201
|
Quantitative Proteomics Reveals that Hsp90 Inhibition Dynamically Regulates Global Protein Synthesis in Leishmania mexicana. mSystems 2021; 6:6/3/e00089-21. [PMID: 33975965 PMCID: PMC8125071 DOI: 10.1128/msystems.00089-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heat shock protein 90 (Hsp90) is a conserved molecular chaperone responsible for the folding and maturation of nascent proteins. Hsp90 is regarded as a master regulator of protein homeostasis in the cell, and its inhibition affects the functions of a large array of client proteins. The classical Hsp90 inhibitor tanespimycin has shown potent antileishmanial activity. Despite the increasing importance of Hsp90 inhibition in the development of antileishmanial agents, the global effects of these inhibitors on the parasite proteome remain unknown. By combining tanespimycin treatment with bioorthogonal noncanonical amino acid tagging (BONCAT) metabolic labeling and isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomic mass spectrometry, for the first time, we robustly profiled the relative changes in the synthesis of hundreds of parasite proteins as functions of dose and duration of the inhibitor treatment. We showed that Hsp90 inhibition dynamically regulates nascent protein synthesis in Leishmania mexicana, with many chaperones and virulence factors showing inhibitor concentration- and treatment duration-dependent changes in relative expression. Many ribosomal proteins showed a downregulation upon severe Hsp90 inhibition, providing the first protein-level evidence that Hsp90 inhibition affects the protein synthesis capacity of the ribosome in this organism. We also provide an unbiased target validation of tanespimycin in L. mexicana using live parasite photoaffinity labeling with a novel chemical probe and quantitative proteomic mass spectrometry. We showed that the classical Hsp90 inhibitor not only engages with its presumed target, Hsp83-1, in L. mexicana promastigotes but also affects multiple proteins involved in protein synthesis and quality control in the parasite. This study defines the Leishmania parasites' response to Hsp90 inhibition at the level of nascent global protein synthesis and provides a rich resource for future studies on Leishmania spp. biology and antileishmanial drug development.IMPORTANCE Leishmania spp. are the causative agents of leishmaniasis, a poverty-related disease, which is endemic in >90 countries worldwide, affecting approximately 12 million people, with an estimated 700,000 to 1 million new cases and around 70,000 deaths annually. Inhibitors of the chaperone protein Hsp90 have shown promising antileishmanial activity. However, further development of the Hsp90 inhibitors as antileishmanials is hampered by a lack of direct information of their downstream effects on the parasite proteome. Using a combination of mass spectrometry-based quantitative proteomics and chemical and metabolic labeling, we provide the first protein-level evidence that Hsp90 inhibition affects global protein synthesis in Leishmania We also provide the precise relative quantitative changes in the expressions of hundreds of affected proteins as functions of both the concentration and duration of the inhibitor treatment. We find that Leishmania regulates its ribosomal proteins under Hsp90 inhibition while a set of virulence factors and chaperones are preferentially synthesized.
Collapse
|
202
|
Yasuo N, Ishida T, Sekijima M. Computer aided drug discovery review for infectious diseases with case study of anti-Chagas project. Parasitol Int 2021; 83:102366. [PMID: 33915269 DOI: 10.1016/j.parint.2021.102366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/23/2021] [Accepted: 04/07/2021] [Indexed: 01/09/2023]
Abstract
Neglected tropical diseases (NTDs) are parasitic and bacterial infections that are widespread, especially in the tropics, and cause health problems for about one billion people over 149 countries worldwide. However, in terms of therapeutic agents, for example, nifurtimox and benznidazole were developed in the 1960s to treat Chagas disease, but new drugs are desirable because of their side effects. Drug discovery takes 12 to 14 years and costs $2.6 billon dollars, and hence, computer aided drug discovery (CADD) technology is expected to reduce the time and cost. This paper describes our methods and results based on CADD, mainly for NTDs. An overview of databases, molecular simulation and pharmacophore modeling, contest-based drug discovery, and machine learning and their results are presented herein.
Collapse
Affiliation(s)
- Nobuaki Yasuo
- Academy for Convergence of Materials and Informatics (TAC-MI), Tokyo Institute of Technology, S6-23, 2-12-1, Ookayama, Meguro-ku, Tokyo, Japan.
| | - Takashi Ishida
- Department of Computer Science, School of Computing, Tokyo Institute of Technology, W8-85, 2-12-1, Ookayama, Meguro-ku, Tokyo, Japan.
| | - Masakazu Sekijima
- Department of Computer Science, School of Computing, Tokyo Institute of Technology, 4259-J3-23, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan.
| |
Collapse
|
203
|
dos Santos Vasconcelos CR, Rezende AM. Systematic in silico Evaluation of Leishmania spp. Proteomes for Drug Discovery. Front Chem 2021; 9:607139. [PMID: 33987166 PMCID: PMC8111926 DOI: 10.3389/fchem.2021.607139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/24/2021] [Indexed: 11/18/2022] Open
Abstract
Leishmaniasis is a group of neglected infectious diseases, with approximately 1. 3 million new cases each year, for which the available therapies have serious limitations. Therefore, it is extremely important to apply efficient and low-cost methods capable of selecting the best therapeutic targets to speed up the development of new therapies against those diseases. Thus, we propose the use of integrated computational methods capable of evaluating the druggability of the predicted proteomes of Leishmania braziliensis and Leishmania infantum, species responsible for the different clinical manifestations of leishmaniasis in Brazil. The protein members of those proteomes were assessed based on their structural, chemical, and functional contexts applying methods that integrate data on molecular function, biological processes, subcellular localization, drug binding sites, druggability, and gene expression. These data were compared to those extracted from already known drug targets (BindingDB targets), which made it possible to evaluate Leishmania proteomes for their biological relevance and treatability. Through this methodology, we identified more than 100 proteins of each Leishmania species with druggability characteristics, and potential interaction with available drugs. Among those, 31 and 37 proteins of L. braziliensis and L. infantum, respectively, have never been tested as drug targets, and they have shown evidence of gene expression in the evolutionary stage of pharmacological interest. Also, some of those Leishmania targets showed an alignment similarity of <50% when compared to the human proteome, making these proteins pharmacologically attractive, as they present a reduced risk of side effects. The methodology used in this study also allowed the evaluation of opportunities for the repurposing of compounds as anti-leishmaniasis drugs, inferring potential interaction between Leishmania proteins and ~1,000 compounds, of which only 15 have already been tested as a treatment for leishmaniasis. Besides, a list of potential Leishmania targets to be tested using drugs described at BindingDB, such as the potential interaction of the DEAD box RNA helicase, TRYR, and PEPCK proteins with the Staurosporine compound, was made available to the public.
Collapse
Affiliation(s)
- Crhisllane Rafaele dos Santos Vasconcelos
- Bioinformatics Plataform, Microbiology Department, Instituto Aggeu Magalhães, Recife, Brazil
- Posgraduate Program in Genetics, Genetics Department, Universidade Federal de Pernambuco, Recife, Brazil
| | - Antonio Mauro Rezende
- Bioinformatics Plataform, Microbiology Department, Instituto Aggeu Magalhães, Recife, Brazil
- Posgraduate Program in Genetics, Genetics Department, Universidade Federal de Pernambuco, Recife, Brazil
| |
Collapse
|
204
|
Ludzia P, Lowe ED, Marcianò G, Mohammed S, Redfield C, Akiyoshi B. Structural characterization of KKT4, an unconventional microtubule-binding kinetochore protein. Structure 2021; 29:1014-1028.e8. [PMID: 33915106 PMCID: PMC8443799 DOI: 10.1016/j.str.2021.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/17/2021] [Accepted: 04/08/2021] [Indexed: 01/01/2023]
Abstract
The kinetochore is the macromolecular machinery that drives chromosome segregation by interacting with spindle microtubules. Kinetoplastids (such as Trypanosoma brucei), a group of evolutionarily divergent eukaryotes, have a unique set of kinetochore proteins that lack any significant homology to canonical kinetochore components. To date, KKT4 is the only kinetoplastid kinetochore protein that is known to bind microtubules. Here we use X-ray crystallography, NMR spectroscopy, and crosslinking mass spectrometry to characterize the structure and dynamics of KKT4. We show that its microtubule-binding domain consists of a coiled-coil structure followed by a positively charged disordered tail. The structure of the C-terminal BRCT domain of KKT4 reveals that it is likely a phosphorylation-dependent protein-protein interaction domain. The BRCT domain interacts with the N-terminal region of the KKT4 microtubule-binding domain and with a phosphopeptide derived from KKT8. Taken together, these results provide structural insights into the unconventional kinetoplastid kinetochore protein KKT4. Structures of microtubule-binding and BRCT domains in KKT4 are reported The microtubule-binding domain consists of a coiled coil and a disordered tail KKT4 interacts with microtubules via a basic surface at the coiled-coil N terminus KKT4 has a phosphopeptide-binding BRCT domain
Collapse
Affiliation(s)
- Patryk Ludzia
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Edward D Lowe
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Gabriele Marcianò
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Shabaz Mohammed
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | | | - Bungo Akiyoshi
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
205
|
Casein kinase TbCK1.2 regulates division of kinetoplast DNA, and movement of basal bodies in the African trypanosome. PLoS One 2021; 16:e0249908. [PMID: 33861760 PMCID: PMC8051774 DOI: 10.1371/journal.pone.0249908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/26/2021] [Indexed: 01/15/2023] Open
Abstract
The single mitochondrial nucleoid (kinetoplast) of Trypanosoma brucei is found proximal to a basal body (mature (mBB)/probasal body (pBB) pair). Kinetoplast inheritance requires synthesis of, and scission of kinetoplast DNA (kDNA) generating two kinetoplasts that segregate with basal bodies into daughter cells. Molecular details of kinetoplast scission and the extent to which basal body separation influences the process are unavailable. To address this topic, we followed basal body movements in bloodstream trypanosomes following depletion of protein kinase TbCK1.2 which promotes kinetoplast division. In control cells we found that pBBs are positioned 0.4 um from mBBs in G1, and they mature after separating from mBBs by at least 0.8 um: mBB separation reaches ~2.2 um. These data indicate that current models of basal body biogenesis in which pBBs mature in close proximity to mBBs may need to be revisited. Knockdown of TbCK1.2 produced trypanosomes containing one kinetoplast and two nuclei (1K2N), increased the percentage of cells with uncleaved kDNA 400%, decreased mBB spacing by 15%, and inhibited cytokinesis 300%. We conclude that (a) separation of mBBs beyond a threshold of 1.8 um correlates with division of kDNA, and (b) TbCK1.2 regulates kDNA scission. We propose a Kinetoplast Division Factor hypothesis that integrates these data into a pathway for biogenesis of two daughter mitochondrial nucleoids.
Collapse
|
206
|
Escalona-Montaño AR, Zuñiga-Fabián M, Cabrera N, Mondragón-Flores R, Gómez-Sandoval JN, Rojas-Bernabé A, González-Canto A, Gutiérrez-Kobeh L, Pérez-Montfort R, Becker I, Aguirre-García MM. Protein Serine/Threonine Phosphatase Type 2C of Leishmania mexicana. Front Cell Infect Microbiol 2021; 11:641356. [PMID: 33937094 PMCID: PMC8082450 DOI: 10.3389/fcimb.2021.641356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/23/2021] [Indexed: 01/22/2023] Open
Abstract
Protein phosphorylation and dephosphorylation are increasingly recognized as important processes for regulating multiple physiological mechanisms. Phosphorylation is carried out by protein kinases and dephosphorylation by protein phosphatases. Phosphoprotein phosphatases (PPPs), one of three families of protein serine/threonine phosphatases, have great structural diversity and are involved in regulating many cell functions. PP2C, a type of PPP, is found in Leishmania, a dimorphic protozoan parasite and the causal agent of leishmaniasis. The aim of this study was to clone, purify, biochemically characterize and quantify the expression of PP2C in Leishmania mexicana (LmxPP2C). Recombinant LmxPP2C dephosphorylated a specific threonine (with optimal activity at pH 8) in the presence of the manganese divalent cation (Mn+2). LmxPP2C activity was inhibited by sanguinarine (a specific inhibitor) but was unaffected by protein tyrosine phosphatase inhibitors. Western blot analysis indicated that anti-LmxPP2C antibodies recognized a molecule of 45.2 kDa. Transmission electron microscopy with immunodetection localized LmxPP2C in the flagellar pocket and flagellum of promastigotes but showed poor staining in amastigotes. Interestingly, LmxPP2C belongs to the ortholog group OG6_142542, which contains only protozoa of the family Trypanosomatidae. This suggests a specific function of the enzyme in the flagellar pocket of these microorganisms.
Collapse
Affiliation(s)
- Alma Reyna Escalona-Montaño
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, Instituto Nacional de Cardiología Ignacio Chávez., Ciudad de México, Mexico
| | - Mariana Zuñiga-Fabián
- Ciencias Experimentales, Escuela Nacional Colegio de Ciencias y Humanidades Plantel, Naucalpan, Mexico
| | - Nallely Cabrera
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Ricardo Mondragón-Flores
- Departamento de Bioquímica, Centro de Investigación y Estudios Avanzados (CINVESTAV-IPN), Ciudad de México, Mexico
| | - Jenny Nancy Gómez-Sandoval
- División de Ingeniería en Biotecnología, Universidad Politécnica del Valle de Toluca, Almoloya de Juárez, Mexico
| | - Araceli Rojas-Bernabé
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Augusto González-Canto
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Ciudad de México, Mexico
| | - Laila Gutiérrez-Kobeh
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, Instituto Nacional de Cardiología Ignacio Chávez., Ciudad de México, Mexico
| | - Ruy Pérez-Montfort
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Ingeborg Becker
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Ciudad de México, Mexico
| | - Maria Magdalena Aguirre-García
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, Instituto Nacional de Cardiología Ignacio Chávez., Ciudad de México, Mexico
| |
Collapse
|
207
|
Shrivastava R, Tupperwar N, Schwartz B, Baron N, Shapira M. LeishIF4E-5 Is a Promastigote-Specific Cap-Binding Protein in Leishmania. Int J Mol Sci 2021; 22:3979. [PMID: 33921489 PMCID: PMC8069130 DOI: 10.3390/ijms22083979] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/01/2021] [Accepted: 04/08/2021] [Indexed: 12/17/2022] Open
Abstract
Leishmania parasites cycle between sand fly vectors and mammalian hosts, transforming from extracellular promastigotes that reside in the vectors' alimentary canal to obligatory intracellular non-motile amastigotes that are harbored by macrophages of the mammalian hosts. The transition between vector and host exposes them to a broad range of environmental conditions that induces a developmental program of gene expression, with translation regulation playing a key role. The Leishmania genome encodes six paralogs of the cap-binding protein eIF4E. All six isoforms show a relatively low degree of conservation with eIF4Es of other eukaryotes, as well as among themselves. This variability could suggest that they have been assigned discrete roles that could contribute to their survival under the changing environmental conditions. Here, we describe LeishIF4E-5, a LeishIF4E paralog. Despite the low sequence conservation observed between LeishIF4E-5 and other LeishIF4Es, the three aromatic residues in its cap-binding pocket are conserved, in accordance with its cap-binding activity. However, the cap-binding activity of LeishIF4E-5 is restricted to the promastigote life form and not observed in amastigotes. The overexpression of LeishIF4E-5 shows a decline in cell proliferation and an overall reduction in global translation. Immuno-cytochemical analysis shows that LeishIF4E-5 is localized in the cytoplasm, with a non-uniform distribution. Mass spectrometry analysis of proteins that co-purify with LeishIF4E-5 highlighted proteins involved in RNA metabolism, along with two LeishIF4G paralogs, LeishIF4G-1 and LeishIF4G-2. These vary in their conserved eIF4E binding motif, possibly suggesting that they can form different complexes.
