201
|
Navratil M, Poe BG, Arriaga EA. Quantitation of DNA copy number in individual mitochondrial particles by capillary electrophoresis. Anal Chem 2007; 79:7691-9. [PMID: 17877423 DOI: 10.1021/ac0709192] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here, we present a direct method for determining mitochondrial DNA (mtDNA) copy numbers in individual mitochondrial particles, isolated from cultured cells, by means of capillary electrophoresis with laser-induced fluorescence (CE-LIF) detection. We demonstrate that this method can detect a single molecule of PicoGreen-stained mtDNA in intact DsRed2-labeled mitochondrial particles isolated from human osteosarcoma 143B cells. This ultimate limit of mtDNA detection made it possible to confirm that an individual mitochondrial nucleoid, the genetic unit of mitochondrial inheritance, can contain a single copy of mtDNA. The validation of this approach was achieved via monitoring chemically induced mtDNA depletion and comparing the CE-LIF results to those obtained by quantitative microscopy imaging and multiplex real-time PCR analysis. Owing to its sensitivity, the CE-LIF method may become a powerful tool for investigating the copy number and organization of mtDNA in mitochondrial disease and aging, and in molecular biology techniques requiring manipulation and quantitation of DNA molecules such as plasmids.
Collapse
Affiliation(s)
- Marian Navratil
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
202
|
Genasetti A, Valentino ML, Carelli V, Vigetti D, Viola M, Karousou EG, Melzi d'Eril GV, De Luca G, Passi A, Pallotti F. Assessing heteroplasmic load in Leber's hereditary optic neuropathy mutation 3460G->A/MT-ND1 with a real-time PCR quantitative approach. J Mol Diagn 2007; 9:538-45. [PMID: 17652639 PMCID: PMC1975109 DOI: 10.2353/jmoldx.2007.060183] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
To quantify the amount of the 3460G-->A/ND1 point mutation responsible for Leber's hereditary optic neuropathy, we developed a quantitative real-time polymerase chain reaction method based on the SYBR Green assay and a new approach using the TaqMan assay. Both methods were based on the amplification refractory mutation system, comparing the heteroplasmic load quantified by restriction fragment length polymorphism in 15 Leber's hereditary optic neuropathy family members, with the results obtained using quantitative real-time polymerase chain reaction methods. The comparative evaluation of mitochondrial DNA (mtDNA) heteroplasmy from blood samples showed significant correlation between restriction fragment length polymorphism analysis, real-time SYBR Green assay, and TaqMan assay. We validated the last method by measuring experimental samples composed by a known proportion of cloned plasmids containing either the wild-type or mutant sequence, giving a correlation coefficient of 0.999 (P < 0.0001). The real-time amplification refractory mutation system polymerase chain reaction by TaqMan assay provides a rapid, reliable, sensitive, reproducible, and one-step quantitative method to detect heteroplasmic mutant mtDNA. This method allows the quantitation of a broad range of mutational load (up to 100%, down to 0.01%) on the basis of in vitro calibration, thus rendering the TaqMan assay suitable for the diagnostic analysis of heteroplasmic load in mtDNA-related disorders.
Collapse
Affiliation(s)
- Anna Genasetti
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Via J.H. Dunant 5, 21100 Varese, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Durham SE, Samuels DC, Cree LM, Chinnery PF. Normal levels of wild-type mitochondrial DNA maintain cytochrome c oxidase activity for two pathogenic mitochondrial DNA mutations but not for m.3243A-->G. Am J Hum Genet 2007; 81:189-95. [PMID: 17564976 PMCID: PMC1950909 DOI: 10.1086/518901] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Accepted: 04/17/2007] [Indexed: 12/29/2022] Open
Abstract
Mitochondrial DNA (mtDNA) mutations are a common cause of human disease and accumulate as part of normal ageing and in common neurodegenerative disorders. Cells express a biochemical defect only when the proportion of mutated mtDNA exceeds a critical threshold, but it is not clear whether the actual cause of this defect is a loss of wild-type mtDNA, an excess of mutated mtDNA, or a combination of the two. Here, we show that segments of human skeletal muscle fibers harboring two pathogenic mtDNA mutations retain normal cytochrome c oxidase (COX) activity by maintaining a minimum amount of wild-type mtDNA. For these mutations, direct measurements of mutated and wild-type mtDNA molecules within the same skeletal muscle fiber are consistent with the "maintenance of wild type" hypothesis, which predicts that there is nonselective proliferation of mutated and wild-type mtDNA in response to the molecular defect. However, for the m.3243A-->G mutation, a superabundance of wild-type mtDNA was found in many muscle-fiber sections with negligible COX activity, indicating that the pathogenic mechanism for this particular mutation involves interference with the function of the wild-type mtDNA or wild-type gene products.
Collapse
Affiliation(s)
- Steve E Durham
- Mitochondrial Research Group, Newcastle University, Newcastle, UK
| | | | | | | |
Collapse
|
204
|
Yin S, Yu Z, Sockalingam R, Bance M, Sun G, Wang J. The role of mitochondrial DNA large deletion for the development of presbycusis in Fischer 344 rats. Neurobiol Dis 2007; 27:370-7. [PMID: 17618125 DOI: 10.1016/j.nbd.2007.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 05/14/2007] [Accepted: 06/04/2007] [Indexed: 10/23/2022] Open
Abstract
Age-related hearing loss, or presbycusis, has been associated with large-scale mitochondrial DNA (mtDNA) deletion in previous studies. However, the role of this mtDNA damage in presbycusis is still not clear because the deletion in inner ears has not been measured quantitatively and analyzed in parallel with the time course of presbycusis. In the present study, the deletion was quantified using quantitative real-time PCR (qRT-PCR) in male Fischer 344 rats of different ages. It was found that the deletion increased quickly during young adulthood and reached over 60% at 6 months of age. However, a significant hearing loss was not seen until after 12 months of age. The results suggest that the existence of the deletion per se does not necessarily imply cochlear damage, but rather a critical level of the accumulated deletion seems to precede the hearing loss. The long delay may indicate the involvement of mechanisms other than mtDNA deletion in the development of presbycusis.
Collapse
Affiliation(s)
- Shankai Yin
- Institute of Otolaryngology Research, JiaoTong University, Shanghai, 200233, China
| | | | | | | | | | | |
Collapse
|
205
|
Ye C, Shu XO, Wen W, Pierce L, Courtney R, Gao YT, Zheng W, Cai Q. Quantitative analysis of mitochondrial DNA 4977-bp deletion in sporadic breast cancer and benign breast diseases. Breast Cancer Res Treat 2007; 108:427-34. [PMID: 17541740 PMCID: PMC3836503 DOI: 10.1007/s10549-007-9613-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Accepted: 05/03/2007] [Indexed: 10/23/2022]
Abstract
The mitochondrial DNA (mtDNA) 4977-bp deletion (DeltamtDNA(4977) mutation) is one of the most frequently observed mtDNA mutations in human tissues and may play a role in carcinogenesis. Only a few studies have evaluated DeltamtDNA(4977) mutation in breast cancer tissue, and the findings have been inconsistent, which may be due to methodological differences. In this study, we developed a quantitative real-time PCR assay to assess the level of the DeltamtDNA(4977) mutation in tumor tissue samples from 55 primary breast cancer patients and 21 patients with benign breast disease (BBD). The DeltamtDNA(4977) mutation was detected in all of the samples with levels varying from 0.000149% to 7.0%. The DeltamtDNA(4977) mutation levels were lower in tumor tissues than in adjacent normal tissues in both breast cancer and BBD subjects. The differences, however, were not statistically significant. No significant difference between breast cancer and BBD patients was found in the DeltamtDNA(4977) mutation levels of tumor tissues and adjacent normal tissues. The DeltamtDNA(4977) mutation levels were not significantly associated with clinicopathological characteristics (age, histology, tumor stage, and ER/PR status) in breast cancer or BBD patients. These results do not support the notion that the mitochondrial DNA 4977-bp deletion plays a major role in breast carcinogenesis.
