present on circRNAs, they were shorter and less adenine-rich than the total population of RNA tails of the same transcript. Additionally, using hidden Markov modelling we determined that enzymatic activity during tail addition is different for circRNAs than for total RNA. Lastly, circRNA UTRs tended to be shorter and more variable than those of the same transcript sequenced from total RNA. We propose a revised model of Trypanosome mitochondrial tail addition, in which a fraction of mRNAs is circularized prior to the addition of adenine-rich tails and may act as a new regulatory molecule or in a degradation pathway.
Collapse
Affiliation(s)
- Clara M Smoniewski
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth Campus, Duluth, MN, USA
| | | | - Austin Petersen
- Department of Biology, University of Minnesota Duluth, Duluth, MN, USA
| | - Marshall Hampton
- Department of Mathematics and Statistics, University of Minnesota Duluth, Duluth, MN, USA
| | - Reza Salavati
- Institute of Parasitology, McGill University, Quebec, Canada
| | - Sara L Zimmer
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth Campus, Duluth, MN, USA
| |
Collapse
|
216
|
Liu K, Chen Q, Huang GH. An Efficient Feature Selection Algorithm for Gene Families Using NMF and ReliefF. Genes (Basel) 2023; 14:421. [PMID: 36833348 PMCID: PMC9957060 DOI: 10.3390/genes14020421] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/10/2023] Open
Abstract
Gene families, which are parts of a genome's information storage hierarchy, play a significant role in the development and diversity of multicellular organisms. Several studies have focused on the characteristics of gene families, such as function, homology, or phenotype. However, statistical and correlation analyses on the distribution of gene family members in the genome have yet to be conducted. Here, a novel framework incorporating gene family analysis and genome selection based on NMF-ReliefF is reported. Specifically, the proposed method starts by obtaining gene families from the TreeFam database and determining the number of gene families within the feature matrix. Then, NMF-ReliefF is used to select features from the gene feature matrix, which is a new feature selection algorithm that overcomes the inefficiencies of traditional methods. Finally, a support vector machine is utilized to classify the acquired features. The results show that the framework achieved an accuracy of 89.1% and an AUC of 0.919 on the insect genome test set. We also employed four microarray gene data sets to evaluate the performance of the NMF-ReliefF algorithm. The outcomes show that the proposed method may strike a delicate balance between robustness and discrimination. Additionally, the proposed method's categorization is superior to state-of-the-art feature selection approaches.
Collapse
Affiliation(s)
- Kai Liu
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road, Furong District, Changsha 410128, China
- College of Information and Intelligence, Hunan Agricultural University, Changsha 410128, China
| | - Qi Chen
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road, Furong District, Changsha 410128, China
| | - Guo-Hua Huang
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road, Furong District, Changsha 410128, China
| |
Collapse
|
217
|
García-Longoria L, Ahrén D, Berthomieu A, Kalbskopf V, Rivero A, Hellgren O. Immune gene expression in the mosquito vector Culex quinquefasciatus during an avian malaria infection. Mol Ecol 2023; 32:904-919. [PMID: 36448733 PMCID: PMC10108303 DOI: 10.1111/mec.16799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022]
Abstract
Plasmodium relictum is the most widespread avian malaria parasite in the world. It is listed as one of the 100 most dangerous invasive species, having been responsible for the extinction of several endemic bird species, and the near-demise of several others. Here we present the first transcriptomic study focused on the effect of P. relictum on the immune system of its vector (the mosquito Culex quinquefasciatus) at different times post-infection. We show that over 50% of immune genes identified as being part of the Toll pathway and 30%-40% of the immune genes identified within the Imd pathway are overexpressed during the critical period spanning the parasite's oocyst and sporozoite formation (8-12 days), revealing the crucial role played by both these pathways in this natural mosquito-Plasmodium combination. Comparison of infected mosquitoes with their uninfected counterparts also revealed some unexpected immune RNA expression patterns earlier and later in the infection: significant differences in expression of several immune effectors were observed as early as 30 min after ingestion of the infected blood meal. In addition, in the later stages of the infection (towards the end of the mosquito lifespan), we observed an unexpected increase in immune investment in uninfected, but not in infected, mosquitoes. In conclusion, our work extends the comparative transcriptomic analyses of malaria-infected mosquitoes beyond human and rodent parasites and provides insights into the degree of conservation of immune pathways and into the selective pressures exerted by Plasmodium parasites on their vectors.
Collapse
Affiliation(s)
- Luz García-Longoria
- Department of Anatomy, Cellular Biology and Zoology, University of Extremadura, Badajoz, Spain
| | - Dag Ahrén
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Lund, Sweden
| | | | - Victor Kalbskopf
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Lund, Sweden
| | - Ana Rivero
- MIVEGEC (CNRS, Université de Montpellier, IRD), Montpellier, France
| | - Olof Hellgren
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
218
|
Ramaprasad A, Culleton R. A song for the unsung: The relevance of Plasmodium vinckei as a laboratory rodent malaria system. Parasitol Int 2023; 92:102680. [DOI: 10.1016/j.parint.2022.102680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/02/2022] [Accepted: 09/12/2022] [Indexed: 12/01/2022]
|
219
|
Halliday C, Dean S, Sunter JD, Wheeler RJ. Subcellular protein localisation of Trypanosoma brucei bloodstream form-upregulated proteins maps stage-specific adaptations. Wellcome Open Res 2023. [DOI: 10.12688/wellcomeopenres.18586.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Background: Genome-wide subcellular protein localisation in Trypanosoma brucei, through our TrypTag project, has comprehensively dissected the molecular organisation of this important pathogen. Powerful as this resource is, T. brucei has multiple developmental forms and we previously only analysed the procyclic form. This is an insect life cycle stage, leaving the mammalian bloodstream form unanalysed. The expectation is that between life stages protein localisation would not change dramatically (completely unchanged or shifting to analogous stage-specific structures). However, this has not been specifically tested. Similarly, which organelles tend to contain proteins with stage-specific expression can be predicted from known stage specific adaptations but has not been comprehensively tested. Methods: We used endogenous tagging with mNG to determine the sub-cellular localisation of the majority of proteins encoded by transcripts significantly upregulated in the bloodstream form, and performed comparison to the existing localisation data in procyclic forms. Results: We have confirmed the localisation of known and identified the localisation of novel stage-specific proteins. This gave a map of which organelles tend to contain stage specific proteins: the mitochondrion for the procyclic form, and the endoplasmic reticulum, endocytic system and cell surface in the bloodstream form. Conclusions: This represents the first genome-wide map of life cycle stage-specific adaptation of organelle molecular machinery in T. brucei.
Collapse
|
220
|
Sauer LM, Canovas R, Roche D, Shams-Eldin H, Ravel P, Colinge J, Schwarz RT, Ben Mamoun C, Rivals E, Cornillot E. FT-GPI, a highly sensitive and accurate predictor of GPI-anchored proteins, reveals the composition and evolution of the GPI proteome in Plasmodium species. Malar J 2023; 22:27. [PMID: 36698187 PMCID: PMC9876418 DOI: 10.1186/s12936-022-04430-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 12/23/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Protozoan parasites are known to attach specific and diverse group of proteins to their plasma membrane via a GPI anchor. In malaria parasites, GPI-anchored proteins (GPI-APs) have been shown to play an important role in host-pathogen interactions and a key function in host cell invasion and immune evasion. Because of their immunogenic properties, some of these proteins have been considered as malaria vaccine candidates. However, identification of all possible GPI-APs encoded by these parasites remains challenging due to their sequence diversity and limitations of the tools used for their characterization. METHODS The FT-GPI software was developed to detect GPI-APs based on the presence of a hydrophobic helix at both ends of the premature peptide. FT-GPI was implemented in C ++and applied to study the GPI-proteome of 46 isolates of the order Haemosporida. Using the GPI proteome of Plasmodium falciparum strain 3D7 and Plasmodium vivax strain Sal-1, a heuristic method was defined to select the most sensitive and specific FT-GPI software parameters. RESULTS FT-GPI enabled revision of the GPI-proteome of P. falciparum and P. vivax, including the identification of novel GPI-APs. Orthology- and synteny-based analyses showed that 19 of the 37 GPI-APs found in the order Haemosporida are conserved among Plasmodium species. Our analyses suggest that gene duplication and deletion events may have contributed significantly to the evolution of the GPI proteome, and its composition correlates with speciation. CONCLUSION FT-GPI-based prediction is a useful tool for mining GPI-APs and gaining further insights into their evolution and sequence diversity. This resource may also help identify new protein candidates for the development of vaccines for malaria and other parasitic diseases.