Collapse
Affiliation(s)
- Rohit Shrivastava
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (R.S.); (N.T.); (B.S.); (N.B.)
| | - Nitin Tupperwar
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (R.S.); (N.T.); (B.S.); (N.B.)
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 50007, India
| | - Bar Schwartz
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (R.S.); (N.T.); (B.S.); (N.B.)
| | - Nofar Baron
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (R.S.); (N.T.); (B.S.); (N.B.)
| | - Michal Shapira
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (R.S.); (N.T.); (B.S.); (N.B.)
| |
Collapse
|
208
|
Ramos PIP, Cristal JR, Khouri R, Boaventura V, Azevedo LG, Correia TC, Sharma R, Cardoso CRDB, Pinzan CF, de Noronha ALL, Van Weyenbergh J, Queiroz ATLD, de Oliveira CI, Barral-Netto M, Barral A. Selective Suppression of Cellular Immunity and Increased Cytotoxicity in Skin Lesions of Disseminated Leishmaniasis Uncovered by Transcriptome-Wide Analysis. J Invest Dermatol 2021; 141:2542-2546.e5. [PMID: 33823183 DOI: 10.1016/j.jid.2021.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/19/2021] [Accepted: 03/08/2021] [Indexed: 11/17/2022]
Affiliation(s)
| | | | - Ricardo Khouri
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil; Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium
| | - Viviane Boaventura
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
| | | | | | - Rohit Sharma
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
| | - Cristina R de Barros Cardoso
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Camila Figueiredo Pinzan
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil; Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | | | - Johan Van Weyenbergh
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium
| | | | - Camila I de Oliveira
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil; Instituto de Investigação em Imunologia (iii-INCT), São Paulo, Brazil
| | - Manoel Barral-Netto
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil; Instituto de Investigação em Imunologia (iii-INCT), São Paulo, Brazil
| | - Aldina Barral
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil; Instituto de Investigação em Imunologia (iii-INCT), São Paulo, Brazil
| |
Collapse
|
209
|
Mutuku CN, Bateta R, Rono MK, Njunge JM, Awuoche EO, Ndung'u K, Mang'era CM, Akoth MO, Adung'a VO, Ondigo BN, Mireji PO. Physiological and proteomic profiles of Trypanosoma brucei rhodesiense parasite isolated from suramin responsive and non-responsive HAT patients in Busoga, Uganda. Int J Parasitol Drugs Drug Resist 2021; 15:57-67. [PMID: 33588295 PMCID: PMC7895675 DOI: 10.1016/j.ijpddr.2021.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 11/17/2022]
Abstract
Human African Trypanosomiasis (HAT) is a disease of major economic importance in Sub-Saharan Africa. The HAT is caused by Trypanosoma brucei rhodesiense (Tbr) parasite in eastern and southern Africa, with suramin as drug of choice for treatment of early stage of the disease. Suramin treatment failures has been observed among HAT patients in Tbr foci in Uganda. In this study, we assessed Tbr parasite strains isolated from HAT patients responsive (Tbr EATRO-232) and non-responsive (Tbr EATRO-734) to suramin treatment in Busoga, Uganda for 1) putative role of suramin resistance in the treatment failure 2) correlation of suramin resistance with Tbr pathogenicity and 3) proteomic pathways underpinning the potential suramin resistance phenotype in vivo. We first assessed suramin response in each isolate by infecting male Swiss white mice followed by treatment using a series of suramin doses. We then assessed relative pathogenicity of the two Tbr isolates by assessing changes pathogenicity indices (prepatent period, survival and mortality). We finally isolated proteins from mice infected by the isolates, and assessed their proteomic profiles using mass spectrometry. We established putative resistance to 2.5 mg/kg suramin in the parasite Tbr EATRO-734. We established that Tbr EATRO-734 proliferated slower and has significantly enriched pathways associated with detoxification and metabolism of energy and drugs relative to Tbr EATRO-232. The Tbr EATRO-734 also has more abundantly expressed mitochondrion proteins and enzymes than Tbr EATRO-232. The suramin treatment failure may be linked to the relatively higher resistance to suramin in Tbr EATRO-734 than Tbr EATRO-232, among other host and parasite specific factors. However, the Tbr EATRO-734 appears to be less pathogenic than Tbr EATRO-232, as evidenced by its lower rate of parasitaemia. The Tbr EATRO-734 putatively surmount suramin challenges through induction of energy metabolism pathways. These cellular and molecular processes may be involved in suramin resistance in Tbr.
Collapse
Affiliation(s)
- Catherine N Mutuku
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, P.O. Box 362, Kikuyu, Kenya; Department of Biochemistry and Molecular Biology, Egerton University, P.O. Box 536, Njoro, Kenya
| | - Rosemary Bateta
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, P.O. Box 362, Kikuyu, Kenya.
| | - Martin K Rono
- Centre for Geographic Medicine Research - Coast, Kenya Medical Research Institute, PO Box 230-80108 Kilifi, Kenya
| | - James M Njunge
- Centre for Geographic Medicine Research - Coast, Kenya Medical Research Institute, PO Box 230-80108 Kilifi, Kenya
| | - Erick O Awuoche
- Department of Biological Sciences, School of Pure and Applied Science, Meru University of Science and Technology, Meru, Kenya
| | - Kariuki Ndung'u
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, P.O. Box 362, Kikuyu, Kenya
| | - Clarence M Mang'era
- Department of Biochemistry and Molecular Biology, Egerton University, P.O. Box 536, Njoro, Kenya
| | - Modesta O Akoth
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, P.O. Box 362, Kikuyu, Kenya; Department of Biochemistry and Molecular Biology, Egerton University, P.O. Box 536, Njoro, Kenya
| | - Vincent O Adung'a
- Department of Biochemistry and Molecular Biology, Egerton University, P.O. Box 536, Njoro, Kenya
| | - Bartholomew N Ondigo
- Department of Biochemistry and Molecular Biology, Egerton University, P.O. Box 536, Njoro, Kenya
| | - Paul O Mireji
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, P.O. Box 362, Kikuyu, Kenya; Centre for Geographic Medicine Research - Coast, Kenya Medical Research Institute, PO Box 230-80108 Kilifi, Kenya.
| |
Collapse
|
210
|
Schenk R, Bachmaier S, Bringaud F, Boshart M. Efficient flavinylation of glycosomal fumarate reductase by its own ApbE domain in Trypanosoma brucei. FEBS J 2021; 288:5430-5445. [PMID: 33755328 DOI: 10.1111/febs.15812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/08/2021] [Accepted: 03/09/2021] [Indexed: 01/26/2023]
Abstract
A subset of flavoproteins has a covalently attached flavin prosthetic group enzymatically attached via phosphoester bonding. In prokaryotes, this is catalysed by alternative pyrimidine biosynthesis E (ApbE) flavin transferases. ApbE-like domains are present in few eukaryotic taxa, for example the N-terminal domain of fumarate reductase (FRD) of Trypanosoma, a parasitic protist known as a tropical pathogen causing African sleeping sickness. We use the versatile reverse genetic tools available for Trypanosoma to investigate the flavinylation of glycosomal FRD (FRDg) in vivo in the physiological and organellar context. Using direct in-gel fluorescence detection of covalently attached flavin as proxy for activity, we show that the ApbE-like domain of FRDg has flavin transferase activity in vivo. The ApbE domain is preceded by a consensus flavinylation target motif at the extreme N terminus of FRDg, and serine 9 in this motif is essential as flavin acceptor. The preferred mode of flavinylation in the glycosome was addressed by stoichiometric expression and comparison of native and catalytically inactive ApbE domains. In addition to the trans-flavinylation activity, the ApbE domain catalyses the intramolecular cis-flavinylation with at least fivefold higher efficiency. We discuss how the higher efficiency due to unusual fusion of the ApbE domain to its substrate protein FRD may provide a selective advantage by faster FRD biogenesis during rapid metabolic adaptation of trypanosomes. The first 37 amino acids of FRDg, including the consensus motif, are sufficient as flavinylation target upon fusion to other proteins. We propose FRDg(1-37) as 4-kDa heat-stable, detergent-resistant fluorescent protein tag and suggest its use as a new tool to study glycosomal protein import.
Collapse
Affiliation(s)
- Robin Schenk
- Biozentrum, Fakultät für Biologie, Genetik, Ludwig-Maximilians-Universität München (LMU), Martinsried, Germany
| | - Sabine Bachmaier
- Biozentrum, Fakultät für Biologie, Genetik, Ludwig-Maximilians-Universität München (LMU), Martinsried, Germany
| | - Frédéric Bringaud
- CNRS, Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234, Université de Bordeaux, France
| | - Michael Boshart
- Biozentrum, Fakultät für Biologie, Genetik, Ludwig-Maximilians-Universität München (LMU), Martinsried, Germany
| |
Collapse
|
211
|
Baron N, Tupperwar N, Dahan I, Hadad U, Davidov G, Zarivach R, Shapira M. Distinct features of the Leishmania cap-binding protein LeishIF4E2 revealed by CRISPR-Cas9 mediated hemizygous deletion. PLoS Negl Trop Dis 2021; 15:e0008352. [PMID: 33760809 PMCID: PMC8021392 DOI: 10.1371/journal.pntd.0008352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 04/05/2021] [Accepted: 02/15/2021] [Indexed: 01/08/2023] Open
Abstract
Leishmania parasites cycle between sand-fly vectors and mammalian hosts adapting to alternating environments by stage-differentiation accompanied by changes in the proteome profiles. Translation regulation plays a central role in driving the differential program of gene expression since control of gene regulation in Leishmania is mostly post-transcriptional. The Leishmania genome encodes six eIF4E paralogs, some of which bind a dedicated eIF4G candidate, and each eIF4E is assumed to have specific functions with perhaps some overlaps. However, LeishIF4E2 does not bind any known eIF4G ortholog and was previously shown to comigrate with the polysomal fractions of sucrose gradients in contrast to the other initiation factors that usually comigrate with pre-initiation and initiation complexes. Here we deleted one of the two LeishIF4E2 gene copies using the CRISPR-Cas9 methodology. The deletion caused severe alterations in the morphology of the mutant cells that became round, small, and equipped with a very short flagellum that did not protrude from its pocket. Reduced expression of LeishIF4E2 had no global effect on translation and growth, unlike other LeishIF4Es; however, there was a change in the proteome profile of the LeishIF4E2(+/-) cells. Upregulated proteins were related mainly to general metabolic processes including enzymes involved in fatty acid metabolism, DNA repair and replication, signaling, and cellular motor activity. The downregulated proteins included flagellar rod and cytoskeletal proteins, as well as surface antigens involved in virulence. Moreover, the LeishIF4E2(+/-) cells were impaired in their ability to infect cultured macrophages. Overall, LeishIF4E2 does not behave like a general translation factor and its function remains elusive. Our results also suggest that the individual LeishIF4Es perform unique functions. Leishmania parasites cause a broad spectrum of diseases with different pathological symptoms. During their life cycle the parasites shuffle between sand-fly vectors and mammalian hosts adapting to the changing environments via a stage specific program of gene expression that promotes their survival. Translation initiation plays a key role in control of gene expression and in Leishmania this is exemplified by the presence of multiple cap-binding complexes that interact with mRNAs. The parasites encode multiple paralogs of the cap-binding translation initiation factor eIF4E and of its corresponding binding partner eIF4G forming complexes with different potential functions. The role of LeishIF4E2 remains elusive: it does not bind any of the LeishIF4G candidate subunits and associates with polysomes, a feature less common for canonical translation factors. Here we generated a hemizygous Leishmania mutant of the least studied cap-binding paralog, LeishIF4E2, by eliminating one of the two alleles using the CRISPR-Cas9 methodology. The mutant showed morphological defects with short and rounded cells, and a significant reduction in their flagellar length. Moreover, the LeishIF4E2(+/-) cells were impaired in their ability to infect cultured macrophages. The mutants showed differences in their proteome: upregulated proteins were related mainly to general metabolic processes including enzymes involved in fatty acid metabolism, DNA repair and replication, signaling, and cellular motor activity. Downregulated proteins included flagellar rod and cytoskeletal proteins, as well as surface antigens involved in virulence. Overall, LeishIF4E2 does not behave like a general translation factor and its function remains elusive. It could affect translation of a particular set of transcripts, causing direct or downstream effects that do not affect global translation. Our results suggest that individual LeishIF4Es perform specific functions.
Collapse
Affiliation(s)
- Nofar Baron
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Nitin Tupperwar
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Irit Dahan
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Uzi Hadad
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Geula Davidov
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Raz Zarivach
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Michal Shapira
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- * E-mail:
| |
Collapse
|
212
|
Rachidi N, Knippschild U, Späth GF. Dangerous Duplicity: The Dual Functions of Casein Kinase 1 in Parasite Biology and Host Subversion. Front Cell Infect Microbiol 2021; 11:655700. [PMID: 33869086 PMCID: PMC8044801 DOI: 10.3389/fcimb.2021.655700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/05/2021] [Indexed: 02/01/2023] Open
Abstract
Casein Kinase 1 (CK1) family members are serine/threonine protein kinases that are involved in many biological processes and highly conserved in eukaryotes from protozoan to humans. Even though pathogens exploit host CK1 signaling pathways to survive, the role of CK1 in infectious diseases and host/pathogen interaction is less well characterized compared to other diseases, such as cancer or neurodegenerative diseases. Here we present the current knowledge on CK1 in protozoan parasites highlighting their essential role for parasite survival and their importance for host-pathogen interactions. We also discuss how the dual requirement of CK1 family members for parasite biological processes and host subversion could be exploited to identify novel antimicrobial interventions.
Collapse
Affiliation(s)
- Najma Rachidi
- Unité de Parasitologie moléculaire et Signalisation, Department of Parasites and Insect Vectors, Institut Pasteur and INSERM U1201, Paris, France
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Surgery Centre, Ulm University Hospital, Ulm, Germany
| | - Gerald F. Späth
- Unité de Parasitologie moléculaire et Signalisation, Department of Parasites and Insect Vectors, Institut Pasteur and INSERM U1201, Paris, France
| |
Collapse
|
213
|
Ji Z, Tinti M, Ferguson MAJ. Proteomic identification of the UDP-GlcNAc: PI α1-6 GlcNAc-transferase subunits of the glycosylphosphatidylinositol biosynthetic pathway of Trypanosoma brucei. PLoS One 2021; 16:e0244699. [PMID: 33735232 PMCID: PMC7971885 DOI: 10.1371/journal.pone.0244699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/21/2021] [Indexed: 01/04/2023] Open
Abstract
The first step of glycosylphosphatidylinositol (GPI) anchor biosynthesis in all eukaryotes is the addition of N-acetylglucosamine (GlcNAc) to phosphatidylinositol (PI) which is catalysed by a UDP-GlcNAc: PI α1-6 GlcNAc-transferase, also known as GPI GnT. This enzyme has been shown to be a complex of seven subunits in mammalian cells and a similar complex of six homologous subunits has been postulated in yeast. Homologs of these mammalian and yeast subunits were identified in the Trypanosoma brucei predicted protein database. The putative catalytic subunit of the T. brucei complex, TbGPI3, was epitope tagged with three consecutive c-Myc sequences at its C-terminus. Immunoprecipitation of TbGPI3-3Myc followed by native polyacrylamide gel electrophoresis and anti-Myc Western blot showed that it is present in a ~240 kDa complex. Label-free quantitative proteomics were performed to compare anti-Myc pull-downs from lysates of TbGPI-3Myc expressing and wild type cell lines. TbGPI3-3Myc was the most highly enriched protein in the TbGPI3-3Myc lysate pull-down and the expected partner proteins TbGPI15, TbGPI19, TbGPI2, TbGPI1 and TbERI1 were also identified with significant enrichment. Our proteomics data also suggest that an Arv1-like protein (TbArv1) is a subunit of the T. brucei complex. Yeast and mammalian Arv1 have been previously implicated in GPI biosynthesis, but here we present the first experimental evidence for physical association of Arv1 with GPI biosynthetic machinery. A putative E2-ligase has also been tentatively identified as part of the T. brucei UDP-GlcNAc: PI α1-6 GlcNAc-transferase complex.