Collapse
Affiliation(s)
- Chuanzhong Ye
- Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt Ingram-Cancer Center, Vanderbilt University School of Medicine, Nashville, TN
| | - Xiao-Ou Shu
- Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt Ingram-Cancer Center, Vanderbilt University School of Medicine, Nashville, TN
| | - Wanqing Wen
- Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt Ingram-Cancer Center, Vanderbilt University School of Medicine, Nashville, TN
| | - Larry Pierce
- Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt Ingram-Cancer Center, Vanderbilt University School of Medicine, Nashville, TN
| | - Regina Courtney
- Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt Ingram-Cancer Center, Vanderbilt University School of Medicine, Nashville, TN
| | - Yu-Tang Gao
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai, China
| | - Wei Zheng
- Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt Ingram-Cancer Center, Vanderbilt University School of Medicine, Nashville, TN
| | - Qiuyin Cai
- Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt Ingram-Cancer Center, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
206
|
Herbst A, Pak JW, McKenzie D, Bua E, Bassiouni M, Aiken JM. Accumulation of mitochondrial DNA deletion mutations in aged muscle fibers: evidence for a causal role in muscle fiber loss. J Gerontol A Biol Sci Med Sci 2007; 62:235-45. [PMID: 17389720 PMCID: PMC2846622 DOI: 10.1093/gerona/62.3.235] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Although mitochondrial mutation abundance has been recognized to increase in an age-dependent manner, the impact of mutation has been more difficult to establish. Using quantitative polymerase chain reaction, we measured the intracellular abundance of mutant and wild-type mitochondrial genomes along the length of individual laser-captured microdissected muscle fibers from aged rat quadriceps. Aged muscle fibers possessed segmental, clonal intracellular expansions of unique somatically derived mitochondrial DNA (mtDNA) deletion mutations. When the mutation abundance surpassed 90% of the total mitochondrial genomes, the fiber lost cytochrome c oxidase activity and exhibited an increase in succinate dehydrogenase activity. In addition to the mitochondrial enzymatic abnormalities, some fibers displayed abnormal morphology such as fiber splitting, atrophy, and breakage. Deletion mutation accumulation was linked to these aberrant morphologies with more severe cellular pathologies resulting from higher deletion mutation abundance. In summary, our measurements indicate that age-induced mtDNA deletion mutations expand within individual muscle fibers, eliciting fiber dysfunction and breakage.
Collapse
|
207
|
Bender A, Beckers J, Schneider I, Hölter SM, Haack T, Ruthsatz T, Vogt-Weisenhorn DM, Becker L, Genius J, Rujescu D, Irmler M, Mijalski T, Mader M, Quintanilla-Martinez L, Fuchs H, Gailus-Durner V, de Angelis MH, Wurst W, Schmidt J, Klopstock T. Creatine improves health and survival of mice. Neurobiol Aging 2007; 29:1404-11. [PMID: 17416441 DOI: 10.1016/j.neurobiolaging.2007.03.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2006] [Revised: 02/13/2007] [Accepted: 03/02/2007] [Indexed: 02/07/2023]
Abstract
The supplementation of creatine (Cr) has a marked neuroprotective effect in mouse models of neurodegenerative diseases. This has been assigned to the known bioenergetic, anti-apoptotic, anti-excitotoxic, and anti-oxidant properties of Cr. As aging and neurodegeneration share pathophysiological pathways, we investigated the effect of oral Cr supplementation on aging in 162 aged C57Bl/6J mice. Outcome variables included "healthy" life span, neurobehavioral phenotyping, as well as morphology, biochemistry, and expression profiling from brain. The median healthy life span of Cr-fed mice was 9% higher than in control mice, and they performed significantly better in neurobehavioral tests. In brains of Cr-treated mice, there was a trend towards a reduction of reactive oxygen species and significantly lower accumulation of the "aging pigment" lipofuscin. Expression profiling showed an upregulation of genes implicated in neuronal growth, neuroprotection, and learning. These data show that Cr improves health and longevity in mice. Cr may be a promising food supplement to promote healthy human aging.
Collapse
Affiliation(s)
- A Bender
- Department of Neurology, University of Munich, Klinikum Grosshadern, Marchioninistr. 15, Munich D-81377, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
208
|
Taylor RW, Chinnery PF, Turnbull DM. Investigation of metabolic myopathies. HANDBOOK OF CLINICAL NEUROLOGY 2007; 86:193-204. [PMID: 18809001 DOI: 10.1016/s0072-9752(07)86009-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|
209
|
Williams SL, Moraes CT. Microdissection and Analytical PCR for the Investigation of mtDNA Lesions. Methods Cell Biol 2007; 80:481-501. [PMID: 17445710 DOI: 10.1016/s0091-679x(06)80024-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Affiliation(s)
- Sion L Williams
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | |
Collapse
|
210
|
Abstract
Mitochondria are ubiquitous organelles that are intimately involved in many cellular processes, but whose principal task is to provide the energy necessary for normal cell functioning and maintenance. Disruption of this energy supply can have devastating consequences for the cell, organ, and individual. Over the last two decades, mutations in both mitochondrial DNA (mtDNA) and nuclear DNA have been identified as causative in a number of well-characterized clinical syndromes, although for mtDNA mutations in particular, this relationship between genotype and phenotype is often not straightforward. Despite this, a number of epidemiological studies have been undertaken to assess the prevalence of mtDNA mutations and these have highlighted the impact that mtDNA disease has on both the community and individual families. Although there has been considerable improvement in the diagnosis of mitochondrial disorders, disappointingly this has not been matched by developments toward effective treatment. Nevertheless, our understanding of mitochondrial biology is gathering pace and progress in this area will be crucial to devising future treatment strategies. In addition to mitochondrial disease, evidence for a central role of mitochondria in other processes, such as aging and neurodegeneration, is slowly accumulating, although their role in cancer remains controversial. In this chapter, we discuss these issues and offer our own views based on our cumulative experience of investigating and managing these diseases over the last 20 years.
Collapse
Affiliation(s)
- R McFarland
- Mitochondrial Research Group, School of Neurology, Neurobiology, and Psychiatry, The Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, United Kingdom
| | | | | |
Collapse
|
211
|
Poe BG, Navratil M, Arriaga EA. Absolute quantitation of a heteroplasmic mitochondrial DNA deletion using a multiplex three-primer real-time PCR assay. Anal Biochem 2006; 362:193-200. [PMID: 17270140 PMCID: PMC1853271 DOI: 10.1016/j.ab.2006.12.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Revised: 12/08/2006] [Accepted: 12/18/2006] [Indexed: 01/07/2023]
Abstract
Quantitation of wild-type and deleted mitochondrial DNA (mtDNA) coexisting within the same cell (a.k.a., heteroplasmy) is important in mitochondrial disease and aging. We report the development of a multiplex three-primer PCR assay that is capable of absolute quantitation of wild-type and deleted mtDNA simultaneously. Molecular beacons were designed to hybridize with either type of mtDNA molecule, allowing real-time detection during PCR amplification. The assay is specific and can detect down to six copies of mtDNA, making it suitable for single-cell analyses. The relative standard deviation in the threshold cycle number is approximately 0.6%. Heteroplasmy was quantitated in individual cytoplasmic hybrid cells (cybrids), containing a large mtDNA deletion, and bulk cell samples. Individual cybrid cells contained 100-2600 copies of wild-type mtDNA and 950-4700 copies of deleted mtDNA, and the percentage of heteroplasmy ranged from 43+/-16 to 95+/-16%. The average amount of total mtDNA was 3800+/-1600 copies/cybrid cell, and the average percentage of heteroplasmy correlated well with the bulk cell sample. The single-cell analysis also revealed that heteroplasmy in individual cells is highly heterogeneous. This assay will be useful for monitoring clonal expansions of mtDNA deletions and investigating the role of heteroplasmy in cell-to-cell heterogeneity in cellular models of mitochondrial disease and aging.
Collapse
Affiliation(s)
| | | | - Edgar A. Arriaga
- *To whom all correspondence should be addressed: Tel. (612) 624-8024, fax (612) 626-7541,
| |
Collapse
|
212
|
Kang D, Hamasaki N. Mitochondrial disease: maintenance of mitochondrial genome and molecular diagnostics. Adv Clin Chem 2006; 42:217-54. [PMID: 17131628 DOI: 10.1016/s0065-2423(06)42006-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mitochondrial DNA (mtDNA) is essential for the aerobic ATP synthesis system that is responsible for about 80% of normal cellular energy demands. In addition to rare genetic disorders causing neuromyopathy, alterations of mtDNA have been found also in so-called common diseases such as heart failure, diabetes, and cancer. Although some of these alterations are inherited, some are considered to be generated and/or accumulated in somatic cells with age. One reason for the somatic mutations is that mtDNA is more vulnerable than is nuclear DNA. For example, mitochondrial respiratory chain produces a large amount of reactive oxygen species as inevitable byproducts of oxidative phosphorylation. However, the molecular mechanisms for maintenance of mitochondrial genome are much less elucidated than those for nuclear genome. In spite of its increasing importance, the molecular diagnosis of mitochondrial DNA-related diseases is well done only in very limited expert laboratories. In this chapter, we focus on maintenance of mtDNA in somatic cells, its clinical importance, and recent developments of molecular tests.