Collapse
Affiliation(s)
- Lena M. Sauer
- Institute for Virology, Hans-Meerwein-Straße, 35043 Marburg, Germany
- Computational Biology Institute, Campus Saint Priest, 161 Rue Ada, 34095 Montpellier, France
- Present Address: GRN-Klinik Sinsheim, Alte Waibstadter Straße 2a, 74889 Sinsheim, Germany
| | - Rodrigo Canovas
- Computational Biology Institute, Campus Saint Priest, 161 Rue Ada, 34095 Montpellier, France
- grid.121334.60000 0001 2097 0141LIRMM, CNRS, Université de Montpellier, Campus Saint Priest, 161 Rue Ada, 34095 Montpellier, France
| | - Daniel Roche
- Computational Biology Institute, Campus Saint Priest, 161 Rue Ada, 34095 Montpellier, France
- grid.121334.60000 0001 2097 0141LIRMM, CNRS, Université de Montpellier, Campus Saint Priest, 161 Rue Ada, 34095 Montpellier, France
| | - Hosam Shams-Eldin
- Institute for Virology, Hans-Meerwein-Straße, 35043 Marburg, Germany
| | - Patrice Ravel
- grid.121334.60000 0001 2097 0141Institut de Recherche en Cancérologie de Montpellier INSERM U1094, ICM, Université de Montpellier, Campus Val d’Aurelle, 208 Avenue Des Apothicaires, 34298 Montpellier, France
| | - Jacques Colinge
- grid.121334.60000 0001 2097 0141Institut de Recherche en Cancérologie de Montpellier INSERM U1094, ICM, Université de Montpellier, Campus Val d’Aurelle, 208 Avenue Des Apothicaires, 34298 Montpellier, France
| | - Ralph T. Schwarz
- Institute for Virology, Hans-Meerwein-Straße, 35043 Marburg, Germany
| | - Choukri Ben Mamoun
- grid.47100.320000000419368710Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT 06520 USA
| | - Eric Rivals
- Computational Biology Institute, Campus Saint Priest, 161 Rue Ada, 34095 Montpellier, France
- grid.121334.60000 0001 2097 0141LIRMM, CNRS, Université de Montpellier, Campus Saint Priest, 161 Rue Ada, 34095 Montpellier, France
- grid.510302.5Institut Français de Bioinformatique, CNRS UAR 3601, 2, rue Gaston Crémieux, 91057 Évry, France
| | - Emmanuel Cornillot
- Computational Biology Institute, Campus Saint Priest, 161 Rue Ada, 34095 Montpellier, France
- grid.121334.60000 0001 2097 0141Institut de Recherche en Cancérologie de Montpellier INSERM U1094, ICM, Université de Montpellier, Campus Val d’Aurelle, 208 Avenue Des Apothicaires, 34298 Montpellier, France
- Wespran SAS, 13 Rue de Penthièvre, 75008 Paris, France
| |
Collapse
|
221
|
Simmons CF, Gibbons J, Zhang M, Oberstaller J, Pires CV, Casandra D, Wang C, Seyfang A, Otto TD, Rayner JC, Adams JH. Protein KIC5 is a novel regulator of artemisinin stress response in the malaria parasite Plasmodium falciparum. Sci Rep 2023; 13:399. [PMID: 36624300 PMCID: PMC9829687 DOI: 10.1038/s41598-023-27417-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
Artemisinin combination therapies (ACTs) have led to a significant decrease in Plasmodium falciparum malaria mortality. This progress is now threatened by emerging artemisinin resistance (ART-R) linked originally in SE Asia to polymorphisms in the Kelch propeller protein (K13) and more recently to several other seemingly unrelated genetic mutations. To better understand the parasite response to ART, we are characterizing a P. falciparum mutant with altered sensitivity to ART that was created via piggyBac transposon mutagenesis. The transposon inserted near the putative transcription start site of a gene defined as a "Plasmodium-conserved gene of unknown function," now functionally linked to K13 as the Kelch13 Interacting Candidate 5 protein (KIC5). Phenotype analysis of the KIC5 mutant during intraerythrocytic asexual development identified transcriptional changes associated with DNA stress response and altered mitochondrial metabolism, linking dysregulation of the KIC5 gene to the parasite's ability to respond to ART exposure. Through characterization of the KIC5 transcriptome, we hypothesize that this gene may be essential under ART exposure to manage gene expression of the wild-type stress response at early ring stage, thereby providing a better understanding of the parasite's processes that can alter ART sensitivity.
Collapse
Affiliation(s)
- Caroline F Simmons
- Center for Global Health and Infectious Diseases Research and USF Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Justin Gibbons
- Center for Global Health and Infectious Diseases Research and USF Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Min Zhang
- Center for Global Health and Infectious Diseases Research and USF Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Jenna Oberstaller
- Center for Global Health and Infectious Diseases Research and USF Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Camilla Valente Pires
- Center for Global Health and Infectious Diseases Research and USF Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Debora Casandra
- Center for Global Health and Infectious Diseases Research and USF Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Chengqi Wang
- Center for Global Health and Infectious Diseases Research and USF Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Andreas Seyfang
- Center for Global Health and Infectious Diseases Research and USF Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Thomas D Otto
- Institute for Infection, Immunity, and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Julian C Rayner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, Cambridgeshire, UK
| | - John H Adams
- Center for Global Health and Infectious Diseases Research and USF Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
222
|
Hu JJ, Lee JKJ, Liu YT, Yu C, Huang L, Aphasizheva I, Aphasizhev R, Zhou ZH. Discovery, structure, and function of filamentous 3-methylcrotonyl-CoA carboxylase. Structure 2023; 31:100-110.e4. [PMID: 36543169 PMCID: PMC9825669 DOI: 10.1016/j.str.2022.11.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/17/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022]
Abstract
3-methylcrotonyl-CoA carboxylase (MCC) is a biotin-dependent mitochondrial enzyme necessary for leucine catabolism in most organisms. While the crystal structure of recombinant bacterial MCC has been characterized, the structure and potential polymerization of native MCC remain elusive. Here, we discovered that native MCC from Leishmania tarentolae (LtMCC) forms filaments, and determined the structures of different filament regions at 3.4, 3.9, and 7.3 Å resolution using cryoEM. α6β6 LtMCCs assemble in a twisted-stacks architecture, manifesting as supramolecular rods up to 400 nm. Filamentous LtMCCs bind biotin non-covalently and lack coenzyme A. Filaments elongate by stacking α6β6 LtMCCs onto the exterior α-trimer of the terminal LtMCC. This stacking immobilizes the biotin carboxylase domains, sequestering the enzyme in an inactive state. Our results support a new model for LtMCC catalysis, termed the dual-swinging-domains model, and cast new light on the function of polymerization in the carboxylase superfamily and beyond.
Collapse
Affiliation(s)
- Jason J Hu
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA; Department of Mathematics, UCLA, Los Angeles, CA 90095, USA
| | - Jane K J Lee
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA; Department of Psychology, UCLA, Los Angeles, CA 90095, USA
| | - Yun-Tao Liu
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA
| | - Clinton Yu
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA
| | - Lan Huang
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA
| | - Inna Aphasizheva
- Department of Molecular and Cell Biology, Boston University Medical Campus (BUMC), Boston, MA 02118, USA
| | - Ruslan Aphasizhev
- Department of Molecular and Cell Biology, Boston University Medical Campus (BUMC), Boston, MA 02118, USA; Department of Biochemistry, BUMC, Boston, MA 02118, USA
| | - Z Hong Zhou
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
223
|
Fahlgren N, Kapoor M, Yordanova G, Papatheodorou I, Waese J, Cole B, Harrison P, Ware D, Tickle T, Paten B, Burdett T, Elsik CG, Tuggle CK, Provart NJ. Toward a data infrastructure for the Plant Cell Atlas. PLANT PHYSIOLOGY 2023; 191:35-46. [PMID: 36200899 PMCID: PMC9806565 DOI: 10.1093/plphys/kiac468] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
We review how a data infrastructure for the Plant Cell Atlas might be built using existing infrastructure and platforms. The Human Cell Atlas has developed an extensive infrastructure for human and mouse single cell data, while the European Bioinformatics Institute has developed a Single Cell Expression Atlas, that currently houses several plant data sets. We discuss issues related to appropriate ontologies for describing a plant single cell experiment. We imagine how such an infrastructure will enable biologists and data scientists to glean new insights into plant biology in the coming decades, as long as such data are made accessible to the community in an open manner.
Collapse
Affiliation(s)
- Noah Fahlgren
- Donald Danforth Plant Science Center, Saint Louis, Missouri 63132, USA
| | - Muskan Kapoor
- Bioinformatics and Computational Biology Program, Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA
| | | | | | - Jamie Waese
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Benjamin Cole
- DOE-Joint Genome Institute, Lawrence Berkeley National Laboratory, 1, Cyclotron Road, Berkeley, California 94720, USA
| | - Peter Harrison
- EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Doreen Ware
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, New York 11724, USA
- USDA ARS NAA Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853, USA
| | - Timothy Tickle
- Data Sciences Platform, The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, USA
| | - Benedict Paten
- UC Santa Cruz Genomics Institute, Baskin School of Engineering, 1156 High Street, Santa Cruz, California 95064, USA
| | - Tony Burdett
- EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Christine G Elsik
- Division of Animal Sciences/Division of Plant Science & Technology/Institute for Data Science & Informatics, University of Missouri, Columbia, Missouri 65211, USA
| | - Christopher K Tuggle
- Bioinformatics and Computational Biology Program, Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA
| | - Nicholas J Provart
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| |
Collapse
|
224
|
Ros-Lucas A, Rioja-Soto D, Gascón J, Alonso-Padilla J. Computational Prediction of Trypanosoma cruzi Epitopes Toward the Generation of an Epitope-Based Vaccine Against Chagas Disease. Methods Mol Biol 2023; 2673:487-504. [PMID: 37258934 DOI: 10.1007/978-1-0716-3239-0_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, is considered a Neglected Tropical Disease. Limited investment is assigned to its study and control, even though it is one of the most prevalent parasitic infections worldwide. An innovative vaccination strategy involving an epitope-based vaccine that displays multiple immune determinants originating from different antigens could counteract the high biological complexity of the parasite and lead to a wide and protective immune response. In this chapter, we describe a computational reverse vaccinology pipeline applied to identify the most promising peptide sequences from T. cruzi proteins, prioritizing evolutionary conserved sequences, to finally select a list of T and B cell epitope candidates to be further tested in an experimental setting.
Collapse
Affiliation(s)
- Albert Ros-Lucas
- Barcelona Institute for Global Health (ISGlobal), Hospital Clinic - University of Barcelona, Barcelona, Spain.
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain.
| | - David Rioja-Soto
- Barcelona Institute for Global Health (ISGlobal), Hospital Clinic - University of Barcelona, Barcelona, Spain
| | - Joaquim Gascón
- Barcelona Institute for Global Health (ISGlobal), Hospital Clinic - University of Barcelona, Barcelona, Spain
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Julio Alonso-Padilla
- Barcelona Institute for Global Health (ISGlobal), Hospital Clinic - University of Barcelona, Barcelona, Spain.
