201
|
Abstract
The genus mycobacterium contains some of the most important human pathogens, including Mycobacterium tuberculosis, which causes tuberculosis in approximately 8 million people annually; Mycobacterium leprae, the etiologic agent of leprosy, which affects millions of people in Asia, Africa and Latin America; and Mycobacterium bovis, which causes tuberculosis in animals and people. Genetic tools for mycobacteria have been developed during the last 15 years and have helped to improve our understanding of the biology and pathogenesis of mycobacteria. However, genetic switches have only recently been developed that allow control of mycobacterial gene expression. Such systems have been used to facilitate protein overexpression in mycobacteria and to analyze gene function, in particular functions of essential genes. Some of the recently developed systems will allow controlling gene expression during animal infections and may therefore become invaluable tools for drug target validation. This article will review the features of available mycobacterial genetic switches and discuss their applications.
Collapse
Affiliation(s)
- Sabine Ehrt
- Weill Medical College of Cornell University, Department of Microbiology & Immunology, Weill Graduate Program in Immunology & Microbial Pathogenesis, Weill Graduate School of Medical Sciences of Cornell University, NY 10021, USA.
| | | |
Collapse
|
202
|
Darmon E, Lopez-Vernaza MA, Helness AC, Borking A, Wilson E, Thacker Z, Wardrope L, Leach DRF. SbcCD regulation and localization in Escherichia coli. J Bacteriol 2007; 189:6686-94. [PMID: 17644583 PMCID: PMC2045166 DOI: 10.1128/jb.00489-07] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Accepted: 07/10/2007] [Indexed: 11/20/2022] Open
Abstract
The SbcCD complex and its homologues play important roles in DNA repair and in the maintenance of genome stability. In Escherichia coli, the in vitro functions of SbcCD have been well characterized, but its exact cellular role remains elusive. This work investigates the regulation of the sbcDC operon and the cellular localization of the SbcC and SbcD proteins. Transcription of the sbcDC operon is shown to be dependent on starvation and RpoS protein. Overexpressed SbcC protein forms foci that colocalize with the replication factory, while overexpressed SbcD protein is distributed through the cytoplasm.
Collapse
Affiliation(s)
- Elise Darmon
- Institute of Cell and Molecular Biology, University of Edinburgh, Kings Buildings, Edinburgh EH9 3JR, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
203
|
Abstract
Only few small, regulatory RNAs encoded opposite another gene have been identified in bacteria. Here, we report the characterization of a locus where a small RNA (SymR) is encoded in cis to an SOS-induced gene whose product shows homology to the antitoxin MazE (SymE). Synthesis of the SymE protein is tightly repressed at multiple levels by the LexA repressor, the SymR RNA and the Lon protease. SymE co-purifies with ribosomes and overproduction of the protein leads to cell growth inhibition, decreased protein synthesis and increased RNA degradation. These properties are shared with several RNA endonuclease toxins of the toxin-antitoxin modules, and we show that the SymE protein represents evolution of a toxin from the AbrB fold, whose representatives are typically antitoxins. We suggest that SymE promotion of RNA cleavage may be important for the recycling of RNAs damaged under SOS-inducing conditions.
Collapse
MESH Headings
- Amino Acid Sequence
- Antitoxins/chemistry
- Antitoxins/genetics
- Antitoxins/metabolism
- Bacterial Toxins/genetics
- Bacterial Toxins/metabolism
- Base Sequence
- Blotting, Northern
- Electrophoresis, Polyacrylamide Gel
- Evolution, Molecular
- Immunoblotting
- Models, Molecular
- Molecular Sequence Data
- Mutation
- Plasmids/genetics
- Promoter Regions, Genetic/genetics
- Protease La/metabolism
- Protein Biosynthesis/genetics
- Protein Conformation
- Protein Folding
- RNA, Antisense/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Ribosomal Proteins/metabolism
- SOS Response, Genetics/genetics
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- Mitsuoki Kawano
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of HealthBethesda, MD 20892, USA.
| | - L Aravind
- National Center for Biotechnology Information, National Institutes of HealthBethesda, MD 20892, USA.
| | - Gisela Storz
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of HealthBethesda, MD 20892, USA.
- * For correspondence. E-mail ; Tel. (+1) 301 402 0968; Fax (+1) 301 402 0078
| |
Collapse
|
204
|
Cheng L, Naumann TA, Horswill AR, Hong SJ, Venters BJ, Tomsho JW, Benkovic SJ, Keiler KC. Discovery of antibacterial cyclic peptides that inhibit the ClpXP protease. Protein Sci 2007; 16:1535-42. [PMID: 17600141 PMCID: PMC2203360 DOI: 10.1110/ps.072933007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Revised: 04/25/2007] [Accepted: 04/30/2007] [Indexed: 10/23/2022]
Abstract
A method to rapidly screen libraries of cyclic peptides in vivo for molecules with biological activity has been developed and used to isolate cyclic peptide inhibitors of the ClpXP protease. Fluorescence activated cell sorting was used in conjunction with a fluorescent reporter to isolate cyclic peptides that inhibit the proteolysis of tmRNA-tagged proteins in Escherichia coli. Inhibitors shared little sequence similarity and interfered with unexpected steps in the ClpXP mechanism in vitro. One cyclic peptide, IXP1, inhibited the degradation of unrelated ClpXP substrates and has bactericidal activity when added to growing cultures of Caulobacter crescentus, a model organism that requires ClpXP activity for viability. The screen used here could be adapted to identify cyclic peptide inhibitors of any enzyme that can be expressed in E. coli in conjunction with a fluorescent reporter.
Collapse
Affiliation(s)
- Lin Cheng
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | | | | | | | |
Collapse
|
205
|
Makart S, Heinemann M, Panke S. Characterization of the AlkS/P(alkB)-expression system as an efficient tool for the production of recombinant proteins in Escherichia coli fed-batch fermentations. Biotechnol Bioeng 2007; 96:326-36. [PMID: 16865736 DOI: 10.1002/bit.21117] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The availability of suitable, well-characterized, and robust expression systems remains an essential requirement for successful metabolic engineering and recombinant protein production. We investigated the suitability of the Pseudomonas putida GPo1-derived AlkS/P(alkB) expression system in strictly aqueous cultures. By applying the apolar inducer dicyclopropylketone (DCPK) to express green fluorescent protein (GFP) from this system in Escherichia coli and analyzing the resulting cultures on single-cell level by flow cytometry, we found that this expression system gives rise to a homogeneous population of cells, even though the overall system is expected to have a positive feed-back element in the expression of the regulatory gene alkS. Overexpressing E. coli's serine hydroxymethyltransferase gene glyA, we showed that the system was already fully turned on at inducer concentrations as low as 0.005% (v/v). This allows efficient mass production of recombinant enzymes even though DCPK concentrations decreased from 0.05% to 0.01% over the course of a fully aerated cultivation in aqueous medium. Therefore, we elaborated the optimum induction procedure for production of the biocatalytically promising serine hydroxymethyltransferase and found volumetric and specific productivity to increase with specific growth rate in glucose-limited fed-batch cultures. Acetate excretion as a result of recombinant protein production could be avoided in an optimized fermentation protocol by switching earlier to a linear feed. This protocol resulted in a production of a final cell dry weight (CDW) concentration of 52 g/L, producing recombinant GlyA with a maximum specific activity of 6.3 U/mg total protein.
