201
|
Mirambeau G, Lyonnais S, Gorelick RJ. Features, processing states, and heterologous protein interactions in the modulation of the retroviral nucleocapsid protein function. RNA Biol 2010; 7:724-34. [PMID: 21045549 PMCID: PMC3073331 DOI: 10.4161/rna.7.6.13777] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 09/14/2010] [Accepted: 09/16/2010] [Indexed: 11/19/2022] Open
Abstract
Retroviral nucleocapsid (NC) is central to viral replication. Nucleic acid chaperoning is a key function for NC through the action of its conserved basic amino acids and zinc-finger structures. NC manipulates genomic RNA from its packaging in the producer cell to reverse transcription into the infected host cell. This chaperone function, in conjunction with NC's aggregating properties, is up-modulated by successive NC processing events, from the Gag precursor to the fully mature protein, resulting in the condensation of the nucleocapsid within the capsid shell. Reverse transcription also depends on NC processing, whereas this process provokes NC dissociation from double-stranded DNA, leading to a preintegration complex (PIC), competent for host chromosomal integration. In addition NC interacts with cellular proteins, some of which are involved in viral budding, and also with several viral proteins. All of these properties are reviewed here, focusing on HIV-1 as a paradigmatic reference and highlighting the plasticity of the nucleocapsid architecture.
Collapse
|
202
|
Wu T, Datta SA, Mitra M, Gorelick RJ, Rein A, Levin JG. Fundamental differences between the nucleic acid chaperone activities of HIV-1 nucleocapsid protein and Gag or Gag-derived proteins: biological implications. Virology 2010; 405:556-67. [PMID: 20655566 PMCID: PMC2963451 DOI: 10.1016/j.virol.2010.06.042] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 05/16/2010] [Accepted: 06/23/2010] [Indexed: 01/31/2023]
Abstract
The HIV-1 Gag polyprotein precursor has multiple domains including nucleocapsid (NC). Although mature NC and NC embedded in Gag are nucleic acid chaperones (proteins that remodel nucleic acid structure), few studies include detailed analysis of the chaperone activity of partially processed Gag proteins and comparison with NC and Gag. Here we address this issue by using a reconstituted minus-strand transfer system. NC and NC-containing Gag proteins exhibited annealing and duplex destabilizing activities required for strand transfer. Surprisingly, unlike NC, with increasing concentrations, Gag proteins drastically inhibited the DNA elongation step. This result is consistent with "nucleic acid-driven multimerization" of Gag and the reported slow dissociation of Gag from bound nucleic acid, which prevent reverse transcriptase from traversing the template ("roadblock" mechanism). Our findings illustrate one reason why NC (and not Gag) has evolved as a critical cofactor in reverse transcription, a paradigm that might also extend to other retrovirus systems.
Collapse
Affiliation(s)
- Tiyun Wu
- Laboratory of Molecular Genetics, Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Building 6B, Room 216, 6 Center Drive, Bethesda, MD 20892-2780, USA
| | - Siddhartha A.K. Datta
- HIV Drug Resistance Program, National Cancer Institute-Frederick, Frederick, MD 21702-1201, USA
| | - Mithun Mitra
- Laboratory of Molecular Genetics, Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Building 6B, Room 216, 6 Center Drive, Bethesda, MD 20892-2780, USA
| | - Robert J. Gorelick
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick, MD 21702-1201, USA
| | - Alan Rein
- HIV Drug Resistance Program, National Cancer Institute-Frederick, Frederick, MD 21702-1201, USA
| | - Judith G. Levin
- Laboratory of Molecular Genetics, Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Building 6B, Room 216, 6 Center Drive, Bethesda, MD 20892-2780, USA
| |
Collapse
|
203
|
Towards Inhibition of Vif-APOBEC3G Interaction: Which Protein to Target? Adv Virol 2010; 2010:649315. [PMID: 22347227 PMCID: PMC3275931 DOI: 10.1155/2010/649315] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2010] [Revised: 07/31/2010] [Accepted: 08/14/2010] [Indexed: 11/17/2022] Open
Abstract
APOBEC proteins appeared in the cellular battle against HIV-1 as part of intrinsic cellular immunity. The antiretroviral activity of some of these proteins is overtaken by the action of HIV-1 Viral Infectivity Factor (Vif) protein. Since the discovery of APOBEC3G (A3G) as an antiviral factor, many advances have been made to understand its mechanism of action in the cell and how Vif acts in order to counteract its activity. The mainstream concept is that Vif overcomes the innate antiviral activity of A3G by direct protein binding and promoting its degradation via the cellular ubiquitin/proteasomal pathway. Vif may also inhibit A3G through mechanisms independent of proteasomal degradation. Binding of Vif to A3G is essential for its degradation since disruption of this interaction is predicted to stimulate intracellular antiviral immunity. In this paper we will discuss the different binding partners between both proteins as one of the major challenges for the development of new antiviral drugs.
Collapse
|
204
|
Thielen BK, McNevin JP, McElrath MJ, Hunt BVS, Klein KC, Lingappa JR. Innate immune signaling induces high levels of TC-specific deaminase activity in primary monocyte-derived cells through expression of APOBEC3A isoforms. J Biol Chem 2010; 285:27753-66. [PMID: 20615867 PMCID: PMC2934643 DOI: 10.1074/jbc.m110.102822] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 07/05/2010] [Indexed: 01/06/2023] Open
Abstract
In HIV-1-infected individuals, G-to-A hypermutation is found in HIV-1 DNA isolated from peripheral blood mononuclear cells (PBMCs). These mutations are thought to result from editing by one or more host enzymes in the APOBEC3 (A3) family of cytidine deaminases, which act on CC (APOBEC3G) and TC (other A3 proteins) dinucleotide motifs in DNA (edited cytidine underlined). Although many A3 proteins display high levels of deaminase activity in model systems, only low levels of A3 deaminase activity have been found in primary cells examined to date. In contrast, here we report high levels of deaminase activity at TC motifs when whole PBMCs or isolated primary monocyte-derived cells were treated with interferon-alpha (IFNalpha) or IFNalpha-inducing toll-like receptor ligands. Induction of TC-specific deaminase activity required new transcription and translation and correlated with the appearance of two APOBEC3A (A3A) isoforms. Knockdown of A3A in monocytes with siRNA abolished TC-specific deaminase activity, confirming that A3A isoforms are responsible for all TC-specific deaminase activity observed. Both A3A isoforms appear to be enzymatically active; moreover, our mutational studies raise the possibility that the smaller isoform results from internal translational initiation. In contrast to the high levels of TC-specific activity observed in IFNalpha-treated monocytes, CC-specific activity remained low in PBMCs, suggesting that A3G deaminase activity is relatively inhibited, unlike that of A3A. Together, these findings suggest that deaminase activity of A3A isoforms in monocytes and macrophages may play an important role in host defense against viruses.
Collapse
Affiliation(s)
- Beth K. Thielen
- From the Department of Global Health, University of Washington, Seattle, Washington 98102
| | - John P. McNevin
- the Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, and
| | - M. Juliana McElrath
- the Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, and
- the Department of Medicine, University of Washington, Seattle, Washington 98195
| | | | - Kevin C. Klein
- From the Department of Global Health, University of Washington, Seattle, Washington 98102
| | - Jaisri R. Lingappa
- From the Department of Global Health, University of Washington, Seattle, Washington 98102
- the Department of Medicine, University of Washington, Seattle, Washington 98195
| |
Collapse
|
205
|
Long-term restriction by APOBEC3F selects human immunodeficiency virus type 1 variants with restored Vif function. J Virol 2010; 84:10209-19. [PMID: 20686027 DOI: 10.1128/jvi.00632-10] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tandem stop mutations K26X and H27X in human immunodeficiency virus type 1 (HIV-1) vif compromise virus replication in human T-cell lines that stably express APOBEC3F (A3F) or APOBEC3G (A3G). We previously reported that partial resistance to A3G could develop in these Vif-deficient viruses through a nucleotide A200-to-T/C transversion and a vpr null mutation, but these isolates were still susceptible to restriction by A3F. Here, long-term selection experiments were done to determine how these A3G-selected isolates might evolve to spread in the presence of A3F. We found that A3F, like A3G, is capable of potent, long-term restriction that eventually selects for heritable resistance. In all 7 instances, the selected isolates had restored Vif function to cope with A3F activity. In two isolates, Vif Q26-Q27 and Y26-Q27, the resistance phenotype recapitulated in molecular clones, but when the selected vif alleles were analyzed in the context of an otherwise wild-type viral background, a different outcome emerged. Although HIV-1 clones with Vif Q26-Q27 or Y26-Q27 were fully capable of overcoming A3F, they were now susceptible to restriction by A3G. Concordant with prior studies, a lysine at position 26 proved essential for A3G neutralization. These data combine to indicate that A3F and A3G exert at least partly distinct selective pressures and that Vif function may be essential for the virus to replicate in the presence of A3F.
Collapse
|
206
|
Herschhorn A, Hizi A. Retroviral reverse transcriptases. Cell Mol Life Sci 2010; 67:2717-47. [PMID: 20358252 PMCID: PMC11115783 DOI: 10.1007/s00018-010-0346-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 02/22/2010] [Accepted: 03/08/2010] [Indexed: 12/22/2022]
Abstract
Reverse transcription is a critical step in the life cycle of all retroviruses and related retrotransposons. This complex process is performed exclusively by the retroviral reverse transcriptase (RT) enzyme that converts the viral single-stranded RNA into integration-competent double-stranded DNA. Although all RTs have similar catalytic activities, they significantly differ in several aspects of their catalytic properties, their structures and subunit composition. The RT of human immunodeficiency virus type-1 (HIV-1), the virus causing acquired immunodeficiency syndrome (AIDS), is a prime target for the development of antiretroviral drug therapy of HIV-1/AIDS carriers. Therefore, despite the fundamental contributions of other RTs to the understanding of RTs and retrovirology, most recent RT studies are related to HIV-1 RT. In this review we summarize the basic properties of different RTs. These include, among other topics, their structures, enzymatic activities, interactions with both viral and host proteins, RT inhibition and resistance to antiretroviral drugs.
