201
|
Liang S, Moghimi B, Yang TP, Strouboulis J, Bungert J. Locus control region mediated regulation of adult beta-globin gene expression. J Cell Biochem 2008; 105:9-16. [PMID: 18500726 PMCID: PMC2696286 DOI: 10.1002/jcb.21820] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Many genes residing in gene clusters and expressed in a differentiation or developmental-stage specific manner are regulated by locus control regions (LCRs). These complex genetic regulatory elements are often composed of several DNAse I hypersensitive sites (HS sites) that function together to regulate the expression of several cis-linked genes. Particularly well characterized is the LCR associated with the beta-globin gene locus. The beta-globin LCR consists of five HS sites that are located upstream of the beta-like globin genes. Recent data demonstrate that the LCR is required for the association of the beta-globin gene locus with transcription foci or factories. The observation that RNA polymerase II associates with the LCR in erythroid progenitor or hematopoietic stem cells which do not express the globin genes suggests that the LCR is always in an accessible chromatin configuration during differentiation of erythroid cells. We propose that erythroid specific factors together with ubiquitous proteins mediate a change in chromatin configuration that juxtaposes the globin genes and the LCR. The proximity then facilitates the transfer of activities from the LCR to the globin genes. In this article we will discuss recent observations regarding beta-globin locus activation with a particular emphasis on LCR mediated activation of adult beta-globin gene expression.
Collapse
Affiliation(s)
- Shermi Liang
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Center for Mammalian Genetics, Genetics Institute, Shands Cancer Center, Gainesville, FL 32610, USA
| | - Babak Moghimi
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Center for Mammalian Genetics, Genetics Institute, Shands Cancer Center, Gainesville, FL 32610, USA
| | - Thomas P. Yang
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Center for Mammalian Genetics, Genetics Institute, Shands Cancer Center, Gainesville, FL 32610, USA
| | - John Strouboulis
- Institute of Molecular Oncology, BSRC "Alexander Fleming", Varkiza, Greece
| | - Jörg Bungert
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Center for Mammalian Genetics, Genetics Institute, Shands Cancer Center, Gainesville, FL 32610, USA
| |
Collapse
|
202
|
Yang S, Illner D, Teller K, Solovei I, van Driel R, Joffe B, Cremer T, Eils R, Rohr K. Structural analysis of interphase X-chromatin based on statistical shape theory. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:2089-99. [PMID: 18789978 DOI: 10.1016/j.bbamcr.2008.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2008] [Revised: 08/09/2008] [Accepted: 08/19/2008] [Indexed: 12/26/2022]
Abstract
The 3D folding structure formed by different genomic regions of a chromosome is still poorly understood. So far, only relatively simple geometric features, like distances and angles between different genomic regions, have been evaluated. This work is concerned with more complex geometric properties, i.e., the complete shape formed by genomic regions. Our work is based on statistical shape theory and we use different approaches to analyze the considered structures, e.g., shape uniformity test, 3D point-based registration, Fisher distribution, and 3D non-rigid image registration for shape normalization. We have applied these approaches to analyze 3D microscopy images of the X-chromosome where four consecutive genomic regions (BACs) have been simultaneously labeled by multicolor FISH. We have acquired two sets of four consecutive genomic regions with an overlap of three regions. From the experimental results, it turned out that for all data sets the complete structure is non-random. In addition, we found that the shapes of active and inactive X-chromosomal genomic regions are statistically independent. Moreover, we reconstructed the average 3D structure of chromatin in a small genomic region (below 4 Mb) based on five BACs resulting from two overlapping four BAC regions. We found that geometric normalization with respect to the nucleus shape based on non-rigid image registration has a significant influence on the location of the genomic regions.
Collapse
Affiliation(s)
- Siwei Yang
- Department of Bioinformatics and Functional Genomics, Biomedical Computer Vision Group, University of Heidelberg, BIOQUANT, IPMB, Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Abstract
The nuclear architecture plays an important role in the temporal and spatial control of complex functional processes within the nucleus. Alterations in nuclear structures are characteristic of cancer cells and the mechanisms underlying these perturbations may directly contribute to tumor development and progression. In this review, we will highlight aspects of the nuclear microenvironment that are perturbed during tumorigenesis and discuss how a greater understanding of the role of nuclear structure in the control of gene expression can provide new options for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Rossanna C. Pezo
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York
| | - Robert H. Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York
| |
Collapse
|
204
|
Ronneberger O, Baddeley D, Scheipl F, Verveer PJ, Burkhardt H, Cremer C, Fahrmeir L, Cremer T, Joffe B. Spatial quantitative analysis of fluorescently labeled nuclear structures: problems, methods, pitfalls. Chromosome Res 2008; 16:523-62. [PMID: 18461488 DOI: 10.1007/s10577-008-1236-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The vast majority of microscopic data in biology of the cell nucleus is currently collected using fluorescence microscopy, and most of these data are subsequently subjected to quantitative analysis. The analysis process unites a number of steps, from image acquisition to statistics, and at each of these steps decisions must be made that may crucially affect the conclusions of the whole study. This often presents a really serious problem because the researcher is typically a biologist, while the decisions to be taken require expertise in the fields of physics, computer image analysis, and statistics. The researcher has to choose between multiple options for data collection, numerous programs for preprocessing and processing of images, and a number of statistical approaches. Written for biologists, this article discusses some of the typical problems and errors that should be avoided. The article was prepared by a team uniting expertise in biology, microscopy, image analysis, and statistics. It considers the options a researcher has at the stages of data acquisition (choice of the microscope and acquisition settings), preprocessing (filtering, intensity normalization, deconvolution), image processing (radial distribution, clustering, co-localization, shape and orientation of objects), and statistical analysis.