Collapse
Affiliation(s)
- Stefan Makart
- Bioprocess Laboratory, Institute of Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | | | | |
Collapse
|
206
|
Abstract
In Vibrio cholerae, bioinformatic approaches have been used to predict the locations of numerous small RNA (sRNA)-encoding genes, but biological roles have been determined for very few. Here, we describe the expression, processing and biological role of an sRNA (previously known as A10) that was identified through such analyses. We have renamed this sRNA MicX as, like the Escherichia coli sRNAs MicA, MicC and MicF, it regulates expression of an outer membrane protein (OMP). MicX appears to be a direct negative regulator of vc0972, which encodes an uncharacterized OMP, and vc0620, which encodes the periplasmic component of a peptide ABC transporter. Hfq is apparently not required for MicX's interactions with and regulation of these targets. The sequence encoding MicX overlaps with vca0943; however, primary transcripts of MicX are processed in an RNase E- and Hfq-dependent fashion to a shorter, still active and much more stable form consisting largely of the vca0943 3′ untranslated region. Our data suggest that processing of MicX enhances its effectiveness, and that sRNA cleavage is not simply a means to sRNA inactivation and clearance.
Collapse
Affiliation(s)
- Brigid M Davis
- Channing Laboratory, Brigham and Women's Hospital, and Howard Hughes Medical Institute, Boston, MA 02111, USA.
| | | |
Collapse
|
207
|
Stritzker J, Weibel S, Hill PJ, Oelschlaeger TA, Goebel W, Szalay AA. Tumor-specific colonization, tissue distribution, and gene induction by probiotic Escherichia coli Nissle 1917 in live mice. Int J Med Microbiol 2007; 297:151-62. [PMID: 17448724 DOI: 10.1016/j.ijmm.2007.01.008] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Revised: 01/24/2007] [Accepted: 01/26/2007] [Indexed: 11/20/2022] Open
Abstract
Systemic administration of microorganisms into tumor-bearing mice revealed preferential accumulation in tumors in comparison to clearance in organs such as spleen and liver. Here we compared the efficiency of tumor-specific colonization of pathogenic Salmonella typhimurium strains 14028 and SL1344 to the enteroinvasive Escherichia coli 4608-58 strain and to the attenuated Salmonella flexneri 2a SC602 strain, as well as to the uropathogenic E. coli CFT073, the non-pathogenic E. coli Top10, and the probiotic E. coli Nissle 1917 strain. All strains colonized and replicated in tumors efficiently each resulting in more than 1 x 10(8) colony-forming units per gram tumor tissue. Colonization of spleen and liver were significantly lower when E. coli strains were used in comparison to S. typhimurium and the non-pathogenic strains did not colonize those organs at all. Further investigation of E. coli Nissle 1917 showed that no drastic differences in colonization and amplification were seen when immunocompetent and immunocompromised animals were used, and we were able to show that E. coli Nissle 1917 replicates at the border of live and necrotic tumor tissue. We also demonstrated exogenously applied L-arabinose-dependent gene activation in colonized tumors in live mice. These findings will prepare the way for bacterium-mediated controlled protein delivery to solid tumors.
Collapse
Affiliation(s)
- Jochen Stritzker
- Genelux Corporation, 3030 Bunker Hill St., Ste. 310, San Diego, CA 92109, USA
| | | | | | | | | | | |
Collapse
|
208
|
Abstract
CbpA, an Escherichia coli DnaJ homolog, can function as a cochaperone for the DnaK/Hsp70 chaperone system, and its in vitro activity can be modulated by CbpM. We discovered that CbpM specifically inhibits the in vivo activity of CbpA, preventing it from functioning in cell growth and division. Furthermore, we have shown that CbpM interacts with CbpA in vivo during stationary phase, suggesting that the inhibition of activity is a result of the interaction. These results reveal that the activity of the E. coli DnaK system can be regulated in vivo by a specific inhibitor.
Collapse
Affiliation(s)
- Matthew R Chenoweth
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
209
|
Pitera DJ, Paddon CJ, Newman JD, Keasling JD. Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli. Metab Eng 2007; 9:193-207. [PMID: 17239639 DOI: 10.1016/j.ymben.2006.11.002] [Citation(s) in RCA: 319] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 10/25/2006] [Accepted: 11/13/2006] [Indexed: 11/25/2022]
Abstract
Engineering biosynthetic pathways in microbes for the production of complex chemicals and pharmaceuticals is an attractive alternative to chemical synthesis. However, in transferring large pathways to alternate hosts and manipulating expression levels, the native regulation of carbon flux through the pathway may be lost leading to imbalances in the pathways. Previously, Escherichia coli was engineered to produce large quantities of isoprenoids by creating a mevalonate-based isopentenyl pyrophosphate biosynthetic pathway [Martin, V.J., Pitera, D.J., Withers, S.T., Newman, J.D., Keasling, J.D., 2003. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat. Biotechnol. 21, 796-802]. The strain produces high levels of isoprenoids, but upon further investigation we discovered that the accumulation of pathway intermediates limited flux and that high-level expression of the mevalonate pathway enzymes inhibited cell growth. Gene titration studies and metabolite profiling using liquid chromatography-mass spectrometry linked the growth inhibition phenotype with the accumulation of the pathway intermediate 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA). Such an accumulation implies that the activity of HMG-CoA reductase was insufficient to balance flux in the engineered pathway. By modulating HMG-CoA reductase production, we eliminated the pathway bottleneck and increased mevalonate production. These results demonstrate that balancing carbon flux through the heterologous pathway is a key determinant in optimizing isoprenoid biosynthesis in microbial hosts.