Collapse
Affiliation(s)
- Alon Herschhorn
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Amnon Hizi
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| |
Collapse
|
207
|
Wissing S, Galloway NLK, Greene WC. HIV-1 Vif versus the APOBEC3 cytidine deaminases: an intracellular duel between pathogen and host restriction factors. Mol Aspects Med 2010; 31:383-97. [PMID: 20538015 DOI: 10.1016/j.mam.2010.06.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2009] [Revised: 06/03/2010] [Accepted: 06/03/2010] [Indexed: 10/19/2022]
Abstract
The Vif protein of HIV is essential for the effective propagation of this pathogenic retrovirus in vivo. Vif acts by preventing virion encapsidation of two potent antiviral factors, the APOBEC3G and APOBEC3F cytidine deaminases. Decreased encapsidation in part involves Vif-mediated recruitment of a ubiquitin E3 ligase complex that promotes polyubiquitylation and proteasome-mediated degradation of APOBEC3G/F. The resultant decline in intracellular levels of these enzymes leads to decreased encapsidation of APOBECG/F into budding virions. This review discusses recent advances in our understanding of the dynamic interplay of Vif with the antiviral APOBEC3 enzymes.
Collapse
Affiliation(s)
- Silke Wissing
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, CA 94158, USA
| | | | | |
Collapse
|
208
|
Chaurasiya KR, Paramanathan T, McCauley MJ, Williams MC. Biophysical characterization of DNA binding from single molecule force measurements. Phys Life Rev 2010; 7:299-341. [PMID: 20576476 DOI: 10.1016/j.plrev.2010.06.001] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 05/19/2010] [Accepted: 05/20/2010] [Indexed: 11/25/2022]
Abstract
Single molecule force spectroscopy is a powerful method that uses the mechanical properties of DNA to explore DNA interactions. Here we describe how DNA stretching experiments quantitatively characterize the DNA binding of small molecules and proteins. Small molecules exhibit diverse DNA binding modes, including binding into the major and minor grooves and intercalation between base pairs of double-stranded DNA (dsDNA). Histones bind and package dsDNA, while other nuclear proteins such as high mobility group proteins bind to the backbone and bend dsDNA. Single-stranded DNA (ssDNA) binding proteins slide along dsDNA to locate and stabilize ssDNA during replication. Other proteins exhibit binding to both dsDNA and ssDNA. Nucleic acid chaperone proteins can switch rapidly between dsDNA and ssDNA binding modes, while DNA polymerases bind both forms of DNA with high affinity at distinct binding sites at the replication fork. Single molecule force measurements quantitatively characterize these DNA binding mechanisms, elucidating small molecule interactions and protein function.
Collapse
Affiliation(s)
- Kathy R Chaurasiya
- Department of Physics, Northeastern University, 111 Dana Research Center, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
209
|
Abstract
Nonprimate animal models of HIV-1 infection are prevented by missing cellular cofactors and by antiviral actions of species-specific host defense factors. These blocks are profound in rodents but may be less abundant in certain Carnivora. Here, we enabled productive, spreading replication and passage of HIV-1 in feline cells. Feline fibroblasts, T-cell lines, and primary peripheral blood mononuclear cells supported early and late HIV-1 life cycle phases in a manner equivalent to that of human cells, except that produced virions had low infectivity. Stable expression of feline immunodeficiency virus (FIV) Vif-green fluorescent protein (GFP) in HIV-1 entry receptor-complemented feline (CrFK) cells enabled robust spreading HIV-1 replication. FIV Vif colocalized with feline APOBEC3 (fA3) proteins, targeted them for degradation, and prevented G-->A hypermutation of the HIV-1 cDNA by fA3CH and fA3H. HIV-1 Vif was inactive against fA3s as expected and even paradoxically augmented restriction in some assays. In an interesting contrast, simian immunodeficiency virus SIVmac Vif had substantial anti-fA3 activities, which were complete against fA3CH and partial against fA3H. Moreover, both primate lentiviral Vifs colocalized with fA3s and could be pulled down from cell lysates by fA3CH. HIV-1 molecular clones that encode FIV Vif or SIVmac Vif (HIV-1(VF) and HIV-1(VS)) were then constructed. These viruses replicated productively in HIV-1 receptor-expressing CrFK cells and could be passaged serially to uninfected cells. Thus, with the exception of entry receptors, the cat genome can supply the dependency factors needed by HIV-1, and a main restriction can be countered by vif chimerism. The results raise the possibility that the domestic cat could yield an animal model of HIV-1 infection.
Collapse
|
210
|
Vif of feline immunodeficiency virus from domestic cats protects against APOBEC3 restriction factors from many felids. J Virol 2010; 84:7312-24. [PMID: 20444897 DOI: 10.1128/jvi.00209-10] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
To get more insight into the role of APOBEC3 (A3) cytidine deaminases in the species-specific restriction of feline immunodeficiency virus (FIV) of the domestic cat, we tested the A3 proteins present in big cats (puma, lion, tiger, and lynx). These A3 proteins were analyzed for expression and sensitivity to the Vif protein of FIV. While A3Z3s and A3Z2-Z3s inhibited Deltavif FIV, felid A3Z2s did not show any antiviral activity against Deltavif FIV or wild-type (wt) FIV. All felid A3Z3s and A3Z2-Z3s were sensitive to Vif of the domestic cat FIV. Vif also induced depletion of felid A3Z2s. Tiger A3s showed a moderate degree of resistance against the Vif-mediated counter defense. These findings may imply that the A3 restriction system does not play a major role to prevent domestic cat FIV transmission to other Felidae. In contrast to the sensitive felid A3s, many nonfelid A3s actively restricted wt FIV replication. To test whether Vif(FIV) can protect also the distantly related human immunodeficiency virus type 1 (HIV-1), a chimeric HIV-1.Vif(FIV) was constructed. This HIV-1.Vif(FIV) was replication competent in nonpermissive feline cells expressing human CD4/CCR5 that did not support the replication of wt HIV-1. We conclude that the replication of HIV-1 in some feline cells is inhibited only by feline A3 restriction factors and the absence of the appropriate receptor or coreceptor.
Collapse
|
211
|
Identification of dominant negative human immunodeficiency virus type 1 Vif mutants that interfere with the functional inactivation of APOBEC3G by virus-encoded Vif. J Virol 2010; 84:5201-11. [PMID: 20219919 DOI: 10.1128/jvi.02318-09] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
APOBEC3G (A3G) is a host cytidine deaminase that serves as a potent intrinsic inhibitor of retroviral replication. A3G is packaged into human immunodeficiency virus type 1 virions and deaminates deoxycytidine to deoxyuridine on nascent minus-strand retroviral cDNA, leading to hyper-deoxyguanine-to-deoxyadenine mutations on positive-strand cDNA and inhibition of viral replication. The antiviral activity of A3G is suppressed by Vif, a lentiviral accessory protein that prevents encapsidation of A3G. In this study, we identified dominant negative mutants of Vif that interfered with the ability of wild-type Vif to inhibit the encapsidation and antiviral activity of A3G. These mutants were nonfunctional due to mutations in the highly conserved HCCH and/or SOCS box motifs, which are required for assembly of a functional Cul5-E3 ubiquitin ligase complex. Similarly, mutation or deletion of a PPLP motif, which was previously reported to be important for Vif dimerization, induced a dominant negative phenotype. Expression of dominant negative Vif counteracted the Vif-induced reduction of intracellular A3G levels, presumably by preventing Vif-induced A3G degradation. Consequently, dominant negative Vif interfered with wild-type Vif's ability to exclude A3G from viral particles and reduced viral infectivity despite the presence of wild-type Vif. The identification of dominant negative mutants of Vif presents exciting possibilities for the design of novel antiviral strategies.
Collapse
|
212
|
Albin JS, Harris RS. Interactions of host APOBEC3 restriction factors with HIV-1 in vivo: implications for therapeutics. Expert Rev Mol Med 2010; 12:e4. [PMID: 20096141 PMCID: PMC2860793 DOI: 10.1017/s1462399409001343] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Restriction factors are natural cellular proteins that defend individual cells from viral infection. These factors include the APOBEC3 family of DNA cytidine deaminases, which restrict the infectivity of HIV-1 by hypermutating viral cDNA and inhibiting reverse transcription and integration. HIV-1 thwarts this restriction activity through its accessory protein virion infectivity factor (Vif), which uses multiple mechanisms to prevent APOBEC3 proteins such as APOBEC3G and APOBEC3F from entering viral particles. Here, we review the basic biology of the interactions between human APOBEC3 proteins and HIV-1 Vif. We also summarise, for the first time, current clinical data on the in vivo effects of APOBEC3 proteins, and survey strategies and progress towards developing therapeutics aimed at the APOBEC3-Vif axis.
Collapse
Affiliation(s)
- John S. Albin
- Department of Biochemistry, Molecular Biology & Biophysics, Institute for Molecular Virology, Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA 55455, Phone: +1 612-624-0457; Fax: +1 612-625-2163
| | - Reuben S. Harris
- Department of Biochemistry, Molecular Biology & Biophysics, Institute for Molecular Virology, Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA 55455, Phone: +1 612-624-0457; Fax: +1 612-625-2163
| |
Collapse
|
213
|
Isel C, Ehresmann C, Marquet R. Initiation of HIV Reverse Transcription. Viruses 2010; 2:213-243. [PMID: 21994608 PMCID: PMC3185550 DOI: 10.3390/v2010213] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 01/08/2010] [Accepted: 01/13/2010] [Indexed: 12/01/2022] Open
Abstract
Reverse transcription of retroviral genomes into double stranded DNA is a key event for viral replication. The very first stage of HIV reverse transcription, the initiation step, involves viral and cellular partners that are selectively packaged into the viral particle, leading to an RNA/protein complex with very specific structural and functional features, some of which being, in the case of HIV-1, linked to particular isolates. Recent understanding of the tight spatio-temporal regulation of reverse transcription and its importance for viral infectivity further points toward reverse transcription and potentially its initiation step as an important drug target.