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
225
|
Balbin JM, Heinemann GK, Yeoh LM, Gilberger TW, Armstrong M, Duffy MF, Gilson PR, Wilson DW. Characterisation of PfCZIF1 and PfCZIF2 in Plasmodium falciparum asexual stages. Int J Parasitol 2023; 53:27-41. [PMID: 36400305 DOI: 10.1016/j.ijpara.2022.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/30/2022] [Accepted: 09/25/2022] [Indexed: 11/17/2022]
Abstract
Plasmodium falciparum exerts strong temporal control of gene expression across its lifecycle. Proteins expressed exclusively during late schizogony of blood stages, for example, often have a role in facilitating merozoite invasion of the host red blood cell (RBC), through merozoite development, egress, invasion or early establishment of infection in the RBC. Here, we characterise P. falciparum C3H1 zinc finger 1 (PfCZIF1, Pf3D7_1468400) and P. falciparum C3H1 zinc finger 2 (PfCZIF2, Pf3D7_0818100) which we identified as the only C3H1-type zinc finger proteins with peak expression at schizogony. Previous studies reported that antibodies against PfCZIF1 inhibit merozoite invasion, suggesting this protein may have a potential role during RBC invasion. We show using C-terminal truncations and gene knockouts of each of Pfczif1 and Pfczif2 that neither are essential for blood stage growth. However, they could not both be knocked out simultaneously, suggesting that at least one is needed for parasite growth in vitro. Immunofluorescence localisation of PfCZIF1 and PfCZIF2 indicated that both proteins occur in discrete foci on the periphery of the parasite's cytosol and biochemical assays suggest they are peripherally associated to a membrane. Transcriptomic analyses for the C-terminal truncation mutants reveal no significant expression perturbations with PfCZIF1 truncation. However, modification of PfCZIF2 appears to modify the expression for some exported proteins including PfKAHRP. This study does not support a role for PfCZIF1 or PfCZIF2 in merozoite invasion of the RBC and suggests that these proteins may help regulate the expression of proteins exported into the RBC cytosol after merozoite invasion.
Collapse
Affiliation(s)
- Juan M Balbin
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide 5005, Australia. https://twitter.com/jmiguel_balbin
| | - Gary K Heinemann
- Experimental Therapeutics Laboratory, Clinical and Health Science Unit, University of South Australia, Adelaide, SA 5000, Australia
| | - Lee M Yeoh
- Burnet Institute, Melbourne 3004, Victoria, Australia; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne 3010, Victoria, Australia
| | - Tim-Wolf Gilberger
- Centre for Structural Systems Biology, 22607 Hamburg, Germany; Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; University of Hamburg, 20146 Hamburg, Germany
| | | | - Michael F Duffy
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne 3010, Victoria, Australia
| | - Paul R Gilson
- Burnet Institute, Melbourne 3004, Victoria, Australia; Department of Microbiology and Immunology, The University of Melbourne, Melbourne 3010, Victoria, Australia
| | - Danny W Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide 5005, Australia; Burnet Institute, Melbourne 3004, Victoria, Australia; Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, 5005 SA, Australia.
| |
Collapse
|
226
|
Genome-wide subcellular protein map for the flagellate parasite Trypanosoma brucei. Nat Microbiol 2023; 8:533-547. [PMID: 36804636 PMCID: PMC9981465 DOI: 10.1038/s41564-022-01295-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 11/21/2022] [Indexed: 02/22/2023]
Abstract
Trypanosoma brucei is a model trypanosomatid, an important group of human, animal and plant unicellular parasites. Understanding their complex cell architecture and life cycle is challenging because, as with most eukaryotic microbes, ~50% of genome-encoded proteins have completely unknown functions. Here, using fluorescence microscopy and cell lines expressing endogenously tagged proteins, we mapped the subcellular localization of 89% of the T. brucei proteome, a resource we call TrypTag. We provide clues to function and define lineage-specific organelle adaptations for parasitism, mapping the ultraconserved cellular architecture of eukaryotes, including the first comprehensive 'cartographic' analysis of the eukaryotic flagellum, which is vital for morphogenesis and pathology. To demonstrate the power of this resource, we identify novel organelle subdomains and changes in molecular composition through the cell cycle. TrypTag is a transformative resource, important for hypothesis generation for both eukaryotic evolutionary molecular cell biology and fundamental parasite cell biology.
Collapse
|
227
|
Mazuz ML, Weiss A, Beer O, Tirosh-Levy S, Riklis I, Dveyrin Z, Rorman E, Cohen NZ, Markovich MP, Baneth G. High infection rates of Toxoplasma gondii in cattle, sheep and pigs from Israel. Comp Immunol Microbiol Infect Dis 2023; 92:101928. [PMID: 36459723 DOI: 10.1016/j.cimid.2022.101928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
Toxoplasma gondii is an obligate intracellular parasite belonging to the phylum Apicomplexa, which causes the zoonotic disease toxoplasmosis. T. gondii infects almost all warm blood animals. Generally, infected animals are asymptomatic and remain infected for life. Infection of humans occurs by consumption of infected undercooked meat or contaminated vegetables, fruit and water. The aim of this study was to evaluate the prevalence and seroprevalence of T. gondii in livestock in Israel. For the serological screening we investigated the presence of antibodies against T. gondii in sera using the indirect fluorescent antibody test (IFAT). Molecular screening was preformed using conventional PCR and nested PCR for the detection of T. gondii DNA in tissue samples. Serum samples of 249 cattle and 138 sheep were collected from farms. This serological survey showed high seroprevalence with seropositivity of 29 % in cattle and 33 % in sheep. In addition, 526 paired sera and tissue samples from cattle, sheep and pigs were obtained in slaughterhouses. The serological prevalence of T. gondii in healthy animals intended for human consumption was 29.4 % in cattle, 26.1 % in sheep and 8.1 % in pigs. The molecular detection of T. gondii in the tissue samples was 7.5 % in cattle, 7.3 % in sheep and 6.3 % in pigs. Considering the combined positive results from both serological and molecular assays, exposure to or infection with the parasite was present in 26.2 % of the samples (33.8 % in cattle, 30.3 % in sheep, 12.5 % in pigs). The prevalence of T. gondii in pigs was significantly lower compared to that of cattle and sheep (P < 0.001). All PCR positive samples from animals and 12 human positive samples were genotyped using a restriction fragment length polymorphism (PCR-RFLP) method. The results showed the existence of atypical genotypes in the majority of the samples and no correlation between animals and human samples could be determined from this study. Widespread exposure to T. gondii in Israel with the presence of parasite DNA in meat from cattle, sheep and pigs meant for human consumption was found.
Collapse
Affiliation(s)
| | - Adi Weiss
- Division of Parasitology, Kimron Veterinary Institute, Beit Dagan, Israel; Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment. The Hebrew University of Jerusalem, Israel
| | - Oren Beer
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment. The Hebrew University of Jerusalem, Israel
| | - Sharon Tirosh-Levy
- Division of Parasitology, Kimron Veterinary Institute, Beit Dagan, Israel; Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment. The Hebrew University of Jerusalem, Israel
| | - Irena Riklis
- Israeli National Toxoplasmosis Reference Centre, Ministry of Health, Tel Aviv, Israel
| | - Zeev Dveyrin
- National Public Health Laboratory, Tel Aviv, Public Health Services, Ministry of Health, Israel
| | - Efrat Rorman
- National Public Health Laboratory, Tel Aviv, Public Health Services, Ministry of Health, Israel
| | | | | | - Gad Baneth
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment. The Hebrew University of Jerusalem, Israel
| |
Collapse
|
228
|
Shanmugasundram A, Starns D, Böhme U, Amos B, Wilkinson PA, Harb OS, Warrenfeltz S, Kissinger JC, McDowell MA, Roos DS, Crouch K, Jones AR. TriTrypDB: An integrated functional genomics resource for kinetoplastida. PLoS Negl Trop Dis 2023; 17:e0011058. [PMID: 36656904 PMCID: PMC9888696 DOI: 10.1371/journal.pntd.0011058] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/31/2023] [Accepted: 12/23/2022] [Indexed: 01/20/2023] Open
Abstract
Parasitic diseases caused by kinetoplastid parasites are a burden to public health throughout tropical and subtropical regions of the world. TriTrypDB (https://tritrypdb.org) is a free online resource for data mining of genomic and functional data from these kinetoplastid parasites and is part of the VEuPathDB Bioinformatics Resource Center (https://veupathdb.org). As of release 59, TriTrypDB hosts 83 kinetoplastid genomes, nine of which, including Trypanosoma brucei brucei TREU927, Trypanosoma cruzi CL Brener and Leishmania major Friedlin, undergo manual curation by integrating information from scientific publications, high-throughput assays and user submitted comments. TriTrypDB also integrates transcriptomic, proteomic, epigenomic, population-level and isolate data, functional information from genome-wide RNAi knock-down and fluorescent tagging, and results from automated bioinformatics analysis pipelines. TriTrypDB offers a user-friendly web interface embedded with a genome browser, search strategy system and bioinformatics tools to support custom in silico experiments that leverage integrated data. A Galaxy workspace enables users to analyze their private data (e.g., RNA-sequencing, variant calling, etc.) and explore their results privately in the context of publicly available information in the database. The recent addition of an annotation platform based on Apollo enables users to provide both functional and structural changes that will appear as 'community annotations' immediately and, pending curatorial review, will be integrated into the official genome annotation.