Collapse
Affiliation(s)
- Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | | |
Collapse
|
213
|
Abstract
As individuals enter their 80s, they are inevitably confronted with the problem of neuronal loss in the brain. The incidence of the common movement disorder 'mild parkinsonian signs' (MPS) is approximately 50% over the age of 85 years. It has long been known that the loss of dopaminergic neurons in the substantia nigra pars compacta is a neuropathological hallmark of Parkinson's disease (PD). Recently, two papers present clear evidence for a high burden of mitochondrial DNA deletions within substantia nigra neurons in aged individuals and individuals with PD, pointing towards a common pathway inevitably leading to neuronal dysfunction and death.
Collapse
Affiliation(s)
- Saskia Biskup
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
214
|
Bua E, Johnson J, Herbst A, Delong B, McKenzie D, Salamat S, Aiken JM. Mitochondrial DNA-deletion mutations accumulate intracellularly to detrimental levels in aged human skeletal muscle fibers. Am J Hum Genet 2006; 79:469-80. [PMID: 16909385 PMCID: PMC1559550 DOI: 10.1086/507132] [Citation(s) in RCA: 325] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Accepted: 06/12/2006] [Indexed: 12/18/2022] Open
Abstract
Skeletal muscle-mass loss with age has severe health consequences, yet the molecular basis of the loss remains obscure. Although mitochondrial DNA (mtDNA)-deletion mutations have been shown to accumulate with age, for these aberrant genomes to be physiologically relevant, they must accumulate to high levels intracellularly and be present in a significant number of cells. We examined mtDNA-deletion mutations in vastus lateralis (VL) muscle of human subjects aged 49-93 years, using both histologic and polymerase-chain-reaction (PCR) analyses, to determine the physiological and genomic integrity of mitochondria in aging human muscle. The number of VL muscle fibers exhibiting mitochondrial electron-transport-system (ETS) abnormalities increased from an estimated 6% at age 49 years to 31% at age 92 years. We analyzed the mitochondrial genotype of 48 single ETS-abnormal, cytochrome c oxidase-negative/succinate dehydrogenase-hyperreactive (COX-/SDH++) fibers from normal aging human subjects and identified mtDNA-deletion mutations in all abnormal fibers. Deletion mutations were clonal within a fiber and concomitant to the COX-/SDH++ region. Quantitative PCR analysis of wild-type and deletion-containing mtDNA genomes within ETS-abnormal regions of single fibers demonstrated that these deletion mutations accumulate to detrimental levels (>90% of the total mtDNA).
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Aging/genetics
- DNA, Mitochondrial/analysis
- DNA, Mitochondrial/genetics
- Electron Transport/genetics
- Electron Transport Chain Complex Proteins/genetics
- Electron Transport Complex IV/genetics
- Female
- Humans
- Male
- Middle Aged
- Mitochondria, Muscle/enzymology
- Mitochondria, Muscle/genetics
- Muscle Fibers, Skeletal/chemistry
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/enzymology
- Muscle, Skeletal/chemistry
- Muscle, Skeletal/cytology
- Muscle, Skeletal/enzymology
- Sequence Deletion
- Succinate Dehydrogenase/genetics
Collapse
Affiliation(s)
- Entela Bua
- Department of Animal Health and Biomedical Sciences, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | | | | | |
Collapse
|
215
|
Coon KD, Valla J, Szelinger S, Schneider LE, Niedzielko TL, Brown KM, Pearson JV, Halperin R, Dunckley T, Papassotiropoulos A, Caselli RJ, Reiman EM, Stephan DA. Quantitation of heteroplasmy of mtDNA sequence variants identified in a population of AD patients and controls by array-based resequencing. Mitochondrion 2006; 6:194-210. [PMID: 16920408 DOI: 10.1016/j.mito.2006.07.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Revised: 06/30/2006] [Accepted: 07/13/2006] [Indexed: 01/03/2023]
Abstract
The role of mitochondrial dysfunction in the pathogenesis of Alzheimer's disease (AD) has been well documented. Though evidence for the role of mitochondria in AD seems incontrovertible, the impact of mitochondrial DNA (mtDNA) mutations in AD etiology remains controversial. Though mutations in mitochondrially encoded genes have repeatedly been implicated in the pathogenesis of AD, many of these studies have been plagued by lack of replication as well as potential contamination of nuclear-encoded mitochondrial pseudogenes. To assess the role of mtDNA mutations in the pathogenesis of AD, while avoiding the pitfalls of nuclear-encoded mitochondrial pseudogenes encountered in previous investigations and showcasing the benefits of a novel resequencing technology, we sequenced the entire coding region (15,452 bp) of mtDNA from 19 extremely well-characterized AD patients and 18 age-matched, unaffected controls utilizing a new, reliable, high-throughput array-based resequencing technique, the Human MitoChip. High-throughput, array-based DNA resequencing of the entire mtDNA coding region from platelets of 37 subjects revealed the presence of 208 loci displaying a total of 917 sequence variants. There were no statistically significant differences in overall mutational burden between cases and controls, however, 265 independent sites of statistically significant change between cases and controls were identified. Changed sites were found in genes associated with complexes I (30.2%), III (3.0%), IV (33.2%), and V (9.1%) as well as tRNA (10.6%) and rRNA (14.0%). Despite their statistical significance, the subtle nature of the observed changes makes it difficult to determine whether they represent true functional variants involved in AD etiology or merely naturally occurring dissimilarity. Regardless, this study demonstrates the tremendous value of this novel mtDNA resequencing platform, which avoids the pitfalls of erroneously amplifying nuclear-encoded mtDNA pseudogenes, and our proposed analysis paradigm, which utilizes the availability of raw signal intensity values for each of the four potential alleles to facilitate quantitative estimates of mtDNA heteroplasmy. This information provides a potential new target for burgeoning diagnostics and therapeutics that could truly assist those suffering from this devastating disorder.
Collapse
Affiliation(s)
- Keith D Coon
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
216
|
Longley MJ, Clark S, Yu Wai Man C, Hudson G, Durham SE, Taylor RW, Nightingale S, Turnbull DM, Copeland WC, Chinnery PF. Mutant POLG2 disrupts DNA polymerase gamma subunits and causes progressive external ophthalmoplegia. Am J Hum Genet 2006; 78:1026-34. [PMID: 16685652 PMCID: PMC1474082 DOI: 10.1086/504303] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Accepted: 03/14/2006] [Indexed: 11/03/2022] Open
Abstract
DNA polymerase gamma (pol gamma ) is required to maintain the genetic integrity of the 16,569-bp human mitochondrial genome (mtDNA). Mutation of the nuclear gene for the catalytic subunit of pol gamma (POLG) has been linked to a wide range of mitochondrial diseases involving mutation, deletion, and depletion of mtDNA. We describe a heterozygous dominant mutation (c.1352G-->A/p.G451E) in POLG2, the gene encoding the p55 accessory subunit of pol gamma , that causes progressive external ophthalmoplegia with multiple mtDNA deletions and cytochrome c oxidase (COX)-deficient muscle fibers. Biochemical characterization of purified, recombinant G451E-substituted p55 protein in vitro revealed incomplete stimulation of the catalytic subunit due to compromised subunit interaction. Although G451E p55 retains a wild-type ability to bind DNA, it fails to enhance the DNA-binding strength of the p140-p55 complex. In vivo, the disease most likely arises through haplotype insufficiency or heterodimerization of the mutated and wild-type proteins, which promote mtDNA deletions by stalling the DNA replication fork. The progressive accumulation of mtDNA deletions causes COX deficiency in muscle fibers and results in the clinical phenotype.