Collapse
Affiliation(s)
- Catherine Isel
- Authors to whom correspondence should be addressed; E-Mail: ; Tel.: +33-388-417-040; Fax: +33-388-602-218 (C.I.); E-Mail: ; Tel.: +33-388-417-054; Fax: +33-388-602-218 (R.M.)
| | | | - Roland Marquet
- Authors to whom correspondence should be addressed; E-Mail: ; Tel.: +33-388-417-040; Fax: +33-388-602-218 (C.I.); E-Mail: ; Tel.: +33-388-417-054; Fax: +33-388-602-218 (R.M.)
| |
Collapse
|
214
|
Zhang H. The Inhibitory Effect of Apolipoprotein B mRNA-Editing Enzyme Catalytic Polypeptide-Like 3G (APOBEC3G) and Its Family Members on the Activity of Cellular MicroRNAs. MIRNA REGULATION OF THE TRANSLATIONAL MACHINERY 2010; 50:71-83. [DOI: 10.1007/978-3-642-03103-8_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
215
|
Smith JL, Bu W, Burdick RC, Pathak VK. Multiple ways of targeting APOBEC3-virion infectivity factor interactions for anti-HIV-1 drug development. Trends Pharmacol Sci 2009; 30:638-46. [PMID: 19837465 PMCID: PMC2787722 DOI: 10.1016/j.tips.2009.09.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 09/12/2009] [Accepted: 09/14/2009] [Indexed: 01/31/2023]
Abstract
HIV-1 infections and the resulting AIDS pandemic remain a global challenge in the absence of a protective vaccine and because of rapid selection of drug-resistant viral variants in response to all currently available antiviral therapies. The development of new and highly active antiviral agents would greatly facilitate effective clinical management of HIV-1 infections and delay the onset of AIDS. Recent advances in our understanding of intracellular immunity conferred by host cytidine deaminases APOBEC3G (A3G) and APOBEC3F (A3F) and the mechanism by which the virally encoded virion infectivity factor (Vif) protein induces their proteasomal degradation provide fresh opportunities for the development of novel antiviral treatments. Interestingly, the Vif-A3G and Vif-A3F interactions that overcome this host defense mechanism are structurally distinct and provide two potential targets for antiviral drug development. This review provides an overview of current knowledge of APOBEC3-Vif interactions and recent efforts to target these interactions for antiviral drug development.
Collapse
Affiliation(s)
- Jessica L. Smith
- Viral Mutation Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Maryland 21702, USA
| | - Wei Bu
- Viral Mutation Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Maryland 21702, USA
- SAIC-Frederick, Frederick, Maryland 21702, USA
| | - Ryan C. Burdick
- Viral Mutation Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Maryland 21702, USA
| | - Vinay K. Pathak
- Viral Mutation Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Maryland 21702, USA
| |
Collapse
|
216
|
The remarkable frequency of human immunodeficiency virus type 1 genetic recombination. Microbiol Mol Biol Rev 2009; 73:451-80, Table of Contents. [PMID: 19721086 DOI: 10.1128/mmbr.00012-09] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The genetic diversity of human immunodeficiency virus type 1 (HIV-1) results from a combination of point mutations and genetic recombination, and rates of both processes are unusually high. This review focuses on the mechanisms and outcomes of HIV-1 genetic recombination and on the parameters that make recombination so remarkably frequent. Experimental work has demonstrated that the process that leads to recombination--a copy choice mechanism involving the migration of reverse transcriptase between viral RNA templates--occurs several times on average during every round of HIV-1 DNA synthesis. Key biological factors that lead to high recombination rates for all retroviruses are the recombination-prone nature of their reverse transcription machinery and their pseudodiploid RNA genomes. However, HIV-1 genes recombine even more frequently than do those of many other retroviruses. This reflects the way in which HIV-1 selects genomic RNAs for coencapsidation as well as cell-to-cell transmission properties that lead to unusually frequent associations between distinct viral genotypes. HIV-1 faces strong and changeable selective conditions during replication within patients. The mode of HIV-1 persistence as integrated proviruses and strong selection for defective proviruses in vivo provide conditions for archiving alleles, which can be resuscitated years after initial provirus establishment. Recombination can facilitate drug resistance and may allow superinfecting HIV-1 strains to evade preexisting immune responses, thus adding to challenges in vaccine development. These properties converge to provide HIV-1 with the means, motive, and opportunity to recombine its genetic material at an unprecedented high rate and to allow genetic recombination to serve as one of the highest barriers to HIV-1 eradication.
Collapse
|
217
|
HIV-1 Vif-mediated ubiquitination/degradation of APOBEC3G involves four critical lysine residues in its C-terminal domain. Proc Natl Acad Sci U S A 2009; 106:19539-44. [PMID: 19887642 DOI: 10.1073/pnas.0906652106] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During coevolution with the host, HIV-1 developed the ability to hijack the cellular ubiquitin/proteasome degradation pathway to counteract the antiviral activity of APOBEC3G (A3G), a host cytidine deaminase that can block HIV-1 replication. Abrogation of A3G function involves the HIV-1 Vif protein, which binds A3G and serves as an adapter molecule to recruit A3G to a Cullin5-based E3 ubiquitin ligase complex. Structure-guided mutagenesis of A3G focused on the 14 most surface-exposed Lys residues allowed us to identify four Lys residues (Lys-297, 301, 303, and 334) that are required for Vif-mediated A3G ubiquitination and degradation. Substitution of Arg for these residues confers Vif resistance and restores A3G's antiviral activity in the presence of Vif. In our model, the critical four Lys residues cluster at the C terminus, opposite to the known N-terminal Vif-interaction region in the protein. Thus, spatial constraints imposed by the E3 ligase complex may be an important determinant in Vif-dependent A3G ubiquitination.
Collapse
|
218
|
Hultquist JF, Harris RS. Leveraging APOBEC3 proteins to alter the HIV mutation rate and combat AIDS. Future Virol 2009; 4:605. [PMID: 20174454 DOI: 10.2217/fvl.09.59] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
At least two human APOBEC3 proteins - APOBEC3F and APOBEC3G - are capable of inhibiting HIV-1 replication by mutation of the viral cDNA. HIV-1 averts lethal restriction through its accessory protein Vif, which targets these APOBEC3 proteins for proteasomal degradation. The life-or-death interaction between human APOBEC3 proteins and HIV-1 Vif has stimulated much interest in developing novel therapeutics aimed at altering the deaminase activity of the APOBEC3s, thus changing the virus' mutation rate to either lethal or suboptimal levels. The current state of mechanistic information is reviewed and the possible risks and benefits of increasing (via hypermutation) or decreasing (via hypomutation) the HIV-1 mutation rate through APOBEC3 proteins are discussed.
Collapse
Affiliation(s)
- Judd F Hultquist
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN 55455, USA Tel.: +1 414 702 7232,
| | | |
Collapse
|
219
|
Inducible APOBEC3G-Vif double stable cell line as a high-throughput screening platform to identify antiviral compounds. Antimicrob Agents Chemother 2009; 54:78-87. [PMID: 19841153 DOI: 10.1128/aac.00775-09] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Inhibition of the interaction of the human cytidine-deaminase APOBEC3G (A3G) with the human immunodeficiency virus (HIV) type 1-specific viral infectivity factor (Vif) represents a novel therapeutic approach in which a cellular factor with potent antiviral activity (A3G) plays a key role. In HIV-infected cells, the interaction of Vif with A3G leads to the subsequent degradation of A3G by the 26S proteasome via the ubiquitin pathway and to the loss of antiviral activity. To establish a stable and convenient cellular testing platform for the high-throughput screening of potential antiviral compound libraries, we engineered a double transgenic cell line constitutively expressing an enhanced yellow fluorescent protein expressor (EYFP-A3G) fusion as well as a Tet-Off controllable Vif protein. With this cell line, we were able to measure precisely the Vif-induced degradation of A3G in the presence of potential antiviral compounds in an easy-to-handle, robust, and practical high-throughput multiwell plate format with an excellent screening window coefficient (Z factor) of 0.67.
Collapse
|
220
|
Bransteitter R, Prochnow C, Chen XS. The current structural and functional understanding of APOBEC deaminases. Cell Mol Life Sci 2009; 66:3137-47. [PMID: 19547914 PMCID: PMC11115857 DOI: 10.1007/s00018-009-0070-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2009] [Revised: 05/29/2009] [Accepted: 06/08/2009] [Indexed: 12/11/2022]
Abstract
The apolipoprotein B mRNA-editing enzyme catalytic polypeptide (APOBEC) family of cytidine deaminases has emerged as an intensively studied field as a result of their important biological functions. These enzymes are involved in lipid metabolism, antibody diversification, and the inhibition of retrotransposons, retroviruses, and some DNA viruses. The APOBEC proteins function in these roles by deaminating single-stranded (ss) DNA or RNA. There are two high-resolution crystal structures available for the APOBEC family, Apo2 and the C-terminal catalytic domain (CD2) of Apo3G or Apo3G-CD2 [Holden et al. (Nature 456:121-124, 2008); Prochnow et al. (Nature 445:447-451, 2007)]. Additionally, the structure of Apo3G-CD2 has also been determined using NMR [Chen et al. (Nature 452:116-119, 2008); Furukawa et al. (EMBO J 28:440-451, 2009); Harjes et al. (J Mol Biol, 2009)]. A detailed structural analysis of the APOBEC proteins and a comparison to other zinc-coordinating deaminases can facilitate our understanding of how APOBEC proteins bind nucleic acids, recognize substrates, and form oligomers. Here, we review the recent development of structural and functional studies that apply to Apo3G as well as the APOBEC deaminase family.
Collapse
Affiliation(s)
- Ronda Bransteitter
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089 USA
| | - Courtney Prochnow
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089 USA
| | - Xiaojiang S. Chen
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089 USA
| |
Collapse
|
221
|
Prochnow C, Bransteitter R, Chen XS. APOBEC deaminases-mutases with defensive roles for immunity. SCIENCE IN CHINA. SERIES C, LIFE SCIENCES 2009; 52:893-902. [PMID: 19911124 DOI: 10.1007/s11427-009-0133-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 09/20/2009] [Indexed: 10/20/2022]
Abstract
In recent years, tremendous progress has been made in the elucidation of the biological roles and molecular mechanisms of the apolioprotein B mRNA-editing enzyme catalytic polypeptide (APOBEC) family of enzymes. The APOBEC family of cytidine deaminases has important functional roles within the adaptive and innate immune system. Activation induced cytidine deaminase (AID) plays a central role in the biochemical steps of somatic hypermutation and class switch recombination during antibody maturation, and the APOBEC 3 enzymes are able to inhibit the mobility of retroelements and the replication of retroviruses and DNA viruses, such as the human immunodeficiency virus type-1 and hepatitis B virus. Recent advances in structural and functional studies of the APOBEC enzymes provide new biochemical insights for how these enzymes carry out their biological roles. In this review, we provide an overview of these recent advances in the APOBEC field with a special emphasis on AID and APOBEC3G.