Collapse
Affiliation(s)
- Achchuthan Shanmugasundram
- Department of Biochemistry and Systems Biology, Institute of Integrative, Systems and Molecular Biology, University of Liverpool, Liverpool, United Kingdom
| | - David Starns
- Department of Biochemistry and Systems Biology, Institute of Integrative, Systems and Molecular Biology, University of Liverpool, Liverpool, United Kingdom
| | - Ulrike Böhme
- Department of Biochemistry and Systems Biology, Institute of Integrative, Systems and Molecular Biology, University of Liverpool, Liverpool, United Kingdom
| | - Beatrice Amos
- Department of Biochemistry and Systems Biology, Institute of Integrative, Systems and Molecular Biology, University of Liverpool, Liverpool, United Kingdom
| | - Paul A. Wilkinson
- Department of Biochemistry and Systems Biology, Institute of Integrative, Systems and Molecular Biology, University of Liverpool, Liverpool, United Kingdom
| | - Omar S. Harb
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Susanne Warrenfeltz
- Center for Tropical & Emerging Global Diseases, Department of Genetics, Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
| | - Jessica C. Kissinger
- Center for Tropical & Emerging Global Diseases, Department of Genetics, Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
| | - Mary Ann McDowell
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - David S. Roos
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Kathryn Crouch
- School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
| | - Andrew R. Jones
- Department of Biochemistry and Systems Biology, Institute of Integrative, Systems and Molecular Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
229
|
Sneed SD, Dwivedi SB, DiGate C, Denecke S, Povelones M. Aedes aegypti Malpighian tubules are immunologically activated following systemic Toll activation. Parasit Vectors 2022; 15:469. [PMID: 36522779 PMCID: PMC9753289 DOI: 10.1186/s13071-022-05567-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/02/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Canine heartworm is a widespread and potentially fatal mosquito-borne disease caused by infections with the parasitic nematode, Dirofilaria immitis. We have previously shown that systemic activation of the Toll immune pathway via silencing of the negative regulator Cactus in Aedes aegypti blocks parasite development in the Malpighian tubules (MT), the mosquito renal organ. However, it was not established whether the MT were directly responding to Toll activation or were alternatively responding to upregulated proteins or other changes to the hemolymph driven by other tissues. Distinguishing these possibilities is crucial for developing more precise strategies to block D. immitis while potentially avoiding the fitness cost to the mosquito associated with Cactus silencing. METHODS This study defines the transcriptional response of the MT and changes to the hemolymph proteome of Ae. aegypti after systemic Toll activation via intra-thoracic injection of double-stranded Cactus (dsCactus) RNA. RESULTS Malpighian tubules significantly increased expression of the Toll pathway target genes that significantly overlapped expression changes occurring in whole mosquitoes. A significant overlap between the transcriptional response of the MT and proteins upregulated in the hemolymph was also observed. CONCLUSIONS Our data show that MT are capable of RNA interference-mediated gene silencing and directly respond to dsCactus treatment by upregulating targets of the canonical Toll pathway. Although not definitive, the strong correspondence between the MT transcriptional response and the hemolymph proteomic responses provides evidence that the MT may contribute to mosquito humoral immunity.
Collapse
Affiliation(s)
- Sarah D. Sneed
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Sutopa B. Dwivedi
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Cameron DiGate
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Shane Denecke
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Michael Povelones
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
230
|
Trindade S, De Niz M, Costa-Sequeira M, Bizarra-Rebelo T, Bento F, Dejung M, Narciso MV, López-Escobar L, Ferreira J, Butter F, Bringaud F, Gjini E, Figueiredo LM. Slow growing behavior in African trypanosomes during adipose tissue colonization. Nat Commun 2022; 13:7548. [PMID: 36481558 PMCID: PMC9732351 DOI: 10.1038/s41467-022-34622-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/01/2022] [Indexed: 12/13/2022] Open
Abstract
When Trypanosoma brucei parasites, the causative agent of sleeping sickness, colonize the adipose tissue, they rewire gene expression. Whether this adaptation affects population behavior and disease treatment remained unknown. By using a mathematical model, we estimate that the population of adipose tissue forms (ATFs) proliferates slower than blood parasites. Analysis of the ATFs proteome, measurement of protein synthesis and proliferation rates confirm that the ATFs divide on average every 12 h, instead of 6 h in the blood. Importantly, the population of ATFs is heterogeneous with parasites doubling times ranging between 5 h and 35 h. Slow-proliferating parasites remain capable of reverting to the fast proliferation profile in blood conditions. Intravital imaging shows that ATFs are refractory to drug treatment. We propose that in adipose tissue, a subpopulation of T. brucei parasites acquire a slow growing behavior, which contributes to disease chronicity and treatment failure.
Collapse
Affiliation(s)
- Sandra Trindade
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - Mariana De Niz
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - Mariana Costa-Sequeira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - Tiago Bizarra-Rebelo
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - Fábio Bento
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisbon, Portugal
- Institute of Molecular Biology, Mainz, Germany
| | - Mario Dejung
- Institute of Molecular Biology, 55128, Mainz, Germany
| | - Marta Valido Narciso
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - Lara López-Escobar
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - João Ferreira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - Falk Butter
- Institute of Molecular Biology, 55128, Mainz, Germany
| | - Frédéric Bringaud
- Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, CNRS, UMR-5234, Bordeaux, France
- Centre de Résonance Magnétique des Systèmes Biologiques (RMSB), Université de Bordeaux, CNRS, UMR-5536, Bordeaux, France
| | - Erida Gjini
- Instituto Gulbenkian de Ciência, 2780-156, Oeiras, Portugal.
- Center for Computational and Stochastic Mathematics, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal.
| | - Luisa M Figueiredo
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisbon, Portugal.
| |
Collapse
|
231
|
Delzell S, Nelson SW, Frost MP, Klingbeil MM. Trypanosoma brucei Mitochondrial DNA Polymerase POLIB Contains a Novel Polymerase Domain Insertion That Confers Dominant Exonuclease Activity. Biochemistry 2022; 61:2751-2765. [PMID: 36399653 PMCID: PMC9731263 DOI: 10.1021/acs.biochem.2c00392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/31/2022] [Indexed: 11/19/2022]
Abstract
Trypanosoma brucei and related parasites contain an unusual catenated mitochondrial genome known as kinetoplast DNA (kDNA) composed of maxicircles and minicircles. The kDNA structure and replication mechanism are divergent and essential for parasite survival. POLIB is one of three Family A DNA polymerases independently essential to maintain the kDNA network. However, the division of labor among the paralogs, particularly which might be a replicative, proofreading enzyme, remains enigmatic. De novo modeling of POLIB suggested a structure that is divergent from all other Family A polymerases, in which the thumb subdomain contains a 369 amino acid insertion with homology to DEDDh DnaQ family 3'-5' exonucleases. Here we demonstrate recombinant POLIB 3'-5' exonuclease prefers DNA vs RNA substrates and degrades single- and double-stranded DNA nonprocessively. Exonuclease activity prevails over polymerase activity on DNA substrates at pH 8.0, while DNA primer extension is favored at pH 6.0. Mutations that ablate POLIB polymerase activity slow the exonuclease rate suggesting crosstalk between the domains. We show that POLIB extends an RNA primer more efficiently than a DNA primer in the presence of dNTPs but does not incorporate rNTPs efficiently using either primer. Immunoprecipitation of Pol I-like paralogs from T. brucei corroborates the pH selectivity and RNA primer preferences of POLIB and revealed that the other paralogs efficiently extend a DNA primer. The enzymatic properties of POLIB suggest this paralog is not a replicative kDNA polymerase, and the noncanonical polymerase domain provides another example of exquisite diversity among DNA polymerases for specialized function.
Collapse
Affiliation(s)
- Stephanie
B. Delzell
- Department
of Microbiology, University of Massachusetts, Amherst, Massachusetts01003, United States
| | - Scott W. Nelson
- Roy
J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa50011, United States
| | - Matthew P. Frost
- Department
of Microbiology, University of Massachusetts, Amherst, Massachusetts01003, United States
| | - Michele M. Klingbeil
- Department
of Microbiology, University of Massachusetts, Amherst, Massachusetts01003, United States
- The
Institute for Applied Life Sciences, University
of Massachusetts, Amherst, Massachusetts01003, United States
| |
Collapse
|
232
|
Beneke T, Dobramysl U, Catta-Preta CMC, Mottram JC, Gluenz E, Wheeler RJ. Genome sequence of Leishmania mexicana MNYC/BZ/62/M379 expressing Cas9 and T7 RNA polymerase. Wellcome Open Res 2022; 7:294. [PMID: 36874584 PMCID: PMC9975418 DOI: 10.12688/wellcomeopenres.18575.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
We present the genome sequence of Leishmania mexicana MNYC/BZ/62/M379 modified to express Cas9 and T7 RNA-polymerase, revealing high similarity to the reference genome (MHOM/GT2001/U1103). Through RNAseq-based annotation of coding sequences and untranslated regions, we provide primer sequences for construct and sgRNA template generation for CRISPR-assisted gene deletion and endogenous tagging.
Collapse
Affiliation(s)
- Tom Beneke
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Department of Cell and Developmental Biology, Biocentre, University of Würzburg, Würzburg, 97074, Germany
| | - Ulrich Dobramysl
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | | - Eva Gluenz
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Richard J. Wheeler
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
233
|
Cuy-Chaparro L, Ricaurte-Contreras LA, Bohórquez MD, Arévalo-Pinzón G, Barreto-Santamaria A, Pabón L, Reyes C, Moreno-Pérez DA, Patarroyo MA. Identification of Babesia bovis MSA-1 functionally constraint regions capable of binding to bovine erythrocytes. Vet Parasitol 2022; 312:109834. [DOI: 10.1016/j.vetpar.2022.109834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/23/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
|
234
|
Butterworth S, Torelli F, Lockyer EJ, Wagener J, Song OR, Broncel M, Russell MRG, Moreira-Souza ACA, Young JC, Treeck M. Toxoplasma gondii virulence factor ROP1 reduces parasite susceptibility to murine and human innate immune restriction. PLoS Pathog 2022; 18:e1011021. [PMID: 36476844 PMCID: PMC9762571 DOI: 10.1371/journal.ppat.1011021] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/19/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Toxoplasma gondii is an intracellular parasite that can infect many host species and is a cause of significant human morbidity worldwide. T. gondii secretes a diverse array of effector proteins into the host cell which are critical for infection. The vast majority of these secreted proteins have no predicted functional domains and remain uncharacterised. Here, we carried out a pooled CRISPR knockout screen in the T. gondii Prugniaud strain in vivo to identify secreted proteins that contribute to parasite immune evasion in the host. We demonstrate that ROP1, the first-identified rhoptry protein of T. gondii, is essential for virulence and has a previously unrecognised role in parasite resistance to interferon gamma-mediated innate immune restriction. This function is conserved in the highly virulent RH strain of T. gondii and contributes to parasite growth in both murine and human macrophages. While ROP1 affects the morphology of rhoptries, from where the protein is secreted, it does not affect rhoptry secretion. Finally, we show that ROP1 co-immunoprecipitates with the host cell protein C1QBP, an emerging regulator of innate immune signaling. In summary, we identify putative in vivo virulence factors in the T. gondii Prugniaud strain and show that ROP1 is an important and previously overlooked effector protein that counteracts both murine and human innate immunity.