Collapse
Affiliation(s)
- Matthew J Longley
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Quiles JL, Ochoa JJ, Ramirez-Tortosa MC, Huertas JR, Mataix J. Age-related mitochondrial DNA deletion in rat liver depends on dietary fat unsaturation. J Gerontol A Biol Sci Med Sci 2006; 61:107-14. [PMID: 16510854 DOI: 10.1093/gerona/61.2.107] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We fed male Wistar rats lifelong on virgin olive (rich in the monounsaturated oleic acid) or sunflower (rich in the polyunsaturated linoleic acid) oil-based diets. At 6 and 24 months, liver mitochondria were analyzed for a mitochondrial DNA (mtDNA) deletion, reactive oxygen species, antioxidants, and ultrastructural alterations. An aging-related increase in the relative amount of the deletion was observed for both dietary groups, being higher in animals fed sunflower oil. Oxidative stress was lower in virgin olive oil-fed animals. Aging led to higher superoxide dismutase, catalase, and glutathione peroxidase activities and increased alpha-tocopherol and coenzyme Q. Mitochondria from aged animals fed sunflower oil exhibited a lower number of cristae and a higher circularity. Results suggest that the age-related increase of the relative amount of deleted mtDNA depends on fat unsaturation. Moreover, the studied mtDNA deletion was correlated with mitochondrial oxidative stress and ultrastructural alterations.
Collapse
Affiliation(s)
- José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology, University of Granada, Spain.
| | | | | | | | | |
Collapse
|
218
|
von Wurmb-Schwark N, Cavelier L, Cortopassi GA. A low dose of ethidium bromide leads to an increase of total mitochondrial DNA while higher concentrations induce the mtDNA 4997 deletion in a human neuronal cell line. Mutat Res 2006; 596:57-63. [PMID: 16488450 DOI: 10.1016/j.mrfmmm.2005.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Accepted: 12/15/2005] [Indexed: 05/06/2023]
Abstract
Ethidium bromide (EtBr) is widely used to deplete mitochondrial DNA (mtDNA) and produce mitochondrial DNA-less cell lines. However, it frequently fails to deplete mtDNA in mouse cells. In this study we show by using a highly sensitive real-time PCR, that low doses of EtBr (10 microM) did lead to a three-fold increase of the total amount of mitochondrial DNA in a human neuronal cell line (Ntera 2). A higher dose of EtBr (25 microM) led to the expected decrease of mtDNA until day 22 when the cells almost died. Cell growth and mtDNA content could be restored after additional 22 days of non-EtBr treatment. The highest concentration of 50 microM also led to a significant increase of mtDNA. The cells died when they had only about 10% of mtDNA left, indicating a mtDNA threshold for cell survival. Additionally, the so-called common 4977 bp deletion could be induced by prolonged exposure to ethidium bromide. Whereas the higher doses led to significant higher amounts of deleted mtDNA.
Collapse
Affiliation(s)
- N von Wurmb-Schwark
- Institute of Legal Medicine, Christian-Albrechts-University of Kiel, Arnold-Heller-Str. 12, 24105 Kiel, Germany.
| | | | | |
Collapse
|
219
|
Bender A, Krishnan KJ, Morris CM, Taylor GA, Reeve AK, Perry RH, Jaros E, Hersheson JS, Betts J, Klopstock T, Taylor RW, Turnbull DM. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet 2006; 38:515-7. [PMID: 16604074 DOI: 10.1038/ng1769] [Citation(s) in RCA: 1137] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Accepted: 02/24/2006] [Indexed: 01/09/2023]
Abstract
Here we show that in substantia nigra neurons from both aged controls and individuals with Parkinson disease, there is a high level of deleted mitochondrial DNA (mtDNA) (controls, 43.3% +/- 9.3%; individuals with Parkinson disease, 52.3% +/- 9.3%). These mtDNA mutations are somatic, with different clonally expanded deletions in individual cells, and high levels of these mutations are associated with respiratory chain deficiency. Our studies suggest that somatic mtDNA deletions are important in the selective neuronal loss observed in brain aging and in Parkinson disease.
Collapse
Affiliation(s)
- Andreas Bender
- Mitochondrial Research Group, School of Neurology, Neurobiology and Psychiatry, The Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne, NE2 4HH, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
220
|
Pagnamenta AT, Taanman JW, Wilson CJ, Anderson NE, Marotta R, Duncan AJ, Bitner-Glindzicz M, Taylor RW, Laskowski A, Thorburn DR, Rahman S. Dominant inheritance of premature ovarian failure associated with mutant mitochondrial DNA polymerase gamma. Hum Reprod 2006; 21:2467-73. [PMID: 16595552 DOI: 10.1093/humrep/del076] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Premature ovarian failure (POF) results in menopause before the age of 40. Recently, mutations in the catalytic subunit of mitochondrial DNA polymerase gamma (POLG) were shown to segregate with POF in families with progressive external ophthalmoplegia (PEO) and multiple large-scale rearrangements of mitochondrial DNA (mtDNA). METHODS AND RESULTS A patient, mother and maternal grandmother are described, all presenting with POF and PEO. The mother developed parkinsonism in her sixth decade. Normal mtDNA sequence excluded mitochondrial inheritance. Sequence analysis of polymerase gamma revealed a dominant Y955C mutation that segregated with disease. Southern blot analysis demonstrated mtDNA depletion in fibroblasts (43% of controls). In contrast, multiple rearrangements of mtDNA were seen in skeletal muscle, consistent with the relative sparing of nuclear-encoded complex II activity compared with other respiratory chain enzymes. Immunoblotting of native gels showed that DNA polymerase gamma stability was not affected, whereas a reverse-transcriptase primer-extension assay suggested a trend towards reduced polymerase activity in fibroblasts. CONCLUSIONS This study confirms that POLG mutations can segregate with POF and parkinsonism and demonstrates for the first time that the Y955C mutation can lead to mtDNA depletion. Future screening projects will determine the frequency with which POLG is involved in the aetiology of POF and its impact on reproductive counselling.
Collapse
Affiliation(s)
- Alistair T Pagnamenta
- Biochemistry, Endocrinology and Metabolism Unit, Institute of Child Health, London, WC1N 1EH, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
221
|
Auré K, Fayet G, Leroy JP, Lacène E, Romero NB, Lombès A. Apoptosis in mitochondrial myopathies is linked to mitochondrial proliferation. ACTA ACUST UNITED AC 2006; 129:1249-59. [PMID: 16537564 DOI: 10.1093/brain/awl061] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Increased susceptibility to apoptosis has been shown in many models of mitochondrial defects but its relevance to human diseases is still discussed. We addressed the presence of apoptosis in muscle from patients with mitochondrial DNA (mtDNA) disorders. Taking advantage of the mosaic pattern of muscle morphological anomalies associated with heteroplasmic mtDNA alterations, we have used an in situ approach to address the relationship between apoptosis and respiratory defect, mitochondrial proliferation and mutation load. Different patterns of mitochondrial morphological alterations were provided by the analysis of muscles with large mtDNA deletion (16 cases) or with the MELAS mutation (4 cases). The patient's age at biopsy ranged from 0.4 to 66 years and the muscle mutant mtDNA proportion from 32 to 82%. Apoptotic muscle fibres were observed in a small proportion of muscle fibres of 16 out of the 20 biopsies by three different detection methods for different steps of apoptosis: caspase 3 activation, fragmentation of nuclear DNA [terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) assay] or overexpression of the pro-apoptotic factor Bax. Analysis of apoptotic features in parallel to cytochrome c oxidase (COX) and succinate dehydrogenase activity of more than 34,000 individual muscle fibres showed that apoptosis occurred only in muscle fibres with mitochondrial proliferation (ragged red fibres, RRF) irrespective of their COX activity. Molecular analyses of single muscle fibres evidenced that, as expected, the presence of COX defect was associated with higher proportion of mutant mtDNA and lower amount of normal mtDNA. Within COX-defective fibres, the presence of mitochondrial proliferation was associated with increase of the mtDNA content but without change in the ratio between normal and mutant mtDNA molecules, thus showing that mitochondrial proliferation was accompanied by similar amplification of normal and mutant mtDNA molecules. Within RRF, apoptosis was associated with higher mutation proportion, suggesting that it was provoked by severe respiratory defect in the same time as increased mitochondrial mass. In conclusion, apoptosis most probably contributes to mitochondrial pathology. It is tightly linked to mitochondrial proliferation and high mutation load. When considering training therapeutics, one will have to take into account the possibility to induce apoptosis in parallel to mitochondrial proliferation.