Collapse
Affiliation(s)
- Courtney Prochnow
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | | | | |
Collapse
|
222
|
Restriction of HIV-1 replication in monocytes is abolished by Vpx of SIVsmmPBj. PLoS One 2009; 4:e7098. [PMID: 19768115 PMCID: PMC2741571 DOI: 10.1371/journal.pone.0007098] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 08/25/2009] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Human primary monocytes are refractory to infection with the human immunodeficiency virus 1 (HIV-1) or transduction with HIV-1-derived vectors. In contrast, efficient single round transduction of monocytes is mediated by vectors derived from simian immunodeficiency virus of sooty mangabeys (SIVsmmPBj), depending on the presence of the viral accessory protein Vpx. METHODS AND FINDINGS Here we analyzed whether Vpx of SIVsmmPBj is sufficient for transduction of primary monocytes by HIV-1-derived vectors. To enable incorporation of PBj Vpx into HIV-1 vector particles, a HA-Vpr/Vpx fusion protein was generated. Supplementation of HIV-1 vector particles with this fusion protein was not sufficient to facilitate transduction of human monocytes. However, monocyte transduction with HIV-1-derived vectors was significantly enhanced after delivery of Vpx proteins by virus-like particles (VLPs) derived from SIVsmmPBj. Moreover, pre-incubation with Vpx-containing VLPs restored replication capacity of infectious HIV-1 in human monocytes. In monocytes of non-human primates, single-round transduction with HIV-1 vectors was enabled. CONCLUSION Vpx enhances transduction of primary human and even non-human monocytes with HIV-1-derived vectors, only if delivered in the background of SIVsmmPBj-derived virus-like particles. Thus, for accurate Vpx function the presence of SIVsmmPBj capsid proteins might be required. Vpx is essential to overcome a block of early infection steps in primary monocytes.
Collapse
|
223
|
Zielonka J, Bravo IG, Marino D, Conrad E, Perković M, Battenberg M, Cichutek K, Münk C. Restriction of equine infectious anemia virus by equine APOBEC3 cytidine deaminases. J Virol 2009; 83:7547-59. [PMID: 19458006 PMCID: PMC2708611 DOI: 10.1128/jvi.00015-09] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 05/11/2009] [Indexed: 11/20/2022] Open
Abstract
The mammalian APOBEC3 (A3) proteins comprise a multigene family of cytidine deaminases that act as potent inhibitors of retroviruses and retrotransposons. The A3 locus on the chromosome 28 of the horse genome contains multiple A3 genes: two copies of A3Z1, five copies of A3Z2, and a single copy of A3Z3, indicating a complex evolution of multiple gene duplications. We have cloned and analyzed for expression the different equine A3 genes and examined as well the subcellular distribution of the corresponding proteins. Additionally, we have tested the functional antiretroviral activity of the equine and of several of the human and nonprimate A3 proteins against the Equine infectious anemia virus (EIAV), the Simian immunodeficiency virus (SIV), and the Adeno-associated virus type 2 (AAV-2). Hematopoietic cells of horses express at least five different A3s: A3Z1b, A3Z2a-Z2b, A3Z2c-Z2d, A3Z2e, and A3Z3, whereas circulating macrophages, the natural target of EIAV, express only part of the A3 repertoire. The five A3Z2 tandem copies arose after three consecutive, recent duplication events in the horse lineage, after the split between Equidae and Carnivora. The duplicated genes show different antiviral activities against different viruses: equine A3Z3 and A3Z2c-Z2d are potent inhibitors of EIAV while equine A3Z1b, A3Z2a-Z2b, A3Z2e showed only weak anti-EIAV activity. Equine A3Z1b and A3Z3 restricted AAV and all equine A3s, except A3Z1b, inhibited SIV. We hypothesize that the horse A3 genes are undergoing a process of subfunctionalization in their respective viral specificities, which might provide the evolutionary advantage for keeping five copies of the original gene.
Collapse
Affiliation(s)
- Jörg Zielonka
- Division of Medical Biotechnology, Paul Ehrlich Institut, Langen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
224
|
Defining APOBEC3 expression patterns in human tissues and hematopoietic cell subsets. J Virol 2009; 83:9474-85. [PMID: 19587057 DOI: 10.1128/jvi.01089-09] [Citation(s) in RCA: 269] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Human APOBEC3 enzymes are cellular DNA cytidine deaminases that inhibit and/or mutate a variety of retroviruses, retrotransposons, and DNA viruses. Here, we report a detailed examination of human APOBEC3 gene expression, focusing on APOBEC3G (A3G) and APOBEC3F (A3F), which are potent inhibitors of human immunodeficiency virus type 1 (HIV-1) infection but are suppressed by HIV-1 Vif. A3G and A3F are expressed widely in hematopoietic cell populations, including T cells, B cells, and myeloid cells, as well as in tissues where mRNA levels broadly correlate with the lymphoid cell content (gonadal tissues are exceptions). By measuring mRNA copy numbers, we find that A3G mRNA is approximately 10-fold more abundant than A3F mRNA, implying that A3G is the more significant anti-HIV-1 factor in vivo. A3G and A3F levels also vary between donors, and these differences are sustained over 12 months. Responses to T-cell activation or cytokines reveal that A3G and A3F mRNA levels are induced approximately 10-fold in macrophages and dendritic cells (DCs) by alpha interferon (IFN-alpha) and approximately 4-fold in naïve CD4(+) T cells. However, immunoblotting revealed that A3G protein levels are induced by IFN-alpha in macrophages and DCs but not in T cells. In contrast, T-cell activation and IFN-gamma had a minimal impact on A3G or A3F expression. Finally, we noted that A3A mRNA expression and protein expression are exquisitely sensitive to IFN-alpha induction in CD4(+) T cells, macrophages, and DCs but not to T-cell activation or other cytokines. Given that A3A does not affect HIV-1 infection, these observations imply that this protein may participate in early antiviral innate immune responses.
Collapse
|
225
|
Tumultuous relationship between the human immunodeficiency virus type 1 viral infectivity factor (Vif) and the human APOBEC-3G and APOBEC-3F restriction factors. Microbiol Mol Biol Rev 2009; 73:211-32. [PMID: 19487726 DOI: 10.1128/mmbr.00040-08] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The viral infectivity factor (Vif) is dispensable for human immunodeficiency virus type 1 (HIV-1) replication in so-called permissive cells but is required for replication in nonpermissive cell lines and for pathogenesis. Virions produced in the absence of Vif have an aberrant morphology and an unstable core and are unable to complete reverse transcription. Recent studies demonstrated that human APOBEC-3G (hA3G) and APOBEC-3F (hA3F), which are selectively expressed in nonpermissive cells, possess strong anti-HIV-1 activity and are sufficient to confer a nonpermissive phenotype. Vif induces the degradation of hA3G and hA3F, suggesting that its main function is to counteract these cellular factors. Most studies focused on the hypermutation induced by the cytidine deaminase activity of hA3G and hA3F and on their Vif-induced degradation by the proteasome. However, recent studies suggested that several mechanisms are involved both in the antiviral activity of hA3G and hA3F and in the way Vif counteracts these antiviral factors. Attempts to reconcile the studies involving Vif in virus assembly and stability with these recent findings suggest that hA3G and hA3F partially exert their antiviral activity independently of their catalytic activity by destabilizing the viral core and the reverse transcription complex, possibly by interfering with the assembly and/or maturation of the viral particles. Vif could then counteract hA3G and hA3F by excluding them from the viral assembly intermediates through competition for the viral genomic RNA, by regulating the proteolytic processing of Pr55(Gag), by enhancing the efficiency of the reverse transcription process, and by inhibiting the enzymatic activities of hA3G and hA3F.
Collapse
|
226
|
Roles of Gag and NCp7 in facilitating tRNA(Lys)(3) Annealing to viral RNA in human immunodeficiency virus type 1. J Virol 2009; 83:8099-107. [PMID: 19494012 DOI: 10.1128/jvi.00488-09] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In protease-negative human immunodeficiency virus type 1 (HIV-1) [Pr(-)], the amount of tRNA(3)(Lys) annealed by Gag is modestly reduced ( approximately 25%) compared to that annealed by mature nucleocapsid (NCp7) in protease-positive HIV-1 [Pr(+)]. However, the tRNA(3)(Lys) annealed by Gag also has a strongly reduced ability to initiate reverse transcription and binds less tightly to viral RNA. Both in vivo and in vitro, APOBEC3G (A3G) inhibits tRNA(3)(Lys) annealing facilitated by NCp7 but not annealing facilitated by Gag. While transient exposure of Pr(-) viral RNA to NCp7 in vitro returns the quality and quantity of tRNA(3)(Lys) annealing to Pr(+) levels, the presence of A3G both prevents this rescue and creates a further reduction in tRNA(3)(Lys) annealing. Since A3G inhibition of NCp7-facilitated tRNA(3)(Lys) annealing in vitro requires the presence of A3G during the annealing process, these results suggest that in Pr(+) viruses NCp7 can displace Gag-annealed tRNA(3)(Lys) and re-anneal it to viral RNA, the re-annealing step being subject to A3G inhibition. This supports the possibility that the initial annealing of tRNA(3)(Lys) in wild-type, Pr(+) virus may be by Gag and not by NCp7, perhaps offering the advantage of Gag's preference for binding to RNA stem-loops in the 5' region of viral RNA near the tRNA(3)(Lys) annealing region.