Collapse
Affiliation(s)
- Douglas J Pitera
- Department of Chemical Engineering, University of California, Berkeley, CA 94720-1462, USA
| | | | | | | |
Collapse
|
210
|
Watts KT, Mijts BN, Lee PC, Manning AJ, Schmidt-Dannert C. Discovery of a Substrate Selectivity Switch in Tyrosine Ammonia-Lyase, a Member of the Aromatic Amino Acid Lyase Family. ACTA ACUST UNITED AC 2006; 13:1317-26. [PMID: 17185227 DOI: 10.1016/j.chembiol.2006.10.008] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 10/05/2006] [Accepted: 10/17/2006] [Indexed: 10/23/2022]
Abstract
Tyrosine ammonia-lyase (TAL) is a recently described member of the aromatic amino acid lyase family, which also includes phenylalanine (PAL) and histidine ammonia-lyases (HAL). TAL is highly selective for L-tyrosine, and synthesizes 4-coumaric acid as a protein cofactor or antibiotic precursor in microorganisms. In this report, we identify a single active site residue important for substrate selection in this enzyme family. Replacing the active site residue His89 with Phe in TAL completely switched its substrate selectivity from tyrosine to phenylalanine, thereby converting it into a highly active PAL. When a corresponding mutation was made in PAL, the enzyme lost PAL activity and gained TAL activity. The discovered substrate selectivity switch is a rare example of a complete alteration of substrate specificity by a single point mutation. We also show that the identity of the amino acid at the switch position can serve as a guide to predict substrate specificities of annotated aromatic amino acid lyases in genome sequences.
Collapse
Affiliation(s)
- Kevin T Watts
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 1479 Gortner Avenue, St. Paul, Minnesota 55108, USA
| | | | | | | | | |
Collapse
|
211
|
Budde PP, Davis BM, Yuan J, Waldor MK. Characterization of a higBA toxin-antitoxin locus in Vibrio cholerae. J Bacteriol 2006; 189:491-500. [PMID: 17085558 PMCID: PMC1797405 DOI: 10.1128/jb.00909-06] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Toxin-antitoxin (TA) loci, which were initially characterized as plasmid stabilization agents, have in recent years been detected on the chromosomes of numerous free-living bacteria. Vibrio cholerae, the causative agent of cholera, contains 13 putative TA loci, all of which are clustered within the superintegron on chromosome II. Here we report the characterization of the V. cholerae higBA locus, also known as VCA0391/2. Deletion of higA alone was not possible, consistent with predictions that it encodes an antitoxin, and biochemical analyses confirmed that HigA interacts with HigB. Transient exogenous expression of the toxin HigB dramatically slowed growth of V. cholerae and Escherichia coli and reduced the numbers of CFU by several orders of magnitude. HigB toxicity could be counteracted by simultaneous or delayed production of HigA, although HigA's effect diminished as the delay lengthened. Transcripts from endogenous higBA increased following treatment of V. cholerae with translational inhibitors, presumably due to reduced levels of HigA, which represses the higBA locus. However, no higBA-dependent cell death was observed in response to such stimuli. Thus, at least under the conditions tested, activation of endogenous HigB does not appear to be bactericidal.
Collapse
Affiliation(s)
- Priya Prakash Budde
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | |
Collapse
|
212
|
Rengby O, Arnér ESJ. Titration and conditional knockdown of the prfB gene in Escherichia coli: effects on growth and overproduction of the recombinant mammalian selenoprotein thioredoxin reductase. Appl Environ Microbiol 2006; 73:432-41. [PMID: 17085697 PMCID: PMC1796992 DOI: 10.1128/aem.02019-06] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Release factor 2 (RF2), encoded by the prfB gene in Escherichia coli, catalyzes translational termination at UGA and UAA codons. Termination at UGA competes with selenocysteine (Sec) incorporation at Sec-dedicated UGA codons, and RF2 thereby counteracts expression of selenoproteins. prfB is an essential gene in E. coli and can therefore not be removed in order to increase yield of recombinant selenoproteins. We therefore constructed an E. coli strain with the endogenous chromosomal promoter of prfB replaced with the titratable P(BAD) promoter. Knockdown of prfB expression gave a bacteriostatic effect, while two- to sevenfold overexpression of RF2 resulted in a slightly lowered growth rate in late exponential phase. In a turbidostatic fermentor system the simultaneous impact of prfB knockdown on growth and recombinant selenoprotein expression was subsequently studied, using production of mammalian thioredoxin reductase as model system. This showed that lowering the levels of RF2 correlated directly with increasing Sec incorporation specificity, while also affecting total selenoprotein yield concomitant with a lower growth rate. This study thus demonstrates that expression of prfB can be titrated through targeted exchange of the native promoter with a P(BAD)-promoter and that knockdown of RF2 can result in almost full efficiency of Sec incorporation at the cost of lower total selenoprotein yield.
Collapse
Affiliation(s)
- Olle Rengby
- Medical Nobel Institute for Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | |
Collapse
|
213
|
Serra-Moreno R, Acosta S, Hernalsteens JP, Jofre J, Muniesa M. Use of the lambda Red recombinase system to produce recombinant prophages carrying antibiotic resistance genes. BMC Mol Biol 2006; 7:31. [PMID: 16984631 PMCID: PMC1626079 DOI: 10.1186/1471-2199-7-31] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Accepted: 09/19/2006] [Indexed: 12/24/2022] Open
Abstract
Background The Red recombinase system of bacteriophage lambda has been used to inactivate chromosomal genes in E. coli K-12 through homologous recombination using linear PCR products. The aim of this study was to induce mutations in the genome of some temperate Shiga toxin encoding bacteriophages. When phage genes are in the prophage state, they behave like chromosomal genes. This enables marker genes, such as antibiotic resistance genes, to be incorporated into the stx gene. Once the phages' lytic cycle is activated, recombinant Shiga toxin converting phages are produced. These phages can transfer the marker genes to the bacteria that they infect and convert. As the Red system's effectiveness decreased when used for our purposes, we had to introduce significant variations to the original method. These modifications included: confirming the stability of the target stx gene increasing the number of cells to be transformed and using a three-step PCR method to produce the amplimer containing the antibiotic resistance gene. Results Seven phages carrying two different antibiotic resistance genes were derived from phages that are directly involved in the pathogenesis of Shiga toxin-producing strains, using this modified protocol. Conclusion This approach facilitates exploration of the transduction processes and is a valuable tool for studying phage-mediated horizontal gene transfer.