Collapse
Affiliation(s)
- Zhe Ji
- The Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Michele Tinti
- The Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Michael A. J. Ferguson
- The Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
214
|
de Vrij N, Meysman P, Gielis S, Adriaensen W, Laukens K, Cuypers B. HLA-DRB1 Alleles Associated with Lower Leishmaniasis Susceptibility Share Common Amino Acid Polymorphisms and Epitope Binding Repertoires. Vaccines (Basel) 2021; 9:270. [PMID: 33803005 PMCID: PMC8002611 DOI: 10.3390/vaccines9030270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 02/08/2023] Open
Abstract
Susceptibility for leishmaniasis is largely dependent on host genetic and immune factors. Despite the previously described association of human leukocyte antigen (HLA) gene cluster variants as genetic susceptibility factors for leishmaniasis, little is known regarding the mechanisms that underpin these associations. To better understand this underlying functionality, we first collected all known leishmaniasis-associated HLA variants in a thorough literature review. Next, we aligned and compared the protection- and risk-associated HLA-DRB1 allele sequences. This identified several amino acid polymorphisms that distinguish protection- from risk-associated HLA-DRB1 alleles. Subsequently, T cell epitope binding predictions were carried out across these alleles to map the impact of these polymorphisms on the epitope binding repertoires. For these predictions, we used epitopes derived from entire proteomes of multiple Leishmania species. Epitopes binding to protection-associated HLA-DRB1 alleles shared common binding core motifs, mapping to the identified HLA-DRB1 amino acid polymorphisms. These results strongly suggest that HLA polymorphism, resulting in differential antigen presentation, affects the association between HLA and leishmaniasis disease development. Finally, we established a valuable open-access resource of putative epitopes. A set of 14 HLA-unrestricted strong-binding epitopes, conserved across species, was prioritized for further epitope discovery in the search for novel subunit-based vaccines.
Collapse
Affiliation(s)
- Nicky de Vrij
- Department of Computer Science, University of Antwerp, 2020 Antwerp, Belgium; (N.d.V.); (P.M.); (S.G.)
- Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium;
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, 2020 Antwerp, Belgium
- Biomedical Informatics Network Antwerpen (Biomina), University of Antwerp, 2020 Antwerp, Belgium
| | - Pieter Meysman
- Department of Computer Science, University of Antwerp, 2020 Antwerp, Belgium; (N.d.V.); (P.M.); (S.G.)
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, 2020 Antwerp, Belgium
- Biomedical Informatics Network Antwerpen (Biomina), University of Antwerp, 2020 Antwerp, Belgium
| | - Sofie Gielis
- Department of Computer Science, University of Antwerp, 2020 Antwerp, Belgium; (N.d.V.); (P.M.); (S.G.)
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, 2020 Antwerp, Belgium
- Biomedical Informatics Network Antwerpen (Biomina), University of Antwerp, 2020 Antwerp, Belgium
| | - Wim Adriaensen
- Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium;
| | - Kris Laukens
- Department of Computer Science, University of Antwerp, 2020 Antwerp, Belgium; (N.d.V.); (P.M.); (S.G.)
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, 2020 Antwerp, Belgium
- Biomedical Informatics Network Antwerpen (Biomina), University of Antwerp, 2020 Antwerp, Belgium
| | - Bart Cuypers
- Department of Computer Science, University of Antwerp, 2020 Antwerp, Belgium; (N.d.V.); (P.M.); (S.G.)
- Biomedical Informatics Network Antwerpen (Biomina), University of Antwerp, 2020 Antwerp, Belgium
- Department of Biomedical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium
| |
Collapse
|
215
|
Deletion of a Golgi protein in Trypanosoma cruzi reveals a critical role for Mn2+ in protein glycosylation needed for host cell invasion and intracellular replication. PLoS Pathog 2021; 17:e1009399. [PMID: 33720977 PMCID: PMC7993795 DOI: 10.1371/journal.ppat.1009399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 03/25/2021] [Accepted: 02/17/2021] [Indexed: 11/23/2022] Open
Abstract
Trypanosoma cruzi is a protist parasite and the causative agent of American trypanosomiasis or Chagas disease. The parasite life cycle in its mammalian host includes an intracellular stage, and glycosylated proteins play a key role in host-parasite interaction facilitating adhesion, invasion and immune evasion. Here, we report that a Golgi-localized Mn2+-Ca2+/H+ exchanger of T. cruzi (TcGDT1) is required for efficient protein glycosylation, host cell invasion, and intracellular replication. The Golgi localization was determined by immunofluorescence and electron microscopy assays. TcGDT1 was able to complement the growth defect of Saccharomyces cerevisiae null mutants of its ortholog ScGDT1 but ablation of TcGDT1 by CRISPR/Cas9 did not affect the growth of the insect stage of the parasite. The defect in protein glycosylation was rescued by Mn2+ supplementation to the growth medium, underscoring the importance of this transition metal for Golgi glycosylation of proteins. Trypanosoma cruzi is the etiologic agent of Chagas disease, which is endemic from North to South America and the most important cause of heart disease in Latin America. T. cruzi can infect most mammalian nucleated cells and its glycoproteins are needed for its adhesion to cells, and for host cell invasion. Efficient glycosylation of proteins in the Golgi complex requires cations as cofactors. In this work, we found that ablation of a Golgi localized cation transporter prevents normal protein glycosylation, host cell invasion, and intracellular replication, and that protein glycosylation can be rescued by Mn2+ but not by Ca2+, Mg2+, or Zn2+, revealing the importance of Mn2+ for host parasite interaction.
Collapse
|
216
|
Mule SN, Costa-Martins AG, Rosa-Fernandes L, de Oliveira GS, Rodrigues CMF, Quina D, Rosein GE, Teixeira MMG, Palmisano G. PhyloQuant approach provides insights into Trypanosoma cruzi evolution using a systems-wide mass spectrometry-based quantitative protein profile. Commun Biol 2021; 4:324. [PMID: 33707618 PMCID: PMC7952728 DOI: 10.1038/s42003-021-01762-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 01/24/2021] [Indexed: 01/31/2023] Open
Abstract
The etiological agent of Chagas disease, Trypanosoma cruzi, is a complex of seven genetic subdivisions termed discrete typing units (DTUs), TcI-TcVI and Tcbat. The relevance of T. cruzi genetic diversity to the variable clinical course of the disease, virulence, pathogenicity, drug resistance, transmission cycles and ecological distribution requires understanding the parasite origin and population structure. In this study, we introduce the PhyloQuant approach to infer the evolutionary relationships between organisms based on differential mass spectrometry-based quantitative features. In particular, large scale quantitative bottom-up proteomics features (MS1, iBAQ and LFQ) were analyzed using maximum parsimony, showing a correlation between T. cruzi DTUs and closely related trypanosomes' protein expression and sequence-based clustering. Character mapping enabled the identification of synapomorphies, herein the proteins and their respective expression profiles that differentiate T. cruzi DTUs and trypanosome species. The distance matrices based on phylogenetics and PhyloQuant clustering showed statistically significant correlation highlighting the complementarity between the two strategies. Moreover, PhyloQuant allows the identification of differentially regulated and strain/DTU/species-specific proteins, and has potential application in the identification of specific biomarkers and candidate therapeutic targets.
Collapse
Affiliation(s)
- Simon Ngao Mule
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Livia Rosa-Fernandes
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Carla Monadeli F Rodrigues
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Daniel Quina
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Graziella E Rosein
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | - Giuseppe Palmisano
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
217
|
D'Andréa ÉD, Retel JS, Diehl A, Schmieder P, Oschkinat H, Pires JR. NMR structure and dynamics of Q4DY78, a conserved kinetoplasid-specific protein from Trypanosoma cruzi. J Struct Biol 2021; 213:107715. [PMID: 33705979 DOI: 10.1016/j.jsb.2021.107715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 10/21/2022]
Abstract
The 106-residue protein Q4DY78 (UniProt accession number) from Trypanosoma cruzi is highly conserved in the related kinetoplastid pathogens Trypanosoma brucei and Leishmania major. Given the essentiality of its orthologue in T. brucei, the high sequence conservation with other trypanosomatid proteins, and the low sequence similarity with mammalian proteins, Q4DY78 is an attractive protein for structural characterization. Here, we solved the structure of Q4DY78 by solution NMR and evaluated its backbone dynamics. Q4DY78 is composed of five α -helices and a small, two-stranded antiparallel β-sheet. The backbone RMSD is 0.22 ± 0.05 Å for the representative ensemble of the 20 lowest-energy structures. Q4DY78 is overall rigid, except for N-terminal residues (V8 to I10), residues at loop 4 (K57 to G65) and residues at the C-terminus (F89 to F112). Q4DY78 has a short motif FPCAP that could potentially mediate interactions with the host cytoskeleton via interaction with EVH1 (Drosophila Enabled (Ena)/Vasodilator-stimulated phosphoprotein (VASP) homology 1) domains. Albeit Q4DY78 lacks calcium-binding motifs, its fold resembles that of eukaryotic calcium-binding proteins such as calcitracin, calmodulin, and polcacin Bet V4. We characterized this novel protein with a calcium binding fold without the capacity to bind calcium.
Collapse
Affiliation(s)
- Éverton Dias D'Andréa
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373 - Bloco E, sala 32, Rio de Janeiro, RJ 21941-902, Brazil
| | - Joren Sebastian Retel
- Leibniz-Institut für Molekulare Pharmakologie, FMP, Robert-Rössle-Straβe 10, Berlin 13125, Germany
| | - Anne Diehl
- Leibniz-Institut für Molekulare Pharmakologie, FMP, Robert-Rössle-Straβe 10, Berlin 13125, Germany
| | - Peter Schmieder
- Leibniz-Institut für Molekulare Pharmakologie, FMP, Robert-Rössle-Straβe 10, Berlin 13125, Germany
| | - Hartmut Oschkinat
- Leibniz-Institut für Molekulare Pharmakologie, FMP, Robert-Rössle-Straβe 10, Berlin 13125, Germany; Freie Universität Berlin, Institut für Chemie und Biochemie, Takustrasse 3, Berlin 14195, Germany
| | - José Ricardo Pires
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373 - Bloco E, sala 32, Rio de Janeiro, RJ 21941-902, Brazil.
| |
Collapse
|
218
|
Amodeo S, Kalichava A, Fradera-Sola A, Bertiaux-Lequoy E, Guichard P, Butter F, Ochsenreiter T. Characterization of the novel mitochondrial genome segregation factor TAP110 in Trypanosoma brucei. J Cell Sci 2021; 134:jcs254300. [PMID: 33589495 PMCID: PMC7970207 DOI: 10.1242/jcs.254300] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/03/2021] [Indexed: 12/18/2022] Open
Abstract
Proper mitochondrial genome inheritance is important for eukaryotic cell survival. Trypanosoma brucei, a protozoan parasite, contains a singular mitochondrial genome, the kinetoplast (k)DNA. The kDNA is anchored to the basal body via the tripartite attachment complex (TAC) to ensure proper segregation. Several components of the TAC have been described; however, the connection of the TAC to the kDNA remains elusive. Here, we characterize the TAC-associated protein TAP110. We find that both depletion and overexpression of TAP110 leads to a delay in the separation of the replicated kDNA networks. Proteome analysis after TAP110 overexpression identified several kDNA-associated proteins that changed in abundance, including a TEX-like protein that dually localizes to the nucleus and the kDNA, potentially linking replication and segregation in the two compartments. The assembly of TAP110 into the TAC region seems to require the TAC but not the kDNA itself; however, once TAP110 has been assembled, it also interacts with the kDNA. Finally, we use ultrastructure expansion microscopy in trypanosomes for the first time, and reveal the precise position of TAP110 between TAC102 and the kDNA, showcasing the potential of this approach.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Simona Amodeo
- Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Ana Kalichava
- Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | | | - Eloïse Bertiaux-Lequoy
- Department of Cell Biology, University of Geneva, Sciences III, 1211 Geneva, Switzerland
| | - Paul Guichard
- Department of Cell Biology, University of Geneva, Sciences III, 1211 Geneva, Switzerland
| | - Falk Butter
- Institute of Molecular Biology, 55128 Mainz, Germany
| | | |
Collapse
|
219
|
Mondal DK, Pal DS, Abbasi M, Datta R. Functional partnership between carbonic anhydrase and malic enzyme in promoting gluconeogenesis in
Leishmania major. FEBS J 2021; 288:4129-4152. [DOI: 10.1111/febs.15720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/29/2020] [Accepted: 01/15/2021] [Indexed: 12/24/2022]
Affiliation(s)
- Dipon Kumar Mondal
- Department of Biological Sciences Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur India
| | - Dhiman Sankar Pal
- Department of Biological Sciences Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur India
| | - Mazharul Abbasi
- Department of Biological Sciences Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur India
| | - Rupak Datta
- Department of Biological Sciences Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur India
| |
Collapse
|
220
|
Abstract
Telomeres are the ends of linear eukaryotic chromosomes facilitating the resolution of the ‘end replication and protection’ problems, associated with linearity. At the nucleotide level, telomeres typically represent stretches of tandemly arranged telomeric repeats, which vary in length and sequence among different groups of organisms. Recently, a composition of the telomere-associated protein complex has been scrutinized in Trypanosoma brucei. In this work, we subjected proteins from that list to a more detailed bioinformatic analysis and delineated a core set of 20 conserved proteins putatively associated with telomeres in trypanosomatids. Out of these, two proteins (Ku70 and Ku80) are conspicuously missing in representatives of the genus Blastocrithidia, yet telomeres in these species do not appear to be affected. In this work, based on the analysis of a large set of trypanosomatids widely different in their phylogenetic position and life strategies, we demonstrated that telomeres of trypanosomatids are diverse in length, even within groups of closely related species. Our analysis showed that the expression of two proteins predicted to be associated with telomeres (those encoding telomerase and telomere-associated hypothetical protein orthologous to Tb927.6.4330) may directly affect and account for the differences in telomere length within the species of the Leishmania mexicana complex.