Collapse
Affiliation(s)
- O Ronneberger
- Department of Pattern Recognition and Image Processing, University of Freiburg, 79110, Freiburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
205
|
Bowen AJ, Corcoran AE. How chromatin remodelling allows shuffling of immunoglobulin heavy chain genes. MOLECULAR BIOSYSTEMS 2008; 4:790-8. [PMID: 18633479 DOI: 10.1039/b719771n] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cellular identity is determined by the switching on and off of lineage-specific genes. This dynamic process is regulated by a highly co-ordinated series of chromatin remodelling mechanisms that control DNA accessibility to facilitate transcription, replication and recombination. The identity of an individual B-lymphocyte is defined by the expression of a unique antibody protein, composed of two identical immunoglobulin heavy and two identical light chain polypeptides, which recognize a single foreign antigen with high specificity. However, the mammalian adaptive immune system requires an enormous variety of antibody-expressing B cells to combat the millions of foreign antigens it may encounter. This diversity is generated primarily at the multigene immunoglobulin loci by V(D)J recombination, a specialised form of DNA recombination in which numerous variable (V), diversity (D) and joining (J) genes are cut and pasted together in a strict order to allow shuffling of immunoglobulin genes. The mouse immunoglobulin heavy chain (Igh) locus is the largest known multigene locus. It spans approximately 3 Mb and comprises more than 200 genes. Its size and complexity pose an enormous logistic challenge to the chromatin remodelling machinery, but recent major advances in our understanding of how the 200 genes are shuffled have begun to reveal an exquisitely co-ordinated set of chromatin remodelling mechanisms which exploit every aspect of nuclear dynamics, and provide a global view of multigene regulation. This review will explore the numerous processes implicated in opening up and positioning of the locus to enable shuffling of the Igh locus genes, including non-coding RNA transcription, histone modifications, transcription factors, nuclear relocation and locus contraction.
Collapse
Affiliation(s)
- Adam J Bowen
- Laboratory of Chromatin and Gene Expression, Babraham Institute, Babraham Research Campus, Cambridge, UK
| | | |
Collapse
|
206
|
Osborne CS, Eskiw CH. Where shall we meet? A role for genome organisation and nuclear sub-compartments in mediating interchromosomal interactions. J Cell Biochem 2008; 104:1553-61. [DOI: 10.1002/jcb.21750] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
207
|
Fedorova E, Zink D. Nuclear architecture and gene regulation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:2174-84. [PMID: 18718493 DOI: 10.1016/j.bbamcr.2008.07.018] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 07/15/2008] [Accepted: 07/20/2008] [Indexed: 12/27/2022]
Abstract
The spatial organization of eukaryotic genomes in the cell nucleus is linked to their transcriptional regulation. In mammals, on which this review will focus, transcription-related chromatin positioning is regulated at the level of chromosomal sub-domains and individual genes. Most of the chromatin remains stably positioned during interphase. However, some loci display dynamic relocalizations upon transcriptional activation, which are dependent on nuclear actin and myosin. Transcription factors in association with chromatin modifying complexes seem to play a central role in regulating chromatin dynamics and positioning. Recent results obtained in this regard also give insight into the question how the different levels of transcriptional regulation are integrated and coordinated with other processes involved in gene expression. Corresponding findings will be discussed.
Collapse
Affiliation(s)
- Elena Fedorova
- Russian Academy of Sciences, I.P. Pavlov Institute of Physiology, Department of Sensory Physiology, Nab. Makarova 6, 199034 St. Petersburg, Russia
| | | |
Collapse
|
208
|
González-Aguilera C, Tous C, Gómez-González B, Huertas P, Luna R, Aguilera A. The THP1-SAC3-SUS1-CDC31 complex works in transcription elongation-mRNA export preventing RNA-mediated genome instability. Mol Biol Cell 2008; 19:4310-8. [PMID: 18667528 DOI: 10.1091/mbc.e08-04-0355] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The eukaryotic THO/TREX complex, involved in mRNP biogenesis, plays a key role in the maintenance of genome integrity in yeast. mRNA export factors such as Thp1-Sac3 also affect genome integrity, but their mutations have other phenotypes different from those of THO/TREX. Sus1 is a novel component of SAGA transcription factor that also associates with Thp1-Sac3, but little is known about its effect on genome instability and transcription. Here we show that Thp1, Sac3, and Sus1 form a functional unit with a role in mRNP biogenesis and maintenance of genome integrity that is independent of SAGA. Importantly, the effects of ribozyme-containing transcription units, RNase H, and the action of human activation-induced cytidine deaminase on transcription and genome instability are consistent with the possibility that R-loops are formed in Thp1-Sac3-Sus1-Cdc31 as in THO mutants. Our data reveal that Thp1-Sac3-Sus1-Cdc31, together with THO/TREX, define a specific pathway connecting transcription elongation with export via an RNA-dependent dynamic process that provides a feedback mechanism for the control of transcription and the preservation of genetic integrity of transcribed DNA regions.
Collapse
Affiliation(s)
- Cristina González-Aguilera
- Centro Andaluz de Biologia Molecular y Medicina Regenerativa, Universidad de Sevilla-CSIC, 41092 Sevilla, Spain
| | | | | | | | | | | |
Collapse
|
209
|
Ho Y, Tadevosyan A, Liebhaber SA, Cooke NE. The juxtaposition of a promoter with a locus control region transcriptional domain activates gene expression. EMBO Rep 2008; 9:891-8. [PMID: 18636089 DOI: 10.1038/embor.2008.126] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Revised: 05/29/2008] [Accepted: 06/09/2008] [Indexed: 12/27/2022] Open
Abstract
Nonlinear chromatin configurations can juxtapose widely separated elements within a genomic locus; however, it remains unclear how these structures are established and contribute to transcriptional control. A 5'-remote locus control region (LCR) regulates the human growth hormone (hGH-N) gene. HSI, a pituitary-specific component of the hGH LCR, establishes a domain of polymerase II (PolII) transcription 5' to hGH-N. Repression of this transcriptional domain by HSI deletion or PolII blockade decreases hGH-N expression. Here, we show that hGH-N activation is accompanied by positioning of the hGH-N promoter to this LCR transcriptional domain. Selectively blocking LCR transcription inhibits the formation of this active 'looped' conformation. Thus, HSI is crucial for establishing a domain of noncoding PolII transcription, and this domain is intimately linked with chromatin organization of the active hGH-N locus. This integration of LCR transcription with chromatin reconfiguration constitutes a robust pathway for long-range gene activation.