Collapse
Affiliation(s)
- Ruth Serra-Moreno
- Department of Microbiology. Faculty of Biology. University of Barcelona. Diagonal 645. E-08028 Barcelona. Spain
| | - Sandra Acosta
- Department of Microbiology. Faculty of Biology. University of Barcelona. Diagonal 645. E-08028 Barcelona. Spain
| | - Jean Pierre Hernalsteens
- Viral Genetics Laboratory, Faculty of Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
| | - Juan Jofre
- Department of Microbiology. Faculty of Biology. University of Barcelona. Diagonal 645. E-08028 Barcelona. Spain
| | - Maite Muniesa
- Department of Microbiology. Faculty of Biology. University of Barcelona. Diagonal 645. E-08028 Barcelona. Spain
| |
Collapse
|
214
|
Abstract
Synthetic biology is interpreted as the engineering-driven building of increasingly complex biological entities for novel applications. Encouraged by progress in the design of artificial gene networks, de novo DNA synthesis and protein engineering, we review the case for this emerging discipline. Key aspects of an engineering approach are purpose-orientation, deep insight into the underlying scientific principles, a hierarchy of abstraction including suitable interfaces between and within the levels of the hierarchy, standardization and the separation of design and fabrication. Synthetic biology investigates possibilities to implement these requirements into the process of engineering biological systems. This is illustrated on the DNA level by the implementation of engineering-inspired artificial operations such as toggle switching, oscillating or production of spatial patterns. On the protein level, the functionally self-contained domain structure of a number of proteins suggests possibilities for essentially Lego-like recombination which can be exploited for reprogramming DNA binding domain specificities or signaling pathways. Alternatively, computational design emerges to rationally reprogram enzyme function. Finally, the increasing facility of de novo DNA synthesis-synthetic biology's system fabrication process-supplies the possibility to implement novel designs for ever more complex systems. Some of these elements have merged to realize the first tangible synthetic biology applications in the area of manufacturing of pharmaceutical compounds.
Collapse
Affiliation(s)
- Matthias Heinemann
- ETH Zurich, Bioprocess Laboratory, Institute of Process Engineering Universitätsstrasse 6, 8092 Zurich, Switzerland
| | | |
Collapse
|
215
|
Srivastava P, Fekete RA, Chattoraj DK. Segregation of the replication terminus of the two Vibrio cholerae chromosomes. J Bacteriol 2006; 188:1060-70. [PMID: 16428410 PMCID: PMC1347332 DOI: 10.1128/jb.188.3.1060-1070.2006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genome duplication and segregation normally are completed before cell division in all organisms. The temporal relation of duplication and segregation, however, can vary in bacteria. Chromosomal regions can segregate towards opposite poles as they are replicated or can stay cohered for a considerable period before segregation. The bacterium Vibrio cholerae has two differently sized circular chromosomes, chromosome I (chrI) and chrII, of about 3 and 1 Mbp, respectively. The two chromosomes initiate replication synchronously, and the shorter chrII is expected to complete replication earlier than the longer chrI. A question arises as to whether the segregation of chrII also is completed before that of chrI. We fluorescently labeled the terminus regions of chrI and chrII and followed their movements during the bacterial cell cycle. The chrI terminus behaved similarly to that of the Escherichia coli chromosome in that it segregated at the very end of the cell division cycle: cells showed a single fluorescent focus even when the division septum was nearly complete. In contrast, the single focus representing the chrII terminus could divide at the midcell position well before cell septation was conspicuous. There were also cells where the single focus for chrII lingered at midcell until the end of a division cycle, like the terminus of chrI. The single focus in these cells overlapped with the terminus focus for chrI in all cases. It appears that there could be coordination between the two chromosomes through the replication and/or segregation of the terminus region to ensure their segregation to daughter cells.
Collapse
|
216
|
Watts KT, Lee PC, Schmidt-Dannert C. Biosynthesis of plant-specific stilbene polyketides in metabolically engineered Escherichia coli. BMC Biotechnol 2006; 6:22. [PMID: 16551366 PMCID: PMC1435877 DOI: 10.1186/1472-6750-6-22] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Accepted: 03/21/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phenylpropanoids are the precursors to a range of important plant metabolites such as the cell wall constituent lignin and the secondary metabolites belonging to the flavonoid/stilbene class of compounds. The latter class of plant natural products has been shown to function in a wide range of biological activities. During the last few years an increasing number of health benefits have been associated with these compounds. In particular, they demonstrate potent antioxidant activity and the ability to selectively inhibit certain tyrosine kinases. Biosynthesis of many medicinally important plant secondary metabolites, including stilbenes, is frequently not very well understood and under tight spatial and temporal control, limiting their availability from plant sources. As an alternative, we sought to develop an approach for the biosynthesis of diverse stilbenes by engineered recombinant microbial cells. RESULTS A pathway for stilbene biosynthesis was constructed in Escherichia coli with 4-coumaroyl CoA ligase 1 4CL1) from Arabidopsis thaliana and stilbene synthase (STS) cloned from Arachis hypogaea. E. coli cultures expressing these enzymes together converted the phenylpropionic acid precursor 4-coumaric acid, added to the growth medium, to the stilbene resveratrol (>100 mg/L). Caffeic acid, added in the same way, resulted in the production of the expected dihydroxylated stilbene, piceatannol (>10 mg/L). Ferulic acid, however, was not converted to the expected stilbene product, isorhapontigenin. Substitution of 4CL1 with a homologous enzyme, 4CL4, with a preference for ferulic acid over 4-coumaric acid, had no effect on the conversion of ferulic acid. Accumulation of tri- and tetraketide lactones from ferulic acid, regardless of the CoA-ligase expressed in E. coli, suggests that STS cannot properly accommodate and fold the tetraketide intermediate to the corresponding stilbene structure. CONCLUSION Phenylpropionic acids, such as 4-coumaric acid and caffeic acid, can be efficiently converted to stilbene compounds by recombinant E. coli cells expressing plant biosynthetic genes. Optimization of precursor conversion and cyclization of the bulky ferulic acid precursor by host metabolic engineering and protein engineering may afford the synthesis of even more structurally diverse stilbene compounds.
Collapse
Affiliation(s)
- Kevin T Watts
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, MN 55108, USA
| | - Pyung C Lee
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, MN 55108, USA
| | - Claudia Schmidt-Dannert
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
217
|
Osawa M, Erickson HP. Probing the domain structure of FtsZ by random truncation and insertion of GFP. MICROBIOLOGY-SGM 2006; 151:4033-4043. [PMID: 16339948 DOI: 10.1099/mic.0.28219-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Random transposon-mediated mutagenesis has been used to create truncations and insertions of green fluorescent protein (GFP), and Venus-yellow fluorescent protein (YFP), in Escherichia coli FtsZ. Sixteen unique insertions were obtained, and one of them, in the poorly conserved C-terminal spacer, was functional for cell division with the Venus-YFP insert. The insertion of enhanced GFP (eGFP) at this same site was not functional; Venus-YFP was found to be superior to eGFP in other respects too. Testing the constructs for dominant negative effects led to the following general conclusion. The N-terminal domain, aa 1-195, is an independently folding domain that can poison Z-ring function when expressed without a functional C-terminal domain. The effects were weak, requiring expression of the mutant at 3-5 times the level of wild-type FtsZ. The C-terminal domain, aa 195-383, was also independently folding, but had no activity in vivo. The differential activity of the N- and C-terminal domains suggests that FtsZ protofilament assembly is directional, with subunits adding primarily at the bottom of the protofilament. Directional assembly could occur by either a treadmilling or a dynamic instability mechanism.