Collapse
Affiliation(s)
- Karine Auré
- Institut National de la Santé et de la Recherche Médicale, U582, HP, CHU Pitié-Salpêtrière, Institut de Myologie, Paris, France
| | | | | | | | | | | |
Collapse
|
222
|
White HE, Durston VJ, Seller A, Fratter C, Harvey JF, Cross NCP. Accurate detection and quantitation of heteroplasmic mitochondrial point mutations by pyrosequencing. ACTA ACUST UNITED AC 2006; 9:190-9. [PMID: 16225398 DOI: 10.1089/gte.2005.9.190] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Disease-causing mutations in mitochondrial DNA (mtDNA) are typically heteroplasmic and therefore interpretation of genetic tests for mitochondrial disorders can be problematic. Detection of low level heteroplasmy is technically demanding and it is often difficult to discriminate between the absence of a mutation or the failure of a technique to detect the mutation in a particular tissue. The reliable measurement of heteroplasmy in different tissues may help identify individuals who are at risk of developing specific complications and allow improved prognostic advice for patients and family members. We have evaluated Pyrosequencing technology for the detection and estimation of heteroplasmy for six mitochondrial point mutations associated with the following diseases: Leber's hereditary optical neuropathy (LHON), G3460A, G11778A, and T14484C; mitochondrial encephalopathy with lactic acidosis and stroke-like episodes (MELAS), A3243G; myoclonus epilepsy with ragged red fibers (MERRF), A8344G, and neurogenic muscle weakness, ataxia, and retinitis pigmentosa (NARP)/Leighs: T8993G/C. Results obtained from the Pyrosequencing assays for 50 patients with presumptive mitochondrial disease were compared to those obtained using the commonly used diagnostic technique of polymerase chain reaction (PCR) and restriction enzyme digestion. The Pyrosequencing assays provided accurate genotyping and quantitative determination of mutational load with a sensitivity and specificity of 100%. The MELAS A3243G mutation was detected reliably at a level of 1% heteroplasmy. We conclude that Pyrosequencing is a rapid and robust method for detecting heteroplasmic mitochondrial point mutations.
Collapse
Affiliation(s)
- Helen E White
- National Genetics Reference Laboratory (Wessex), Salisbury District Hospital, Odstock, Salisbury, Wiltshire, United Kingdom.
| | | | | | | | | | | |
Collapse
|
223
|
Abstract
The polymerase chain reaction (PCR) has become one of the most important tools in molecular diagnostics, providing exquisite sensitivity and specificity for detection of nucleic acid targets. Real-time monitoring of PCR has simplified and accelerated PCR laboratory procedures and has increased information obtained from specimens including routine quantification and differentiation of amplification products. Clinical diagnostic applications and uses of real-time PCR are growing exponentially, real-time PCR is rapidly replacing traditional PCR, and new diagnostic uses likely will emerge. This review analyzes the scope of present and potential future clinical diagnostic applications of this powerful technique. Critical discussions focus on basic concepts, variations, data analysis, instrument platforms, signal detection formats, sample collection, assay design, and execution of real-time PCR.
Collapse
Affiliation(s)
- Bernhard Kaltenboeck
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | | |
Collapse
|
224
|
Frahm T, Mohamed SA, Bruse P, Gemünd C, Oehmichen M, Meissner C. Lack of age-related increase of mitochondrial DNA amount in brain, skeletal muscle and human heart. Mech Ageing Dev 2005; 126:1192-200. [PMID: 16099018 DOI: 10.1016/j.mad.2005.06.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Revised: 06/08/2005] [Accepted: 06/15/2005] [Indexed: 01/20/2023]
Abstract
During the ageing process, an increase of mitochondrial DNA (mtDNA) deletions and other mutations have been reported. These structural alterations of mtDNA are assumed to cause a reduction in the respiratory chain activity and may contribute to the ageing process. Therefore, the question arises if the accumulation of deleted mtDNA is compensated in vivo by an increase of mtDNA synthesis via a feedback mechanism. We designed two human mtDNA-specific oligonucleotide probes for quantitative mtDNA analysis of 5 different tissues from 50 individuals aged from 8 weeks to 93 years. The amount of mtDNA was approximately 1.1 +/- 0.5% (4617 +/- 2099 copies) in the caudate nucleus, 1.0 +/- 0.5% (4198 +/- 2099 copies) in the frontal lobe cortex, 0.3 +/- 0.2% (1259 +/- 840 copies) in the cerebellar cortex, 1.0 +/- 0.4% (4198 +/- 1679 copies) in skeletal muscle and 2.2+/-1.3% (9235 +/- 5457 copies) in heart muscle. We did not observe any significant change in the absolute copy number during ageing in five different tissues, and therefore, found no evidence for the postulated feedback mechanism. Our study indicates that mtDNA copy number is tissue-specific and depends on the energy demand of the tissue.
Collapse
Affiliation(s)
- Thomas Frahm
- Department of Forensic Medicine, University of Luebeck, Kahlhorststrasse 31-35, 23562 Luebeck, Germany
| | | | | | | | | | | |
Collapse
|
225
|
Bai RK, Wong LJC. Simultaneous detection and quantification of mitochondrial DNA deletion(s), depletion, and over-replication in patients with mitochondrial disease. J Mol Diagn 2005; 7:613-22. [PMID: 16258160 PMCID: PMC1867556 DOI: 10.1016/s1525-1578(10)60595-8] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2005] [Indexed: 10/18/2022] Open
Abstract
Heterogeneous clinical expression of mitochondrial DNA (mtDNA) disorders depends on both qualitative and quantitative changes in mtDNA. We developed a sensitive and effective method that simultaneously detects mtDNA deletion(s) and quantifies total mtDNA content. The percentage of deletions and mtDNA content of 19 patients with single or multiple deletions were analyzed by real-time quantitative polymerase chain reaction (real-time qPCR) using TaqMan probes specific for mtDNA (tRNA leu(UUR), ND4, ATPase8, and D-loop regions) and nuclear DNA (AIB1, beta-2-microglobulin, and beta-actin). The proportion of deletion mutants determined by real-time qPCR was consistent with that determined by Southern analysis. Most patients with mtDNA deletions also demonstrated compensatory mtDNA over-replication. Multiple mtDNA deletions that were not detectable by Southern analysis due to low percentage of each deletion molecule were readily detected and quantified by real-time qPCR. Furthermore, 12 patients with clinical features and abnormal biochemical/histopathological results consistent with mitochondrial respiratory chain disorders without identified mtDNA mutations had either substantially depleted or significantly over-replicated mtDNA content, supporting the diagnosis of mitochondrial disease. Our results demonstrate that both qualitative and quantitative analyses are important in molecular diagnosis of mitochondrial diseases. The presence of deletion(s) and mtDNA depletion or compensatory over-replication can be determined simultaneously by real-time qPCR.
Collapse
Affiliation(s)
- Ren-Kui Bai
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, NAB 2015, Houston, TX 77030, USA
| | | |
Collapse
|
226
|
Tovo PA, Chiapello N, Gabiano C, Zeviani M, Spada M. Zidovudine Administration during Pregnancy and Mitochondrial Disease in the offspring. Antivir Ther 2005. [DOI: 10.1177/135965350501000602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Prophylactic administration of zidovudine (ZDV) to mother–child pairs reduces HIV transmission. ZDV can impair mitochondrial (mt) DNA polymerase γ, leading to mtDNA depletion. Signs of mitochondrial dysfunction have been observed in a few children with prenatal exposure to nucleoside analogues, although no mtDNA depletion was demonstrated. Other studies failed to confirm mitochondrial disorders in children who were exposed to antiretroviral agents in utero. A child, whose HIV-infected mother received ZDV from the fourth month of pregnancy, developed neonatal encephalomyopathy, anaemia and hyperlactataemia. At 2 weeks of age, a muscle biopsy exhibited red-ragged-like fibres, proliferation of abnormal mitochondria and a 90% depletion of mtDNA without qualitative abnormalities. At 6 months, the depletion was less profound (about 50% of normal values). Severe psychomotor delay and visual disturbances persisted at 30 months, but they were greatly reduced at 5-year follow-up. These laboratory and clinical findings clearly demonstrated that mtDNA alteration was acquired and not consequent to an inherited disorder. Fetal exposure to ZDV may have caused the mtDNA depletion, which, although temporary, led to irreversible but not progressive brain damage.