Collapse
Affiliation(s)
- Yugong Ho
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
210
|
Hepperger C, Mannes A, Merz J, Peters J, Dietzel S. Three-dimensional positioning of genes in mouse cell nuclei. Chromosoma 2008; 117:535-51. [DOI: 10.1007/s00412-008-0168-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 05/13/2008] [Accepted: 05/13/2008] [Indexed: 11/24/2022]
|
211
|
Reddy K, Singh H. Using molecular tethering to analyze the role of nuclear compartmentalization in the regulation of mammalian gene activity. Methods 2008; 45:242-51. [PMID: 18602999 PMCID: PMC2602837 DOI: 10.1016/j.ymeth.2008.06.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Accepted: 06/23/2008] [Indexed: 10/21/2022] Open
Abstract
The mammalian nucleus has a complex structural organization that dynamically interacts with the genome. Chromatin is organized into discrete domains by association with distinct nuclear compartments enriched in structural and regulatory proteins. Growing evidence suggests that gene activity is modulated by interactions with these sub-nuclear compartments. Therefore, analyzing how nuclear architecture controls genome activity will be necessary to fully understand complex biological processes such as development and disease. In this article we describe a molecular methodology involving inducible tethering that can be used to position genes at the inner nuclear membrane (INM)-lamina compartment. The consequences of such directed re-positioning on gene activity or other DNA transactions can then be analyzed. This approach can be generalized and extended to position genes or chromosomal domains within other nuclear compartments thereby greatly facilitating the analysis of nuclear structure and its impact on genome activity.
Collapse
Affiliation(s)
- K.L. Reddy
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
| | - H. Singh
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
212
|
Schlimgen RJ, Reddy KL, Singh H, Krangel MS. Initiation of allelic exclusion by stochastic interaction of Tcrb alleles with repressive nuclear compartments. Nat Immunol 2008; 9:802-9. [PMID: 18536719 PMCID: PMC2561338 DOI: 10.1038/ni.1624] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Accepted: 05/20/2008] [Indexed: 12/12/2022]
Abstract
Studies of antigen-receptor loci have linked directed monoallelic association with pericentromeric heterochromatin to the initiation or maintenance of allelic exclusion. Here we provide evidence for a fundamentally different basis for T cell antigen receptor-beta (Tcrb) allelic exclusion. Using three-dimensional immunofluorescence in situ hybridization, we found that germline Tcrb alleles associated stochastically and at high frequency with the nuclear lamina or with pericentromeric heterochromatin in developing thymocytes and that such interactions inhibited variable-to-diversity-joining (V(beta)-to-D(beta)J(beta)) recombination before beta-selection. The introduction of an ectopic enhancer into Tcrb resulted in fewer such interactions and impaired allelic exclusion. We propose that initial V(beta)-to-D(beta)J(beta) recombination events are generally monoallelic in developing thymocytes because of frequent stochastic, rather than directed, interactions of Tcrb alleles with repressive nuclear compartments. Such interactions may be essential for Tcrb allelic exclusion.
Collapse
Affiliation(s)
- Ryan J Schlimgen
- Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
213
|
Luco RF, Maestro MA, Sadoni N, Zink D, Ferrer J. Targeted deficiency of the transcriptional activator Hnf1alpha alters subnuclear positioning of its genomic targets. PLoS Genet 2008; 4:e1000079. [PMID: 18497863 PMCID: PMC2375116 DOI: 10.1371/journal.pgen.1000079] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Accepted: 04/23/2008] [Indexed: 12/18/2022] Open
Abstract
DNA binding transcriptional activators play a central role in gene-selective regulation. In part, this is mediated by targeting local covalent modifications of histone tails. Transcriptional regulation has also been associated with the positioning of genes within the nucleus. We have now examined the role of a transcriptional activator in regulating the positioning of target genes. This was carried out with primary β-cells and hepatocytes freshly isolated from mice lacking Hnf1α, an activator encoded by the most frequently mutated gene in human monogenic diabetes (MODY3). We show that in Hnf1a−/− cells inactive endogenous Hnf1α-target genes exhibit increased trimethylated histone H3-Lys27 and reduced methylated H3-Lys4. Inactive Hnf1α-targets in Hnf1a−/− cells are also preferentially located in peripheral subnuclear domains enriched in trimethylated H3-Lys27, whereas active targets in wild-type cells are positioned in more central domains enriched in methylated H3-Lys4 and RNA polymerase II. We demonstrate that this differential positioning involves the decondensation of target chromatin, and show that it is spatially restricted rather than a reflection of non-specific changes in the nuclear organization of Hnf1a-deficient cells. This study, therefore, provides genetic evidence that a single transcriptional activator can influence the subnuclear location of its endogenous genomic targets in primary cells, and links activator-dependent changes in local chromatin structure to the spatial organization of the genome. We have also revealed a defect in subnuclear gene positioning in a model of a human transcription factor disease. All cells in an organism share a common genome, yet distinct subsets of genes are transcribed in different cells. Selectivity of gene transcription is largely determined by transcription factors that bind to target genes and promote local changes in chromatin. Such changes are thought to be instrumental for transcription. Emerging evidence indicates that the position of genes in the 3-dimensional structure of the nucleus may also be important in transcriptional regulation. However, the role of transcription factors in gene positioning, and its possible relationship with chromatin modifications, is poorly understood. To examine this, we employed a genetic approach. We used mice lacking Hnf1α, a transcription factor gene that is mutated in an inherited form of diabetes. We studied genes that are directly bound by Hnf1α, as well as various control genomic regions, and determined their position in nuclear space in liver and insulin-producing β-cells. The results showed that the absence of Hnf1α causes local changes in the chromatin of target genes. At the same time, it modifies the position of target genes in nuclear space. The findings of this study lead us to propose a model whereby transcription factor dependent local chromatin modifications are linked to subnuclear gene positioning. They also revealed abnormal subnuclear positioning in a model of a human transcription factor disease.