Collapse
|
221
|
Mantilla BS, Do Amaral LD, Jessen HJ, Docampo R. The Inositol Pyrophosphate Biosynthetic Pathway of Trypanosoma cruzi. ACS Chem Biol 2021; 16:283-292. [PMID: 33411501 PMCID: PMC10466500 DOI: 10.1021/acschembio.0c00759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inositol phosphates (IPs) are phosphorylated derivatives of myo-inositol involved in the regulation of several cellular processes through their interaction with specific proteins. Their synthesis relies on the activity of specific kinases that use ATP as phosphate donor. Here, we combined reverse genetics and liquid chromatography coupled to mass spectrometry (LC-MS) to dissect the inositol phosphate biosynthetic pathway and its metabolic intermediates in the main life cycle stages (epimastigotes, cell-derived trypomastigotes, and amastigotes) of Trypanosoma cruzi, the etiologic agent of Chagas disease. We found evidence of the presence of highly phosphorylated IPs, like inositol hexakisphosphate (IP6), inositol heptakisphosphate (IP7), and inositol octakisphosphate (IP8), that were not detected before by HPLC analyses of the products of radiolabeled exogenous inositol. The kinases involved in their synthesis (inositol polyphosphate multikinase (TcIPMK), inositol 5-phosphate kinase (TcIP5K), and inositol 6-phosphate kinase (TcIP6K)) were also identified. TcIPMK is dispensable in epimastigotes, important for the synthesis of polyphosphate, and critical for the virulence of the infective stages. TcIP5K is essential for normal epimastigote growth, while TcIP6K mutants displayed defects in epimastigote motility and growth. Our results demonstrate the relevance of highly phosphorylated IPs in the life cycle of T. cruzi.
Collapse
Affiliation(s)
- Brian S. Mantilla
- Center for Tropical and Emerging Global Diseases, and Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Leticia D. Do Amaral
- Center for Tropical and Emerging Global Diseases, and Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Henning J. Jessen
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Freiburg, 79104 Freiburg, Germany
| | - Roberto Docampo
- Center for Tropical and Emerging Global Diseases, and Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
222
|
Sampaio Guther ML, Prescott AR, Kuettel S, Tinti M, Ferguson MAJ. Nucleotide sugar biosynthesis occurs in the glycosomes of procyclic and bloodstream form Trypanosoma brucei. PLoS Negl Trop Dis 2021; 15:e0009132. [PMID: 33592041 PMCID: PMC7909634 DOI: 10.1371/journal.pntd.0009132] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 02/26/2021] [Accepted: 01/12/2021] [Indexed: 11/19/2022] Open
Abstract
In Trypanosoma brucei, there are fourteen enzymatic biotransformations that collectively convert glucose into five essential nucleotide sugars: UDP-Glc, UDP-Gal, UDP-GlcNAc, GDP-Man and GDP-Fuc. These biotransformations are catalyzed by thirteen discrete enzymes, five of which possess putative peroxisome targeting sequences. Published experimental analyses using immunofluorescence microscopy and/or digitonin latency and/or subcellular fractionation and/or organelle proteomics have localized eight and six of these enzymes to the glycosomes of bloodstream form and procyclic form T. brucei, respectively. Here we increase these glycosome localizations to eleven in both lifecycle stages while noting that one, phospho-N-acetylglucosamine mutase, also localizes to the cytoplasm. In the course of these studies, the heterogeneity of glycosome contents was also noted. These data suggest that, unlike other eukaryotes, all of nucleotide sugar biosynthesis in T. brucei is compartmentalized to the glycosomes in both lifecycle stages. The implications are discussed.
Collapse
Affiliation(s)
- Maria Lucia Sampaio Guther
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Alan R. Prescott
- Dundee Imaging Facility, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Sabine Kuettel
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Michele Tinti
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Michael A. J. Ferguson
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
- * E-mail:
| |
Collapse
|
223
|
Yagüe-Capilla M, Castillo-Acosta VM, Bosch-Navarrete C, Ruiz-Pérez LM, González-Pacanowska D. A Mitochondrial Orthologue of the dNTP Triphosphohydrolase SAMHD1 Is Essential and Controls Pyrimidine Homeostasis in Trypanosoma brucei. ACS Infect Dis 2021; 7:318-332. [PMID: 33417760 DOI: 10.1021/acsinfecdis.0c00551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The maintenance of deoxyribonucleotide triphosphate (dNTP) homeostasis through synthesis and degradation is critical for accurate genomic and mitochondrial DNA replication fidelity. Trypanosoma brucei makes use of both the salvage and de novo pathways for the provision of pyrimidine dNTPs. In this respect, the sterile α motif and histidine-aspartate domain-containing protein 1 (SAMHD1) appears to be the most relevant dNTPase controlling dNTP/deoxynucleoside homeostasis in mammalian cells. Here, we have characterized the role of a unique trypanosomal SAMHD1 orthologue denominated TbHD52. Our results show that TbHD52 is a mitochondrial enzyme essential in bloodstream forms of T. brucei. Knockout cells are pyrimidine auxotrophs that exhibit strong defects in genomic integrity, cell cycle progression, and nuclear DNA and kinetoplast segregation in the absence of extracellular thymidine. The lack of TbHD52 can be counteracted by the overexpression of human dCMP deaminase, an enzyme that is directly involved in dUMP formation yet absent in trypanosomes. Furthermore, the cellular dNTP quantification and metabolomic analysis of TbHD52 null mutants revealed perturbations in the nucleotide metabolism with a substantial accumulation of dCTP and cytosine-derived metabolites while dTTP formation was significantly reduced. We propose that this HD-domain-containing protein unique to kinetoplastids plays an essential role in pyrimidine dNTP homeostasis and contributes to the provision of deoxycytidine required for cellular dTTP biosynthesis.
Collapse
Affiliation(s)
- Miriam Yagüe-Capilla
- Instituto de Parasitología y Biomedicina “López-Neyra”, Consejo Superior de Investigaciones Científicas, Parque Tecnológico de Ciencias de la Salud, Armilla (Granada) 18016, Spain
| | - Víctor M. Castillo-Acosta
- Instituto de Parasitología y Biomedicina “López-Neyra”, Consejo Superior de Investigaciones Científicas, Parque Tecnológico de Ciencias de la Salud, Armilla (Granada) 18016, Spain
| | - Cristina Bosch-Navarrete
- Instituto de Parasitología y Biomedicina “López-Neyra”, Consejo Superior de Investigaciones Científicas, Parque Tecnológico de Ciencias de la Salud, Armilla (Granada) 18016, Spain
| | - Luis Miguel Ruiz-Pérez
- Instituto de Parasitología y Biomedicina “López-Neyra”, Consejo Superior de Investigaciones Científicas, Parque Tecnológico de Ciencias de la Salud, Armilla (Granada) 18016, Spain
| | - Dolores González-Pacanowska
- Instituto de Parasitología y Biomedicina “López-Neyra”, Consejo Superior de Investigaciones Científicas, Parque Tecnológico de Ciencias de la Salud, Armilla (Granada) 18016, Spain
| |
Collapse
|
224
|
APEX2 Proximity Proteomics Resolves Flagellum Subdomains and Identifies Flagellum Tip-Specific Proteins in Trypanosoma brucei. mSphere 2021; 6:6/1/e01090-20. [PMID: 33568455 PMCID: PMC8141408 DOI: 10.1128/msphere.01090-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Sleeping sickness is a neglected tropical disease caused by the protozoan parasite Trypanosoma brucei. The disease disrupts the sleep-wake cycle, leading to coma and death if left untreated. T. brucei motility, transmission, and virulence depend on its flagellum (cilium), which consists of several different specialized subdomains. Trypanosoma brucei is the protozoan parasite responsible for sleeping sickness, a lethal vector-borne disease. T. brucei has a single flagellum (cilium) that plays critical roles in transmission and pathogenesis. An emerging concept is that the flagellum is organized into subdomains, each having specialized composition and function. The overall flagellum proteome has been well studied, but a critical knowledge gap is the protein composition of individual subdomains. We have tested whether APEX-based proximity proteomics could be used to examine the protein composition of T. brucei flagellum subdomains. As APEX-based labeling has not previously been described in T. brucei, we first fused APEX2 to the DRC1 subunit of the nexin-dynein regulatory complex, a well-characterized axonemal complex. We found that DRC1-APEX2 directs flagellum-specific biotinylation, and purification of biotinylated proteins yields a DRC1 “proximity proteome” having good overlap with published proteomes obtained from purified axonemes. Having validated the use of APEX2 in T. brucei, we next attempted to distinguish flagellar subdomains by fusing APEX2 to a flagellar membrane protein that is restricted to the flagellum tip, AC1, and another one that is excluded from the tip, FS179. Fluorescence microscopy demonstrated subdomain-specific biotinylation, and principal-component analysis showed distinct profiles between AC1-APEX2 and FS179-APEX2. Comparing these two profiles allowed us to identify an AC1 proximity proteome that is enriched for tip proteins, including proteins involved in signaling. Our results demonstrate that APEX2-based proximity proteomics is effective in T. brucei and can be used to resolve the proteome composition of flagellum subdomains that cannot themselves be readily purified. IMPORTANCE Sleeping sickness is a neglected tropical disease caused by the protozoan parasite Trypanosoma brucei. The disease disrupts the sleep-wake cycle, leading to coma and death if left untreated. T. brucei motility, transmission, and virulence depend on its flagellum (cilium), which consists of several different specialized subdomains. Given the essential and multifunctional role of the T. brucei flagellum, there is need for approaches that enable proteomic analysis of individual subdomains. Our work establishes that APEX2 proximity labeling can, indeed, be implemented in the biochemical environment of T. brucei and has allowed identification of proximity proteomes for different flagellar subdomains that cannot be purified. This capacity opens the possibility to study the composition and function of other compartments. We expect this approach may be extended to other eukaryotic pathogens and will enhance the utility of T. brucei as a model organism to study ciliopathies, heritable human diseases in which cilium function is impaired.
Collapse
|
225
|
Guedes DC, Santiani MH, Carvalho J, Soccol CR, Minozzo JC, Machado de Ávila RA, de Moura JF, Ramos ELP, Castro GR, Chávez-Olórtegi C, Thomaz-Soccol V. In silico and in vitro Evaluation of Mimetic Peptides as Potential Antigen Candidates for Prophylaxis of Leishmaniosis. Front Chem 2021; 8:601409. [PMID: 33520931 PMCID: PMC7843434 DOI: 10.3389/fchem.2020.601409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/08/2020] [Indexed: 01/03/2023] Open
Abstract
Antigen formulation is the main feature for the success of leishmaniosis diagnosis and vaccination, since the disease is caused by different parasite species that display particularities which determine their pathogenicity and virulence. It is desirable that the antigens are recognized by different antibodies and are immunogenic for almost all Leishmania species. To overcome this problem, we selected six potentially immunogenic peptides derived from Leishmania histones and parasite membrane molecules obtained by phage display or spot synthesis and entrapped in liposome structures. We used these peptides to immunize New Zealand rabbits and determine the immunogenic capacity of the chimeric antigen. The peptides induced the production of antibodies as a humoral immune response against L. braziliensis or L. infantum. Next, to evaluate the innate response to induce cellular activation, macrophages from the peptide mix-immunized rabbits were infected in vitro with L. braziliensis or L. infantum. The peptide mix generated the IFN-γ, IL-12, IL-4 and TGF-β that led to Th1 and Th2 cellular immune responses. Interestingly, this mix of peptides also induced high expression of iNOS. These results suggest that the mix of peptides derived from histone and parasites membrane molecules was able to mimic parasites proteins and induce cytokines important to CD4+ T cell Th1 and Th2 differentiation and effector molecule to control the parasite infection. Finally, this peptide induced an immune balance that is important to prevent immunopathological disorders, inflammatory reactions, and control the parasite infection.
Collapse
Affiliation(s)
- Deborah Carbonera Guedes
- Programa de Pós-Graduação Strictu Sensu em Engenharia de Bioprocessos e Biotecnologia, Universidade Federal do Paraná, Curitiba, Brazil
| | - Manuel Hospinal Santiani
- Programa de Pós-Graduação Strictu Sensu em Engenharia de Bioprocessos e Biotecnologia, Universidade Federal do Paraná, Curitiba, Brazil
| | - Joyce Carvalho
- Programa de Pós-Graduação Strictu Sensu em Engenharia de Bioprocessos e Biotecnologia, Universidade Federal do Paraná, Curitiba, Brazil
| | - Carlos Ricardo Soccol
- Programa de Pós-Graduação Strictu Sensu em Engenharia de Bioprocessos e Biotecnologia, Universidade Federal do Paraná, Curitiba, Brazil
| | - João Carlos Minozzo
- Programa de Pós-Graduação Strictu Sensu em Engenharia de Bioprocessos e Biotecnologia, Universidade Federal do Paraná, Curitiba, Brazil.,Centro de Produção e Pesquisa de Imunobilógicos, Secretaria De Saúde do Estado do Paraná, Piraquara, Brazil
| | | | - Juliana Ferreira de Moura
- Programa de Pós-Graduação Strictu Sensu em Engenharia de Bioprocessos e Biotecnologia, Universidade Federal do Paraná, Curitiba, Brazil
| | - Eliezer Lucas Pires Ramos
- Programa de Pós-Graduação Strictu Sensu em Engenharia de Bioprocessos e Biotecnologia, Universidade Federal do Paraná, Curitiba, Brazil
| | - Guillermo Raul Castro
- Laboratorio de Nanobiomateriales, CINDEFI, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP)-CONICET (CCT La Plata), La Plata, Argentina.,Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC), Partner Laboratory of the Max Planck Institute for Biophysical Chemistry (MPIbpC, MPG), Centro de Estudios Interdisciplinarios (CEI), Universidad Nacional de Rosario, Rosario, Argentina
| | - Carlos Chávez-Olórtegi
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vanete Thomaz-Soccol
- Programa de Pós-Graduação Strictu Sensu em Engenharia de Bioprocessos e Biotecnologia, Universidade Federal do Paraná, Curitiba, Brazil
| |
Collapse
|
226
|
Mokdadi M, Abdelkrim YZ, Banroques J, Huvelle E, Oualha R, Yeter-Alat H, Guizani I, Barhoumi M, Tanner NK. The In Silico Identification of Potential Members of the Ded1/DDX3 Subfamily of DEAD-Box RNA Helicases from the Protozoan Parasite Leishmania infantum and Their Analyses in Yeast. Genes (Basel) 2021; 12:212. [PMID: 33535521 PMCID: PMC7912733 DOI: 10.3390/genes12020212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 12/14/2022] Open
Abstract
DEAD-box RNA helicases are ubiquitous proteins found in all kingdoms of life and that are associated with all processes involving RNA. Their central roles in biology make these proteins potential targets for therapeutic or prophylactic drugs. The Ded1/DDX3 subfamily of DEAD-box proteins is of particular interest because of their important role(s) in translation. In this paper, we identified and aligned the protein sequences of 28 different DEAD-box proteins from the kinetoplast-protozoan parasite Leishmania infantum, which is the cause of the visceral form of leishmaniasis that is often lethal if left untreated, and compared them with the consensus sequence derived from DEAD-box proteins in general, and from the Ded1/DDX3 subfamily in particular, from a wide variety of other organisms. We identified three potential homologs of the Ded1/DDX3 subfamily and the equivalent proteins from the related protozoan parasite Trypanosoma brucei, which is the causative agent of sleeping sickness. We subsequently tested these proteins for their ability to complement a yeast strain deleted for the essential DED1 gene. We found that the DEAD-box proteins from Trypanosomatids are highly divergent from other eukaryotes, and consequently they are suitable targets for protein-specific drugs.
Collapse
Affiliation(s)
- Molka Mokdadi
- Expression Génétique Microbienne, UMR8261 CNRS, Université de Paris, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France; (M.M.); (Y.Z.A.); (J.B.); (E.H.); (H.Y.-A.)