Collapse
Affiliation(s)
- Masaki Osawa
- Dept of Cell Biology, 3709 Duke University Medical Center, Durham, NC 27710, USA
| | - Harold P Erickson
- Dept of Cell Biology, 3709 Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
218
|
Naumann TA, Savinov SN, Benkovic SJ. Engineering an affinity tag for genetically encoded cyclic peptides. Biotechnol Bioeng 2006; 92:820-30. [PMID: 16155946 DOI: 10.1002/bit.20644] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Peptide expression libraries are valuable probes of cellular function. SICLOPPS technology merges the principal advantages of both genetic methods and small-molecule approaches in yielding superior library sizes of operationally stable, structurally well-defined entities with an established biological and medicinal record. Here, we describe development, application, and the first-generation library implementation of an expressed affinity tag for a library of cyclic peptides. A tripeptide streptavidin-binding motif (HPQ) proved to be compatible with presentation from a backbone cyclized template. A resulting peptide was employed as a sensitive indicator of peptide splicing, expression, and recovery as well as an affinity tag for one-step purification. Specific recognition of the tag by streptavidin was also critical for an analysis of intein mutants. Finally, the initially identified probe was used as a template for design of a streptavidin-responsive cyclic peptide library.
Collapse
Affiliation(s)
- Todd A Naumann
- Department of Chemistry, The Pennsylvania State University, 414 Wartik Laboratory, University Park, PA 16802, USA
| | | | | |
Collapse
|
219
|
Abstract
A series of new expression vectors (pPro) have been constructed for the regulated expression of genes in Escherichia coli. The pPro vectors contain the prpBCDE promoter (P(prpB)) responsible for expression of the propionate catabolic genes (prpBCDE) and prpR encoding the positive regulator of this promoter. The efficiency and regulatory properties of the prpR-P(prpB) system were measured by placing the gene encoding the green fluorescent protein (gfp) under the control of the inducible P(prpB) of E. coli. This system provides homogenous expression in individual cells, highly regulatable expression over a wide range of propionate concentrations, and strong expression (maximal 1,500-fold induction) at high propionate concentrations. Since the prpBCDE promoter has CAP-dependent activation, the prpR-P(prpB) system exhibited negligible basal expression by addition of glucose to the medium.
Collapse
Affiliation(s)
- Sung Kuk Lee
- Department of Chemical Engineering, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
220
|
Pal D, Venkova-Canova T, Srivastava P, Chattoraj DK. Multipartite regulation of rctB, the replication initiator gene of Vibrio cholerae chromosome II. J Bacteriol 2005; 187:7167-75. [PMID: 16237000 PMCID: PMC1272990 DOI: 10.1128/jb.187.21.7167-7175.2005] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Replication initiator proteins in bacteria not only allow DNA replication but also often regulate the rate of replication initiation as well. The regulation is mediated by limiting the synthesis or availability of initiator proteins. The applicability of this principle is demonstrated here for RctB, the replication initiator for the smaller of the two chromosomes of Vibrio cholerae. A strong promoter for the rctB gene named rctBp was identified and found to be autoregulated in Escherichia coli. Promoter activity was lower in V. cholerae than in E. coli, and a part of this reduction is likely to be due to autorepression. Sequences upstream of rctBp, implicated earlier in replication control, enhanced the repression. The action of the upstream sequences required that they be present in cis, implying long-range interactions in the control of the promoter activity. A second gene specific for chromosome II replication, rctA, reduced rctB translation, most likely by antisense RNA control. Finally, optimal rctBp activity was found to be dependent on Dam. Increasing RctB in trans increased the copy number of a miniplasmid carrying oriCII(VC), implying that RctB can be rate limiting for chromosome II replication. The multiple modes of control on RctB are expected to reduce fluctuations in the initiator concentration and thereby help maintain chromosome copy number homeostasis.
Collapse
Affiliation(s)
- Debasish Pal
- Laboratory of Biochemistry, Center for Cancer Research, NIH, Bethesda, MD 20892-4255, USA
| | | | | | | |
Collapse
|
221
|
Cheng B, Shukla S, Vasunilashorn S, Mukhopadhyay S, Tse-Dinh YC. Bacterial cell killing mediated by topoisomerase I DNA cleavage activity. J Biol Chem 2005; 280:38489-95. [PMID: 16159875 PMCID: PMC1351368 DOI: 10.1074/jbc.m509722200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA topoisomerases are important clinical targets for antibacterial and anticancer therapy. At least one type IA DNA topoisomerase can be found in every bacterium, making it a logical target for antibacterial agents that can convert the enzyme into poison by trapping its covalent complex with DNA. However, it has not been possible previously to observe the consequence of having such a stabilized covalent complex of bacterial topoisomerase I in vivo. We isolated a mutant of recombinant Yersinia pestis topoisomerase I that forms a stabilized covalent complex with DNA by screening for the ability to induce the SOS response in Escherichia coli. Overexpression of this mutant topoisomerase I resulted in bacterial cell death. From sequence analysis and site-directed mutagenesis, it was determined that a single amino acid substitution in the TOPRIM domain changing a strictly conserved glycine residue to serine in either the Y. pestis or E. coli topoisomerase I can result in a mutant enzyme that has the SOS-inducing and cell-killing properties. Analysis of the purified mutant enzymes showed that they have no relaxation activity but retain the ability to cleave DNA and form a covalent complex. These results demonstrate that perturbation of the active site region of bacterial topoisomerase I can result in stabilization of the covalent intermediate, with the in vivo consequence of bacterial cell death. Small molecules that induce similar perturbation in the enzyme-DNA complex should be candidates as leads for novel antibacterial agents.