Collapse
Affiliation(s)
- Reini F. Luco
- Genomic Programming of Beta-cells Laboratory, Institut d'Investigacions August Pi i Sunyer, Barcelona, Spain
| | - Miguel A. Maestro
- Genomic Programming of Beta-cells Laboratory, Institut d'Investigacions August Pi i Sunyer, Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Nicolas Sadoni
- Department of Biology II, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
- Visitron Systems GmbH, Puchheim, Germany
| | - Daniele Zink
- Department of Biology II, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
- Institute of Bioengineering and Nanotechnology, The Nanos, Singapore
| | - Jorge Ferrer
- Genomic Programming of Beta-cells Laboratory, Institut d'Investigacions August Pi i Sunyer, Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
- Endocrinology, Hospital Clinic de Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
214
|
Pipkin ME, Monticelli S. Genomics and the immune system. Immunology 2008; 124:23-32. [PMID: 18298549 PMCID: PMC2434389 DOI: 10.1111/j.1365-2567.2008.02818.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 01/22/2008] [Accepted: 01/23/2008] [Indexed: 01/04/2023] Open
Abstract
While the hereditary information encoded in the Watson-Crick base pairing of genomes is largely static within a given individual, access to this information is controlled by dynamic mechanisms. The human genome is pervasively transcribed, but the roles played by the majority of the non-protein-coding genome sequences are still largely unknown. In this review we focus on insights to gene transcriptional regulation by placing special emphasis on genome-wide approaches, and on how non-coding RNAs, which derive from global transcription of the genome, in turn control gene expression. We review recent progress in the field with highlights on the immune system.
Collapse
Affiliation(s)
- Matthew E Pipkin
- Immune Disease Institute and Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
215
|
H3 K79 dimethylation marks developmental activation of the beta-globin gene but is reduced upon LCR-mediated high-level transcription. Blood 2008; 112:406-14. [PMID: 18441235 DOI: 10.1182/blood-2007-12-128983] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genome-wide analyses of the relationship between H3 K79 dimethylation and transcription have revealed contradictory results. To clarify this relationship at a single locus, we analyzed expression and H3 K79 modification levels of wild-type (WT) and transcriptionally impaired beta-globin mutant genes during erythroid differentiation. Analysis of fractionated erythroid cells derived from WT/Delta locus control region (LCR) heterozygous mice reveals no significant H3 K79 dimethylation of the beta-globin gene on either allele prior to activation of transcription. Upon transcriptional activation, H3 K79 di-methylation is observed along both WT and DeltaLCR alleles, and both alleles are located in proximity to H3 K79 dimethylation nuclear foci. However, H3 K79 di-methylation is significantly increased along the DeltaLCR allele compared with the WT allele. In addition, analysis of a partial LCR deletion mutant reveals that H3 K79 dimethylation is inversely correlated with beta-globin gene expression levels. Thus, while our results support a link between H3 K79 dimethylation and gene expression, high levels of this mark are not essential for high level beta-globin gene transcription. We propose that H3 K79 dimethylation is destabilized on a highly transcribed template.
Collapse
|
216
|
Biogenesis of mRNPs: integrating different processes in the eukaryotic nucleus. Chromosoma 2008; 117:319-31. [PMID: 18427828 DOI: 10.1007/s00412-008-0158-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 03/14/2008] [Accepted: 03/14/2008] [Indexed: 12/13/2022]
Abstract
Transcription is a central function occurring in the nucleus of eukaryotic cells in coordination with other nuclear processes. During transcription, the nascent pre-mRNA associates with mRNA-binding proteins and undergoes a series of processing steps, resulting in export-competent mRNA ribonucleoprotein complexes (mRNPs) that are transported into the cytoplasm. Experimental evidence increasingly indicates that the different processing steps (5'-end capping, splicing, 3'-end cleavage) and mRNP export are connected to each other as well as to transcription, both functionally and physically. Here, we review the overall process of mRNP biogenesis with particular emphasis on the functional coupling of transcription with mRNP biogenesis and export and its relationship to nuclear organization.
Collapse
|
217
|
Kalverda B, Röling MD, Fornerod M. Chromatin organization in relation to the nuclear periphery. FEBS Lett 2008; 582:2017-22. [PMID: 18435921 DOI: 10.1016/j.febslet.2008.04.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 04/11/2008] [Indexed: 11/15/2022]
Abstract
In the limited space of the nucleus, chromatin is organized in a dynamic and non-random manner. Three ways of chromatin organization are compaction, formation of loops and localization within the nucleus. To study chromatin localization it is most convenient to use the nuclear envelope as a fixed viewpoint. Peripheral chromatin has both been described as silent chromatin, interacting with the nuclear lamina, and active chromatin, interacting with nuclear pore proteins. Current data indicate that the nuclear envelope is a reader as well as a writer of chromatin state, and that its influence is not limited to the nuclear periphery.
Collapse
Affiliation(s)
- Bernike Kalverda
- Department of Tumor Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | |
Collapse
|
218
|
Takizawa T, Gudla PR, Guo L, Lockett S, Misteli T. Allele-specific nuclear positioning of the monoallelically expressed astrocyte marker GFAP. Genes Dev 2008; 22:489-98. [PMID: 18281462 DOI: 10.1101/gad.1634608] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Chromosomes and genes are nonrandomly arranged within the mammalian cell nucleus. However, the functional significance of nuclear positioning in gene expression is unclear. Here we directly probed the relationship between nuclear positioning and gene activity by comparing the location of the active and inactive copies of a monoallelically expressed gene in single cell nuclei. We demonstrate that the astrocyte-specific marker GFAP (glial fibrillary acidic protein) is monoallelically expressed in cortical astrocytes. Selection of the active allele occurs in a stochastic manner and is generally maintained through cell division. Taking advantage of the monoallelic expression of GFAP, we show that the functionally distinct alleles occupy differential radial positions within the cell nucleus and differentially associate with intranuclear compartments. In addition, coordinately regulated astrocyte-specific genes on distinct chromosomes spatially associate in their inactive state and dissociate upon activation. These results provide direct evidence for function-related differential positioning of individual gene alleles within the interphase nucleus.