Collapse
Affiliation(s)
| | | | - Clara Gabiano
- Department of Pediatrics, University of Turin, Turin, Italy
| | - Massimo Zeviani
- Division of Molecular Neurogenetics, National Neurological Institute ‘C Besta’, Milan, Italy
| | - Marco Spada
- Department of Pediatrics, University of Turin, Turin, Italy
| |
Collapse
|
227
|
Sparks LM, Xie H, Koza RA, Mynatt R, Hulver MW, Bray GA, Smith SR. A high-fat diet coordinately downregulates genes required for mitochondrial oxidative phosphorylation in skeletal muscle. Diabetes 2005; 54:1926-33. [PMID: 15983191 DOI: 10.2337/diabetes.54.7.1926] [Citation(s) in RCA: 464] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Obesity and type 2 diabetes have been associated with a high-fat diet (HFD) and reduced mitochondrial mass and function. We hypothesized a HFD may affect expression of genes involved in mitochondrial function and biogenesis. To test this hypothesis, we fed 10 insulin-sensitive males an isoenergetic HFD for 3 days with muscle biopsies before and after intervention. Oligonucleotide microarray analysis revealed 297 genes were differentially regulated by the HFD (Bonferonni adjusted P < 0.001). Six genes involved in oxidative phosphorylation (OXPHOS) decreased. Four were members of mitochondrial complex I: NDUFB3, NDUFB5, NDUFS1, and NDUFV1; one was SDHB in complex II and a mitochondrial carrier protein SLC25A12. Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC1) alpha and PGC1beta mRNA were decreased by -20%, P < 0.01, and -25%, P < 0.01, respectively. In a separate experiment, we fed C57Bl/6J mice a HFD for 3 weeks and found that the same OXPHOS and PGC1 mRNAs were downregulated by approximately 90%, cytochrome C and PGC1alpha protein by approximately 40%. Combined, these results suggest a mechanism whereby HFD downregulates genes necessary for OXPHOS and mitochondrial biogenesis. These changes mimic those observed in diabetes and insulin resistance and, if sustained, may result in mitochondrial dysfunction in the prediabetic/insulin-resistant state.
Collapse
MESH Headings
- Adult
- Animals
- Body Mass Index
- DNA, Mitochondrial/drug effects
- DNA, Mitochondrial/genetics
- Diabetes Complications/etiology
- Diabetes Complications/prevention & control
- Diabetes Mellitus, Type 2/etiology
- Diabetes Mellitus, Type 2/prevention & control
- Dietary Fats/pharmacology
- Gene Expression Regulation/drug effects
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Mitochondria, Muscle/drug effects
- Mitochondria, Muscle/genetics
- Mitochondria, Muscle/metabolism
- Models, Animal
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Obesity/etiology
- Obesity/prevention & control
- Oligonucleotide Array Sequence Analysis
- Oxidative Phosphorylation/drug effects
- Oxygen Consumption
- Polymerase Chain Reaction
Collapse
Affiliation(s)
- Lauren M Sparks
- Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | | | | | | | | | | | | |
Collapse
|
228
|
Pesce V, Cormio A, Fracasso F, Lezza AMS, Cantatore P, Gadaleta MN. Age-Related Changes of Mitochondrial DNA Content and Mitochondrial Genotypic and Phenotypic Alterations in Rat Hind-Limb Skeletal Muscles. J Gerontol A Biol Sci Med Sci 2005; 60:715-23. [PMID: 15983173 DOI: 10.1093/gerona/60.6.715] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mitochondrial DNA (mtDNA) content relative to nuclear DNA content as well as mitochondrial transcription factor A (TFAM) content was measured in four hind-limb skeletal muscles, namely soleus (S), tibialis anterior (TA), gastrocnemius (G), and extensor digitorum longus (EDL) of adult rats. Content of mtDNA in 6-month-old rats is in the rank order of S > TA > G > EDL, and TFAM content is higher in S than in the other studied muscles. After the rat is 6 months of age, the mtDNA content decreases only in S and TA, whereas the TFAM content increases only in S. Deletions in mtDNA appear quite early in life in S and later on in the other muscles. Fibers defective for mitochondrial respiratory enzymes appear in rats at 15 months of age. In the oldest animals, the highest frequencies of occurrence of mtDNA deletions as well as of mitochondrial phenotypic alterations are found in S according to its highest mtDNA content and oxidative potential.
Collapse
Affiliation(s)
- Vito Pesce
- Department of Biochemistry and Molecular Biology, University of Bari, Via Orabona 4, 70125 Bari, Italy
| | | | | | | | | | | |
Collapse
|
229
|
Kato T. Mitochondrial dysfunction in bipolar disorder: from 31P-magnetic resonance spectroscopic findings to their molecular mechanisms. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2005; 63:21-40. [PMID: 15797464 DOI: 10.1016/s0074-7742(05)63002-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorders Brain Science Institute, RIKEN Saitama 351-0198, Japan
| |
Collapse
|
230
|
Bogacka I, Xie H, Bray GA, Smith SR. Pioglitazone induces mitochondrial biogenesis in human subcutaneous adipose tissue in vivo. Diabetes 2005; 54:1392-9. [PMID: 15855325 DOI: 10.2337/diabetes.54.5.1392] [Citation(s) in RCA: 369] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Thiazolidenediones such as pioglitazone improve insulin sensitivity in diabetic patients by several mechanisms, including increased uptake and metabolism of free fatty acids in adipose tissue. The purpose of the present study was to determine the effect of pioglitazone on mitochondrial biogenesis and expression of genes involved in fatty acid oxidation in subcutaneous fat. Patients with type 2 diabetes were randomly divided into two groups and treated with placebo or pioglitazone (45 mg/day) for 12 weeks. Mitochondrial DNA copy number and expression of genes involved in mitochondrial biogenesis were quantified by real-time PCR. Pioglitazone treatment significantly increased mitochondrial copy number and expression of factors involved in mitochondrial biogenesis, including peroxisome proliferator-activated receptor (PPAR)-gamma coactivator-1alpha and mitochondrial transcription factor A. Treatment with pioglitazone stimulated the expression of genes in the fatty acid oxidation pathway, including carnitine palmitoyltransferase-1, malonyl-CoA decarboxylase, and medium-chain acyl-CoA dehydrogenase. The expression of PPAR-alpha, a transcriptional regulator of genes encoding mitochondrial enzymes involved in fatty acid oxidation, was higher after pioglitazone treatment. Finally, the increased mitochondrial copy number and the higher expression of genes involved in fatty acid oxidation in human adipocytes may contribute to the hypolipidemic effects of pioglitazone.
Collapse
Affiliation(s)
- Iwona Bogacka
- Molecular Endocrinology Laboratory, Pennington Biomedical Research Center, 6400 Perkins Rd., Baton Rouge, LA, USA.
| | | | | | | |
Collapse
|
231
|
Schaefer AM, Taylor RW, Turnbull DM, Chinnery PF. The epidemiology of mitochondrial disorders--past, present and future. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1659:115-20. [PMID: 15576042 DOI: 10.1016/j.bbabio.2004.09.005] [Citation(s) in RCA: 219] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Revised: 09/08/2004] [Accepted: 09/09/2004] [Indexed: 12/22/2022]
Abstract
A number of epidemiological studies of mitochondrial disease have been carried out over the last decade, clearly demonstrating that mitochondrial disorders are far more common than was previously accepted. This review summarizes current knowledge of the prevalence of human mitochondrial disorders--data that has important implications for the provision of health care and adequate resources for research into the pathogenesis and treatment of these disorders.
Collapse
|
232
|
Bhat HK, Epelboym I. Quantitative analysis of total mitochondrial DNA: competitive polymerase chain reaction versus real-time polymerase chain reaction. J Biochem Mol Toxicol 2005; 18:180-6. [PMID: 15452886 DOI: 10.1002/jbt.20024] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
An efficient and effective method for quantification of small amounts of nucleic acids contained within a sample specimen would be an important diagnostic tool for determining the content of mitochondrial DNA (mtDNA) in situations where the depletion thereof may be a contributing factor to the exhibited pathology phenotype. This study compares two quantification assays for calculating the total mtDNA molecule number per nanogram of total genomic DNA isolated from human blood, through the amplification of a 613-bp region on the mtDNA molecule. In one case, the mtDNA copy number was calculated by standard competitive polymerase chain reaction (PCR) technique that involves co-amplification of target DNA with various dilutions of a nonhomologous internal competitor that has the same primer binding sites as the target sequence, and subsequent determination of an equivalence point of target and competitor concentrations. In the second method, the calculation of copy number involved extrapolation from the fluorescence versus copy number standard curve generated by real-time PCR using various dilutions of the target amplicon sequence. While the mtDNA copy number was comparable using the two methods (4.92 +/- 1.01 x 10(4) molecules/ng total genomic DNA using competitive PCR vs 4.90 +/- 0.84 x 10(4) molecules/ng total genomic DNA using real-time PCR), both inter- and intraexperimental variance were significantly lower using the real-time PCR analysis. On the basis of reproducibility, assay complexity, and overall efficiency, including the time requirement and number of PCR reactions necessary for the analysis of a single sample, we recommend the real-time PCR quantification method described here, as its versatility and effectiveness will undoubtedly be of great use in various kinds of research related to mitochondrial DNA damage- and depletion-associated disorders.