Collapse
Affiliation(s)
- Bokun Cheng
- From the Department of Biochemistry and Molecular Biology
| | - Shikha Shukla
- From the Department of Biochemistry and Molecular Biology
| | | | - Somshuvra Mukhopadhyay
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA
| | - Yuk-Ching Tse-Dinh
- From the Department of Biochemistry and Molecular Biology
- Address correspondence to: Yuk-Ching Tse-Dinh, Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, Tel. 914-594-4061, Fax 914-594-4058, E-mail:
| |
Collapse
|
222
|
Abstract
Eukaryotic chromosomes contain a locus, the centromere, at which force is applied to separate replicated chromosomes. A centromere analogue is also found in some bacterial plasmids and chromosomes, although not yet identified in the well-studied Escherichia coli chromosome. We aimed to identify centromere-like sequences in E. coli with the premise that such sequences would be the first to migrate towards the cell poles, away from the cell centre where DNA replication is believed to occur. We have labelled different loci on the chromosome by integrating arrays of binding sites for LacI-EYFP and phage lambdacI-ECFP and supplying these fusion proteins in trans. Comparison of such pairs of loci suggests the presence of a centromere-like site close to the origin of replication. Polar migration of the site was dependent on migS, a locus recently implicated in chromosome migration, thus providing strong support for migS being the E. coli centromere.
Collapse
Affiliation(s)
- Richard A Fekete
- Laboratory of Biochemistry, CCR, NCI, NIH, Bldg. 37, Bethesda, MD 20892-4255, USA
| | | |
Collapse
|
223
|
Gurvich OL, Baranov PV, Gesteland RF, Atkins JF. Expression levels influence ribosomal frameshifting at the tandem rare arginine codons AGG_AGG and AGA_AGA in Escherichia coli. J Bacteriol 2005; 187:4023-32. [PMID: 15937165 PMCID: PMC1151738 DOI: 10.1128/jb.187.12.4023-4032.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rare codons AGG and AGA comprise 2% and 4%, respectively, of the arginine codons of Escherichia coli K-12, and their cognate tRNAs are sparse. At tandem occurrences of either rare codon, the paucity of cognate aminoacyl tRNAs for the second codon of the pair facilitates peptidyl-tRNA shifting to the +1 frame. However, AGG_AGG and AGA_AGA are not underrepresented and occur 4 and 42 times, respectively, in E. coli genes. Searches for corresponding occurrences in other bacteria provide no strong support for the functional utilization of frameshifting at these sequences. All sequences tested in their native context showed 1.5 to 11% frameshifting when expressed from multicopy plasmids. A cassette with one of these sequences singly integrated into the chromosome in stringent cells gave 0.9% frameshifting in contrast to two- to four-times-higher values obtained from multicopy plasmids in stringent cells and eight-times-higher values in relaxed cells. Thus, +1 frameshifting efficiency at AGG_AGG and AGA_AGA is influenced by the mRNA expression level. These tandem rare codons do not occur in highly expressed mRNAs.
Collapse
Affiliation(s)
- Olga L Gurvich
- Department of Human Genetics, University of Utah, 15N 2030E, Rm. 7410, Salt Lake City, Utah 84112-5330, USA
| | | | | | | |
Collapse
|
224
|
Redick SD, Stricker J, Briscoe G, Erickson HP. Mutants of FtsZ targeting the protofilament interface: effects on cell division and GTPase activity. J Bacteriol 2005; 187:2727-36. [PMID: 15805519 PMCID: PMC1070378 DOI: 10.1128/jb.187.8.2727-2736.2005] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bacterial cell division protein FtsZ assembles into straight protofilaments, one subunit thick, in which subunits appear to be connected by identical bonds or interfaces. These bonds involve the top surface of one subunit making extensive contact with the bottom surface of the subunit above it. We have investigated this interface by site-directed mutagenesis. We found nine bottom and eight top mutants that were unable to function for cell division. We had expected that some of the mutants might poison cell division substoichiometrically, but this was not found for any mutant. Eight of the bottom mutants exhibited dominant negative effects (reduced colony size) and four completely blocked colony formation, but this required expression of the mutant protein at four to five times the wild-type FtsZ level. Remarkably, the top mutants were even weaker, most showing no effect at the highest expression level. This suggests a directional assembly or treadmilling, where subunit addition is primarily to the bottom end of the protofilament. Selected pairs of top and bottom mutants showed no GTPase activity up to 10 to 20 microM, in contrast to the high GTPase activity of wild-type FtsZ above 1 muM. Overall, these results suggest that in order for a subunit to bind a protofilament at the 1 microM K(d) for elongation, it must have functional interfaces at both the top and bottom. This is inconsistent with the present model of the protofilament, as a simple stack of subunits one on top of the other, and may require a new structural model.
Collapse
Affiliation(s)
- Sambra D Redick
- Department of Cell Biology, Duke University, 3709 Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
225
|
Abstract
The past 20 years have seen enormous progress in the understanding of the mechanisms used by the enteric bacterium Escherichia coli to promote protein folding, support protein translocation and handle protein misfolding. Insights from these studies have been exploited to tackle the problems of inclusion body formation, proteolytic degradation and disulfide bond generation that have long impeded the production of complex heterologous proteins in a properly folded and biologically active form. The application of this information to industrial processes, together with emerging strategies for creating designer folding modulators and performing glycosylation all but guarantee that E. coli will remain an important host for the production of both commodity and high value added proteins.
Collapse
Affiliation(s)
- François Baneyx
- Departments of Chemical Engineering and Bioengineering, University of Washington, Box 351750, Seattle, Washington 98195, USA.
| | | |
Collapse
|
226
|
Hasona A, Kim Y, Healy FG, Ingram LO, Shanmugam KT. Pyruvate formate lyase and acetate kinase are essential for anaerobic growth of Escherichia coli on xylose. J Bacteriol 2004; 186:7593-600. [PMID: 15516572 PMCID: PMC524897 DOI: 10.1128/jb.186.22.7593-7600.2004] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During anaerobic growth of bacteria, organic intermediates of metabolism, such as pyruvate or its derivatives, serve as electron acceptors to maintain the overall redox balance. Under these conditions, the ATP needed for cell growth is derived from substrate-level phosphorylation. In Escherichia coli, conversion of glucose to pyruvate yields 2 net ATPs, while metabolism of a pentose, such as xylose, to pyruvate only yields 0.67 net ATP per xylose due to the need for one (each) ATP for xylose transport and xylulose phosphorylation. During fermentative growth, E. coli produces equimolar amounts of acetate and ethanol from two pyruvates, and these reactions generate one additional ATP from two pyruvates (one hexose equivalent) while still maintaining the overall redox balance. Conversion of xylose to acetate and ethanol increases the net ATP yield from 0.67 to 1.5 per xylose. An E. coli pfl mutant lacking pyruvate formate lyase cannot convert pyruvate to acetyl coenzyme A, the required precursor for acetate and ethanol production, and could not produce this additional ATP. E. coli pfl mutants failed to grow under anaerobic conditions in xylose minimal medium without any negative effect on their survival or aerobic growth. An ackA mutant, lacking the ability to generate ATP from acetyl phosphate, also failed to grow in xylose minimal medium under anaerobic conditions, confirming the need for the ATP produced by acetate kinase for anaerobic growth on xylose. Since arabinose transport by AraE, the low-affinity, high-capacity, arabinose/H+ symport, conserves the ATP expended in pentose transport by the ABC transporter, both pfl and ackA mutants grew anaerobically with arabinose. AraE-based xylose transport, achieved after constitutively expressing araE, also supported the growth of the pfl mutant in xylose minimal medium. These results suggest that a net ATP yield of 0.67 per pentose is only enough to provide for maintenance energy but not enough to support growth of E. coli in minimal medium. Thus, pyruvate formate lyase and acetate kinase are essential for anaerobic growth of E. coli on xylose due to energetic constraints.