Collapse
Affiliation(s)
- Takumi Takizawa
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
219
|
Beta-globin LCR and intron elements cooperate and direct spatial reorganization for gene therapy. PLoS Genet 2008; 4:e1000051. [PMID: 18404216 PMCID: PMC2271131 DOI: 10.1371/journal.pgen.1000051] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Accepted: 03/11/2008] [Indexed: 12/15/2022] Open
Abstract
The Locus Control Region (LCR) requires intronic elements within β-globin transgenes to direct high level expression at all ectopic integration sites. However, these essential intronic elements cannot be transmitted through retrovirus vectors and their deletion may compromise the therapeutic potential for gene therapy. Here, we systematically regenerate functional β-globin intron 2 elements that rescue LCR activity directed by 5′HS3. Evaluation in transgenic mice demonstrates that an Oct-1 binding site and an enhancer in the intron cooperate to increase expression levels from LCR globin transgenes. Replacement of the intronic AT-rich region with the Igμ 3′MAR rescues LCR activity in single copy transgenic mice. Importantly, a combination of the Oct-1 site, Igμ 3′MAR and intronic enhancer in the BGT158 cassette directs more consistent levels of expression in transgenic mice. By introducing intron-modified transgenes into the same genomic integration site in erythroid cells, we show that BGT158 has the greatest transcriptional induction. 3D DNA FISH establishes that induction stimulates this small 5′HS3 containing transgene and the endogenous locus to spatially reorganize towards more central locations in erythroid nuclei. Electron Spectroscopic Imaging (ESI) of chromatin fibers demonstrates that ultrastructural heterochromatin is primarily perinuclear and does not reorganize. Finally, we transmit intron-modified globin transgenes through insulated self-inactivating (SIN) lentivirus vectors into erythroid cells. We show efficient transfer and robust mRNA and protein expression by the BGT158 vector, and virus titer improvements mediated by the modified intron 2 in the presence of an LCR cassette composed of 5′HS2-4. Our results have important implications for the mechanism of LCR activity at ectopic integration sites. The modified transgenes are the first to transfer intronic elements that potentiate LCR activity and are designed to facilitate correction of hemoglobinopathies using single copy vectors. Expression of the β-globin gene is regulated by interactions between a distant Locus Control Region (LCR) and regulatory elements in or near the gene. We previously showed that LCR activity requires specific β-globin intron elements to consistently activate transgene expression in mice. These important intronic elements fail to transmit through lentivirus vectors designed for gene therapy of Sickle Cell Anemia. In this study, we identify intron modifications that reveal functional cooperation between the β-globin intronic enhancer and an intronic Oct-1 site. LCR activity in transgenic mice is also potentiated by an intronically located Igμ 3′MAR element. During induction of erythroid gene expression, the modified intron directs relocalization of the transgene away from the nuclear periphery towards more central neighbourhoods, and this movement mimics relocalization by the endogenous β-globin locus. Lentivirus vectors with the modified intron produce high titer virus stocks that express the transgene to therapeutic levels in erythroid cells. These findings have implications for understanding the mechanism of LCR activity, and for designing safe and effective lentivirus vectors for gene therapy.
Collapse
|
220
|
Abstract
The mammalian cell nucleus provides a landscape where genes are regulated through their organization and association with freely diffusing proteins and nuclear domains. In many cases, specific genes are highly dynamic, and the principles governing their movements and interchromosomal interactions are currently under intensive study. Recent investigations have implicated actin and myosin in chromatin dynamics and gene expression. Here, we discuss our current understanding of the dynamics of the interphase genome and how it impacts nuclear organization and gene activity.
Collapse
Affiliation(s)
- R. Ileng Kumaran
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Rajika Thakar
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - David L. Spector
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| |
Collapse
|
221
|
Brown CR, Kennedy CJ, Delmar VA, Forbes DJ, Silver PA. Global histone acetylation induces functional genomic reorganization at mammalian nuclear pore complexes. Genes Dev 2008; 22:627-39. [PMID: 18316479 PMCID: PMC2259032 DOI: 10.1101/gad.1632708] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Accepted: 12/26/2007] [Indexed: 01/01/2023]
Abstract
The nuclear localization of genes is intimately tied to their transcriptional status in Saccharomyces cerevisiae, with populations of both active and silent genes interacting with components of the nuclear envelope. We investigated the relationship between the mammalian nuclear pore and the human genome by generating high-resolution, chromosome-wide binding maps of human nucleoporin 93 (Nup93) in the presence and absence of a potent histone deacetylase inhibitor (HDACI). Here, we report extensive genomic reorganization with respect to the nuclear pore following HDACI treatment, including the recruitment of promoter regions, euchromatin-rich domains, and differentially expressed genes. In addition to biochemical mapping, we visually demonstrate the physical relocalization of several genomic loci with respect to the nuclear periphery. Our studies show that inhibiting HDACs leads to significant changes in genomic organization, recruiting regions of transcriptional regulation to mammalian nuclear pore complexes.
Collapse
Affiliation(s)
- Christopher R. Brown
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Caleb J. Kennedy
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Valerie A. Delmar
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92037, USA
| | - Douglass J. Forbes
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92037, USA
| | - Pamela A. Silver
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
222
|
Abstract
The developmental changes in expression of the beta like genes from embryonic to adult stages of human life are controlled at least partially at the level of the promoter sequences of these genes and their binding factors, and competition for promoter specific interactions with the locus control region (LCR). In recent years, the control of beta globin genes has also been investigated at the level of chromatin structure involving the chemical modification of histones and their remodelling by DNA dependent ATPases (SMARCA) containing protein complexes. The role of intergenic RNA is also being investigated with renewed interest. Although a wealth of information on the structure/function relationship of the LCR and globin promoters has been gathered over more than two decades, the fundamental nature of the control of these genes at the molecular level is still not completely understood. In the following pages, we intend to briefly describe the progress made in the field and discuss future directions.