Collapse
Affiliation(s)
- Simon Butterworth
- Signalling In Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Francesca Torelli
- Signalling In Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Eloise J. Lockyer
- Signalling In Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Jeanette Wagener
- Signalling In Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Ok-Ryul Song
- High-Throughput Screening Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Malgorzata Broncel
- Signalling In Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, United Kingdom
- Proteomics Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Matt R. G. Russell
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | | | - Joanna C. Young
- Signalling In Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Moritz Treeck
- Signalling In Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
235
|
Carrasquilla M, Early AM, Taylor AR, Knudson Ospina A, Echeverry DF, Anderson TJC, Mancilla E, Aponte S, Cárdenas P, Buckee CO, Rayner JC, Sáenz FE, Neafsey DE, Corredor V. Resolving drug selection and migration in an inbred South American Plasmodium falciparum population with identity-by-descent analysis. PLoS Pathog 2022; 18:e1010993. [PMID: 36542676 PMCID: PMC9815574 DOI: 10.1371/journal.ppat.1010993] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 01/05/2023] [Accepted: 11/09/2022] [Indexed: 12/24/2022] Open
Abstract
The human malaria parasite Plasmodium falciparum is globally widespread, but its prevalence varies significantly between and even within countries. Most population genetic studies in P. falciparum focus on regions of high transmission where parasite populations are large and genetically diverse, such as sub-Saharan Africa. Understanding population dynamics in low transmission settings, however, is of particular importance as these are often where drug resistance first evolves. Here, we use the Pacific Coast of Colombia and Ecuador as a model for understanding the population structure and evolution of Plasmodium parasites in small populations harboring less genetic diversity. The combination of low transmission and a high proportion of monoclonal infections means there are few outcrossing events and clonal lineages persist for long periods of time. Yet despite this, the population is evolutionarily labile and has successfully adapted to changes in drug regime. Using newly sequenced whole genomes, we measure relatedness between 166 parasites, calculated as identity by descent (IBD), and find 17 distinct but highly related clonal lineages, six of which have persisted in the region for at least a decade. This inbred population structure is captured in more detail with IBD than with other common population structure analyses like PCA, ADMIXTURE, and distance-based trees. We additionally use patterns of intra-chromosomal IBD and an analysis of haplotypic variation to explore past selection events in the region. Two genes associated with chloroquine resistance, crt and aat1, show evidence of hard selective sweeps, while selection appears soft and/or incomplete at three other key resistance loci (dhps, mdr1, and dhfr). Overall, this work highlights the strength of IBD analyses for studying parasite population structure and resistance evolution in regions of low transmission, and emphasizes that drug resistance can evolve and spread in small populations, as will occur in any region nearing malaria elimination.
Collapse
Affiliation(s)
- Manuela Carrasquilla
- Department of Immunology and Infectious Diseases, Harvard T.H.Chan School of Public Health, Boston, Massachusetts, United States of America
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Angela M. Early
- Department of Immunology and Infectious Diseases, Harvard T.H.Chan School of Public Health, Boston, Massachusetts, United States of America
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Aimee R. Taylor
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Center for Communicable Disease Dynamics, Harvard T.H.Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Angélica Knudson Ospina
- Departamento de Microbiología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Diego F. Echeverry
- Departamento de Microbiología, Facultad de Salud, Universidad del Valle, Cali, Colombia
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
| | - Timothy J. C. Anderson
- Program in Disease Intervention and Prevention, Texas Biomedical Research Institution, San Antonio, Texas, United States of America
| | - Elvira Mancilla
- Secretaría Departamental de Salud del Cauca, Popayán, Colombia
| | - Samanda Aponte
- Departamento de Salud Pública, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Pablo Cárdenas
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Caroline O. Buckee
- Center for Communicable Disease Dynamics, Harvard T.H.Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Julian C. Rayner
- Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Fabián E. Sáenz
- Centro de Investigación para la Salud en América Latina, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Daniel E. Neafsey
- Department of Immunology and Infectious Diseases, Harvard T.H.Chan School of Public Health, Boston, Massachusetts, United States of America
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Vladimir Corredor
- Departamento de Salud Pública, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
236
|
Hoshizaki J, Adjalley SH, Thathy V, Judge K, Berriman M, Reid AJ, Lee MCS. A manually curated annotation characterises genomic features of P. falciparum lncRNAs. BMC Genomics 2022; 23:780. [PMID: 36451097 PMCID: PMC9710153 DOI: 10.1186/s12864-022-09017-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Important regulation occurs at the level of transcription in Plasmodium falciparum and growing evidence suggests that these apicomplexan parasites have complex regulatory networks. Recent studies implicate long noncoding RNAs (lncRNAs) as transcriptional regulators in P. falciparum. However, due to limited research and the lack of necessary experimental tools, our understanding of their role in the malaria-causing parasite remains largely unelucidated. In this work, we address one of these limitations, the lack of an updated and improved lncRNA annotation in P. falciparum. RESULTS We generated long-read RNA sequencing data and integrated information extracted and curated from multiple sources to manually annotate lncRNAs. We identified 1119 novel lncRNAs and validated and refined 1250 existing annotations. Utilising the collated datasets, we generated evidence-based ranking scores for each annotation and characterised the distinct genomic contexts and features of P. falciparum lncRNAs. Certain features indicated subsets with potential biological significance such as 25 lncRNAs containing multiple introns, 335 lncRNAs lacking mutations in piggyBac mutagenic studies and lncRNAs associated with specific biologic processes including two new types of lncRNAs found proximal to var genes. CONCLUSIONS The insights and the annotation presented in this study will serve as valuable tools for researchers seeking to understand the role of lncRNAs in parasite biology through both bioinformatics and experimental approaches.
Collapse
Affiliation(s)
- Johanna Hoshizaki
- grid.52788.300000 0004 0427 7672Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA UK
| | - Sophie H. Adjalley
- grid.52788.300000 0004 0427 7672Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA UK ,Micrographia Bio, London, W12 0BZ UK
| | - Vandana Thathy
- grid.4991.50000 0004 1936 8948MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS UK ,grid.239585.00000 0001 2285 2675Present address: Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY10032 USA
| | - Kim Judge
- grid.52788.300000 0004 0427 7672Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA UK
| | - Matthew Berriman
- grid.52788.300000 0004 0427 7672Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA UK ,grid.8756.c0000 0001 2193 314XWellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, G12 8TA UK
| | - Adam J. Reid
- grid.52788.300000 0004 0427 7672Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA UK ,grid.5335.00000000121885934Present address: Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN UK
| | - Marcus C. S. Lee
- grid.52788.300000 0004 0427 7672Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA UK
| |
Collapse
|
237
|
Maia GA, Filho VB, Kawagoe EK, Teixeira Soratto TA, Moreira RS, Grisard EC, Wagner G. AnnotaPipeline: An integrated tool to annotate eukaryotic proteins using multi-omics data. Front Genet 2022; 13:1020100. [DOI: 10.3389/fgene.2022.1020100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/11/2022] [Indexed: 11/23/2022] Open
Abstract
Assignment of gene function has been a crucial, laborious, and time-consuming step in genomics. Due to a variety of sequencing platforms that generates increasing amounts of data, manual annotation is no longer feasible. Thus, the need for an integrated, automated pipeline allowing the use of experimental data towards validation of in silico prediction of gene function is of utmost relevance. Here, we present a computational workflow named AnnotaPipeline that integrates distinct software and data types on a proteogenomic approach to annotate and validate predicted features in genomic sequences. Based on FASTA (i) nucleotide or (ii) protein sequences or (iii) structural annotation files (GFF3), users can input FASTQ RNA-seq data, MS/MS data from mzXML or similar formats, as the pipeline uses both transcriptomic and proteomic information to corroborate annotations and validate gene prediction, providing transcription and expression evidence for functional annotation. Reannotation of the available Arabidopsis thaliana, Caenorhabditis elegans, Candida albicans, Trypanosoma cruzi, and Trypanosoma rangeli genomes was performed using the AnnotaPipeline, resulting in a higher proportion of annotated proteins and a reduced proportion of hypothetical proteins when compared to the annotations publicly available for these organisms. AnnotaPipeline is a Unix-based pipeline developed using Python and is available at: https://github.com/bioinformatics-ufsc/AnnotaPipeline.
Collapse
|
238
|
Poudyal NR, Paul KS. Fatty acid uptake in Trypanosoma brucei: Host resources and possible mechanisms. Front Cell Infect Microbiol 2022; 12:949409. [PMID: 36478671 PMCID: PMC9719944 DOI: 10.3389/fcimb.2022.949409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/24/2022] [Indexed: 11/22/2022] Open
Abstract
Trypanosoma brucei spp. causes African Sleeping Sickness in humans and nagana, a wasting disease, in cattle. As T. brucei goes through its life cycle in its mammalian and insect vector hosts, it is exposed to distinct environments that differ in their nutrient resources. One such nutrient resource is fatty acids, which T. brucei uses to build complex lipids or as a potential carbon source for oxidative metabolism. Of note, fatty acids are the membrane anchoring moiety of the glycosylphosphatidylinositol (GPI)-anchors of the major surface proteins, Variant Surface Glycoprotein (VSG) and the Procyclins, which are implicated in parasite survival in the host. While T. brucei can synthesize fatty acids de novo, it also readily acquires fatty acids from its surroundings. The relative contribution of parasite-derived vs. host-derived fatty acids to T. brucei growth and survival is not known, nor have the molecular mechanisms of fatty acid uptake been defined. To facilitate experimental inquiry into these important aspects of T. brucei biology, we addressed two questions in this review: (1) What is known about the availability of fatty acids in different host tissues where T. brucei can live? (2) What is known about the molecular mechanisms mediating fatty acid uptake in T. brucei? Finally, based on existing biochemical and genomic data, we suggest a model for T. brucei fatty acid uptake that proposes two major routes of fatty acid uptake: diffusion across membranes followed by intracellular trapping, and endocytosis of host lipoproteins.