- PSL Research University, 75005 Paris, France
- Laboratory of Molecular Epidemiology and Experimental Pathology (LR16IPT04), Institut Pasteur de Tunis, Université de Tunis El Manar, 13 Place Pasteur, BP74 Tunis-Belvédère 1002, Tunisia; (R.O.); (I.G.)
- Institut National des Sciences Appliquées et Technologies, Université de Carthage, CEDEX, Tunis 1080, Tunisia
| | - Yosser Zina Abdelkrim
- Expression Génétique Microbienne, UMR8261 CNRS, Université de Paris, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France; (M.M.); (Y.Z.A.); (J.B.); (E.H.); (H.Y.-A.)
- Laboratory of Molecular Epidemiology and Experimental Pathology (LR16IPT04), Institut Pasteur de Tunis, Université de Tunis El Manar, 13 Place Pasteur, BP74 Tunis-Belvédère 1002, Tunisia; (R.O.); (I.G.)
| | - Josette Banroques
- Expression Génétique Microbienne, UMR8261 CNRS, Université de Paris, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France; (M.M.); (Y.Z.A.); (J.B.); (E.H.); (H.Y.-A.)
- PSL Research University, 75005 Paris, France
| | - Emmeline Huvelle
- Expression Génétique Microbienne, UMR8261 CNRS, Université de Paris, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France; (M.M.); (Y.Z.A.); (J.B.); (E.H.); (H.Y.-A.)
- PSL Research University, 75005 Paris, France
| | - Rafeh Oualha
- Laboratory of Molecular Epidemiology and Experimental Pathology (LR16IPT04), Institut Pasteur de Tunis, Université de Tunis El Manar, 13 Place Pasteur, BP74 Tunis-Belvédère 1002, Tunisia; (R.O.); (I.G.)
| | - Hilal Yeter-Alat
- Expression Génétique Microbienne, UMR8261 CNRS, Université de Paris, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France; (M.M.); (Y.Z.A.); (J.B.); (E.H.); (H.Y.-A.)
- PSL Research University, 75005 Paris, France
| | - Ikram Guizani
- Laboratory of Molecular Epidemiology and Experimental Pathology (LR16IPT04), Institut Pasteur de Tunis, Université de Tunis El Manar, 13 Place Pasteur, BP74 Tunis-Belvédère 1002, Tunisia; (R.O.); (I.G.)
| | - Mourad Barhoumi
- Laboratory of Molecular Epidemiology and Experimental Pathology (LR16IPT04), Institut Pasteur de Tunis, Université de Tunis El Manar, 13 Place Pasteur, BP74 Tunis-Belvédère 1002, Tunisia; (R.O.); (I.G.)
| | - N. Kyle Tanner
- Expression Génétique Microbienne, UMR8261 CNRS, Université de Paris, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France; (M.M.); (Y.Z.A.); (J.B.); (E.H.); (H.Y.-A.)
- PSL Research University, 75005 Paris, France
| |
Collapse
|
227
|
Lypaczewski P, Zhang WW, Matlashewski G. Evidence that a naturally occurring single nucleotide polymorphism in the RagC gene of Leishmania donovani contributes to reduced virulence. PLoS Negl Trop Dis 2021; 15:e0009079. [PMID: 33621241 PMCID: PMC7901767 DOI: 10.1371/journal.pntd.0009079] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/16/2020] [Indexed: 11/18/2022] Open
Abstract
Leishmaniasis is a widespread neglected tropical disease transmitted by infected sand flies resulting in either benign cutaneous infection or fatal visceral disease. Leishmania donovani is the principal species responsible for visceral leishmaniasis, yet an atypical L. donovani has become attenuated in several countries including Sri Lanka and causes cutaneous leishmaniasis. Previous studies have identified 91 genes altered in the atypical cutaneous L. donovani compared to typical visceral disease associated L. donovani including mutations in the RagC and Raptor genes that are part of the eukaryotic conserved TOR pathway and its upstream sensing pathway. In the present study, we investigate whether the RagC R231C mutation present in atypical cutaneous L. donovani introduced into the virulent L. donovani 1S2D chromosome by CRISPR gene editing could affect virulence for survival in visceral organs. Through bioinformatic analysis, we further investigated the presence of sensing pathway components upstream of TOR in L. donovani including RagC complexing proteins, RagA and Raptor. L. donovani 1S2D edited to express mutant RagC R231C were viable in promastigote but had reduced visceral parasitemia in infected BALB/c mice. The RagC R231C mutant retained the ability to interact with RagA and gene knockout experiments revealed that although the RagA gene was essential, the RagC gene was not essential under promastigote culture conditions but was essential for survival in the liver of experimentally infected mice. These results provide evidence that the TOR associated sensing pathway plays a prominent role in L. donovani visceral disease and the RagC R231C mutation contributed to the atypical pathology of cutaneous L. donovani in Sri Lanka.
Collapse
Affiliation(s)
- Patrick Lypaczewski
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
| | - Wen-Wei Zhang
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
| | - Greg Matlashewski
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
| |
Collapse
|
228
|
Mwangi KW, Macharia RW, Bargul JL. Gene co-expression network analysis of Trypanosoma brucei in tsetse fly vector. Parasit Vectors 2021; 14:74. [PMID: 33482903 PMCID: PMC7821691 DOI: 10.1186/s13071-021-04597-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/13/2021] [Indexed: 01/14/2023] Open
Abstract
Background Trypanosoma brucei species are motile protozoan parasites that are cyclically transmitted by tsetse fly (genus Glossina) causing human sleeping sickness and nagana in livestock in sub-Saharan Africa. African trypanosomes display digenetic life cycle stages in the tsetse fly vector and in their mammalian host. Experimental work on insect-stage trypanosomes is challenging because of the difficulty in setting up successful in vitro cultures. Therefore, there is limited knowledge on the trypanosome biology during its development in the tsetse fly. Consequently, this limits the development of new strategies for blocking parasite transmission in the tsetse fly. Methods In this study, RNA-Seq data of insect-stage trypanosomes were used to construct a T. brucei gene co-expression network using the weighted gene co-expression analysis (WGCNA) method. The study identified significant enriched modules for genes that play key roles during the parasite’s development in tsetse fly. Furthermore, potential 3′ untranslated region (UTR) regulatory elements for genes that clustered in the same module were identified using the Finding Informative Regulatory Elements (FIRE) tool. Results A fraction of gene modules (12 out of 27 modules) in the constructed network were found to be enriched in functional roles associated with the cell division, protein biosynthesis, mitochondrion, and cell surface. Additionally, 12 hub genes encoding proteins such as RNA-binding protein 6 (RBP6), arginine kinase 1 (AK1), brucei alanine-rich protein (BARP), among others, were identified for the 12 significantly enriched gene modules. In addition, the potential regulatory elements located in the 3′ untranslated regions of genes within the same module were predicted. Conclusions The constructed gene co-expression network provides a useful resource for network-based data mining to identify candidate genes for functional studies. This will enhance understanding of the molecular mechanisms that underlie important biological processes during parasite’s development in tsetse fly. Ultimately, these findings will be key in the identification of potential molecular targets for disease control.![]()
Collapse
Affiliation(s)
- Kennedy W Mwangi
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya. .,Jomo Kenyatta University of Agriculture and Technology, P.O. BOX 62000-00200, Nairobi, Kenya.
| | | | - Joel L Bargul
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya.,Jomo Kenyatta University of Agriculture and Technology, P.O. BOX 62000-00200, Nairobi, Kenya
| |
Collapse
|
229
|
Abstract
The passage of mRNAs through the nuclear pores into the cytoplasm is essential in all eukaryotes. For regulation, mRNA export is tightly connected to the full machinery of nuclear mRNA processing, starting at transcription. Export competence of pre-mRNAs gradually increases by both transient and permanent interactions with multiple RNA processing and export factors. mRNA export is best understood in opisthokonts, with limited knowledge in plants and protozoa. Here, I review and compare nuclear mRNA processing and export between opisthokonts and Trypanosoma brucei. The parasite has many unusual features in nuclear mRNA processing, such as polycistronic transcription and trans-splicing. It lacks several nuclear complexes and nuclear-pore-associated proteins that in opisthokonts play major roles in mRNA export. As a consequence, trypanosome mRNA export control is not tight and export can even start co-transcriptionally. Whether trypanosomes regulate mRNA export at all, or whether leakage of immature mRNA to the cytoplasm is kept to a low level by a fast kinetics of mRNA processing remains to be investigated. mRNA export had to be present in the last common ancestor of eukaryotes. Trypanosomes are evolutionary very distant from opisthokonts and a comparison helps understanding the evolution of mRNA export.
Collapse
|
230
|
Martinez-Peinado N, Martori C, Cortes-Serra N, Sherman J, Rodriguez A, Gascon J, Alberola J, Pinazo MJ, Rodriguez-Cortes A, Alonso-Padilla J. Anti- Trypanosoma cruzi Activity of Metabolism Modifier Compounds. Int J Mol Sci 2021; 22:ijms22020688. [PMID: 33445756 PMCID: PMC7828178 DOI: 10.3390/ijms22020688] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/28/2020] [Accepted: 01/09/2021] [Indexed: 12/18/2022] Open
Abstract
Chagas disease is caused by the protozoan parasite Trypanosoma cruzi and affects over 6 million people worldwide. Development of new drugs to treat this disease remains a priority since those currently available have variable efficacy and frequent adverse effects, especially during the long regimens required for treating the chronic stage of the disease. T. cruzi modulates the host cell-metabolism to accommodate the cell cytosol into a favorable growth environment and acquire nutrients for its multiplication. In this study we evaluated the specific anti-T. cruzi activity of nine bio-energetic modulator compounds. Notably, we identified that 17-DMAG, which targets the ATP-binding site of heat shock protein 90 (Hsp90), has a very high (sub-micromolar range) selective inhibition of the parasite growth. This inhibitory effect was also highly potent (IC50 = 0.27 μmol L-1) against the amastigote intracellular replicative stage of the parasite. Moreover, molecular docking results suggest that 17-DMAG may bind T. cruzi Hsp90 homologue Hsp83 with good affinity. Evaluation in a mouse model of chronic T. cruzi infection did not show parasite growth inhibition, highlighting the difficulties encountered when going from in vitro assays onto preclinical drug developmental stages.
Collapse
Affiliation(s)
- Nieves Martinez-Peinado
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, 08036 Barcelona, Spain; (N.M.-P.); (N.C.-S.); (J.G.); (M.-J.P.)
| | - Clara Martori
- Department of Pharmacology, Toxicology, and Therapeutics, Veterinary Faculty, Autonomous University of Barcelona, 08193 Bellaterra, Spain; (C.M.); (J.A.)
| | - Nuria Cortes-Serra
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, 08036 Barcelona, Spain; (N.M.-P.); (N.C.-S.); (J.G.); (M.-J.P.)
| | - Julian Sherman
- Department of Microbiology, New York University School of Medicine, New York, NY 10010, USA; (J.S.); (A.R.)
| | - Ana Rodriguez
- Department of Microbiology, New York University School of Medicine, New York, NY 10010, USA; (J.S.); (A.R.)
| | - Joaquim Gascon
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, 08036 Barcelona, Spain; (N.M.-P.); (N.C.-S.); (J.G.); (M.-J.P.)
| | - Jordi Alberola
- Department of Pharmacology, Toxicology, and Therapeutics, Veterinary Faculty, Autonomous University of Barcelona, 08193 Bellaterra, Spain; (C.M.); (J.A.)
| | - Maria-Jesus Pinazo
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, 08036 Barcelona, Spain; (N.M.-P.); (N.C.-S.); (J.G.); (M.-J.P.)
| | - Alheli Rodriguez-Cortes
- Department of Pharmacology, Toxicology, and Therapeutics, Veterinary Faculty, Autonomous University of Barcelona, 08193 Bellaterra, Spain; (C.M.); (J.A.)
- Correspondence: (A.R.-C.); (J.A.-P.); Tel.: +34-935812062 (A.R.-C.); +34-932275400 (J.A.-P.)
| | - Julio Alonso-Padilla
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, 08036 Barcelona, Spain; (N.M.-P.); (N.C.-S.); (J.G.); (M.-J.P.)
- Correspondence: (A.R.-C.); (J.A.-P.); Tel.: +34-935812062 (A.R.-C.); +34-932275400 (J.A.-P.)
| |
Collapse
|
231
|
Ashwin H, Sadlova J, Vojtkova B, Becvar T, Lypaczewski P, Schwartz E, Greensted E, Van Bocxlaer K, Pasin M, Lipinski KS, Parkash V, Matlashewski G, Layton AM, Lacey CJ, Jaffe CL, Volf P, Kaye PM. Characterization of a new Leishmania major strain for use in a controlled human infection model. Nat Commun 2021; 12:215. [PMID: 33431825 PMCID: PMC7801518 DOI: 10.1038/s41467-020-20569-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/01/2020] [Indexed: 12/17/2022] Open
Abstract
Leishmaniasis is widely regarded as a vaccine-preventable disease, but the costs required to reach pivotal Phase 3 studies and uncertainty about which candidate vaccines should be progressed into human studies significantly limits progress in vaccine development for this neglected tropical disease. Controlled human infection models (CHIMs) provide a pathway for accelerating vaccine development and to more fully understand disease pathogenesis and correlates of protection. Here, we describe the isolation, characterization and GMP manufacture of a new clinical strain of Leishmania major. Two fresh strains of L. major from Israel were initially compared by genome sequencing, in vivo infectivity and drug sensitivity in mice, and development and transmission competence in sand flies, allowing one to be selected for GMP production. This study addresses a major roadblock in the development of vaccines for leishmaniasis, providing a key resource for CHIM studies of sand fly transmitted cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Helen Ashwin
- York Biomedical Research Institute, Hull York Medical School, University of York, York, UK
| | - Jovana Sadlova
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, Prague, Czech Republic
| | - Barbora Vojtkova
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, Prague, Czech Republic
| | - Tomas Becvar
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, Prague, Czech Republic
| | - Patrick Lypaczewski
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Eli Schwartz
- The Center for Geographic Medicine and Tropical Diseases, Chaim Sheba Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Elizabeth Greensted
- York Biomedical Research Institute, Hull York Medical School, University of York, York, UK
| | - Katrien Van Bocxlaer
- York Biomedical Research Institute, Hull York Medical School, University of York, York, UK
| | | | | | - Vivak Parkash
- York Biomedical Research Institute, Hull York Medical School, University of York, York, UK
| | - Greg Matlashewski
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Alison M Layton
- York Biomedical Research Institute, Hull York Medical School, University of York, York, UK
| | - Charles J Lacey
- York Biomedical Research Institute, Hull York Medical School, University of York, York, UK
| | - Charles L Jaffe
- The Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, Prague, Czech Republic.
| | - Paul M Kaye
- York Biomedical Research Institute, Hull York Medical School, University of York, York, UK.
| |
Collapse
|
232
|
Spatial integration of transcription and splicing in a dedicated compartment sustains monogenic antigen expression in African trypanosomes. Nat Microbiol 2021; 6:289-300. [PMID: 33432154 PMCID: PMC7610597 DOI: 10.1038/s41564-020-00833-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022]
Abstract
Highly selective gene expression is a key requirement for antigenic variation in several pathogens, allowing evasion of host immune responses and maintenance of persistent infections 1. African trypanosomes, parasites that cause lethal diseases in humans and livestock, employ an antigenic variation mechanism that involves monogenic antigen expression from a pool of >2600 antigen-coding genes 2. In other eukaryotes, the expression of individual genes can be enhanced by mechanisms involving the juxtaposition of otherwise distal chromosomal loci in the three-dimensional nuclear space 3–5. However, trypanosomes lack classical enhancer sequences or regulated transcription initiation 6,7. In this context, it has remained unclear how genome architecture contributes to monogenic transcription elongation and transcript processing. Here, we show that the single expressed antigen coding gene displays a specific inter-chromosomal interaction with a major mRNA splicing locus. Chromosome conformation capture (Hi-C) revealed a dynamic reconfiguration of this inter-chromosomal interaction upon activation of another antigen. Super-resolution microscopy showed the interaction to be heritable and splicing dependent. We find a specific association of the two genomic loci with the antigen exclusion complex, whereby VEX1 occupied the splicing locus and VEX2 the antigen coding locus. Following VEX2 depletion, loss of monogenic antigen expression was accompanied by increased interactions between previously silent antigen genes and the splicing locus. Our results reveal a mechanism to ensure monogenic expression, where antigen transcription and mRNA splicing occur in a specific nuclear compartment. These findings suggest a new means of post-transcriptional gene regulation.