Collapse
Affiliation(s)
- Milind C Mahajan
- Department of Human Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | |
Collapse
|
223
|
Johnson K, Hashimshony T, Sawai CM, Pongubala JMR, Skok JA, Aifantis I, Singh H. Regulation of immunoglobulin light-chain recombination by the transcription factor IRF-4 and the attenuation of interleukin-7 signaling. Immunity 2008; 28:335-45. [PMID: 18280186 DOI: 10.1016/j.immuni.2007.12.019] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 12/04/2007] [Accepted: 12/20/2007] [Indexed: 01/04/2023]
Abstract
Productive rearrangement of the immunoglobulin heavy-chain locus triggers a major developmental checkpoint that promotes limited clonal expansion of pre-B cells, thereby culminating in cell-cycle arrest and rearrangement of light-chain loci. By using Irf4-/-Irf8-/- pre-B cells, we demonstrated that two pathways converge to synergistically drive light-chain rearrangement, but not simply as a consequence of cell-cycle exit. One pathway was directly dependent on transcription factor IRF-4, whose expression was elevated by pre-B cell receptor signaling. IRF-4 targeted the immunoglobulin 3'Ekappa and Elambda enhancers and positioned a kappa allele away from pericentromeric heterochromatin. The other pathway was triggered by attenuation of IL-7 signaling and activated the iEkappa enhancer via binding of the transcription factor E2A. IRF-4 also regulated expression of chemokine receptor Cxcr4 and promoted migration of pre-B cells in response to the chemokine ligand CXCL12. We propose that IRF-4 coordinates the two pathways regulating light-chain recombination by positioning pre-B cells away from IL-7-expressing stromal cells.
Collapse
Affiliation(s)
- Kristen Johnson
- Department of Molecular Genetics and Cell Biology, University of Chicago, 929 East 57(th) Street, GCIS W522, Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
224
|
Transcriptional repression mediated by repositioning of genes to the nuclear lamina. Nature 2008; 452:243-7. [PMID: 18272965 DOI: 10.1038/nature06727] [Citation(s) in RCA: 582] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Accepted: 01/23/2008] [Indexed: 12/12/2022]
Abstract
Nuclear compartmentalization seems to have an important role in regulating metazoan genes. Although studies on immunoglobulin and other loci have shown a correlation between positioning at the nuclear lamina and gene repression, the functional consequences of this compartmentalization remain untested. We devised an approach for inducible tethering of genes to the inner nuclear membrane (INM), and tested the consequences of such repositioning on gene activity in mouse fibroblasts. Here, using three-dimensional DNA-immunoFISH, we demonstrate repositioning of chromosomal regions to the nuclear lamina that is dependent on breakdown and reformation of the nuclear envelope during mitosis. Moreover, tethering leads to the accumulation of lamin and INM proteins, but not to association with pericentromeric heterochromatin or nuclear pore complexes. Recruitment of genes to the INM can result in their transcriptional repression. Finally, we use targeted adenine methylation (DamID) to show that, as is the case for our model system, inactive immunoglobulin loci at the nuclear periphery are contacted by INM and lamina proteins. We propose that these molecular interactions may be used to compartmentalize and to limit the accessibility of immunoglobulin loci to transcription and recombination factors.
Collapse
|
225
|
Meaburn KJ, Misteli T. Locus-specific and activity-independent gene repositioning during early tumorigenesis. ACTA ACUST UNITED AC 2008; 180:39-50. [PMID: 18195100 PMCID: PMC2213600 DOI: 10.1083/jcb.200708204] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mammalian genome is highly organized within the cell nucleus. The nuclear position of many genes and genomic regions changes during physiological processes such as proliferation, differentiation, and disease. It is unclear whether disease-associated positioning changes occur specifically or are part of more global genome reorganization events. Here, we have analyzed the spatial position of a defined set of cancer-associated genes in an established mammary epithelial three-dimensional cell culture model of the early stages of breast cancer. We find that the genome is globally reorganized during normal and tumorigenic epithelial differentiation. Systematic mapping of changes in spatial positioning of cancer-associated genes reveals gene-specific positioning behavior and we identify several genes that are specifically repositioned during tumorigenesis. Alterations of spatial positioning patterns during differentiation and tumorigenesis were unrelated to gene activity. Our results demonstrate the existence of activity-independent genome repositioning events in the early stages of tumor formation.
Collapse
Affiliation(s)
- Karen J Meaburn
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
226
|
Kumaran RI, Spector DL. A genetic locus targeted to the nuclear periphery in living cells maintains its transcriptional competence. ACTA ACUST UNITED AC 2008; 180:51-65. [PMID: 18195101 PMCID: PMC2213611 DOI: 10.1083/jcb.200706060] [Citation(s) in RCA: 298] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The peripheral nuclear lamina, which is largely but not entirely associated with inactive chromatin, is considered to be an important determinant of nuclear structure and gene expression. We present here an inducible system to target a genetic locus to the nuclear lamina in living mammalian cells. Using three-dimensional time-lapse microscopy, we determined that targeting of the locus requires passage through mitosis. Once targeted, the locus remains anchored to the nuclear periphery in interphase as well as in daughter cells after passage through a subsequent mitosis. Upon transcriptional induction, components of the gene expression machinery are recruited to the targeted locus, and we visualized nascent transcripts at the nuclear periphery. The kinetics of transcriptional induction at the nuclear lamina is similar to that observed at an internal nuclear region. This new cell system provides a powerful approach to study the dynamics of gene function at the nuclear periphery in living cells.
Collapse
Affiliation(s)
- R Ileng Kumaran
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
227
|
Montazer-Torbati MB, Hue-Beauvais C, Droineau S, Ballester M, Coant N, Aujean E, Petitbarat M, Rijnkels M, Devinoy E. Epigenetic modifications and chromatin loop organization explain the different expression profiles of the Tbrg4, WAP and Ramp3 genes. Exp Cell Res 2008; 314:975-87. [PMID: 18255060 DOI: 10.1016/j.yexcr.2008.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 11/24/2007] [Accepted: 01/06/2008] [Indexed: 02/07/2023]
Abstract
Whey Acidic Protein (WAP) gene expression is specific to the mammary gland and regulated by lactogenic hormones to peak during lactation. It differs markedly from the more constitutive expression of the two flanking genes, Ramp3 and Tbrg4. Our results show that the tight regulation of WAP gene expression parallels variations in the chromatin structure and DNA methylation profile throughout the Ramp3-WAP-Tbrg4 locus. Three Matrix Attachment Regions (MAR) have been predicted in this locus. Two of them are located between regions exhibiting open and closed chromatin structures in the liver. The third, located around the transcription start site of the Tbrg4 gene, interacts with topoisomerase II in HC11 mouse mammary cells, and in these cells anchors the chromatin loop to the nuclear matrix. Furthermore, if lactogenic hormones are present in these cells, the chromatin loop surrounding the WAP gene is more tightly attached to the nuclear structure, as observed after a high salt treatment of the nuclei and the formation of nuclear halos. Taken together, our results point to a combination of several epigenetic events that may explain the differential expression pattern of the WAP locus in relation to tissue and developmental stages.