Collapse
Affiliation(s)
- Nava Raj Poudyal
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, United States
- Eukaryotic Pathogens Innovation Center (EPIC), Clemson University, Clemson, SC, United States
| | - Kimberly S. Paul
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, United States
- Eukaryotic Pathogens Innovation Center (EPIC), Clemson University, Clemson, SC, United States
| |
Collapse
|
239
|
Wang D, Wang C, Zhu G. Genomic reconstruction and features of glycosylation pathways in the apicomplexan Cryptosporidium parasites. Front Mol Biosci 2022; 9:1051072. [PMID: 36465557 PMCID: PMC9713705 DOI: 10.3389/fmolb.2022.1051072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/03/2022] [Indexed: 02/24/2024] Open
Abstract
Cryptosporidium is a genus of apicomplexan parasites infecting humans or other vertebrates. The majority of the Cryptosporidium species live in host intestines (e.g., C. parvum, C. hominis and C. ubiquitum), but there are a few gastric species (e.g., C. muris and C. andersoni). Among them, C. parvum is the most important zoonotic species, for which a number of glycoproteins have been reported for being involved in the interacting with host cells. However, little is known on the cryptosporidium glycobiology. Information on the glycosylation pathways in Cryptosporidium parasites remains sketchy and only a few studies have truly determined the glycoforms in the parasites. Here we reanalyzed the Cryptosporidium genomes and reconstructed the glycosylation pathways, including the synthesis of N- and O-linked glycans and GPI-anchors. In N-glycosylation, intestinal Cryptosporidium possesses enzymes to make a simple precursor with two terminal glucoses on the long arm (i.e., Glc2Man5GlcNAc2 vs. Glc3Man9GlcNAc2 in humans), but gastric species only makes a simpler precursor containing only the "core" structure (i.e., Man3GlcNAc2). There is an ortholog of glucosidase II (GANAB) in all Cryptosporidium species, for which the authenticity is questioned because it contains no signal peptide and exist in gastric species lacking terminal glucoses for the enzyme to act on. In O-linked glycosylation, all Cryptosporidium species may attach one-unit HexNAc (GalNAc and GlcNAc) and two-unit Fuc-type (Man-Fuc) glycans to the target proteins. Cryptosporidium lacks enzymes to further process N- and O-glycans in the Golgi. The glycosylphosphatidylinositol (GPI)-anchor in Cryptosporidium is predicted to be unbranched and unprocessed further in the Golgi. Cryptosporidium can synthesize limited nucleotide sugars, but possesses at least 12 transporters to scavenge nucleotide sugars or transport them across the ER/Golgi membranes. Overall, Cryptosporidium makes much simpler glycans than the hosts, and the N-glycoforms further differ between intestinal and gastric species. The Cryptosporidium N- and O-glycans are neutrally charged and have limited capacity to absorb water molecules in comparison to the host intestinal mucins that are negatively charged and highly expandable in waters.
Collapse
Affiliation(s)
| | | | - Guan Zhu
- Key Laboratory of Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
240
|
The Innovative Informatics Approaches of High-Throughput Technologies in Livestock: Spearheading the Sustainability and Resiliency of Agrigenomics Research. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111893. [PMID: 36431028 PMCID: PMC9695872 DOI: 10.3390/life12111893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
Abstract
For more than a decade, next-generation sequencing (NGS) has been emerging as the mainstay of agrigenomics research. High-throughput technologies have made it feasible to facilitate research at the scale and cost required for using this data in livestock research. Scale frameworks of sequencing for agricultural and livestock improvement, management, and conservation are partly attributable to innovative informatics methodologies and advancements in sequencing practices. Genome-wide sequence-based investigations are often conducted worldwide, and several databases have been created to discover the connections between worldwide scientific accomplishments. Such studies are beginning to provide revolutionary insights into a new era of genomic prediction and selection capabilities of various domesticated livestock species. In this concise review, we provide selected examples of the current state of sequencing methods, many of which are already being used in animal genomic studies, and summarize the state of the positive attributes of genome-based research for cattle (Bos taurus), sheep (Ovis aries), pigs (Sus scrofa domesticus), horses (Equus caballus), chickens (Gallus gallus domesticus), and ducks (Anas platyrhyncos). This review also emphasizes the advantageous features of sequencing technologies in monitoring and detecting infectious zoonotic diseases. In the coming years, the continued advancement of sequencing technologies in livestock agrigenomics will significantly influence the sustained momentum toward regulatory approaches that encourage innovation to ensure continued access to a safe, abundant, and affordable food supplies for future generations.
Collapse
|
241
|
Oliveira Souza RO, Jacobs KN, Back PS, Bradley PJ, Arrizabalaga G. IMC10 and LMF1 mediate mitochondrial morphology through mitochondrion-pellicle contact sites in Toxoplasma gondii. J Cell Sci 2022; 135:279336. [PMID: 36314270 PMCID: PMC9845740 DOI: 10.1242/jcs.260083] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022] Open
Abstract
The single mitochondrion of Toxoplasma gondii is highly dynamic, being predominantly in a peripherally distributed lasso-shape in intracellular parasites and collapsed in extracellular parasites. The peripheral positioning of the mitochondrion is associated with apparent contacts between the mitochondrion membrane and the parasite pellicle. The outer mitochondrial membrane-associated protein LMF1 is critical for the correct positioning of the mitochondrion. Intracellular parasites lacking LMF1 fail to form the lasso-shaped mitochondrion. To identify other proteins that tether the mitochondrion of the parasite to the pellicle, we performed a yeast two-hybrid screen for LMF1 interactors. We identified 70 putative interactors localized in different cellular compartments, such as the apical end of the parasite, mitochondrial membrane and the inner membrane complex (IMC), including with the pellicle protein IMC10. Using protein-protein interaction assays, we confirmed the interaction of LMF1 with IMC10. Conditional knockdown of IMC10 does not affect parasite viability but severely affects mitochondrial morphology in intracellular parasites and mitochondrial distribution to the daughter cells during division. In effect, IMC10 knockdown phenocopies disruption of LMF1, suggesting that these two proteins define a novel membrane tether between the mitochondrion and the IMC in Toxoplasma. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
| | - Kylie N. Jacobs
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Peter S. Back
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Peter J. Bradley
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA,Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Gustavo Arrizabalaga
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA,Author for correspondence ()
| |
Collapse
|
242
|
Olson RD, Assaf R, Brettin T, Conrad N, Cucinell C, Davis J, Dempsey D, Dickerman A, Dietrich E, Kenyon R, Kuscuoglu M, Lefkowitz E, Lu J, Machi D, Macken C, Mao C, Niewiadomska A, Nguyen M, Olsen G, Overbeek J, Parrello B, Parrello V, Porter J, Pusch G, Shukla M, Singh I, Stewart L, Tan G, Thomas C, VanOeffelen M, Vonstein V, Wallace Z, Warren A, Wattam A, Xia F, Yoo H, Zhang Y, Zmasek C, Scheuermann R, Stevens R. Introducing the Bacterial and Viral Bioinformatics Resource Center (BV-BRC): a resource combining PATRIC, IRD and ViPR. Nucleic Acids Res 2022; 51:D678-D689. [PMID: 36350631 PMCID: PMC9825582 DOI: 10.1093/nar/gkac1003] [Citation(s) in RCA: 460] [Impact Index Per Article: 153.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 11/10/2022] Open
Abstract
The National Institute of Allergy and Infectious Diseases (NIAID) established the Bioinformatics Resource Center (BRC) program to assist researchers with analyzing the growing body of genome sequence and other omics-related data. In this report, we describe the merger of the PAThosystems Resource Integration Center (PATRIC), the Influenza Research Database (IRD) and the Virus Pathogen Database and Analysis Resource (ViPR) BRCs to form the Bacterial and Viral Bioinformatics Resource Center (BV-BRC) https://www.bv-brc.org/. The combined BV-BRC leverages the functionality of the bacterial and viral resources to provide a unified data model, enhanced web-based visualization and analysis tools, bioinformatics services, and a powerful suite of command line tools that benefit the bacterial and viral research communities.