Collapse
|
227
|
Narvaiza I, Linfesty DC, Greener BN, Hakata Y, Pintel DJ, Logue E, Landau NR, Weitzman MD. Deaminase-independent inhibition of parvoviruses by the APOBEC3A cytidine deaminase. PLoS Pathog 2009; 5:e1000439. [PMID: 19461882 PMCID: PMC2678267 DOI: 10.1371/journal.ppat.1000439] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Accepted: 04/22/2009] [Indexed: 12/17/2022] Open
Abstract
The APOBEC3 proteins form a multigene family of cytidine deaminases with inhibitory activity against viruses and retrotransposons. In contrast to APOBEC3G (A3G), APOBEC3A (A3A) has no effect on lentiviruses but dramatically inhibits replication of the parvovirus adeno-associated virus (AAV). To study the contribution of deaminase activity to the antiviral activity of A3A, we performed a comprehensive mutational analysis of A3A. By mutation of non-conserved residues, we found that regions outside of the catalytic active site contribute to both deaminase and antiviral activities. Using A3A point mutants and A3A/A3G chimeras, we show that deaminase activity is not required for inhibition of recombinant AAV production. We also found that deaminase-deficient A3A mutants block replication of both wild-type AAV and the autonomous parvovirus minute virus of mice (MVM). In addition, we identify specific residues of A3A that confer activity against AAV when substituted into A3G. In summary, our results demonstrate that deaminase activity is not necessary for the antiviral activity of A3A against parvoviruses. The APOBEC3 proteins constitute a family of seven cytidine deaminases. Cytidine deaminases are editing enzymes able to remove the amine group from cytidine in single-strand DNA (ssDNA) and RNA, converting it to uracil. APOBEC3 proteins have potent antiviral activity against retroviruses, retrotransposons, and DNA viruses. APOBEC3 generated high interest because of the ability of APOBEC3G (A3G) to inhibit HIV. APOBEC3A (A3A) is a member of the family that inhibits the human parvovirus adeno-associated virus (AAV) and the retrotransposon LINE-1. Parvoviruses are simple ssDNA viruses that do not require a retrotranscription step for their replication. In contrast to A3G, which is predominantly cytoplasmic, A3A is located in both the nucleus and cytoplasm. In addition, A3A consists of a single cytidine deaminase catalytic domain, whereas A3G has two. The dependence of the antiviral function on deaminase activity is controversial. In this study, we identify numerous A3A residues required for deaminase and antiviral activities. We show that A3A not only inhibits AAV but also the minute virus of mice (MVM). Importantly, we demonstrate that A3A does not require its deaminase activity to block the replication of both parvoviruses. Thus, exploiting the simplicity of parvoviruses together with the single-domain cytidine deaminase A3A, we are able to demonstrate that cytidine deaminase activity is not required for APOBEC3 mediated viral inhibition.
Collapse
Affiliation(s)
- Iñigo Narvaiza
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Daniel C. Linfesty
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Benjamin N. Greener
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Yoshiyuki Hakata
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - David J. Pintel
- Department of Molecular Microbiology and Immunology, University of Missouri–Columbia, School of Medicine, Life Sciences Center, Columbia, Missouri, United States of America
| | - Eric Logue
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Nathaniel R. Landau
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Matthew D. Weitzman
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
228
|
Kataropoulou A, Bovolenta C, Belfiore A, Trabatti S, Garbelli A, Porcellini S, Lupo R, Maga G. Mutational analysis of the HIV-1 auxiliary protein Vif identifies independent domains important for the physical and functional interaction with HIV-1 reverse transcriptase. Nucleic Acids Res 2009; 37:3660-9. [PMID: 19369217 PMCID: PMC2699511 DOI: 10.1093/nar/gkp226] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The HIV-1 accessory protein Vif plays a dual role: it counteracts the natural restriction factors APOBEC3G and 3F and ensures efficient retrotranscription of the HIV-1 RNA genome. We have previously shown that Vif can act as an auxiliary factor for HIV-1 reverse transcriptase (RT), increasing its rate of association to RNA or DNA templates. Here, by using seven different Vif mutants, we provide in vitro evidences that Vif stimulates HIV-1 RT through direct protein–protein interaction, which is mediated by its C-terminal domain. Physical interaction appears to require the proline-rich region comprised between amino acid (aa) 161 and 164 of Vif, whereas the RT stimulatory activity requires, in addition, the extreme C-terminal region (aa 169–192) of the Vif protein. Neither the RNA interaction domain, nor the Zn++-binding domain of Vif are required for its interaction with the viral RT. Pseudotyped HIV-1 lentiviral vectors bearing Vif mutants deleted in the RNA- or RT-binding domains show defects in retrotranscription/integration processes in both permissive and nonpermissive cells. Our results broaden our knowledge on how three important functions of Vif (RNA binding, RT binding and stimulation and Zn++ binding), are coordinated by different domains.
Collapse
|
229
|
Malim MH. APOBEC proteins and intrinsic resistance to HIV-1 infection. Philos Trans R Soc Lond B Biol Sci 2009; 364:675-87. [PMID: 19038776 DOI: 10.1098/rstb.2008.0185] [Citation(s) in RCA: 206] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Members of the APOBEC family of cellular polynucleotide cytidine deaminases, most notably APOBEC3G and APOBEC3F, are potent inhibitors of HIV-1 infection. Wild type HIV-1 infections are largely spared from APOBEC3G/F function through the action of the essential viral protein, Vif. In the absence of Vif, APOBEC3G/F are encapsidated by budding virus particles leading to excessive cytidine (C) to uridine (U) editing of negative sense reverse transcripts in newly infected cells. This registers as guanosine (G) to adenosine (A) hypermutations in plus-stranded cDNA. In addition to this profoundly debilitating effect on genetic integrity, APOBEC3G/F also appear to inhibit viral DNA synthesis by impeding the translocation of reverse transcriptase along template RNA. Because the functions of Vif and APOBEC3G/F proteins oppose each other, it is likely that fluctuations in the Vif-APOBEC balance may influence the natural history of HIV-1 infection, as well as viral sequence diversification and evolution. Given Vif's critical role in suppressing APOBEC3G/F function, it can be argued that pharmacologic strategies aimed at restoring the activity of these intrinsic anti-viral factors in the context of infected cells in vivo have clear therapeutic merit, and therefore deserve aggressive pursuit.
Collapse
Affiliation(s)
- Michael H Malim
- Department of Infectious Diseases, King's College London School of Medicine, 2nd Floor, Borough Wing, Guy's Hospital, London Bridge, London SE1 9RT, UK.
| |
Collapse
|
230
|
Browne EP, Allers C, Landau NR. Restriction of HIV-1 by APOBEC3G is cytidine deaminase-dependent. Virology 2009; 387:313-21. [PMID: 19304304 DOI: 10.1016/j.virol.2009.02.026] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 12/22/2008] [Accepted: 02/13/2009] [Indexed: 01/27/2023]
Abstract
Cytidine deamination is the primary mechanism by which APOBEC3G restricts HIV-1; however, several studies have reported that APOBEC3G also inhibits virus replication via a mechanism that is independent of deamination. Using active site APOBEC3G mutants, we have re-evaluated the biological relevance of deaminase-independent APOBEC3G-mediated restriction of HIV-1. APOBEC3G proteins with Glu-->Ala mutations in AS1, AS2 or AS1 and AS2 were stably expressed at physiological levels in CEM-SS T cells and 293T cells and the ability of the cells to support Deltavif HIV-1 replication was then tested. The AS2 and AS1/AS2 mutants were packaged efficiently into virions but in single-cycle or multi-cycle HIV-1 replication assays, were found to lack antiviral activity. The AS1 mutant, which retained deaminase activity, maintained near wild-type antiviral function. To determine the potency of APOBEC3G antiviral activity, cell lines were established that that expressed low levels of wild-type APOBEC3G and generated virions that contained as few as 1-2 APOBEC3G molecules. Even at very low copy number, APOBEC3G caused a significant reduction in infectivity, suggesting that a single molecule of packaged APOBEC3G inactivates the virus. The high potency of APOBEC3G is consistent with a catalytic mechanism of restriction in which a single molecule can induce a string of mutations but difficult to reconcile with a deaminase-independent, non-catalytic mechanism. Analysis of the reverse transcript sequences showed that the G-->A mutations were clustered, likely reflecting the action of single APOBEC3G molecules acting processively. We conclude that cytidine deamination is the mechanism by which APOBEC3G restricts HIV-1.
Collapse
Affiliation(s)
- Edward P Browne
- Department of Microbiology, New York University School of Medicine, New York, 10016, USA
| | | | | |
Collapse
|
231
|
Huthoff H, Autore F, Gallois-Montbrun S, Fraternali F, Malim MH. RNA-dependent oligomerization of APOBEC3G is required for restriction of HIV-1. PLoS Pathog 2009; 5:e1000330. [PMID: 19266078 PMCID: PMC2646141 DOI: 10.1371/journal.ppat.1000330] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Accepted: 02/05/2009] [Indexed: 12/29/2022] Open
Abstract
The human cytidine deaminase APOBEC3G (A3G) is a potent inhibitor of retroviruses and transposable elements and is able to deaminate cytidines to uridines in single-stranded DNA replication intermediates. A3G contains two canonical cytidine deaminase domains (CDAs), of which only the C-terminal one is known to mediate cytidine deamination. By exploiting the crystal structure of the related tetrameric APOBEC2 (A2) protein, we identified residues within A3G that have the potential to mediate oligomerization of the protein. Using yeast two-hybrid assays, co-immunoprecipitation, and chemical crosslinking, we show that tyrosine-124 and tryptophan-127 within the enzymatically inactive N-terminal CDA domain mediate A3G oligomerization, and this coincides with packaging into HIV-1 virions. In addition to the importance of specific residues in A3G, oligomerization is also shown to be RNA-dependent. Homology modelling of A3G onto the A2 template structure indicates an accumulation of positive charge in a pocket formed by a putative dimer interface. Substitution of arginine residues at positions 24, 30, and 136 within this pocket resulted in reduced virus inhibition, virion packaging, and oligomerization. Consistent with RNA serving a central role in all these activities, the oligomerization-deficient A3G proteins associated less efficiently with several cellular RNA molecules. Accordingly, we propose that occupation of the positively charged pocket by RNA promotes A3G oligomerization, packaging into virions and antiviral function. APOBEC3G is a human protein that inhibits the replication of HIV-1 in CD4+ T cells. It gains entry to the virus particles that are released from infected cells and subsequently interferes with viral genome replication, which in the case of HIV-1 is reverse transcription. APOBEC3G is a cytidine deaminase, and it catalyses the deamination of cytidines to uridines in viral single-stranded DNA replication intermediates, resulting in the generation of defective progeny viruses. In addition, APOBEC3G can inhibit reverse transcription by a poorly characterized deamination-independent mechanism. HIV-1 has evolved the viral Vif protein to counteract the antiviral properties of APOBEC3G. Vif associates with APOBEC3G and targets it for proteasomal degradation, such that intracellular levels of APOBEC3G are reduced and packaging into virions is averted. Based on the structure of a human homolog of APOBEC3G, APOBEC2, we performed a mutational analysis of amino acids that have the potential to mediate the assembly of APOBEC3G into multi-component complexes. We report that these amino acids affect the association of APOBEC3G with itself and cellular RNA, and that the same attributes are also required for packaging into virions and antiviral function. Thus, the processes of APOBEC3G self-association, RNA binding, and virion packaging are functionally linked and essential for virus inhibition.