Collapse
Affiliation(s)
- Hari K Bhat
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, USA.
| | | |
Collapse
|
233
|
Abstract
The polymerase chain reaction (PCR) has become one of the most important tools in molecular diagnostics, providing exquisite sensitivity and specificity for detection of nucleic acid targets. Real-time monitoring of PCR has simplified and accelerated PCR laboratory procedures and has increased information obtained from specimens including routine quantification and differentiation of amplification products. Clinical diagnostic applications and uses of real-time PCR are growing exponentially, real-time PCR is rapidly replacing traditional PCR, and new diagnostic uses likely will emerge. This review analyzes the scope of present and potential future clinical diagnostic applications of this powerful technique. Critical discussions focus on basic concepts, variations, data analysis, instrument platforms, signal detection formats, sample collection, assay design, and execution of real-time PCR.
Collapse
Affiliation(s)
- Bernhard Kaltenboeck
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | | |
Collapse
|
234
|
Raca G, Buiting K, Das S. Deletion Analysis of the Imprinting Center Region in Patients with Angelman Syndrome and Prader-Willi Syndrome by Real-Time Quantitative PCR. ACTA ACUST UNITED AC 2004; 8:387-94. [PMID: 15684868 DOI: 10.1089/gte.2004.8.387] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The molecular basis of Angelman syndrome and Prader-Willi syndrome is well established, and genetic testing for these disorders is clinically available. Imprinting abnormalities account for up to 4% of patients with Angelman and Prader-Willi syndromes. Deletions of the imprinting center region are the molecular abnormality observed in a subset of Angelman and Prader-Willi syndrome cases with imprinting defects. Genetic testing of imprinting center deletions in patients with Angelman and Prader-Willi syndrome is not readily available. Such testing is important for the diagnostics of Angelman and Prader-Willi syndrome because it allows for more accurate diagnosis and recurrence risk prediction in families. Here we describe the development, validation, and implementation of a real time quantitative polymerase chain reaction (PCR)-based assay for imprinting center deletion detection in patients with Angelman and Prader-Willi syndrome, which we have incorporated into our genetic testing strategy for these disorders. To date we have tested, on a clinical basis, five patients with either Angelman or Prader-Willi syndrome in whom an imprinting center defect was implicated and found a deletion in one patient that was determined to be familial.
Collapse
Affiliation(s)
- Gordana Raca
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|
235
|
Deschauer M, Krasnianski A, Zierz S, Taylor RW. False-Positive Diagnosis of a Single, Large-Scale Mitochondrial DNA Deletion by Southern Blot Analysis: The Role of Neutral Polymorphisms. ACTA ACUST UNITED AC 2004; 8:395-9. [PMID: 15684869 DOI: 10.1089/gte.2004.8.395] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Single, large-scale deletions of mitochondrial DNA (mtDNA) are a common finding in the molecular investigation of patients with suspected mitochondrial disorders and are typically detected by Southern blot analysis of muscle DNA that has been linearized by a single cutter enzyme (BamHI or PvuII). We describe our investigations of a 47-year-old woman with exercise intolerance, myalgia, and ptosis who underwent a muscle biopsy for a suspected mitochondrial genetic abnormality. Southern blot analysis after digestion of muscle DNA with BamHI revealed the apparent presence of two mtDNA species, indicative of a heteroplasmic deletion of 2.0-2.5 kb in length involving approximately 50% of all molecules. Contrary to this observation, longrange polymerase chain reaction (PCR) amplified only wild-type mtDNA. Sequence analysis revealed that the patient harbored two previously recognized control region polymorphisms, a homoplasmic 16390G>A variant that introduces a new BamHI site and a heteroplasmic 16390G>A change that abolishes this site, thus explaining the initial false-positive testing for a heteroplasmic mtDNA deletion. Our findings highlight the potential problems associated with the diagnosis of mitochondrial genetic disease and emphasize the need to confirm positive cases of mtDNA deletions using more than one enzyme or an independent method such as long-range PCR amplification.
Collapse
Affiliation(s)
- Marcus Deschauer
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, 06097, Halle/Saale, Germany.
| | | | | | | |
Collapse
|
236
|
Harbottle A, Krishnan KJ, Birch-Machin MA. Implications of using the ND1 gene as a control region for real-time PCR analysis of mitochondrial DNA deletions in human skin. J Invest Dermatol 2004; 122:1518-21. [PMID: 15175045 DOI: 10.1111/j.0022-202x.2004.22608.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
237
|
Abstract
Cells of the thyroid tissue, either diseased or normal, can accumulate altered mitochondrial genomes in primary lesions and in surrounding parenchyma. Depending on the experimental approaches and the extent of the mutational process, it has been possible to demonstrate the occurrence of homoplasmic or heteroplasmic point mutations, presence of a common deletion and random large-scale mtDNA aberrations in various pathological states. Point somatic mutations documented in 5-60% of thyroid tumors do not concentrate in obvious hotspots but tend to cluster in certain regions of the mitochondrial genome and their distribution may differ between carcinomas and controls. Large-scale deletions in mtDNA are quite prevalent in healthy and diseased thyroid; however, the proportion of aberrant mtDNA molecules accounts for a very small part of total mtDNA and does not seem to correlate with pathological characteristics of thyroid tumors. Common deletion is most abundant in Hurthle cell tumors, yet it also occurs in other thyroid diseases as well as in normal tissue. The principal difference between the common deletion and other deletion-type mtDNA molecules is that the former does not depend on the relative mtDNA content in the tissue whereas in a subset of thyroid tumors, such as radiation-associated papillary carcinomas and follicular adenomas, there is a strong correlation between mtDNA levels and prevalence of large-scale deletions. Relative mtDNA levels by themselves are elevated in most thyroid tumors compared to normal tissue. Distinct differential distribution and prevalence of mutational mtDNA burden in normal tissue and thyroid lesions are suggestive of the implication of altered mtDNA in thyroid diseases, especially in cancer.
Collapse
Affiliation(s)
- Tatiana Rogounovitch
- Department of Molecular Medicine, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | | | | |
Collapse
|
238
|
Bai RK, Wong LJC. Detection and Quantification of Heteroplasmic Mutant Mitochondrial DNA by Real-Time Amplification Refractory Mutation System Quantitative PCR Analysis: A Single-Step Approach. Clin Chem 2004; 50:996-1001. [PMID: 15073091 DOI: 10.1373/clinchem.2004.031153] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
Background: The A3243G mitochondrial tRNA leu(UUR) point mutation causes mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome, the most common mitochondrial DNA (mtDNA) disorder, and is also found in patients with maternally inherited diabetes and deafness syndrome (MIDD). To correlate disease manifestation with mutation loads, it is necessary to measure the percentage of the A3243G mtDNA mutation.
Methods: To reliably quantify low proportions of the mutant mtDNA, we developed a real-time amplification refractory mutation system quantitative PCR (ARMS-qPCR) assay. We validated the method with experimental samples containing known proportions of mutant A3243G mtDNA generated by mixing known amounts of cloned plasmid DNA containing either the wild-type or the mutant sequences.
Results: A correlation coefficient of 0.9995 between the expected and observed values for the proportions of mutant A3243G in the experimental samples was found. Evaluation of a total of 36 patient DNA samples demonstrated consistent results between PCR–restriction fragment length polymorphism (RFLP) analysis and real-time ARMS-qPCR. However, the latter method was much more sensitive for detecting low percentages of mutant heteroplasmy. Three samples contained allele-specific oligonucleotide-detectable but RFLP-undetectable mutations.
Conclusions: The real-time ARMS-qPCR method provides rapid, reliable, one-step quantitative detection of heteroplasmic mutant mtDNA.
Collapse
Affiliation(s)
- Ren-Kui Bai
- Institute for Molecular and Human Genetics, Georgetown University Medical Center, Washington, DC, USA
| | | |
Collapse
|
239
|
Taylor RW, Schaefer AM, Barron MJ, McFarland R, Turnbull DM. The diagnosis of mitochondrial muscle disease. Neuromuscul Disord 2004; 14:237-45. [PMID: 15019701 DOI: 10.1016/j.nmd.2003.12.004] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2003] [Revised: 11/24/2003] [Accepted: 12/23/2003] [Indexed: 10/26/2022]
Abstract
Mitochondrial respiratory chain abnormalities are an important cause of neuromuscular disease and may be due to defects of either the mitochondrial or nuclear genome. On account of the clinical and genetic heterogeneity exhibited by the mitochondrial myopathies, their investigation and diagnosis remains a challenge, requiring a combination of techniques including muscle histochemistry, biochemical assessment of respiratory chain function and molecular genetic studies. Here, we describe a step-by-step approach to the clinical and laboratory diagnosis of mitochondrial muscle disease, highlighting the many potential problems that can hinder reaching the correct diagnosis.