Collapse
Affiliation(s)
- Robert D Olson
- Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60637, USA,Division of Data Science and Learning, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Rida Assaf
- Department of Computer Science, American University of Beirut, Beirut, Lebanon
| | - Thomas Brettin
- Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60637, USA,Computing Environment and Life Sciences, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Neal Conrad
- Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60637, USA,Division of Data Science and Learning, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Clark Cucinell
- University of Virginia Biocomplexity Institute, Charlottesville, VA 22904, USA
| | - James J Davis
- To whom correspondence should be addressed. Tel: +1 630 252 1190;
| | - Donald M Dempsey
- Department of Microbiology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Allan Dickerman
- University of Virginia Biocomplexity Institute, Charlottesville, VA 22904, USA
| | - Emily M Dietrich
- Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60637, USA,Division of Data Science and Learning, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Ronald W Kenyon
- University of Virginia Biocomplexity Institute, Charlottesville, VA 22904, USA
| | - Mehmet Kuscuoglu
- Department of Informatics, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Elliot J Lefkowitz
- Department of Microbiology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Jian Lu
- J. Craig Venter Institute, Rockville, MD 20850, USA
| | - Dustin Machi
- University of Virginia Biocomplexity Institute, Charlottesville, VA 22904, USA
| | - Catherine Macken
- Department of Statistics, University of Auckland, Auckland, New Zealand
| | - Chunhong Mao
- University of Virginia Biocomplexity Institute, Charlottesville, VA 22904, USA
| | - Anna Niewiadomska
- Department of Informatics, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Marcus Nguyen
- Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60637, USA,Division of Data Science and Learning, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Gary J Olsen
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
| | - Jamie C Overbeek
- Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60637, USA,Division of Data Science and Learning, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Bruce Parrello
- Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60637, USA,Fellowship for Interpretation of Genomes, Burr Ridge, IL 60527, USA
| | | | - Jacob S Porter
- Computing Environment and Life Sciences, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Gordon D Pusch
- Fellowship for Interpretation of Genomes, Burr Ridge, IL 60527, USA
| | - Maulik Shukla
- Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60637, USA,Division of Data Science and Learning, Argonne National Laboratory, Argonne, IL 60439, USA
| | | | - Lucy Stewart
- Department of Informatics, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Gene Tan
- Department of Informatics, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Chris Thomas
- Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60637, USA,Division of Data Science and Learning, Argonne National Laboratory, Argonne, IL 60439, USA
| | | | | | - Zachary S Wallace
- Department of Microbiology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA,Department of Computer Science and Engineering, University of California, San Diego, CA 92039, USA
| | - Andrew S Warren
- University of Virginia Biocomplexity Institute, Charlottesville, VA 22904, USA
| | - Alice R Wattam
- University of Virginia Biocomplexity Institute, Charlottesville, VA 22904, USA
| | - Fangfang Xia
- Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60637, USA,Division of Data Science and Learning, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Hyunseung Yoo
- Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60637, USA,Division of Data Science and Learning, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Yun Zhang
- Department of Informatics, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Christian M Zmasek
- Department of Informatics, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Richard H Scheuermann
- Department of Informatics, J. Craig Venter Institute, La Jolla, CA 92037, USA,Department of Pathology, University of California, San Diego, CA 92093, USA,Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037, USA,Global Virus Network, Baltimore, MD 21201, USA
| | - Rick L Stevens
- Computing Environment and Life Sciences, Argonne National Laboratory, Argonne, IL 60439, USA,Department of Computer Science, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
243
|
Celia-Sanchez BN, Mangum B, Brewer M, Momany M. Analysis of Cyp51 protein sequences shows 4 major Cyp51 gene family groups across fungi. G3 (BETHESDA, MD.) 2022; 12:jkac249. [PMID: 36130263 PMCID: PMC9635630 DOI: 10.1093/g3journal/jkac249] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Azole drugs target fungal sterol biosynthesis and are used to treat millions of human fungal infections each year. Resistance to azole drugs has emerged in multiple fungal pathogens including Candida albicans, Cryptococcus neoformans, Histoplasma capsulatum, and Aspergillus fumigatus. The most well-studied resistance mechanism in A. fumigatus arises from missense mutations in the coding sequence combined with a tandem repeat in the promoter of cyp51A, which encodes a cytochrome P450 enzyme in the fungal sterol biosynthesis pathway. Filamentous members of Ascomycota such as A. fumigatus have either 1 or 2 of 3 Cyp51 paralogs (Cyp51A, Cyp51B, and Cyp51C). Most previous research in A. fumigatus has focused on Cyp51A due to its role in azole resistance. We used the A. fumigatus Cyp51A protein sequence as the query in database searches to identify Cyp51 proteins across fungi. We found 435 Cyp51 proteins in 295 species spanning from early-diverging fungi (Blastocladiomycota, Chytridiomycota, Zoopagomycota, and Mucormycota) to late-diverging fungi (Ascomycota and Basidiomycota). We found these sequences formed 4 major Cyp51 groups: Cyp51, Cyp51A, Cyp51B, and Cyp51C. Surprisingly, we found all filamentous Ascomycota had a Cyp51B paralog, while only 50% had a Cyp51A paralog. We created maximum likelihood trees to investigate the evolution of Cyp51 in fungi. Our results suggest Cyp51 is present in all fungi with 3 paralogs emerging in Pezizomycotina, including Cyp51C which appears to have diverged from the progenitor of the Cyp51A and Cyp51B groups.
Collapse
Affiliation(s)
| | - Brandon Mangum
- Department of Plant Biology, University of Georgia, Athens, GA 30606, USA
| | - Marin Brewer
- Department of Plant Pathology, University of Georgia, Athens, GA 30606, USA
| | - Michelle Momany
- Department of Plant Biology, University of Georgia, Athens, GA 30606, USA
| |
Collapse
|
244
|
Descriptive and functional analyses of four cyclin proteins in Trichomonas vaginalis. Mol Biochem Parasitol 2022; 252:111528. [PMID: 36273631 DOI: 10.1016/j.molbiopara.2022.111528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/05/2022] [Accepted: 10/18/2022] [Indexed: 12/31/2022]
Abstract
Trichomonas vaginalis is an early divergent protozoan parasite that causes trichomoniasis, the most common non-viral sexually transmitted infection. In metazoans, there is abundant and detailed research on the cell cycle and the components involved in the regulation mechanisms. Regulators such as the cyclin-dependent kinases (CDKs) and cyclins activate the highly regulated processes of cell division. While CDKs have important roles in the phosphorylation of specific substrates, cyclins are important activating-components of CDKs that allow orderly passage through the different stages of the cell cycle. Cell cycle cyclins are characterized by showing drastic changes in their concentration during the cell cycle progression. However, in protists such as T. vaginalis, some biological processes such as cell cycle regulation remain less well studied. In an attempt to gain insight into cell cycle regulation in T. vaginalis, as an initial approach we characterized four proteins with features of cyclins. The genes encoding these putative cyclins were cloned to produce the recombinant proteins TvCYC1, TvCYC2, TvCYC3, and TvCYC4. The functional activity of TvCYC2, TvCYC3, and TvCYC4 was assessed through their complementation of a yeast cln1,2,3Δ mutant strain; TvCYC1 was not able to complement this mutant. Furthermore, our results suggest that TvCYC1, TvCYC2, and TvCYC3, are able to interact with and activate the kinase activity of TvCRK1, a kinase previously characterized by our group. The present study represents the first characterization of cyclins potentially involved in cell cycle regulation in T. vaginalis.
Collapse
|
245
|
Madero-Ayala PA, Mares-Alejandre RE, Ramos-Ibarra MA. In Silico Structural Analysis of Serine Carboxypeptidase Nf314, a Potential Drug Target in Naegleria fowleri Infections. Int J Mol Sci 2022; 23:ijms232012203. [PMID: 36293059 PMCID: PMC9603766 DOI: 10.3390/ijms232012203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/28/2022] [Accepted: 10/12/2022] [Indexed: 11/24/2022] Open
Abstract
Naegleria fowleri, also known as the “brain-eating” amoeba, is a free-living protozoan that resides in freshwater bodies. This pathogenic amoeba infects humans as a casual event when swimming in contaminated water. Upon inhalation, N. fowleri invades the central nervous system and causes primary amoebic meningoencephalitis (PAM), a rapidly progressive and often fatal disease. Although PAM is considered rare, reducing its case fatality rate compels the search for pathogen-specific proteins with a structure–function relationship that favors their application as targets for discovering new or improved drugs against N. fowleri infections. Herein, we report a computational approach to study the structural features of Nf314 (a serine carboxypeptidase that is a virulence-related protein in N. fowleri infections) and assess its potential as a drug target, using bioinformatics tools and in silico molecular docking experiments. Our findings suggest that Nf314 has a ligand binding site suitable for the structure-based design of specific inhibitors. This study represents a further step toward postulating a reliable therapeutic target to treat PAM with drugs specifically aimed at blocking the pathogen proliferation by inhibiting protein function.
Collapse
|
246
|
Carlton JM, Sahu PK, Wassmer SC, Mohanty S, Kessler A, Eapen A, Tomko SS, Walton C, Joshi PL, Das D, Albert S, Peter BK, Pradhan MM, Dash AP, Das A. The Impact, Emerging Needs, and New Research Questions Arising from 12 Years of the Center for the Study of Complex Malaria in India. Am J Trop Med Hyg 2022; 107:90-96. [PMID: 36228922 PMCID: PMC9662226 DOI: 10.4269/ajtmh.21-1277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/28/2022] [Indexed: 11/24/2022] Open
Abstract
The Center for the Study of Complex Malaria in India (CSCMi) was launched in 2010 with the overall goal of addressing major gaps in our understanding of "complex malaria" in India through projects on the epidemiology, transmission, and pathogenesis of the disease. The Center was mandated to adopt an integrated approach to malaria research, including building capacity, developing infrastructure, and nurturing future malaria leaders while conducting relevant and impactful studies to assist India as it moves from control to elimination. Here, we will outline some of the interactions and impacts the Center has had with malaria policy and control counterparts in India, as well as describe emerging needs and new research questions that have become apparent over the past 12 years.
Collapse
Affiliation(s)
- Jane M. Carlton
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York
- Department of Epidemiology, School of Global Public Health, New York University, New York, New York
- Address correspondence to Jane M. Carlton, Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York, NY 10003. E-mail:
| | - Praveen K. Sahu
- Department of Molecular and Infectious Diseases, Community Welfare Society Hospital, Rourkela, India
| | - Samuel C. Wassmer
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Sanjib Mohanty
- Department of Molecular and Infectious Diseases, Community Welfare Society Hospital, Rourkela, India
| | - Anne Kessler
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York
| | - Alex Eapen
- IDVC Field Unit, National Institute of Malaria Research, Indian Council of Medical Research, National Institute of Epidemiology Campus, Chennai, India
| | - Sheena Shah Tomko
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Catherine Walton
- Department of Earth and Environmental Sciences, School of Natural Sciences, University of Manchester, Manchester, United Kingdom
| | - Pyare L. Joshi
- Joint Scientific Advisory Committee, Indian Council of Medical Research, and Malaria No More, India Programme, New Delhi, India
| | - Deben Das
- District Headquarters Hospital, Keonjhar, India
| | - Sandra Albert
- Indian Institute of Public Health—Shillong, Shillong, India
- Martin Luther Christian University, Shillong, India
| | | | - Madan M. Pradhan
- Department of Health and Family Welfare, State Vector Borne Disease Control Programme, Bhubaneswar, India
| | - Aditya P. Dash
- Asian Institute of Public Health University, Bhubaneswar, India
| | - Aparup Das
- National Institute of Research in Tribal Health, Indian Council of Medical Research, Jabalpur, India
| |
Collapse
|
247
|
Abrahim M, Machado E, Alvarez-Valín F, de Miranda AB, Catanho M. Uncovering Pseudogenes and Intergenic Protein-coding Sequences in TriTryps' Genomes. Genome Biol Evol 2022; 14:6754225. [PMID: 36208292 PMCID: PMC9576210 DOI: 10.1093/gbe/evac142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 01/24/2023] Open
Abstract
Trypanosomatids belong to a remarkable group of unicellular, parasitic organisms of the order Kinetoplastida, an early diverging branch of the phylogenetic tree of eukaryotes, exhibiting intriguing biological characteristics affecting gene expression (intronless polycistronic transcription, trans-splicing, and RNA editing), metabolism, surface molecules, and organelles (compartmentalization of glycolysis, variation of the surface molecules, and unique mitochondrial DNA), cell biology and life cycle (phagocytic vacuoles evasion and intricate patterns of cell morphogenesis). With numerous genomic-scale data of several trypanosomatids becoming available since 2005 (genomes, transcriptomes, and proteomes), the scientific community can further investigate the mechanisms underlying these unusual features and address other unexplored phenomena possibly revealing biological aspects of the early evolution of eukaryotes. One fundamental aspect comprises the processes and mechanisms involved in the acquisition and loss of genes throughout the evolutionary history of these primitive microorganisms. Here, we present a comprehensive in silico analysis of pseudogenes in three major representatives of this group: Leishmania major, Trypanosoma brucei, and Trypanosoma cruzi. Pseudogenes, DNA segments originating from altered genes that lost their original function, are genomic relics that can offer an essential record of the evolutionary history of functional genes, as well as clues about the dynamics and evolution of hosting genomes. Scanning these genomes with functional proteins as proxies to reveal intergenic regions with protein-coding features, relying on a customized threshold to distinguish statistically and biologically significant sequence similarities, and reassembling remnant sequences from their debris, we found thousands of pseudogenes and hundreds of open reading frames, with particular characteristics in each trypanosomatid: mutation profile, number, content, density, codon bias, average size, single- or multi-copy gene origin, number and type of mutations, putative primitive function, and transcriptional activity. These features suggest a common process of pseudogene formation, different patterns of pseudogene evolution and extant biological functions, and/or distinct genome organization undertaken by those parasites during evolution, as well as different evolutionary and/or selective pressures acting on distinct lineages.