Collapse
Affiliation(s)
- Hendrik Huthoff
- Department of Infectious Diseases, King's College London, London, United Kingdom
| | - Flavia Autore
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | | | - Franca Fraternali
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Michael H. Malim
- Department of Infectious Diseases, King's College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
232
|
Vetter ML, Johnson ME, Antons AK, Unutmaz D, D'Aquila RT. Differences in APOBEC3G expression in CD4+ T helper lymphocyte subtypes modulate HIV-1 infectivity. PLoS Pathog 2009; 5:e1000292. [PMID: 19197360 PMCID: PMC2631133 DOI: 10.1371/journal.ppat.1000292] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Accepted: 01/08/2009] [Indexed: 01/01/2023] Open
Abstract
The cytidine deaminases APOBEC3G and APOBEC3F exert anti–HIV-1 activity that is countered by the HIV-1 vif protein. Based on potential transcription factor binding sites in their putative promoters, we hypothesized that expression of APOBEC3G and APOBEC3F would vary with T helper lymphocyte differentiation. Naive CD4+ T lymphocytes were differentiated to T helper type 1 (Th1) and 2 (Th2) effector cells by expression of transcription factors Tbet and GATA3, respectively, as well as by cytokine polarization. APOBEC3G and APOBEC3F RNA levels, and APOBEC3G protein levels, were higher in Th1 than in Th2 cells. T cell receptor stimulation further increased APOBEC3G and APOBEC3F expression in Tbet- and control-transduced, but not in GATA3-transduced, cells. Neutralizing anti–interferon-γ antibodies reduced both basal and T cell receptor-stimulated APOBEC3G and APOBEC3F expression in Tbet- and control-transduced cells. HIV-1 produced from Th1 cells had more virion APOBEC3G, and decreased infectivity, compared to virions produced from Th2 cells. These differences between Th1- and Th2-produced virions were greater for viruses lacking functional vif, but also seen with vif-positive viruses. Over-expression of APOBEC3G in Th2 cells decreased the infectivity of virions produced from Th2 cells, and reduction of APOBEC3G in Th1 cells increased infectivity of virions produced from Th1 cells, consistent with a causal role for APOBEC3G in the infectivity difference. These results indicate that APOBEC3G and APOBEC3F levels vary physiologically during CD4+ T lymphocyte differentiation, that interferon-γ contributes to this modulation, and that this physiological regulation can cause changes in infectivity of progeny virions, even in the presence of HIV-1 vif. Some host cell proteins can hinder, or restrict, the life cycle of HIV-1. APOBEC3G and APOBEC3F are cellular enzymes that decrease HIV-1's ability to replicate in a subsequent target cell if they are present in the virus particle. As a countermeasure, HIV-1 virion infectivity factor (vif) induces degradation of APOBEC3G and APOBEC3F, thereby preventing them from getting into the budding virus. Although vif-defective viruses cannot evade the antiviral effect of APOBEC3G, such viruses are very rarely present in HIV-1-infected humans. It is not yet known whether physiological variation in APOBEC3G and APOBEC3F expression in CD4+ T lymphocytes is substantial enough to reduce vif-positive HIV-1 infectivity. In this study, we found that T helper type 1 (Th1) cells, a subtype of CD4+ lymphocytes, expressed greater amounts of APOBEC3G and APOBEC3F than T helper type 2 (Th2) cells. This difference led to a difference in infectivity of HIV-1 produced from the two cell types, whether vif was expressed or not. These results demonstrate that physiological regulation of APOBEC3G does restrict vif-positive HIV-1, as well as vif-negative HIV-1. In addition, this study reveals biological factors regulating expression of these proteins that may be exploitable for new therapeutic or preventive strategies against HIV-1.
Collapse
Affiliation(s)
- Michael L. Vetter
- Department of Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Megan E. Johnson
- Department of Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Amanda K. Antons
- Department of Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Derya Unutmaz
- Department of Microbiology, New York University, New York, New York, United States of America
| | - Richard T. D'Aquila
- Department of Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
233
|
Abstract
Retroviruses are highly successful intracellular parasites, and as such they are found in nearly all branches of life. Some are relatively benign, but many are highly pathogenic and can cause either acute or chronic diseases. Therefore, there is tremendous selective pressure on the host to prevent retroviral replication, and for this reason cells have evolved a variety of restriction factors that act to inhibit or block the viruses. This review is a survey of the best-characterized restriction factors capable of inhibiting retroviral replication and aims to highlight the diversity of strategies used for this task.
Collapse
Affiliation(s)
- Daniel Wolf
- HHMI, Department of Biochemistry, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
234
|
Carboxy-terminal domain of AID required for its mRNA complex formation in vivo. Proc Natl Acad Sci U S A 2009; 106:2747-51. [PMID: 19196959 DOI: 10.1073/pnas.0812957106] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) is essential for the class switch recombination (CSR) and somatic hypermutation (SHM) of Ig genes. Originally, AID was postulated to be an RNA-editing enzyme, because of its structural homology with a known RNA-editing enzyme, APOBEC1. In support of this idea, AID shares many of the properties of RNA-editing enzymes, including nucleocytoplasmic shuttling and a dependency on de novo protein synthesis. However, it has not been shown whether AID recognizes a specific mRNA and edits it to generate an enzyme involved in CSR or SHM. Here, we examined the association between AID and polyadenylated [poly(A)(+)] RNA in vivo, using UV cross-linking coupled with a poly(A) capture method that relies on biotinylated oligo(dT) and streptavidin-conjugated beads. We found that both exogenous AID expressed in transfected CH12 cells and endogenous AID expressed in BL2 cells were associated with poly(A)(+) RNA. Similar protein-poly(A)(+) RNA complexes were formed by APOBEC1 and APOBEC3G. However, the interactions of all of these cytidine deaminase family members, including AID, with poly(A)(+) RNA were indirect. This was expected for APOBEC1, which is known to act through an RNA-interacting cofactor, APOBEC1 complementation factor (ACF). In addition, the carboxy-terminal region of AID, which is essential for class switching, was also required for its interaction with poly(A)(+) RNA. These results suggest that the CSR activity of AID requires an ACF-like cofactor that specifically interacts with the carboxy-terminal domain of AID.
Collapse
|
235
|
Post K, Kankia B, Gopalakrishnan S, Yang V, Cramer E, Saladores P, Gorelick RJ, Guo J, Musier-Forsyth K, Levin JG. Fidelity of plus-strand priming requires the nucleic acid chaperone activity of HIV-1 nucleocapsid protein. Nucleic Acids Res 2009; 37:1755-66. [PMID: 19158189 PMCID: PMC2665208 DOI: 10.1093/nar/gkn1045] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
During minus-strand DNA synthesis, RNase H degrades viral RNA sequences, generating potential plus-strand DNA primers. However, selection of the 3' polypurine tract (PPT) as the exclusive primer is required for formation of viral DNA with the correct 5'-end and for subsequent integration. Here we show a new function for the nucleic acid chaperone activity of HIV-1 nucleocapsid protein (NC) in reverse transcription: blocking mispriming by non-PPT RNAs. Three representative 20-nt RNAs from the PPT region were tested for primer extension. Each primer had activity in the absence of NC, but less than the PPT. NC reduced priming by these RNAs to essentially base-line level, whereas PPT priming was unaffected. RNase H cleavage and zinc coordination by NC were required for maximal inhibition of mispriming. Biophysical properties, including thermal stability, helical structure and reverse transcriptase (RT) binding affinity, showed significant differences between PPT and non-PPT duplexes and the trends were generally correlated with the biochemical data. Binding studies in reactions with both NC and RT ruled out a competition binding model to explain NC's observed effects on mispriming efficiency. Taken together, these results demonstrate that NC chaperone activity has a major role in ensuring the fidelity of plus-strand priming.
Collapse
Affiliation(s)
- Klara Post
- Laboratory of Molecular Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
236
|
Induction of APOBEC3 in vivo causes increased restriction of retrovirus infection. J Virol 2009; 83:3486-95. [PMID: 19153238 DOI: 10.1128/jvi.02347-08] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
APOBEC3 proteins are important cellular factors that restrict infection by a number of viruses, including human immunodeficiency virus type 1 (HIV-1). Previously, we found that the mouse APOBEC3 (mA3) restricts infection by mouse mammary tumor virus (MMTV) in its natural host. Dendritic cells (DCs) are the first in vivo targets of MMTV infection. In this study, we demonstrate that mA3 expressed in target cells restricts MMTV infection in DCs ex vivo and in vivo. By comparing infection of DCs from mA3(+/+) and mA3(-/-) mice with one-hit viruses, we show that mA3 expression in target cells blocked MMTV infection at a postentry step and acted together with virion-packaged mA3 to inhibit infection. Similar results were obtained upon infection of mouse DCs with HIV-1 cores pseudotyped with vesicular stomatitis virus G protein. In addition, treatment of cells or mice with lipopolysaccharide (LPS) caused increased levels of mA3 expression and rendered them resistant to MMTV infection. Alpha interferon treatment had a similar effect. This LPS-induced resistance to infection was seen only in mA3(+/+) mice and not in mA3(-/-) mice, arguing that mA3 is the major anti-MMTV restriction factor that is induced upon DC maturation. Thus, increasing the levels of this intrinsic antiretroviral factor in vivo can lead to increased levels of restriction because of higher levels of both cell-intrinsic as well as virion-packaged APOBEC3.
Collapse
|
237
|
Niewiadomska AM, Yu XF. Host restriction of HIV-1 by APOBEC3 and viral evasion through Vif. Curr Top Microbiol Immunol 2009; 339:1-25. [PMID: 20012521 DOI: 10.1007/978-3-642-02175-6_1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The arms race between virus and host is a constant battle. APOBEC3 proteins are known to be potent innate cellular defenses against both endogenous retroelements and diverse retroviruses. However, retroviruses have developed their own methods to launch counter-strikes. Most primate lentiviruses encode a protein called the viral infectivity factor (Vif). Vif induces targeted destruction of APOBEC3 proteins by hijacking the cellular ubiquitin-proteasome pathway. Here we review the research that led up to the identification of A3G, the mechanisms by which APOBEC3 proteins can inhibit retroelements, and the counter-mechanisms that HIV-1 Vif has developed to evade its antiviral activities.