Collapse
|
228
|
Schneider R, Grosschedl R. Dynamics and interplay of nuclear architecture, genome organization, and gene expression. Genes Dev 2008; 21:3027-43. [PMID: 18056419 DOI: 10.1101/gad.1604607] [Citation(s) in RCA: 322] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The organization of the genome in the nucleus of a eukaryotic cell is fairly complex and dynamic. Various features of the nuclear architecture, including compartmentalization of molecular machines and the spatial arrangement of genomic sequences, help to carry out and regulate nuclear processes, such as DNA replication, DNA repair, gene transcription, RNA processing, and mRNA transport. Compartmentalized multiprotein complexes undergo extensive modifications or exchange of protein subunits, allowing for an exquisite dynamics of structural components and functional processes of the nucleus. The architecture of the interphase nucleus is linked to the spatial arrangement of genes and gene clusters, the structure of chromatin, and the accessibility of regulatory DNA elements. In this review, we discuss recent studies that have provided exciting insight into the interplay between nuclear architecture, genome organization, and gene expression.
Collapse
|
229
|
Wozniak RJ, Bresnick EH. Chapter 3 Epigenetic Control of Complex Loci During Erythropoiesis. Curr Top Dev Biol 2008; 82:55-83. [DOI: 10.1016/s0070-2153(07)00003-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
230
|
Abstract
Recent advances have demonstrated that placing genes in a specific nuclear context plays an important role in the regulation of coordinated gene expression, thus adding an additional level of complexity to the mechanisms of gene regulation. Differentiation processes are characterized by dynamic changes in gene activation and silencing. These alterations are often accompanied by gene relocations in relation to other genomic regions or to nuclear compartments. Unraveling of mechanisms and dynamics of chromatin positioning will thus expand our knowledge about cellular differentiation.
Collapse
Affiliation(s)
- Christian Schöfer
- Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstr. 17, 1090 Vienna, Austria.
| | | |
Collapse
|
231
|
de Laat W, Klous P, Kooren J, Noordermeer D, Palstra RJ, Simonis M, Splinter E, Grosveld F. Three-dimensional organization of gene expression in erythroid cells. Curr Top Dev Biol 2008; 82:117-39. [PMID: 18282519 DOI: 10.1016/s0070-2153(07)00005-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The history of globin research is marked by a series of contributions seminal to our understanding of the genome, its function, and its relation to disease. For example, based on studies on hemoglobinopathies, it was understood that gene expression can be under the control of DNA elements that locate away from the genes on the linear chromosome template. Recent technological developments have allowed the demonstration that these regulatory DNA elements communicate with the genes through physical interaction, which loops out the intervening chromatin fiber. Subsequent studies showed that the spatial organization of the beta-globin locus dynamically changes in relation to differences in gene expression. Moreover, it was shown that the beta-globin locus adopts a different position in the nucleus during development and erythroid maturation. Here, we discuss the most recent insight into the three-dimensional organization of gene expression.
Collapse
Affiliation(s)
- Wouter de Laat
- Department of Cell Biology and Genetics, Erasmus MC, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
232
|
Mitchell JA, Fraser P. Transcription factories are nuclear subcompartments that remain in the absence of transcription. Genes Dev 2008; 22:20-5. [PMID: 18172162 PMCID: PMC2151011 DOI: 10.1101/gad.454008] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Accepted: 11/01/2007] [Indexed: 11/25/2022]
Abstract
Nascent transcription occurs at nuclear foci of concentrated, hyperphosphorylated RNA polymerase II (RNAPII). We investigate RNAPII localization, distal gene co-association, and Hbb locus conformation during inhibition of transcription. Our results show distal active genes remain associated with RNAPII foci and each other in the absence of elongation. When initiation is inhibited, active genes dissociate from RNAPII foci and each other, suggesting initiation is necessary to tether distal active genes to shared foci. In the absence of transcription RNAPII foci remain, indicating they are not simple accumulations of RNAPII on transcribed genes but exist as independent nuclear subcompartments.
Collapse
Affiliation(s)
- Jennifer A. Mitchell
- Laboratory of Chromatin and Gene Expression, The Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | - Peter Fraser
- Laboratory of Chromatin and Gene Expression, The Babraham Institute, Cambridge CB22 3AT, United Kingdom
| |
Collapse
|
233
|
Palstra R, de Laat W, Grosveld F. Chapter 4 β‐Globin Regulation and Long‐Range Interactions. LONG-RANGE CONTROL OF GENE EXPRESSION 2008; 61:107-42. [DOI: 10.1016/s0065-2660(07)00004-1] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
234
|
Yao J, Ardehali MB, Fecko CJ, Webb WW, Lis JT. Intranuclear distribution and local dynamics of RNA polymerase II during transcription activation. Mol Cell 2007; 28:978-90. [PMID: 18158896 DOI: 10.1016/j.molcel.2007.10.017] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 07/17/2007] [Accepted: 10/15/2007] [Indexed: 12/12/2022]
Abstract
Transcription activation causes dramatic changes in a gene's compaction and macromolecular associations and, in some cases, triggers the translocation of the gene to a nuclear substructure. Here, we evaluate the location, movement, and transcriptional dynamics of Drosophila heat shock (HS) genes both by two-photon microscopy in live polytene nuclei and by FISH in diploid nuclei. The different HS loci occupy separate nuclear positions. Although these loci decondense upon HS, they do not undergo a detectable net translocation nor are they preferentially localized to the nuclear periphery or interior. Additionally, fluorescence recovery after photobleaching reveals that, shortly after HS, newly recruited RNA polymerase II (Pol II) enters elongation via an "efficient entry" mode, which is followed by the progressive establishment of transcription "compartments" at Hsp70 loci where concentrated Pol II is used in a "local recycling" mode. Pol II at highly transcribed developmental loci exhibits dynamics resembling combinations of these Hsp70 transcription modes.