Collapse
|
233
|
Gurumayum S, Jiang P, Hao X, Campos TL, Young ND, Korhonen PK, Gasser RB, Bork P, Zhao XM, He LJ, Chen WH. OGEE v3: Online GEne Essentiality database with increased coverage of organisms and human cell lines. Nucleic Acids Res 2021; 49:D998-D1003. [PMID: 33084874 PMCID: PMC7779042 DOI: 10.1093/nar/gkaa884] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 12/17/2022] Open
Abstract
OGEE is an Online GEne Essentiality database. Gene essentiality is not a static and binary property, rather a context-dependent and evolvable property in all forms of life. In OGEE we collect not only experimentally tested essential and non-essential genes, but also associated gene properties that contributes to gene essentiality. We tagged conditionally essential genes that show variable essentiality statuses across datasets to highlight complex interplays between gene functions and environmental/experimental perturbations. OGEE v3 contains gene essentiality datasets for 91 species; almost doubled from 48 species in previous version. To accommodate recent advances on human cancer essential genes (as known as tumor dependency genes) that could serve as targets for cancer treatment and/or drug development, we expanded the collection of human essential genes from 16 cell lines in previous to 581. These human cancer cell lines were tested with high-throughput experiments such as CRISPR-Cas9 and RNAi; in total, 150 of which were tested by both techniques. We also included factors known to contribute to gene essentiality for these cell lines, such as genomic mutation, methylation and gene expression, along with extensive graphical visualizations for ease of understanding of these factors. OGEE v3 can be accessible freely at https://v3.ogee.info.
Collapse
Affiliation(s)
- Sanathoi Gurumayum
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center for Artificial Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), 430074 Wuhan, Hubei, China
| | - Puzi Jiang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center for Artificial Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), 430074 Wuhan, Hubei, China
| | - Xiaowen Hao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center for Artificial Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), 430074 Wuhan, Hubei, China
| | - Tulio L Campos
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
- Instituto Aggeu Magalhães, Fundação Oswaldo Cruz (IAM-Fiocruz), Recife, Pernambuco, Brazil
| | - Neil D Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Pasi K Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Peer Bork
- European molecular biology laboratory (EMBL), Meyerhof Strasse 1, 69117 Heidelberg, Germany
- Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, 69120 Heidelberg, Germany
- Max-Delbrück-Centre for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Department of Bioinformatics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Xing-Ming Zhao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, 200433 Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education, China
| | - Li-jie He
- Department of Medical Oncology, People's Hospital of Liaoning Province, 110016 Shenyang, China
| | - Wei-Hua Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center for Artificial Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), 430074 Wuhan, Hubei, China
- College of Life Science, Henan Normal University, 453007 Xinxiang, Henan, China
| |
Collapse
|
234
|
Abstract
Complex I (NADH dehydrogenase) is the first enzyme in the respiratory chain. It catalyses the electron transfer from NADH to ubiquinone that is associated with proton pumping out of the matrix. In this study, we characterized NADH dehydrogenase activity in seven monoxenous trypanosomatid species: Blechomonas ayalai, Herpetomonas tarakana, Kentomonas sorsogonicus, Leptomonas seymouri, Novymonas esmeraldas, Sergeia podlipaevi and Wallacemonas raviniae. We also investigated the subunit composition of the complex I in dixenous Phytomonas serpens, in which its presence and activity have been previously documented. In addition to P. serpens, the complex I is functionally active in N. esmeraldas and S. podlipaevi. We also identified 24-32 subunits of the complex I in individual species by using mass spectrometry. Among them, for the first time, we recognized several proteins of the mitochondrial DNA origin.
Collapse
|
235
|
Farhat S, Le P, Kayal E, Noel B, Bigeard E, Corre E, Maumus F, Florent I, Alberti A, Aury JM, Barbeyron T, Cai R, Da Silva C, Istace B, Labadie K, Marie D, Mercier J, Rukwavu T, Szymczak J, Tonon T, Alves-de-Souza C, Rouzé P, Van de Peer Y, Wincker P, Rombauts S, Porcel BM, Guillou L. Rapid protein evolution, organellar reductions, and invasive intronic elements in the marine aerobic parasite dinoflagellate Amoebophrya spp. BMC Biol 2021; 19:1. [PMID: 33407428 PMCID: PMC7789003 DOI: 10.1186/s12915-020-00927-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 11/12/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Dinoflagellates are aquatic protists particularly widespread in the oceans worldwide. Some are responsible for toxic blooms while others live in symbiotic relationships, either as mutualistic symbionts in corals or as parasites infecting other protists and animals. Dinoflagellates harbor atypically large genomes (~ 3 to 250 Gb), with gene organization and gene expression patterns very different from closely related apicomplexan parasites. Here we sequenced and analyzed the genomes of two early-diverging and co-occurring parasitic dinoflagellate Amoebophrya strains, to shed light on the emergence of such atypical genomic features, dinoflagellate evolution, and host specialization. RESULTS We sequenced, assembled, and annotated high-quality genomes for two Amoebophrya strains (A25 and A120), using a combination of Illumina paired-end short-read and Oxford Nanopore Technology (ONT) MinION long-read sequencing approaches. We found a small number of transposable elements, along with short introns and intergenic regions, and a limited number of gene families, together contribute to the compactness of the Amoebophrya genomes, a feature potentially linked with parasitism. While the majority of Amoebophrya proteins (63.7% of A25 and 59.3% of A120) had no functional assignment, we found many orthologs shared with Dinophyceae. Our analyses revealed a strong tendency for genes encoded by unidirectional clusters and high levels of synteny conservation between the two genomes despite low interspecific protein sequence similarity, suggesting rapid protein evolution. Most strikingly, we identified a large portion of non-canonical introns, including repeated introns, displaying a broad variability of associated splicing motifs never observed among eukaryotes. Those introner elements appear to have the capacity to spread over their respective genomes in a manner similar to transposable elements. Finally, we confirmed the reduction of organelles observed in Amoebophrya spp., i.e., loss of the plastid, potential loss of a mitochondrial genome and functions. CONCLUSION These results expand the range of atypical genome features found in basal dinoflagellates and raise questions regarding speciation and the evolutionary mechanisms at play while parastitism was selected for in this particular unicellular lineage.
Collapse
Affiliation(s)
- Sarah Farhat
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, 91057, Evry, France
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, 11794, USA
| | - Phuong Le
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Ehsan Kayal
- Sorbonne Université, CNRS, FR2424, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France
| | - Benjamin Noel
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, 91057, Evry, France
| | - Estelle Bigeard
- Sorbonne Université, CNRS, UMR7144 Adaptation et Diversité en Milieu Marin, Ecology of Marine Plankton (ECOMAP), Station Biologique de Roscoff SBR, 29680, Roscoff, France
| | - Erwan Corre
- Sorbonne Université, CNRS, FR2424, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France
| | - Florian Maumus
- URGI, INRA, Université Paris-Saclay, 78026, Versailles, France
| | - Isabelle Florent
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR7245), Muséum national d'Histoire naturelle, CNRS, CP 52, 57 rue Cuvier, 75005, Paris, France
| | - Adriana Alberti
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, 91057, Evry, France
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, 91057, Evry, France
| | - Tristan Barbeyron
- Sorbonne Université, CNRS, UMR 8227, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France
| | - Ruibo Cai
- Sorbonne Université, CNRS, UMR7144 Adaptation et Diversité en Milieu Marin, Ecology of Marine Plankton (ECOMAP), Station Biologique de Roscoff SBR, 29680, Roscoff, France
| | - Corinne Da Silva
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, 91057, Evry, France
| | - Benjamin Istace
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, 91057, Evry, France
| | - Karine Labadie
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, 91057, Evry, France
| | - Dominique Marie
- Sorbonne Université, CNRS, UMR7144 Adaptation et Diversité en Milieu Marin, Ecology of Marine Plankton (ECOMAP), Station Biologique de Roscoff SBR, 29680, Roscoff, France
| | - Jonathan Mercier
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, 91057, Evry, France
| | - Tsinda Rukwavu
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, 91057, Evry, France
| | - Jeremy Szymczak
- Sorbonne Université, CNRS, FR2424, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France
- Sorbonne Université, CNRS, UMR7144 Adaptation et Diversité en Milieu Marin, Ecology of Marine Plankton (ECOMAP), Station Biologique de Roscoff SBR, 29680, Roscoff, France
| | - Thierry Tonon
- Centre for Novel Agricultural Products, Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Catharina Alves-de-Souza
- Algal Resources Collection, MARBIONC, Center for Marine Sciences, University of North Carolina Wilmington, 5600 Marvin K. Moss Lane, Wilmington, NC, 28409, USA
| | - Pierre Rouzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, 91057, Evry, France
| | - Stephane Rombauts
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Betina M Porcel
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, 91057, Evry, France.
| | - Laure Guillou
- Sorbonne Université, CNRS, UMR7144 Adaptation et Diversité en Milieu Marin, Ecology of Marine Plankton (ECOMAP), Station Biologique de Roscoff SBR, 29680, Roscoff, France.
| |
Collapse
|
236
|
Kumar S, Gupta S, Mohmad A, Fular A, Parthasarathi BC, Chaubey AK. Molecular tools-advances, opportunities and prospects for the control of parasites of veterinary importance. INTERNATIONAL JOURNAL OF TROPICAL INSECT SCIENCE 2021; 41:33-42. [PMID: 32837530 PMCID: PMC7387080 DOI: 10.1007/s42690-020-00213-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 07/17/2020] [Indexed: 05/02/2023]
Abstract
The recent advancement in genome sequencing facilities, proteomics, transcriptomics, and metabolomics of eukaryotes have opened door for employment of molecular diagnostic techniques for early detection of parasites and determining target molecules for formulating control strategies. It further leads to the introduction of several purified vaccines in the field of veterinary parasitology. Earlier, the conventional diagnostic methods was entirely based upon morphological taxonomy for diagnosis of parasites but nowadays improved molecular techniques help in phylogenetic study and open an another area of molecular taxonomy of parasites with high precision. Control measures based upon targeting endosymbionts in parasites like Dirofilaria immitis is also under exploration in veterinary parasitology. Metagenomics have added an inside story of parasites bionomics which have created havoc in human and animals population since centuries. Omics era is playing a key role in opening the new approaches on parasite biology. Various newer generations of safer vaccines like edible vaccines and subunit vaccines and diagnostic techniques based upon purified immunologically active epitopes have become commercially available against the parasites (helminths, protozoa and arthropod borne diseases). Nowadays, a transgenic and gene knock out studies using RNA interference and CRISPR are also helping in understanding the functions of genes and screening of target genes, which are not available before the advent of molecular tools. Molecular techniques had paramount impact on increasing the sensitivity of diagnostic tools, epidemiological studies and more importantly in controlling these diseases. This review is about the advancements in veterinary parasitology and their impact on the control of these pathogens.
Collapse
Affiliation(s)
- Sachin Kumar
- Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243122 India
- Department of Zoology, Choudhary Charan Singh University, Meerut, Uttar Pradesh 250001 India
| | - Snehil Gupta
- Department of Veterinary Parasitology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana 125001 India
| | - Aquil Mohmad
- Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243122 India
| | - Ashutosh Fular
- Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243122 India
| | - B. C. Parthasarathi
- Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243122 India
| | - Ashok Kumar Chaubey
- Department of Zoology, Choudhary Charan Singh University, Meerut, Uttar Pradesh 250001 India
| |
Collapse
|
237
|
Haindrich AC, Ernst V, Naguleswaran A, Oliveres QF, Roditi I, Rentsch D. Nutrient availability regulates proline/alanine transporters in Trypanosoma brucei. J Biol Chem 2021; 296:100566. [PMID: 33745971 PMCID: PMC8094907 DOI: 10.1016/j.jbc.2021.100566] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/09/2021] [Accepted: 03/17/2021] [Indexed: 11/23/2022] Open
Abstract
Trypanosoma brucei is a species of unicellular parasite that can cause severe diseases in livestock and humans, including African trypanosomiasis and Chagas disease. Adaptation to diverse environments and changes in nutritional conditions is essential for T. brucei to establish an infection when changing hosts or during invasion of different host tissues. One such adaptation is the ability of T. brucei to rapidly switch its energy metabolism from glucose metabolism in the mammalian blood to proline catabolism in the insect stages and vice versa. However, the mechanisms that support the parasite's response to nutrient availability remain unclear. Using RNAseq and qRT-PCR, we investigated the response of T. brucei to amino acid or glucose starvation and found increased mRNA levels of several amino acid transporters, including all genes of the amino acid transporter AAT7-B subgroup. Functional characterization revealed that AAT7-B members are plasma membrane-localized in T. brucei and when expressed in Saccharomyces cerevisiae supported the uptake of proline, alanine, and cysteine, while other amino acids were poorly recognized. All AAT7-B members showed a preference for proline, which is transported with high or low affinity. RNAi-mediated AAT7-B downregulation resulted in a reduction of intracellular proline concentrations and growth arrest under low proline availability in cultured procyclic form parasites. Taken together, these results suggest a role of AAT7-B transporters in the response of T. brucei to proline starvation and proline catabolism.
Collapse
Affiliation(s)
| | - Viona Ernst
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | | | | | - Isabel Roditi
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Doris Rentsch
- Institute of Plant Sciences, University of Bern, Bern, Switzerland.
| |
Collapse
|
238
|
Wang W, Peng D, Baptista RP, Li Y, Kissinger JC, Tarleton RL. Strain-specific genome evolution in Trypanosoma cruzi, the agent of Chagas disease. PLoS Pathog 2021; 17:e1009254. [PMID: 33508020 PMCID: PMC7872254 DOI: 10.1371/journal.ppat.1009254] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 02/09/2021] [Accepted: 12/22/2020] [Indexed: 12/16/2022] Open
Abstract
The protozoan Trypanosoma cruzi almost invariably establishes life-long infections in humans and other mammals, despite the development of potent host immune responses that constrain parasite numbers. The consistent, decades-long persistence of T. cruzi in human hosts arises at least in part from the remarkable level of genetic diversity in multiple families of genes encoding the primary target antigens of anti-parasite immune responses. However, the highly repetitive nature of the genome-largely a result of these same extensive families of genes-have prevented a full understanding of the extent of gene diversity and its maintenance in T. cruzi. In this study, we have combined long-read sequencing and proximity ligation mapping to generate very high-quality assemblies of two T. cruzi strains representing the apparent ancestral lineages of the species. These assemblies reveal not only the full repertoire of the members of large gene families in the two strains, demonstrating extreme diversity within and between isolates, but also provide evidence of the processes that generate and maintain that diversity, including extensive gene amplification, dispersion of copies throughout the genome and diversification via recombination and in situ mutations. Gene amplification events also yield significant copy number variations in a substantial number of genes presumably not required for or involved in immune evasion, thus forming a second level of strain-dependent variation in this species. The extreme genome flexibility evident in T. cruzi also appears to create unique challenges with respect to preserving core genome functions and gene expression that sets this species apart from related kinetoplastids.