Collapse
Affiliation(s)
- Mayla Abrahim
- Laboratório de Tecnologia Imunológica, Instituto de Tecnologia em Imunobiológicos, Vice-Diretoria de Desenvolvimento Tecnológico, Bio-Manguinhos, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Edson Machado
- Laboratório de Biologia Molecular Aplicada a Micobactérias, Instituto Oswaldo Cruz, Fiocruz, Brazil
| | - Fernando Alvarez-Valín
- Unidad de Genómica Evolutiva, Sección Biomatemática, Universidad de la República del Uruguay, Montevideo, Uruguay
| | | | | |
Collapse
|
248
|
Yadav K, Dwivedi S, Gupta S, Dubey AK, Singh VK, Tanveer A, Yadav S, Yadav D. Genome mining of Fusarium reveals structural and functional diversity of pectin lyases: a bioinformatics approach. 3 Biotech 2022; 12:261. [PMID: 36082361 PMCID: PMC9445148 DOI: 10.1007/s13205-022-03333-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/25/2022] [Indexed: 11/26/2022] Open
Abstract
Pectin lyase (PNL) is an important enzyme of the pectinases group which degrades pectin polymer to 4,5-unsaturated oligogalacturonides by a unique β-elimination mechanism and is used in several industries. The existence of multigene families of pectin lyases has been investigated by mining microbial genomes. In the present study, 52 pectin lyase genes were predicted from sequenced six species of Fusarium, namely F. fujikuroi, F. graminearum, F. proliferatum, F. oxysporum, F. verticillioides and F. virguliforme. These sequences were in silico characterized for several physico-chemical, structural and functional attributes. The translated PNL proteins showed variability with 344-1142 amino acid residues, 35.44-127.41 kDa molecular weight, and pI ranging from 4.63 to 9.28. The aliphatic index ranged from 75.33 to 84.75. Multiple sequence alignment analysis showed several conserved amino acid residues and five distinct groups marked as I, II, III, IV, and V were observed in the phylogenetic tree. The Three-dimensional Structure of five of these PNLs, each representing a distinct group of phylogenetic trees was predicted using I-TASSER Server and validated. The pectin lyase proteins of Fusarium species revealed close similarity with pectin lyase of Aspergillus niger PelA(1IDJ) and PelB(1QCX). Diversity in the structural motifs was observed among Fusarium species with 2 β-sheets, 1 β-hairpin, 7-12 β bulges, 18-25 strands, 6 -11 helices, 1 helix-helix interaction, 32-49 β turns, 2-6 γ turns and 2- 3 disulfide bonds. The unique Pec_lyase domain was uniformly observed among all PNL proteins confirming its identity. The genome-wide mining of Fusarium species was attempted to provide the diversity of PNL genes, which could be explored for diverse applications after performing cloning and expression studies. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03333-w.
Collapse
Affiliation(s)
- Kanchan Yadav
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh 273009 India
| | - Shruti Dwivedi
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh 273009 India
| | - Supriya Gupta
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh 273009 India
| | - Amit K. Dubey
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh 273009 India
| | - Vinay K. Singh
- Centre for Bioinformatics, School of Biotechnology, Banaras Hindu University, Varanasi, Uttar Pradesh 221005 India
| | - Aiman Tanveer
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh 273009 India
| | - Sangeeta Yadav
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh 273009 India
| | - Dinesh Yadav
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh 273009 India
| |
Collapse
|
249
|
Klug D, Arnold K, Mela-Lopez R, Marois E, Blandin SA. A toolbox of engineered mosquito lines to study salivary gland biology and malaria transmission. PLoS Pathog 2022; 18:e1010881. [PMID: 36223382 PMCID: PMC9555648 DOI: 10.1371/journal.ppat.1010881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/12/2022] [Indexed: 11/07/2022] Open
Abstract
Mosquito saliva is a vehicle for the transmission of vector borne pathogens such as Plasmodium parasites and different arboviruses. Despite the key role of the salivary glands in the process of disease transmission, knowledge of host-pathogen interactions taking place within this organ is very limited. To improve the experimental tractability of the salivary glands, we have generated fluorescent reporter lines in the African malaria mosquito Anopheles coluzzii using the salivary gland-specific promoters of the anopheline antiplatelet protein (AAPP), the triple functional domain protein (TRIO) and saglin (SAG) coding genes. Promoter activity was specifically observed in the distal-lateral lobes or in the median lobe of the salivary glands. Besides a comparison of the expression patterns of the selected promoters, the fluorescent probes allowed us to evaluate the inducibility of the selected promoters upon blood feeding and to measure intracellular redox changes. We also combined the aapp-DsRed fluorescent reporter line with a pigmentation-deficient yellow(-) mosquito mutant to assess the feasibility of in vivo microscopy of parasitized salivary glands. This combination allowed locating the salivary gland through the cuticle and imaging of individual sporozoites in vivo, which facilitates live imaging studies of salivary gland colonization by Plasmodium sporozoites.
Collapse
Affiliation(s)
- Dennis Klug
- Université de Strasbourg, CNRS UPR9022, INSERM U1257, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Katharina Arnold
- Université de Strasbourg, CNRS UPR9022, INSERM U1257, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Raquel Mela-Lopez
- Université de Strasbourg, CNRS UPR9022, INSERM U1257, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Eric Marois
- Université de Strasbourg, CNRS UPR9022, INSERM U1257, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Stéphanie A. Blandin
- Université de Strasbourg, CNRS UPR9022, INSERM U1257, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| |
Collapse
|
250
|
Anam Z, Kumari G, Mukherjee S, Rex DAB, Biswas S, Maurya P, Ravikumar S, Gupta N, Kushawaha AK, Sah RK, Chaurasiya A, Singhal J, Singh N, Kaushik S, Prasad TSK, Pati S, Ranganathan A, Singh S. Complementary crosstalk between palmitoylation and phosphorylation events in MTIP regulates its role during Plasmodium falciparum invasion. Front Cell Infect Microbiol 2022; 12:924424. [PMID: 36250062 PMCID: PMC9556994 DOI: 10.3389/fcimb.2022.924424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/10/2022] [Indexed: 11/19/2022] Open
Abstract
Post-translational modifications (PTMs) including phosphorylation and palmitoylation have emerged as crucial biomolecular events that govern many cellular processes including functioning of motility- and invasion-associated proteins during Plasmodium falciparum invasion. However, no study has ever focused on understanding the possibility of a crosstalk between these two molecular events and its direct impact on preinvasion- and invasion-associated protein–protein interaction (PPI) network-based molecular machinery. Here, we used an integrated in silico analysis to enrich two different catalogues of proteins: (i) the first group defines the cumulative pool of phosphorylated and palmitoylated proteins, and (ii) the second group represents a common set of proteins predicted to have both phosphorylation and palmitoylation. Subsequent PPI analysis identified an important protein cluster comprising myosin A tail interacting protein (MTIP) as one of the hub proteins of the glideosome motor complex in P. falciparum, predicted to have dual modification with the possibility of a crosstalk between the same. Our findings suggested that blocking palmitoylation led to reduced phosphorylation and blocking phosphorylation led to abrogated palmitoylation of MTIP. As a result of the crosstalk between these biomolecular events, MTIP’s interaction with myosin A was found to be abrogated. Next, the crosstalk between phosphorylation and palmitoylation was confirmed at a global proteome level by click chemistry and the phenotypic effect of this crosstalk was observed via synergistic inhibition in P. falciparum invasion using checkerboard assay and isobologram method. Overall, our findings revealed, for the first time, an interdependence between two PTM types, their possible crosstalk, and its direct impact on MTIP-mediated invasion via glideosome assembly protein myosin A in P. falciparum. These insights can be exploited for futuristic drug discovery platforms targeting parasite molecular machinery for developing novel antimalarial therapeutics.
Collapse
Affiliation(s)
- Zille Anam
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Geeta Kumari
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Soumyadeep Mukherjee
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, Uttar Pradesh, India
| | | | - Shreeja Biswas
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Preeti Maurya
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Susendaran Ravikumar
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, Uttar Pradesh, India
| | - Nutan Gupta
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | | | - Raj Kumar Sah
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Ayushi Chaurasiya
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Jhalak Singhal
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Niharika Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Shikha Kaushik
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - T. S. Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, India
| | - Soumya Pati
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, Uttar Pradesh, India
- *Correspondence: Shailja Singh, ; Anand Ranganathan, ; Soumya Pati,
| | - Anand Ranganathan
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
- *Correspondence: Shailja Singh, ; Anand Ranganathan, ; Soumya Pati,
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
- *Correspondence: Shailja Singh, ; Anand Ranganathan, ; Soumya Pati,
| |
Collapse
|