Collapse
Affiliation(s)
- Anna Maria Niewiadomska
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | |
Collapse
|
238
|
APOBEC3G inhibits elongation of HIV-1 reverse transcripts. PLoS Pathog 2008; 4:e1000231. [PMID: 19057663 PMCID: PMC2584787 DOI: 10.1371/journal.ppat.1000231] [Citation(s) in RCA: 248] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Accepted: 11/05/2008] [Indexed: 12/21/2022] Open
Abstract
APOBEC3G (A3G) is a host cytidine deaminase that, in the absence of Vif, restricts HIV-1 replication and reduces the amount of viral DNA that accumulates in cells. Initial studies determined that A3G induces extensive mutation of nascent HIV-1 cDNA during reverse transcription. It has been proposed that this triggers the degradation of the viral DNA, but there is now mounting evidence that this mechanism may not be correct. Here, we use a natural endogenous reverse transcriptase assay to show that, in cell-free virus particles, A3G is able to inhibit HIV-1 cDNA accumulation not only in the absence of hypermutation but also without the apparent need for any target cell factors. We find that although reverse transcription initiates in the presence of A3G, elongation of the cDNA product is impeded. These data support the model that A3G reduces HIV-1 cDNA levels by inhibiting synthesis rather than by inducing degradation.
Collapse
|
239
|
Huthoff H, Towers GJ. Restriction of retroviral replication by APOBEC3G/F and TRIM5alpha. Trends Microbiol 2008; 16:612-9. [PMID: 18976920 PMCID: PMC3556578 DOI: 10.1016/j.tim.2008.08.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 08/21/2008] [Accepted: 08/26/2008] [Indexed: 12/24/2022]
Abstract
Pathogenic viral infections have exerted selection pressure on their hosts to evolve cellular antiviral inhibitors referred to as restriction factors. Examples of such molecules are APOBEC3G, APOBEC3F and TRIM5alpha. APOBEC3G and APOBEC3F are cytidine deaminases that are able to strongly inhibit retroviral replication by at least two mechanisms. They are counteracted by the lentiviral Vif protein. TRIM5alpha binds to sensitive, incoming retroviruses via its C-terminal PRY/SPRY domain and rapidly recruits them to the proteasome before significant viral DNA synthesis can occur. Both of these proteins robustly block retroviral replication in a species-specific way. It remains an open but important question as to whether innate restriction factors such as these can be harnessed to inhibit HIV-1 replication in humans.
Collapse
Affiliation(s)
- Hendrik Huthoff
- Department of Infectious Diseases, Guy's, King's and St Thomas' School of Medicine, London SE1 9RT, UK
| | | |
Collapse
|
240
|
Exosomes packaging APOBEC3G confer human immunodeficiency virus resistance to recipient cells. J Virol 2008; 83:512-21. [PMID: 18987139 DOI: 10.1128/jvi.01658-08] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The human cytidine deaminase APOBEC3G (A3G) is a part of a cellular defense system against human immunodeficiency virus type 1 (HIV-1) and other retroviruses. Antiretroviral activity of A3G can be severely blunted in the presence of the HIV-1 protein Vif. However, in some cells expressing the enzymatically active low-molecular-mass form of A3G, HIV-1 replication is restricted at preintegration steps, before accumulation of Vif. Here, we show that A3G can be secreted by cells in exosomes that confer resistance to both vif-defective and wild-type HIV-1 in exosome recipient cells. Our results also suggest that A3G is the major exosomal component responsible for the anti-HIV-1 activity of exosomes. However, enzymatic activity of encapsidated A3G does not correlate with the observed limited cytidine deamination in HIV-1 DNA, suggesting that A3G-laden exosomes restrict HIV-1 through a nonenzymatic mechanism. Real-time PCR quantitation demonstrated that A3G exosomes reduce accumulation of HIV-1 reverse transcription products and steady-state levels of HIV-1 Gag and Vif proteins. Our findings suggest that A3G exosomes could be developed into a novel class of anti-HIV-1 therapeutics.
Collapse
|
241
|
Abstract
Viral replication requires the help of host cell factors, whose species specificity may affect viral tropism. On the other hand, there exist host factors that restrict viral replication. The anti-viral system mediated by some of these restriction factors, which is termed intrinsic immunity and is distinguished from conventional innate and adaptive immunity, has been described as playing an important role in making species-specific barriers against viral infection. Here, we describe the current progress in understanding of such restriction factors against retroviral replication, focusing on TRIM5alpha and APOBEC, whose anti-retroviral effects have recently been recognized. Additionally, we mention cyclophilin A, which is essential for HIV-1 replication in human cells and may affect viral tropism. Understanding of these host factors would contribute to identification of the determinants for viral tropism.
Collapse
Affiliation(s)
- Hiroaki Takeuchi
- International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| | | |
Collapse
|
242
|
Nomaguchi M, Doi N, Kamada K, Adachi A. Species barrier of HIV-1 and its jumping by virus engineering. Rev Med Virol 2008; 18:261-75. [PMID: 18386279 DOI: 10.1002/rmv.576] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Monkey infection models are absolutely necessary for studies of human immunodeficiency virus type 1 (HIV-1) pathogenesis and of developing drugs/vaccines against HIV-1. In addition, currently unknown roles of its accessory proteins for in vivo replication await elucidation by experimental approaches. Due to the fact that HIV-1 is tropic only for chimpanzees and humans, studies of this line have been impeded for a long time, although various investigations have been carried out utilising genetically related SIV and SIV/HIV chimeric virus (SHIV) as pathogens. Recent findings of anti-HIV-1 innate factors such as tripartite motif protein 5alpha (TRIM5alpha) and APOBEC3G/F prompted us to re-initiate an old and vital research project which would, as a result, confer the capability to overcome the species barrier on the HIV-1. We currently have obtained, by virus engineering through genetic manipulation and adaptation, some new and promising HIV-1 clones for in vivo studies in macaque monkeys as mentioned above. In this review, we summarise the past, present and future of HIV-1/SIV chimeric viruses with special reference to relevant basic HIV-1/SIV studies.
Collapse
Affiliation(s)
- Masako Nomaguchi
- Department of Virology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8503, Japan
| | | | | | | |
Collapse
|
243
|
Zhang W, Huang M, Wang T, Tan L, Tian C, Yu X, Kong W, Yu XF. Conserved and non-conserved features of HIV-1 and SIVagm Vif mediated suppression of APOBEC3 cytidine deaminases. Cell Microbiol 2008; 10:1662-75. [PMID: 18419775 PMCID: PMC3086741 DOI: 10.1111/j.1462-5822.2008.01157.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Human cytidine deaminase APOBEC3C (A3C) acts as a potent inhibitor of SIVagm and can be regulated by both HIV-1 and SIVagm Vif. The mechanism by which Vif suppresses A3C is unknown. In the present study, we demonstrate that both HIV-1 and SIVagm Vif can act in a proteasome-dependent manner to overcome A3C. SIVagm Vif requires the Cullin5-ElonginB-ElonginC E3 ubiquitin ligase for the degradation of A3C as well as the suppression of its antiviral activity. Mutation of a residue critical for the species-specific recognition of human or monkey A3G by HIV-1 Vif or SIVagm Vif in A3C had little effect on HIV-1 or SIVagm Vif-mediated degradation of A3C. Although the amino-terminal region of A3G was not important for Vif-mediated degradation, the corresponding region in A3C was critical. A3C mutants that were competent for Vif binding but resistant to Vif-mediated degradation were identified. These data suggest that primate lentiviral Vif molecules have evolved to recognize multiple host APOBEC3 proteins through distinct mechanisms. However, Cul5-E3 ubiquitin ligase appears to be a common pathway hijacked by HIV-1 and SIV Vif to defeat APOBEC3 proteins. Furthermore, Vif and APOBEC3 binding is not sufficient for target protein degradation indicating an important but uncharacterized Vif function.
Collapse
Affiliation(s)
- Wenyan Zhang
- College of Life Science, Jilin University, Changchun 130021, China
| | | | | | | | | | | | | | | |
Collapse
|
244
|
Malim MH, Emerman M. HIV-1 accessory proteins--ensuring viral survival in a hostile environment. Cell Host Microbe 2008; 3:388-98. [PMID: 18541215 DOI: 10.1016/j.chom.2008.04.008] [Citation(s) in RCA: 438] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 04/04/2008] [Accepted: 04/28/2008] [Indexed: 01/12/2023]
Abstract
One of the features of primate immunodeficiency viruses (HIVs and SIVs) that distinguishes them from other retroviruses is the array of "accessory" proteins they encode. Here, we discuss recent advances in understanding the interactions of the HIV-1 Nef, Vif, Vpu, and Vpr proteins with factors and pathways expressed in cells of the immune system. In at least three instances, the principal activity of the accessory proteins appears to be evasion from various forms of cell-mediated (or intrinsic), antiviral resistance. Broadly speaking, the HIV-1 accessory proteins modify the local environment within infected cells to ensure viral persistence, replication, dissemination, and transmission.
Collapse
Affiliation(s)
- Michael H Malim
- Department of Infectious Diseases, King's College London School of Medicine, 2nd Floor, Borough Wing, Guy's Hospital, London Bridge, London, SE1 9RT, UK.