Collapse
Affiliation(s)
- Wei Wang
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Duo Peng
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Rodrigo P. Baptista
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
| | - Yiran Li
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
| | - Jessica C. Kissinger
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| | - Rick L. Tarleton
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
239
|
Nocua PA, Requena JM, Puerta CJ. Identification of the interactomes associated with SCD6 and RBP42 proteins in Leishmania braziliensis. J Proteomics 2020; 233:104066. [PMID: 33296709 DOI: 10.1016/j.jprot.2020.104066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/16/2020] [Accepted: 11/29/2020] [Indexed: 02/04/2023]
Abstract
Leishmania are protozoan parasites responsible for leishmaniasis. These parasites present a precise gene regulation that allows them to survive different environmental conditions during their digenetic life cycle. This adaptation depends on the regulation of the expression of a wide variety of genes, which occurs, mainly at the post-transcriptional level. This differential gene expression is achieved by mechanisms based mainly in RNA binding proteins that regulate the translation and/or stability of mRNA targets by interaction with cis elements principally located in the untranslated regions (UTR). In recent studies, our group identified and characterized two proteins, SCD6 and RBP42, as RNA binding proteins in Leishmania braziliensis. To find clues about the cellular processes in which these proteins are involved, this work was aimed to determine the SCD6- and RBP42-interacting proteins (interactome) in L. braziliensis promastigotes. For this purpose, after an in vivo UV cross-linking, cellular extracts were used to immunoprecipitated, by specific antibodies, protein complexes in which SCD6 or RBP42 were present. Protein mass spectrometry analysis of the immunoprecipitated proteins identified 96 proteins presumably associated with SCD6 and 173 proteins associated with RBP42. Notably, a significant proportion of the identified proteins were shared in both interactomes, indicating a possible functional relationship between SCD6 and RBP42. Remarkably, many of the proteins identified in the SCD6 and RBP42 interactomes are related to RNA metabolism and translation processes, and many of them have been described as components of ribonucleoprotein (RNP) granules in Leishmania and related trypanosomatids. Thus, these results support a role of SCD6 and RBP42 in the assembly and/or function of mRNA-protein complexes, participating in the fate (decay/accumulation/translation) of L. braziliensis transcripts. SIGNIFICANCE: Parasites of the Leishmania genus present a particular regulation of gene expression, operating mainly at the post-transcriptional level, surely aimed to modulate quickly both mRNA and protein levels to survive the sudden environmental changes that occur during a parasite's life cycle as it moves from one host to another. This regulation of gene expression processes would be governed by the interaction of mRNA with RNA binding proteins. Nevertheless, the entirety of protein networks involved in these regulatory processes is far from being understood. In this regard, our work is contributing to stablish protein networks in which the L. braziliensis SCD6 and RBP42 proteins are involved; these proteins, in previous works, have been described as RNA binding proteins and found to participate in gene regulation in different cells and organisms. Additionally, our data point out a possible functional relationship between SCD6 and RBP42 proteins as constituents of mRNA granules, like processing bodies or stress granules, which are essential structures in the regulation of gene expression. This knowledge could provide a new approach for the development of therapeutic targets to control Leishmania infections.
Collapse
Affiliation(s)
- Paola A Nocua
- Laboratorio de Parasitología Molecular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia; Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.
| | - José M Requena
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.
| | - Concepción J Puerta
- Laboratorio de Parasitología Molecular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.
| |
Collapse
|
240
|
Trypanosoma cruzi synthesizes proline via a Δ1-pyrroline-5-carboxylate reductase whose activity is fine-tuned by NADPH cytosolic pools. Biochem J 2020; 477:1827-1845. [PMID: 32315030 DOI: 10.1042/bcj20200232] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 12/27/2022]
Abstract
In Trypanosoma cruzi, the etiological agent of Chagas disease, the amino acid proline participates in processes related to T. cruzi survival and infection, such as ATP production, cell differentiation, host-cell invasion, and in protection against osmotic, nutritional, and thermal stresses and oxidative imbalance. However, little is known about proline biosynthesis in this parasite. Δ1-Pyrroline-5-carboxylate reductase (P5CR, EC 1.5.1.2) catalyzes the biosynthesis of proline from Δ1-pyrroline-5-carboxylate (P5C) with concomitant NADPH oxidation. Herein, we show that unlike other eukaryotes, T. cruzi biosynthesizes proline from P5C, which is produced exclusively from glutamate. We found that TcP5CR is an NADPH-dependent cytosolic enzyme with a Kmapp for P5C of 27.7 μM and with a higher expression in the insect-resident form of the parasite. High concentrations of the co-substrate NADPH partially inhibited TcP5CR activity, prompting us to analyze multiple kinetic inhibition models. The model that best explained the obtained data included a non-competitive substrate inhibition mechanism (Kiapp=45±0.7μM). Therefore, TcP5CR is a candidate as a regulatory factor of this pathway. Finally, we show that P5C can exit trypanosomatid mitochondria in conditions that do not compromise organelle integrity. These observations, together with previously reported results, lead us to propose that in T. cruzi TcP5CR participates in a redox shuttle between the mitochondria and the cytoplasm. In this model, cytoplasmic redox equivalents from NADPH pools are transferred to the mitochondria using proline as a reduced metabolite, and shuttling to fuel electrons to the respiratory chain through proline oxidation by its cognate dehydrogenase.
Collapse
|
241
|
Deciphering the interaction of benzoxaborole inhibitor AN2690 with connective polypeptide 1 (CP1) editing domain of Leishmania donovani leucyl-tRNA synthetase. J Biosci 2020. [DOI: 10.1007/s12038-020-00031-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
242
|
Rojas-Pirela M, Andrade-Alviárez D, Rojas V, Kemmerling U, Cáceres AJ, Michels PA, Concepción JL, Quiñones W. Phosphoglycerate kinase: structural aspects and functions, with special emphasis on the enzyme from Kinetoplastea. Open Biol 2020; 10:200302. [PMID: 33234025 PMCID: PMC7729029 DOI: 10.1098/rsob.200302] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Phosphoglycerate kinase (PGK) is a glycolytic enzyme that is well conserved among the three domains of life. PGK is usually a monomeric enzyme of about 45 kDa that catalyses one of the two ATP-producing reactions in the glycolytic pathway, through the conversion of 1,3-bisphosphoglycerate (1,3BPGA) to 3-phosphoglycerate (3PGA). It also participates in gluconeogenesis, catalysing the opposite reaction to produce 1,3BPGA and ADP. Like most other glycolytic enzymes, PGK has also been catalogued as a moonlighting protein, due to its involvement in different functions not associated with energy metabolism, which include pathogenesis, interaction with nucleic acids, tumorigenesis progression, cell death and viral replication. In this review, we have highlighted the overall aspects of this enzyme, such as its structure, reaction kinetics, activity regulation and possible moonlighting functions in different protistan organisms, especially both free-living and parasitic Kinetoplastea. Our analysis of the genomes of different kinetoplastids revealed the presence of open-reading frames (ORFs) for multiple PGK isoforms in several species. Some of these ORFs code for unusually large PGKs. The products appear to contain additional structural domains fused to the PGK domain. A striking aspect is that some of these PGK isoforms are predicted to be catalytically inactive enzymes or ‘dead’ enzymes. The roles of PGKs in kinetoplastid parasites are analysed, and the apparent significance of the PGK gene duplication that gave rise to the different isoforms and their expression in Trypanosoma cruzi is discussed.
Collapse
Affiliation(s)
- Maura Rojas-Pirela
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaiso, Valparaiso 2373223, Chile
| | - Diego Andrade-Alviárez
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Verónica Rojas
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaiso, Valparaiso 2373223, Chile
| | - Ulrike Kemmerling
- Instituto de Ciencias Biomédicas, Universidad de Chile, Facultad de Medicina, Santiago de Chile 8380453, Santigo de Chile
| | - Ana J Cáceres
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Paul A Michels
- Centre for Immunity, Infection and Evolution, The King's Buildings, Edinburgh EH9 3FL, UK.,Centre for Translational and Chemical Biology, School of Biological Sciences, The University of Edinburgh, The King's Buildings, Edinburgh EH9 3FL, UK
| | - Juan Luis Concepción
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Wilfredo Quiñones
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| |
Collapse
|
243
|
Caeiro LD, Masip YE, Rizzi M, Rodríguez ME, Pueblas Castro C, Sánchez DO, Coria ML, Cassataro J, Tekiel V. The Trypanosoma cruzi TcTASV-C protein subfamily administrated with U-Omp19 promotes a protective response against a lethal challenge in mice. Vaccine 2020; 38:7645-7653. [PMID: 33071003 DOI: 10.1016/j.vaccine.2020.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/28/2020] [Accepted: 10/02/2020] [Indexed: 01/08/2023]
Abstract
The development of a Chagaś disease vaccine has yet the need for the identification of novel combinations of antigens and adjuvants. Here, the performance of TcTASV-C proteins that are virulence factors of trypomastigotes and belong to a novel surface protein family specific for T. cruzi, have been evaluated as antigens for a prophylactic vaccine. Several immunization schemes in which TcTASV-C was combined with aluminum hydroxide, saponin and/or U-Omp19 were assayed. Aluminum hydroxide and saponin were assayed together to trigger different pathways of the immune response simultaneously. U-Omp19 is a promising novel adjuvant able to promote a Th1 immune response with IFNg production, thus an interesting molecule to be tested as adjuvant for the control of T. cruzi infection. Therefore, U-Omp19 was added to the aluminum hydroxide-saponin formulation as well as assayed individually with TcTASV-C. The immunization with TcTASV-C and U-Omp19 had the best performance as a prophylactic vaccine. Mice presented the lowest parasitemias and improved survival by 40% after being challenged with a highly virulent T. cruzi strain, which promoted 100% mortality in all other immunized groups. Immunization with TcTASV-C and U-Omp19 triggered cellular responses with IFN-γ and IL-17 production and with lytic antibodies that could explain the protection achieved by this vaccination scheme. To our knowledge, this is the first time that U-Omp19 is tested with a defined T. cruzi antigen in a vaccine formulation.
Collapse
Affiliation(s)
- Lucas D Caeiro
- Instituto de Investigaciones Biotecnológicas (IIBio), Universidad Nacional de San Martín (UNSAM) - CONICET, Av. 25 de Mayo y Francia, Campus UNSAM, San Martín (1650), Provincia de Buenos Aires, Argentina.
| | - Yamil E Masip
- Instituto de Investigaciones Biotecnológicas (IIBio), Universidad Nacional de San Martín (UNSAM) - CONICET, Av. 25 de Mayo y Francia, Campus UNSAM, San Martín (1650), Provincia de Buenos Aires, Argentina.
| | - Mariana Rizzi
- Instituto de Investigaciones Biotecnológicas (IIBio), Universidad Nacional de San Martín (UNSAM) - CONICET, Av. 25 de Mayo y Francia, Campus UNSAM, San Martín (1650), Provincia de Buenos Aires, Argentina.
| | - Matías E Rodríguez
- Instituto de Investigaciones Biotecnológicas (IIBio), Universidad Nacional de San Martín (UNSAM) - CONICET, Av. 25 de Mayo y Francia, Campus UNSAM, San Martín (1650), Provincia de Buenos Aires, Argentina.
| | - Celeste Pueblas Castro
- Instituto de Investigaciones Biotecnológicas (IIBio), Universidad Nacional de San Martín (UNSAM) - CONICET, Av. 25 de Mayo y Francia, Campus UNSAM, San Martín (1650), Provincia de Buenos Aires, Argentina.
| | - Daniel O Sánchez
- Instituto de Investigaciones Biotecnológicas (IIBio), Universidad Nacional de San Martín (UNSAM) - CONICET, Av. 25 de Mayo y Francia, Campus UNSAM, San Martín (1650), Provincia de Buenos Aires, Argentina.
| | - M Lorena Coria
- Instituto de Investigaciones Biotecnológicas (IIBio), Universidad Nacional de San Martín (UNSAM) - CONICET, Av. 25 de Mayo y Francia, Campus UNSAM, San Martín (1650), Provincia de Buenos Aires, Argentina.
| | - Juliana Cassataro
- Instituto de Investigaciones Biotecnológicas (IIBio), Universidad Nacional de San Martín (UNSAM) - CONICET, Av. 25 de Mayo y Francia, Campus UNSAM, San Martín (1650), Provincia de Buenos Aires, Argentina.
| | - Valeria Tekiel
- Instituto de Investigaciones Biotecnológicas (IIBio), Universidad Nacional de San Martín (UNSAM) - CONICET, Av. 25 de Mayo y Francia, Campus UNSAM, San Martín (1650), Provincia de Buenos Aires, Argentina.
| |
Collapse
|
244
|
Ranjan R, Das P, Vijayakumar S. Differentially modulated proteins associated with Leishmaniasis-a systematic review of in-vivo and in-vitro studies. Mol Biol Rep 2020; 47:9159-9178. [PMID: 33113081 PMCID: PMC7591689 DOI: 10.1007/s11033-020-05936-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/20/2020] [Indexed: 11/05/2022]
Abstract
High-throughput proteomic technologies are widely used for understanding the disease mechanism, drug-resistant mechanism, and to identify drug targets and markers for diagnostics. Studies with proteomics applications, relating to Leishmaniasis, are being constantly reported in the literature. However, from such studies, a readily accessible knowledge of differentially modulated proteins associated with Leishmaniasis is lacking. Hence, we performed a systematic review concerning differentially modulated proteins (DMP) in Leishmania as well as host infected with Leishmania from the published articles between the years 2000 and 2019. This review is classified into five different sections, namely, DMP in the host after Leishmania infection, DMP between different strains of Leishmania, DMP in drug-resistant Leishmania, DMP in Leishmania under stress, and DMP in different life stages of Leishmania. A lot of consensuses could be observed among the DMP in drug-resistant and stressed Leishmania. In addition to the review, a database was constructed with the data collected in this study (protein accession ID, protein name, gene name, host organism, experimental conditions, fold change, and regulatory data). A total of 2635 records are available in the database. We believe this review and the database will help the researcher in understanding the disease better and provide information for the targeted proteomics study related to Leishmaniasis. Database availability: http://ldepdb.biomedinformri.com/ .