Collapse
Affiliation(s)
- Robert W Taylor
- Mitochondrial Research Group, School of Neurology, Neurobiology and Psychiatry, The Medical School, University of Newcastle upon Tyne, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | | | | | | | | |
Collapse
|
240
|
Nicklas JA, Brooks EM, Hunter TC, Single R, Branda RF. Development of a quantitative PCR (TaqMan) assay for relative mitochondrial DNA copy number and the common mitochondrial DNA deletion in the rat. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2004; 44:313-320. [PMID: 15476199 DOI: 10.1002/em.20050] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Changes in mitochondrial DNA copy number and increases in mitochondrial DNA mutations, especially deletions, have been associated with exposure to mutagens and with aging. Common deletions that are the result of recombination between direct repeats in human and rat (4,977 and 4,834, bp, respectively) are known to increase in tissues of aged individuals. Previous studies have used long-distance PCR and Southern blot or quantitative PCR to determine the frequency of deleted mitochondrial DNA. A quantitative PCR (TaqMan) assay was developed to detect both mitochondrial DNA copy number and deletion frequency in the rat. This methodology allows not only the determination of changes in the amount of mitochondrial DNA deletion relative to total mitochondrial DNA but also to determine changes in total mitochondrial DNA relative to genomic DNA. As a validation of the assay in rat liver, the frequency of the common 4,834 bp deletion is shown to increase with age, while the relative mitochondrial DNA copy number rises at a young age (3-60 days), then decreases and holds fairly steady to 2 years of age.
Collapse
Affiliation(s)
- Janice A Nicklas
- Genetics Laboratory and Vermont Cancer Center, University of Vermont, Burlington, Vermont 05401, USA
| | | | | | | | | |
Collapse
|
241
|
Taylor RW, He L, Proctor SJ, Middleton PG, Turnbull DM. Mitochondrial DNA mutations in the haematopoietic system. Leukemia 2003; 18:169-70. [PMID: 14614515 DOI: 10.1038/sj.leu.2403208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
242
|
Taylor RW, Barron MJ, Borthwick GM, Gospel A, Chinnery PF, Samuels DC, Taylor GA, Plusa SM, Needham SJ, Greaves LC, Kirkwood TBL, Turnbull DM. Mitochondrial DNA mutations in human colonic crypt stem cells. J Clin Invest 2003; 112:1351-60. [PMID: 14597761 PMCID: PMC228466 DOI: 10.1172/jci19435] [Citation(s) in RCA: 368] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2003] [Accepted: 09/09/2003] [Indexed: 12/15/2022] Open
Abstract
The mitochondrial genome encodes 13 essential subunits of the respiratory chain and has remarkable genetics based on uniparental inheritance. Within human populations, the mitochondrial genome has a high rate of sequence divergence with multiple polymorphic variants and thus has played a major role in examining the evolutionary history of our species. In recent years it has also become apparent that pathogenic mitochondrial DNA (mtDNA) mutations play an important role in neurological and other diseases. Patients harbor many different mtDNA mutations, some of which are mtDNA mutations, some of which are inherited, but others that seem to be sporadic. It has also been suggested that mtDNA mutations play a role in aging and cancer, but the evidence for a causative role in these conditions is less clear. The accumulated data would suggest, however, that mtDNA mutations occur on a frequent basis. In this article we describe a new phenomenon: the accumulation of mtDNA mutations in human colonic crypt stem cells that result in a significant biochemical defect in their progeny. These studies have important consequences not only for understanding of the finding of mtDNA mutations in aging tissues and tumors, but also for determining the frequency of mtDNA mutations within a cell.
Collapse
Affiliation(s)
- Robert W Taylor
- Department of Neurology, The Medical School, University of Newcastle upon Tyne, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
243
|
Deschauer M, Kiefer R, Blakely EL, He L, Zierz S, Turnbull DM, Taylor RW. A novel Twinkle gene mutation in autosomal dominant progressive external ophthalmoplegia. Neuromuscul Disord 2003; 13:568-72. [PMID: 12921794 DOI: 10.1016/s0960-8966(03)00071-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Autosomal dominant progressive external ophthalmoplegia is a common neurological presentation of mitochondrial disease and is characterised by multiple deletions of mitochondrial DNA in muscle. We describe a family with autosomal dominant progressive external ophthalmoplegia caused by a novel heterozygous A to C transversion at nucleotide 956 of the Twinkle gene. The deltoid muscle biopsy of the index case revealed sparse respiratory deficient cells. Multiple mitochondrial DNA deletions were clearly evident in the index case by both long-range and real-time polymerase chain reaction assays but not by Southern blotting, highlighting the diagnostic difficulties associated with characterising patients with multiple mitochondrial DNA deletions.
Collapse
Affiliation(s)
- Marcus Deschauer
- Department of Neurology, The Medical School, Framlington Place, University of Newcastle upon Tyne, NE2 4HH, Newcastle upon Tyne, UK
| | | | | | | | | | | | | |
Collapse
|
244
|
Abstract
We present here a discussion on the most relevant recent publications on mitochondrial disease. In addition to many papers concerning the description of the genotype-to-phenotype correlations in mitochondrial DNA-related disorders, this very broad area of neurogenetics includes a number of novel observations on the basic aspects of mitochondrial biogenesis that can be relevant in explaining the molecular mechanisms of mitochondrial abnormalities. The completion of the human genome project and the wealth of knowledge gained on the genetics of oxidative phosphorylation in yeast have promoted a substantial acceleration in the discovery of a remarkable number of nuclear genes associated with specific mitochondrial disorders. A further development of these contributions has been the generation of several cellular and animal models of disease that can now be exploited for testing both pathogenetic hypotheses and therapeutic strategies. Most of the latter are based on the use of chemical compounds aimed at reducing the negative impact of mitochondrial defects on both energy production and generation of reactive oxygen species. The first successful attempts for gene therapy of some mitochondrial diseases have recently been achieved and will hopefully increase in the near future.
Collapse
Affiliation(s)
- Massimo Zeviani
- Divisione di Neurogenetica Molecolare, Istituto Nazionale Neurologico Carlo Besta, via Temolo 4, 20126 Milano, Italy.
| | | |
Collapse
|
245
|
Chabi B, Mousson de Camaret B, Duborjal H, Issartel JP, Stepien G. Quantification of mitochondrial DNA deletion, depletion, and overreplication: application to diagnosis. Clin Chem 2003; 49:1309-17. [PMID: 12881447 DOI: 10.1373/49.8.1309] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Many mitochondrial pathologies are quantitative disorders related to tissue-specific deletion, depletion, or overreplication of mitochondrial DNA (mtDNA). We developed an assay for the determination of mtDNA copy number by real-time quantitative PCR for the molecular diagnosis of such alterations. METHODS To determine altered mtDNA copy number in muscle from nine patients with single or multiple mtDNA deletions, we generated calibration curves from serial dilutions of cloned mtDNA probes specific to four different mitochondrial genes encoding either ribosomal (16S) or messenger (ND2, ND5, and ATPase6) RNAs, localized in different regions of the mtDNA sequence. This method was compared with quantification of radioactive signals from Southern-blot analysis. We also determined the mitochondrial-to-nuclear DNA ratio in muscle, liver, and cultured fibroblasts from a patient with mtDNA depletion and in liver from two patients with mtDNA overreplication. RESULTS Both methods quantified 5-76% of deleted mtDNA in muscle, 59-97% of mtDNA depletion in the tissues, and 1.7- to 4.1-fold mtDNA overreplication in liver. The data obtained were concordant, with a linear correlation coefficient (r(2)) between the two methods of 0.94, and indicated that quantitative PCR has a higher sensitivity than Southern-blot analysis. CONCLUSIONS Real-time quantitative PCR can determine the copy number of either deleted or full-length mtDNA in patients with mitochondrial diseases and has advantages over classic Southern-blot analysis.
Collapse
Affiliation(s)
- Béatrice Chabi
- Unité du Métabolisme Protéino Energétique, UMR INRA 1019, 63009 Clermont-Ferrand, France
| | | | | | | | | |
Collapse
|