Collapse
Affiliation(s)
- Adnan Hasona
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | | | | | | | | |
Collapse
|
227
|
Champreda V, Zhou NY, Leak DJ. Heterologous expression of alkene monooxygenase components fromXanthobacter autotrophicusPy2 and reconstitution of the active complex. FEMS Microbiol Lett 2004; 239:309-18. [PMID: 15476981 DOI: 10.1016/j.femsle.2004.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2004] [Revised: 05/25/2004] [Accepted: 09/07/2004] [Indexed: 11/24/2022] Open
Abstract
The coupling protein and ferredoxin from Xanthobacter autotrophicus Py2 alkene monooxygenase (Xamo) have been functionally expressed in both N-terminal affinity tagged fusion and native forms in Escherichia coli. However, attempts to express the NADH-oxidoreductase and oxygenase, always resulted in the production of inactive, insoluble proteins. Nevertheless, the recombinant reductase from the toluene 4-monooxygenase of Pseudomonas mendocina KR1 was found to functionally complement the Xamo system. In vitro reconstitution, using the recombinant coupling protein and other components purified from the wild type, showed that steady-state epoxidation rate and coupling efficiency were dependent on the relative concentration of Xamo components in the reaction. The optimal molar stoichiometric ratio of Xamo components was determined to be approximately 1:0.25-0.3:2:2 (oxygenase hexamer:reductase:ferredoxin:coupling protein), suggesting the formation of an efficient catalytic complex at the minimal stoichiometric ratio to saturate the probable two-fold symmetry binding sites on the oxygenase.
Collapse
Affiliation(s)
- Verawat Champreda
- Department of Biological Sciences, Imperial College London, London SW7 2AZ, UK
| | | | | |
Collapse
|
228
|
Anderson DE, Gueiros-Filho FJ, Erickson HP. Assembly dynamics of FtsZ rings in Bacillus subtilis and Escherichia coli and effects of FtsZ-regulating proteins. J Bacteriol 2004; 186:5775-81. [PMID: 15317782 PMCID: PMC516820 DOI: 10.1128/jb.186.17.5775-5781.2004] [Citation(s) in RCA: 244] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
FtsZ is the major cytoskeletal component of the bacterial cell division machinery. It forms a ring-shaped structure (the Z ring) that constricts as the bacterium divides. Previous in vivo experiments with green fluorescent protein-labeled FtsZ and fluorescence recovery after photobleaching have shown that the Escherichia coli Z ring is extremely dynamic, continually remodeling itself with a half time of 30 s, similar to microtubules in the mitotic spindle. In the present work, under different experimental conditions, we have found that the half time for fluorescence recovery of E. coli Z rings is even shorter (approximately 9 s). As before, the turnover appears to be coupled to GTP hydrolysis, since the mutant FtsZ84 protein, with reduced GTPase in vitro, showed an approximately 3-fold longer half time. We have also extended the studies to Bacillus subtilis and found that this species exhibits equally rapid dynamics of the Z ring (half time, approximately 8 s). Interestingly, null mutations of the FtsZ-regulating proteins ZapA, EzrA, and MinCD had only modest effects on the assembly dynamics. This suggests that these proteins do not directly regulate FtsZ subunit exchange in and out of polymers. In B. subtilis, only 30 to 35% of the FtsZ protein was in the Z ring, from which we conclude that a Z ring only 2 or 3 protofilaments thick can function for cell division.
Collapse
Affiliation(s)
- David E Anderson
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
229
|
Rengby O, Johansson L, Carlson LA, Serini E, Vlamis-Gardikas A, Kårsnäs P, Arnér ESJ. Assessment of production conditions for efficient use of Escherichia coli in high-yield heterologous recombinant selenoprotein synthesis. Appl Environ Microbiol 2004; 70:5159-67. [PMID: 15345395 PMCID: PMC520894 DOI: 10.1128/aem.70.9.5159-5167.2004] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2004] [Accepted: 05/13/2004] [Indexed: 11/20/2022] Open
Abstract
The production of heterologous selenoproteins in Escherichia coli necessitates the design of a secondary structure in the mRNA forming a selenocysteine insertion sequence (SECIS) element compatible with SelB, the elongation factor for selenocysteine insertion at a predefined UGA codon. SelB competes with release factor 2 (RF2) catalyzing translational termination at UGA. Stoichiometry between mRNA, the SelB elongation factor, and RF2 is thereby important, whereas other expression conditions affecting the yield of recombinant selenoproteins have been poorly assessed. Here we expressed the rat selenoprotein thioredoxin reductase, with titrated levels of the selenoprotein mRNA under diverse growth conditions, with or without cotransformation of the accessory bacterial selA, selB, and selC genes. Titration of the selenoprotein mRNA with a pBAD promoter was performed in both TOP10 and BW27783 cells, which unexpectedly could not improve yield or specific activity compared to that achieved in our prior studies. Guided by principal component analysis, we instead discovered that the most efficient bacterial selenoprotein production conditions were obtained with the high-transcription T7lac-driven pET vector system in presence of the selA, selB, and selC genes, with induction of production at late exponential phase. About 40 mg of rat thioredoxin reductase with 50% selenocysteine content could thereby be produced per liter bacterial culture. These findings clearly illustrate the ability of E. coli to upregulate the selenocysteine incorporation machinery on demand and that this is furthermore strongly augmented in late exponential phase. This study also demonstrates that E. coli can indeed be utilized as cell factories for highly efficient production of heterologous selenoproteins such as rat thioredoxin reductase.