Collapse
Affiliation(s)
- Ravi Ranjan
- Department of Statistics/Bioinformatics Centre, Rajendra Memorial Research Institute of Medical Science, Indian Council for Medical Research, Agamkuan, Patna, Bihar, 800007, India
| | - Pradeep Das
- Department of Molecular Biology/Bioinformatics Centre, Rajendra Memorial Research Institute of Medical Science, Indian Council for Medical Research, Agamkuan, Patna, Bihar, 800007, India
| | - Saravanan Vijayakumar
- Department of Statistics/Bioinformatics Centre, Rajendra Memorial Research Institute of Medical Science, Indian Council for Medical Research, Agamkuan, Patna, Bihar, 800007, India.
| |
Collapse
|
245
|
Burge RJ, Damianou A, Wilkinson AJ, Rodenko B, Mottram JC. Leishmania differentiation requires ubiquitin conjugation mediated by a UBC2-UEV1 E2 complex. PLoS Pathog 2020; 16:e1008784. [PMID: 33108402 PMCID: PMC7647121 DOI: 10.1371/journal.ppat.1008784] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/06/2020] [Accepted: 09/10/2020] [Indexed: 12/27/2022] Open
Abstract
Post-translational modifications such as ubiquitination are important for orchestrating the cellular transformations that occur as the Leishmania parasite differentiates between its main morphological forms, the promastigote and amastigote. 2 E1 ubiquitin-activating (E1), 13 E2 ubiquitin-conjugating (E2), 79 E3 ubiquitin ligase (E3) and 20 deubiquitinating cysteine peptidase (DUB) genes can be identified in the Leishmania mexicana genome but, currently, little is known about the role of E1, E2 and E3 enzymes in this parasite. Bar-seq analysis of 23 E1, E2 and HECT/RBR E3 null mutants generated in promastigotes using CRISPR-Cas9 revealed numerous loss-of-fitness phenotypes in promastigote to amastigote differentiation and mammalian infection. The E2s UBC1/CDC34, UBC2 and UEV1 and the HECT E3 ligase HECT2 are required for the successful transformation from promastigote to amastigote and UBA1b, UBC9, UBC14, HECT7 and HECT11 are required for normal proliferation during mouse infection. Of all ubiquitination enzyme null mutants examined in the screen, Δubc2 and Δuev1 exhibited the most extreme loss-of-fitness during differentiation. Null mutants could not be generated for the E1 UBA1a or the E2s UBC3, UBC7, UBC12 and UBC13, suggesting these genes are essential in promastigotes. X-ray crystal structure analysis of UBC2 and UEV1, orthologues of human UBE2N and UBE2V1/UBE2V2 respectively, reveal a heterodimer with a highly conserved structure and interface. Furthermore, recombinant L. mexicana UBA1a can load ubiquitin onto UBC2, allowing UBC2-UEV1 to form K63-linked di-ubiquitin chains in vitro. Notably, UBC2 can cooperate in vitro with human E3s RNF8 and BIRC2 to form non-K63-linked polyubiquitin chains, showing that UBC2 can facilitate ubiquitination independent of UEV1, but association of UBC2 with UEV1 inhibits this ability. Our study demonstrates the dual essentiality of UBC2 and UEV1 in the differentiation and intracellular survival of L. mexicana and shows that the interaction between these two proteins is crucial for regulation of their ubiquitination activity and function. The post-translational modification of proteins is key for allowing Leishmania parasites to transition between the different life cycle stages that exist in its insect vector and mammalian host. In particular, components of the ubiquitin system are important for the transformation of Leishmania from its insect (promastigote) to mammalian (amastigote) stage and normal infection in mice. However, little is known about the role of the enzymes that generate ubiquitin modifications in Leishmania. Here we characterise 28 enzymes of the ubiquitination pathway and show that many are required for life cycle progression or mouse infection by this parasite. Two proteins, UBC2 and UEV1, were selected for further study based on their importance in the promastigote to amastigote transition. We demonstrate that UBC2 and UEV1 form a heterodimer capable of carrying out ubiquitination and that the structural basis for this activity is conserved between Leishmania, Saccharomyces cerevisiae and humans. We also show that the interaction of UBC2 with UEV1 alters the nature of the ubiquitination activity performed by UBC2. Overall, we demonstrate the important role that ubiquitination enzymes play in the life cycle and infection process of Leishmania and explore the biochemistry underlying UBC2 and UEV1 function.
Collapse
Affiliation(s)
- Rebecca J. Burge
- York Biomedical Research Institute and Department of Biology, University of York, United Kingdom
| | - Andreas Damianou
- York Biomedical Research Institute and Department of Biology, University of York, United Kingdom
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Anthony J. Wilkinson
- York Biomedical Research Institute and York Structural Biology Laboratory, Department of Chemistry, University of York, United Kingdom
| | - Boris Rodenko
- UbiQ Bio BV, Amsterdam Science Park, the Netherlands
| | - Jeremy C. Mottram
- York Biomedical Research Institute and Department of Biology, University of York, United Kingdom
- * E-mail:
| |
Collapse
|
246
|
Analysis of the IGS rRNA Region and Applicability for Leishmania ( V.) braziliensis Characterization. J Parasitol Res 2020; 2020:8885070. [PMID: 33083046 PMCID: PMC7559751 DOI: 10.1155/2020/8885070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/08/2020] [Accepted: 09/16/2020] [Indexed: 12/03/2022] Open
Abstract
The causative species is an important factor influencing the evolution of American cutaneous leishmaniasis (ACL). Due to its wide distribution in endemic areas, Leishmania (V.) braziliensis is considered one of the most important species in circulation in Brazil. Molecular targets derived from ribosomal RNA (rRNA) were used in studies to identify Leishmania spp.; however, the Intergenic Spacer (IGS) region has not yet been explored in parasite species differentiation. Besides, there is a shortage of sequences deposited in public repositories for this region. Thus, it was proposed to analyze and provide sequences of the IGS rRNA region from different Leishmania spp. and to evaluate their potential as biomarkers to characterize L. braziliensis. A set of primers was designed for complete amplification of the IGS rRNA region of Leishmania spp. PCR products were submitted to Sanger sequencing. The sequences obtained were aligned and analyzed for size and similarity, as well as deposited in GenBank. Characteristics of the repetitive elements (IGSRE) present in the IGS rRNA were also verified. In addition, a set of primers for L. braziliensis identification for qPCR was developed and optimized. Sensitivity (S), specificity (σ), and efficiency (ε) tests were applied. It was found that the mean size for the IGS rRNA region is 3 kb, and the similarity analysis of the sequences obtained demonstrated high conservation among the species. It was observed that the size for the IGSRE repetitive region varies between 61 and 71 bp, and there is a high identity between some species. Fifteen sequences generated for the IGS rRNA partial region of nine different species were deposited in GenBank so far. The specific primer system for L. braziliensis showed S = 10 fg, ε = 98.08%, and logσ = 103 for Leishmania naiffi; logσ = 104 for Leishmania guyanensis; and logσ = 105 for Leishmania shawi. This protocol system can be used for diagnosis, identification, and quantification of a patient's parasite load, aiding in the direction of a more appropriate therapeutic management to the cases of infection by this etiological agent. Besides that, the unpublished sequences deposited in databases can be used for multiple analyses in different contexts.
Collapse
|
247
|
Identification of Novel Interspersed DNA Repetitive Elements in the Trypanosoma cruzi Genome Associated with the 3'UTRs of Surface Multigenic Families. Genes (Basel) 2020; 11:genes11101235. [PMID: 33096822 PMCID: PMC7593948 DOI: 10.3390/genes11101235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 11/23/2022] Open
Abstract
Trypanosoma cruzi is the etiological agent of Chagas disease, which affects millions of people in Latin America. No transcriptional control of gene expression has been demonstrated in this organism, and 50% of its genome consists of repetitive elements and members of multigenic families. In this study, we applied a novel bioinformatics approach to predict new repetitive elements in the genome sequence of T. cruzi. A new repetitive sequence measuring 241 nt was identified and found to be interspersed along the genome sequence from strains of different DTUs. This new repeat was mostly on intergenic regions, and upstream and downstream regions of the 241 nt repeat were enriched in surface protein genes. RNAseq analysis revealed that the repeat was part of processed mRNAs and was predominantly found in the 3′ untranslated regions (UTRs) of genes of multigenic families encoding surface proteins. Moreover, we detected a correlation between the presence of the repeat in the 3′UTR of multigenic family genes and the level of differential expression of these genes when comparing epimastigote and trypomastigote transcriptomes. These data suggest that this sequence plays a role in the posttranscriptional regulation of the expression of multigenic families.
Collapse
|
248
|
Lima BSDS, Esteves BB, Fialho-Júnior LC, Mendes TADO, Pires SDF, Chapeourouge A, Perales J, de Andrade HM. Study of the differentially abundant proteins among Leishmania amazonensis, L. braziliensis, and L. infantum. PLoS One 2020; 15:e0240612. [PMID: 33057350 PMCID: PMC7561129 DOI: 10.1371/journal.pone.0240612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/29/2020] [Indexed: 01/05/2023] Open
Abstract
Leishmaniasis has been considered as emerging and re-emerging disease, and its increasing global incidence has raised concerns. The great clinical diversity of the disease is mainly determined by the species. In several American countries, tegumentary leishmaniasis (TL) is associated with both Leishmania amazonensis and L. braziliensis, while visceral leishmaniasis (VL) is associated with L. (L.) infantum. The major molecules that determine the most diverse biological variations are proteins. In the present study, through a DIGE approach, we identified differentially abundant proteins among the species mentioned above. We observed a variety of proteins with differential abundance among the studied species; and the biological networks predicted for each species showed that many of these proteins interacted with each other. The prominent proteins included the heat shock proteins (HSPs) and the protein network involved in oxide reduction process in L. amazonensis, the protein network of ribosomes in L. braziliensis, and the proteins involved in energy metabolism in L. infantum. The important proteins, as revealed by the PPI network results, enrichment categories, and exclusive proteins analysis, were arginase, HSPs, and trypanothione reductase in L. amazonensis; enolase, peroxidoxin, and tryparedoxin1 in L. braziliensis; and succinyl-CoA ligase [GDP -forming] beta-chain and transaldolase in L. infantum.
Collapse
Affiliation(s)
- Bruna Soares de Souza Lima
- Departamento de Medicina, Faculdade Dinâmica do Vale do Piranga (FADIP), Ponte Nova, Minas Gerais, Brazil
- Departamento de Parasitologia, Laboratório de Leishmanioses, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Barbara Beiral Esteves
- Departamento de Parasitologia, Laboratório de Leishmanioses, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luiz Carlos Fialho-Júnior
- Departamento de Parasitologia, Laboratório de Leishmanioses, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Simone da Fonseca Pires
- Departamento de Parasitologia, Laboratório de Leishmanioses, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Jonas Perales
- Laboratório de Toxinologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Helida Monteiro de Andrade
- Departamento de Parasitologia, Laboratório de Leishmanioses, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
249
|
Galen SC, Borner J, Perkins SL, Weckstein JD. Phylogenomics from transcriptomic "bycatch" clarify the origins and diversity of avian trypanosomes in North America. PLoS One 2020; 15:e0240062. [PMID: 33031471 PMCID: PMC7544035 DOI: 10.1371/journal.pone.0240062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/17/2020] [Indexed: 12/04/2022] Open
Abstract
The eukaryotic blood parasite genus Trypanosoma includes several important pathogens of humans and livestock, but has been understudied in wildlife broadly. The trypanosomes that infect birds are in particular need of increased attention, as these parasites are abundant and globally distributed, yet few studies have addressed their evolutionary origins and diversity using modern molecular and analytical approaches. Of specific interest are the deep evolutionary relationships of the avian trypanosomes relative to the trypanosome species that are pathogenic in humans, as well as their species level diversity in regions where they have been understudied such as North America. Here, we address these unresolved areas of study using phylogenomic data for two species of avian trypanosomes that were isolated as “bycatch” from host transcriptome assemblies, as well as a large 18S DNA barcode sequence dataset that includes 143 novel avian Trypanosoma 18S sequences from North America. Using a phylogenomic approach, we find that the avian trypanosomes are nested within a clade of primarily mammalian trypanosomes that includes the human pathogen Trypanosoma cruzi, and are paraphyletic with respect to the ruminant trypanosome Trypanosoma theileri. DNA barcode sequences showed that T. avium and an unidentified small, non-striated trypanosome that was morphologically similar to T. everetti are each represented by highly abundant and divergent 18S haplotypes in North America. Community-level sampling revealed that additional species-level Trypanosoma lineages exist in this region. We compared the newly sequenced DNA barcodes from North America to a global database, and found that avian Trypanosoma 18S haplotypes generally exhibited a marked lack of host specificity with at least one T. avium haplotype having an intercontinental distribution. This highly abundant T. avium haplotype appears to have a remarkably high dispersal ability and cosmopolitan capacity to evade avian host immune defenses, which warrant further study.
Collapse
MESH Headings
- Animals
- Bayes Theorem
- Biological Evolution
- Birds/genetics
- Birds/parasitology
- Contig Mapping
- DNA Barcoding, Taxonomic
- DNA, Protozoan/chemistry
- DNA, Protozoan/metabolism
- Databases, Factual
- Haplotypes
- Humans
- North America
- Phylogeny
- RNA, Ribosomal, 18S/chemistry
- RNA, Ribosomal, 18S/classification
- RNA, Ribosomal, 18S/metabolism
- Transcriptome
- Trypanosoma/classification
- Trypanosoma/genetics
- Trypanosoma/pathogenicity
- Trypanosoma cruzi/classification
Collapse
Affiliation(s)
- Spencer C. Galen
- Department of Ornithology, Academy of Natural Sciences of Drexel University, Philadelphia, PA, United States of America
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, United States of America
- Biology Department, University of Scranton, Scranton, PA, United States of America
- * E-mail:
| | - Janus Borner
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, United States of America
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - Susan L. Perkins
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, United States of America
- Division of Science, The City College of New York, New York, NY, United States of America
| | - Jason D. Weckstein
- Department of Ornithology, Academy of Natural Sciences of Drexel University, Philadelphia, PA, United States of America
- Department of Biodiversity, Earth, and Environmental Science, Drexel University, Philadelphia, PA, United States of America
| |
Collapse
|
250
|
Poveda A, Méndez MÁ, Armijos-Jaramillo V. Analysis of DNA Polymerases Reveals Specific Genes Expansion in Leishmania and Trypanosoma spp. Front Cell Infect Microbiol 2020; 10:570493. [PMID: 33117729 PMCID: PMC7576959 DOI: 10.3389/fcimb.2020.570493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/02/2020] [Indexed: 01/01/2023] Open
Abstract
Leishmaniasis and trypanosomiasis are largely neglected diseases prevailing in tropical and subtropical conditions. These are an arthropod-borne zoonosis that affects humans and some animals and is caused by infection with protozoan of the genera Leishmania and Trypanosoma, respectively. These parasites present high genomic plasticity and are able to adapt themselves to adverse conditions like the attack of host cells or toxicity induced by drug exposure. Different mechanisms allow these adapting responses induced by stress, such as mutation, chromosomal rearrangements, establishment of mosaic ploidies, and gene expansion. Here we describe how a subset of genes encoding for DNA polymerases implied in repairing/translesion (TLS) synthesis are duplicated in some pathogenic species of the Trypanosomatida order and a free-living species from the Bodonida order. These enzymes are both able to repair DNA, but are also error-prone under certain situations. We discuss about the possibility that these enzymes can act as a source of genomic variation promoting adaptation in trypanosomatids.
Collapse
Affiliation(s)
- Ana Poveda
- DNA Replication and Genome Instability Unit, Grupo de Investigación en Biodiversidad, Zoonosis y Salud Pública (GIBCIZ), Instituto de Investigación en Salud Pública y Zoonosis-CIZ, Facultad de Ciencias Químicas, Universidad Central del Ecuador, Quito, Ecuador.,Departamento de Bioquímica y Biología Molecular, Universidad de Valencia, Burjassot, Spain
| | - Miguel Ángel Méndez
- Grupo de Química Computacional y Teórica, Universidad San Francisco de Quito, Quito, Ecuador
| | - Vinicio Armijos-Jaramillo
- Grupo de Bio-Quimioinformática, Carrera de Ingeniería en Biotecnología, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas, Quito, Ecuador
| |
Collapse
|