| | | |
Collapse
|
245
|
APOBEC3G and APOBEC3F require an endogenous cofactor to block HIV-1 replication. PLoS Pathog 2008; 4:e1000095. [PMID: 18604271 PMCID: PMC2435275 DOI: 10.1371/journal.ppat.1000095] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Accepted: 05/29/2008] [Indexed: 01/28/2023] Open
Abstract
APOBEC3G (A3G)/APOBEC3F (A3F) are two members of APOBEC3 cytidine deaminase subfamily. Although they potently inhibit the replication of vif-deficient HIV-1, this mechanism is still poorly understood. Initially, A3G/A3F were thought to catalyze C-to-U transitions on the minus-strand viral cDNAs during reverse transcription to disrupt the viral life cycle. Recently, it was found more likely that A3G/A3F directly interrupts viral reverse transcription or integration. In addition, A3G/A3F are both found in the high-molecular-mass complex in immortalized cell lines, where they interact with a number of different cellular proteins. However, there has been no evidence to prove that these interactions are required for A3G/A3F function. Here, we studied A3G/A3F-restricted HIV-1 replication in six different human T cell lines by infecting them with wild-type or vif-deficient HIV-1. Interestingly, in a CEM-derived cell line CEM-T4, which expresses high levels of A3G/A3F proteins, the vif-deficient virus replicated as equally well as the wild-type virus, suggesting that these endogenous antiretroviral genes lost anti-HIV activities. It was confirmed that these A3G/A3F genes do not contain any mutation and are functionally normal. Consistently, overexpression of exogenous A3G/A3F in CEM-T4 cells still failed to restore their anti-HIV activities. However, this activity could be restored if CEM-T4 cells were fused to 293T cells to form heterokaryons. These results demonstrate that CEM-T4 cells lack a cellular cofactor, which is critical for A3G/A3F anti-HIV activity. We propose that a further study of this novel factor will provide another strategy for a complete understanding of the A3G/A3F antiretroviral mechanism. Cytidine deaminases are host enzymes that remove the amino group from the cytidine base on single-stranded DNA or RNA, resulting in a replacement of the cytidine with a uracil. Such replacement may alter the amino acid–coding sequence of the gene and change protein function. It has been well documented that APOBEC1 and AID play very important roles in protein metabolism and immune response via this mechanism. Interestingly, recent advances in retroviral researches have discovered that the seven cytidine deaminases (APOBEC3A to 3H) on human Chromosome 22 can restrict retrovirus replication. In particular, APOBEC3G and APOBEC3F have the most powerful anti–HIV-1 activity and also inhibit other retroviruses, including retrotransposons. They could inhibit viral replication in either a cytidine deamination-dependent or -independent manner, but the precise mechanism remains to be defined. In this report, we found that in a particular human T cell line, APOBEC3G and APOBEC3F failed to block HIV-1 replication. Further analyses indicated that this cell line lacks a cellular factor, which is very critical for APOBEC3G and APOBEC3F antiviral activity. Thus, APOBEC3G and APOBEC3F require a cofactor to inhibit viral replication, and identification of this cofactor will provide an important strategy to decipher this poorly defined antiretroviral mechanism.
Collapse
|
246
|
Rulli SJ, Mirro J, Hill SA, Lloyd P, Gorelick RJ, Coffin JM, Derse D, Rein A. Interactions of murine APOBEC3 and human APOBEC3G with murine leukemia viruses. J Virol 2008; 82:6566-75. [PMID: 18448535 PMCID: PMC2447093 DOI: 10.1128/jvi.01357-07] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Accepted: 04/03/2008] [Indexed: 02/03/2023] Open
Abstract
APOBEC3 proteins are cytidine deaminases which help defend cells against retroviral infections. One antiviral mechanism involves deaminating dC residues in minus-strand DNA during reverse transcription, resulting in G-to-A mutations in the coding strand. We investigated the effects of mouse APOBEC3 (mA3) and human APOBEC3G (hA3G) upon Moloney murine leukemia virus (MLV). We find that mA3 inactivates MLV but is significantly less effective against MLV than is hA3G. In contrast, mA3 is as potent against human immunodeficiency virus type 1 (HIV-1, lacking the protective Vif protein) as is hA3G. The two APOBEC3 proteins are packaged to similar extents in MLV particles. Dose-response profiles imply that a single APOBEC3 molecule (or oligomer) is sufficient to inactivate an MLV particle. The inactivation of MLV by mA3 and hA3G is accompanied by relatively small reductions in the amount of viral DNA in infected cells. Although hA3G induces significant levels of G-to-A mutations in both MLV and HIV DNAs, and mA3 induces these mutations in HIV DNA, no such mutations were detected in DNA synthesized by MLV inactivated by mA3. Thus, MLV has apparently evolved to partially resist the antiviral effects of mA3 and to totally resist the ability of mA3 to induce G-to-A mutation in viral DNA. Unlike the resistance of HIV-1 and human T-cell leukemia virus type 1 to hA3G, the resistance of MLV to mA3 is not mediated by the exclusion of APOBEC from the virus particle. The nature of its resistance and the mechanism of inactivation of MLV by mA3 are completely unknown.
Collapse
Affiliation(s)
- Samuel J Rulli
- HIV Drug Resistance Program, National Cancer Institute-Frederick, Frederick, MD 12702-1201, USA
| | | | | | | | | | | | | | | |
Collapse
|
247
|
Goila-Gaur R, Strebel K. HIV-1 Vif, APOBEC, and intrinsic immunity. Retrovirology 2008; 5:51. [PMID: 18577210 PMCID: PMC2443170 DOI: 10.1186/1742-4690-5-51] [Citation(s) in RCA: 270] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Accepted: 06/24/2008] [Indexed: 02/05/2023] Open
Abstract
Members of the APOBEC family of cellular cytidine deaminases represent a recently identified group of proteins that provide immunity to infection by retroviruses and protect the cell from endogenous mobile retroelements. Yet, HIV-1 is largely immune to the intrinsic antiviral effects of APOBEC proteins because it encodes Vif (viral infectivity factor), an accessory protein that is critical for in vivo replication of HIV-1. In the absence of Vif, APOBEC proteins are encapsidated by budding virus particles and either cause extensive cytidine to uridine editing of negative sense single-stranded DNA during reverse transcription or restrict virus replication through deaminase-independent mechanisms. Thus, the primary function of Vif is to prevent encapsidation of APOBEC proteins into viral particles. This is in part accomplished by the ability of Vif to induce the ubiquitin-dependent degradation of some of the APOBEC proteins. However, Vif is also able to prevent encapsidation of APOBEC3G and APOBEC3F through degradation-independent mechanism(s). The goal of this review is to recapitulate current knowledge of the functional interaction of HIV-1 and its Vif protein with the APOBEC3 subfamily of proteins and to summarize our present understanding of the mechanism of APOBEC3-dependent retrovirus restriction.
Collapse
Affiliation(s)
- Ritu Goila-Gaur
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 4/312, Bethesda, Maryland 20892-0460, USA.
| | | |
Collapse
|
248
|
Conserved footprints of APOBEC3G on Hypermutated human immunodeficiency virus type 1 and human endogenous retrovirus HERV-K(HML2) sequences. J Virol 2008; 82:8743-61. [PMID: 18562517 DOI: 10.1128/jvi.00584-08] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The human polynucleotide cytidine deaminases APOBEC3G (hA3G) and APOBEC3F (hA3F) are antiviral restriction factors capable of inducing extensive plus-strand guanine-to-adenine (G-to-A) hypermutation in a variety of retroviruses and retroelements, including human immunodeficiency virus type 1 (HIV-1). They differ in target specificity, favoring plus-strand 5'GG and 5'GA dinucleotide motifs, respectively. To characterize their mutational preferences in detail, we analyzed single-copy, near-full-length HIV-1 proviruses which had been hypermutated in vitro by hA3G or hA3F. hA3-induced G-to-A mutation rates were significantly influenced by the wider sequence context of the target G. Moreover, hA3G, and to a lesser extent hA3F, displayed clear tetranucleotide preference hierarchies, irrespective of the genomic region examined and overall hypermutation rate. We similarly analyzed patient-derived hypermutated HIV-1 genomes using a new method for estimating reference sequences. The majority of these, regardless of subtype, carried signatures of hypermutation that strongly correlated with those induced in vitro by hA3G. Analysis of genome-wide hA3-induced mutational profiles confirmed that hypermutation levels were reduced downstream of the polypurine tracts. Additionally, while hA3G mutations were found throughout the genome, hA3F often intensely mutated shorter regions, the locations of which varied between proviruses. We extended our analysis to human endogenous retroviruses (HERVs) from the HERV-K(HML2) family, finding two elements that carried clear footprints of hA3G activity. This constitutes the most direct evidence to date for hA3G activity in the context of natural HERV infections, demonstrating the involvement of this restriction factor in defense against retroviral attacks over millions of years of human evolution.
Collapse
|
249
|
Sire J, Quérat G, Esnault C, Priet S. Uracil within DNA: an actor of antiviral immunity. Retrovirology 2008; 5:45. [PMID: 18533995 PMCID: PMC2427051 DOI: 10.1186/1742-4690-5-45] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Accepted: 06/05/2008] [Indexed: 12/18/2022] Open
Abstract
Uracil is a natural base of RNA but may appear in DNA through two different pathways including cytosine deamination or misincorporation of deoxyuridine 5'-triphosphate nucleotide (dUTP) during DNA replication and constitutes one of the most frequent DNA lesions. In cellular organisms, such lesions are faithfully cleared out through several universal DNA repair mechanisms, thus preventing genome injury. However, several recent studies have brought some pieces of evidence that introduction of uracil bases in viral genomic DNA intermediates during genome replication might be a way of innate immune defence against some viruses. As part of countermeasures, numerous viruses have developed powerful strategies to prevent emergence of uracilated viral genomes and/or to eliminate uracils already incorporated into DNA. This review will present the current knowledge about the cellular and viral countermeasures against uracils in DNA and the implications of these uracils as weapons against viruses.
Collapse
Affiliation(s)
- Joséphine Sire
- UMR IRD-190, Emergence des Pathologies Virales, Faculté de Médecine, 27 Bd Jean Moulin, 13005 Marseille, France.
| | | | | | | |
Collapse
|
250
|
Aguiar RS, Peterlin BM. APOBEC3 proteins and reverse transcription. Virus Res 2008; 134:74-85. [PMID: 18262674 DOI: 10.1016/j.virusres.2007.12.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Revised: 12/28/2007] [Accepted: 12/28/2007] [Indexed: 01/01/2023]
Abstract
The ability of members of the APOBEC3 (A3) family of proteins to confer intrinsic immunity to retroviral infection was recognized in several studies. More specifically, A3 proteins are cytidine deaminases (CDAs) that cause hypermutations of nascent retroviral genomes by deamination of cytidine residues. Although A3 proteins can restrict the replication of HIV, this inhibition is overcome by the viral infectivity factor (Vif). Inhibitory effects of APOBEC proteins are not limited to HIV but extend to other viruses and endogenous mobile genetic elements that share a reverse transcription process analogous to that of exogenous retroviruses. In sharp contrast, another conundrum of A3 proteins is that they inhibit viral replication even in the absence of CDA activity and recent advances have defined the inhibition of reverse transcriptase (RT) catalyzed DNA elongation reactions by A3 proteins. Together, these proteins provide strong and immediate intracellular immunity against incoming pathogens and restrict the movement of mobile genetic elements protecting the genome.
Collapse
Affiliation(s)
- Renato S Aguiar
- Department of Medicine, Microbiology and Immunology, University of California, San Francisco (UCSF), 533 Parnassus Avenue U422, San Francisco, CA 94143-0703, USA
| | | |
Collapse
|