Collapse
Affiliation(s)
- Olle Rengby
- Medical Nobel Institute for Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
230
|
Watts KT, Lee PC, Schmidt-Dannert C. Exploring Recombinant Flavonoid Biosynthesis in Metabolically Engineered Escherichia coli. Chembiochem 2004; 5:500-7. [PMID: 15185374 DOI: 10.1002/cbic.200300783] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Flavonoids are important plant-specific secondary metabolites synthesized from 4-coumaroyl coenzyme A (CoA), derived from the general phenylpropanoid pathway, and three malonyl-CoAs. The synthesis involves a plant type III polyketide synthase, chalcone synthase. We report the cloning and coexpression in Escherichia coli of phenylalanine ammonia lyase, cinnamate-4-hydroxylase, 4-coumarate:CoA ligase, and chalcone synthase from the model plant Arabidopsis thaliana. Simultaneous expression of all four genes resulted in a blockage after the first enzymatic step caused by the presence of nonfunctional cinnamate-4-hydroxylase. To overcome this problem we fed exogenous 4-coumaric acid to induced cultures. We observed high-level production of the flavanone naringenin as a result. We were also able to produce phloretin by feeding cultures with 3-(4-hydroxyphenyl)propionic acid. Feeding with ferulic or caffeic acid did not yield the corresponding flavanones. We have also cloned and partially characterized a new tyrosine ammonia lyase from Rhodobacter sphaeroides. Tyrosine ammonia lyase was substituted for phenylalanine ammonia lyase and cinnamate-4-hydroxylase in our E. coli clones and three different growth media were tested. After 48 h induction, high-level production (20.8 mg L(-1)) of naringenin in metabolically engineered E. coli was observed for the first time.
Collapse
Affiliation(s)
- Kevin T Watts
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 1479 Gortner Avenue, St. Paul, MN 55108, USA
| | | | | |
Collapse
|
231
|
Murli S, Kennedy J, Dayem LC, Carney JR, Kealey JT. Metabolic engineering of Escherichia coli for improved 6-deoxyerythronolide B production. J Ind Microbiol Biotechnol 2003; 30:500-9. [PMID: 12898389 DOI: 10.1007/s10295-003-0073-x] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2002] [Accepted: 04/13/2003] [Indexed: 10/26/2022]
Abstract
Escherichia coli is an attractive candidate as a host for polyketide production and has been engineered to produce the erythromycin precursor polyketide 6-deoxyerythronolide B (6dEB). In order to identify and optimize parameters that affect polyketide production in engineered E. coli, we first investigated the supply of the extender unit ( 2S)-methylmalonyl-CoA via three independent pathways. Expression of the Streptomyces coelicolor malonyl/methylmalonyl-CoA ligase ( matB) pathway in E. coli together with methylmalonate feeding resulted in the accumulation of intracellular methylmalonyl-CoA to as much as 90% of the acyl-CoA pool. Surprisingly, the methylmalonyl-CoA generated from the matB pathway was not converted into 6dEB. In strains expressing either the S. coelicolor propionyl-CoA carboxylase (PCC) pathway or the Propionibacteria shermanii methylmalonyl-CoA mutase/epimerase pathway, methylmalonyl-CoA accumulated up to 30% of the total acyl-CoA pools, and 6dEB was produced; titers were fivefold higher when strains contained the PCC pathway rather than the mutase pathway. When the PCC and mutase pathways were expressed simultaneously, the PCC pathway predominated, as indicated by greater flux of (13)C-propionate into 6dEB through the PCC pathway. To further optimize the E. coli production strain, we improved 6dEB titers by integrating the PCC and mutase pathways into the E. coli chromosome and by expressing the 6-deoxyerythronolide B synthase (DEBS) genes from a stable plasmid system.
Collapse
Affiliation(s)
- Sumati Murli
- Kosan Biosciences, 3832 Bay Center Place, Hayward, CA 94545, USA
| | | | | | | | | |
Collapse
|
232
|
Smolke CD, Keasling JD. Effect of gene location, mRNA secondary structures, and RNase sites on expression of two genes in an engineered operon. Biotechnol Bioeng 2002; 80:762-76. [PMID: 12402322 DOI: 10.1002/bit.10434] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The effects of endoribonuclease sites, secondary structures in mRNA, and gene placement on protein production and mRNA stability and steady-state levels were tested in a dual-gene operon containing the genes encoding beta-galactosidase (lacZ) from Escherichia coli and green fluorescent protein (gfp) from Aequorea victoria. Two previously identified RNase E sites were placed separately between the coding regions to direct cleavage in this area and produce two secondary transcripts, each containing a single-gene coding region. Novel secondary structures were engineered into the 3' and 5' ends of each of the coding regions to protect the transcript from inactivation by endoribonucleases (5' hairpins) and degradation by exoribonucleases (3' hairpins). In addition, the effects of relative gene placement were examined by switching the locations of the two coding regions. Depending on the particular secondary structures and RNase E sites placed between the genes the relative steady-state transcript and protein levels encoded by the two reporter genes could be changed up to 2.5-fold and 4-fold, respectively. By changing gene location and incorporating secondary structures and RNase E sites the relative steady-state transcript and protein levels encoded by the two reporter genes could be changed up to 100-fold and 750-fold, respectively.
Collapse
Affiliation(s)
- Christina D Smolke
- Department of Chemical Engineering, University of California, Berkeley 94720-1462, USA
| | | |
Collapse
|
233
|
Haldimann A, Wanner BL. Conditional-replication, integration, excision, and retrieval plasmid-host systems for gene structure-function studies of bacteria. J Bacteriol 2001; 183:6384-93. [PMID: 11591683 PMCID: PMC100134 DOI: 10.1128/jb.183.21.6384-6393.2001] [Citation(s) in RCA: 479] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have developed a series of powerful and versatile conditional-replication, integration, and modular (CRIM) plasmids. CRIM plasmids can be replicated at medium or high copy numbers in different hosts for making gene (or mutant) libraries. They can be integrated in single copies into the chromosomes of Escherichia coli and related bacteria to study gene function under normal physiological conditions. They can be excised from the chromosome, e.g., to verify that phenotypes are caused by their presence. Furthermore, they can be retrieved singly or en masse for subsequent molecular analyses. CRIM plasmids are integrated into the chromosome by site-specific recombination at one of five different phage attachment sites. Integrants are selected as antibiotic-resistant transformations. Since CRIM plasmids encode different forms of resistance, several can be used together in the same cell for stable expression of complex metabolic or regulatory pathways from diverse sources. Following integration, integrants are stably maintained in the absence of antibiotic selection. Each CRIM plasmid has a polylinker or one of several promoters for ectopic expression of the inserted DNA. Their modular design allows easy construction of new variants with different combinations of features. We also report a series of easily curable, low-copy-number helper plasmids encoding all the requisite Int proteins alone or with the respective Xis protein. These helper plasmids facilitate integration, excision ("curing"), or retrieval of the CRIM plasmids.
Collapse
Affiliation(s)
- A Haldimann
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|