Collapse
Affiliation(s)
- Jie Yao
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
235
|
Crusselle-Davis VJ, Zhou Z, Anantharaman A, Moghimi B, Dodev T, Huang S, Bungert J. Recruitment of coregulator complexes to the beta-globin gene locus by TFII-I and upstream stimulatory factor. FEBS J 2007; 274:6065-73. [PMID: 17970752 DOI: 10.1111/j.1742-4658.2007.06128.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Upstream stimulatory factor and TFII-I are ubiquitously expressed helix-loop-helix transcription factors that interact with E-box sequences and or initiator elements. We previously demonstrated that upstream stimulatory factor is an activator of beta-globin gene expression whereas TFII-I is a repressor. In the present study, we demonstrate that upstream stimulatory factor interacts with the coactivator p300 and that this interaction is restricted to erythroid cells expressing the adult beta-globin gene. Furthermore, we demonstrate that Suz12, a component of the polycomb repressor complex 2, is recruited to the beta-globin gene. Reducing expression of Suz12 significantly activates beta-globin gene expression in an erythroid cell line with an embryonic phenotype. Suz12 also interacts with the adult beta-globin gene during early stages of erythroid differentiation of mouse embryonic stem cells. Our data suggest that TFII-I contributes to the recruitment of the polycomb repressor complex 2 complex to the beta-globin gene. Together, these data demonstrate that the antagonistic activities of upstream stimulatory factor and TFII-I on beta-globin gene expression are mediated at least in part by protein complexes that render the promoter associated chromatin accessible or inaccessible for the transcription complex.
Collapse
Affiliation(s)
- Valerie J Crusselle-Davis
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | | | |
Collapse
|
236
|
Abstract
Recent studies demonstrated a number of links between chromatin structure, gene expression, extracellular signaling and cellular differentiation during lens development. Lens progenitor cells originate from a pool of common progenitor cells, the pre-placodal region (PPR) which is formed from a combination of extracellular signaling between the neural plate, naïve ectoderm and mesendoderm. A specific commitment to the lens program over alternate choices such as the formation of olfactory epithelium or the anterior pituitary is manifested by the formation of a thickened surface ectoderm, the lens placode. Mouse lens progenitor cells are characterized by the expression of a complement of lens lineage-specific transcription factors including Pax6, Six3 and Sox2, controlled by FGF and BMP signaling, followed later by c-Maf, Mab21like1, Prox1 and FoxE3. Proliferation of lens progenitors together with their morphogenetic movements results in the formation of the lens vesicle. This transient structure, comprised of lens precursor cells, is polarized with its anterior cells retaining their epithelial morphology and proliferative capacity, whereas the posterior lens precursor cells initiate terminal differentiation forming the primary lens fibers. Lens differentiation is marked by expression and accumulation of crystallins and other structural proteins. The transcriptional control of crystallin genes is characterized by the reiterative use of transcription factors required for the establishment of lens precursors in combination with more ubiquitously expressed factors (e.g. AP-1, AP-2alpha, CREB and USF) and recruitment of histone acetyltransferases (HATs) CBP and p300, and chromatin remodeling complexes SWI/SNF and ISWI. These studies have poised the study of lens development at the forefront of efforts to understand the connections between development, cell signaling, gene transcription and chromatin remodeling.
Collapse
Affiliation(s)
- Ales Cvekl
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | |
Collapse
|
237
|
Sexton T, Schober H, Fraser P, Gasser SM. Gene regulation through nuclear organization. Nat Struct Mol Biol 2007; 14:1049-55. [PMID: 17984967 DOI: 10.1038/nsmb1324] [Citation(s) in RCA: 187] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The nucleus is a highly heterogeneous structure, containing various 'landmarks' such as the nuclear envelope and regions of euchromatin or dense heterochromatin. At a morphological level, regions of the genome that are permissive or repressive to gene expression have been associated with these architectural features. However, gene position within the nucleus can be both a cause and a consequence of transcriptional regulation. New results indicate that the spatial distribution of genes within the nucleus contributes to transcriptional control. In some cases, position seems to ensure maximal expression of a gene. In others, it ensures a heritable state of repression or correlates with a developmentally determined program of tissue-specific gene expression. In this review, we highlight mechanistic links between gene position, repression and transcription. Recent findings suggest that architectural features have multiple functions that depend upon organization into dedicated subcompartments enriched for distinct enzymatic machinery.
Collapse
Affiliation(s)
- Tom Sexton
- Laboratory of Chromatin and Gene Expression, The Babraham Institute, Babraham Research Campus, Cambridge, UK CB22 3AT
| | | | | | | |
Collapse
|
238
|
Brickner DG, Cajigas I, Fondufe-Mittendorf Y, Ahmed S, Lee PC, Widom J, Brickner JH. H2A.Z-mediated localization of genes at the nuclear periphery confers epigenetic memory of previous transcriptional state. PLoS Biol 2007; 5:e81. [PMID: 17373856 PMCID: PMC1828143 DOI: 10.1371/journal.pbio.0050081] [Citation(s) in RCA: 325] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Accepted: 01/17/2007] [Indexed: 01/05/2023] Open
Abstract
Many genes are recruited to the nuclear periphery upon transcriptional activation. The mechanism and functional significance of this recruitment is unclear. We find that recruitment of the yeast INO1 and GAL1 genes to the nuclear periphery is rapid and independent of transcription. Surprisingly, these genes remain at the periphery for generations after they are repressed. Localization at the nuclear periphery serves as a form of memory of recent transcriptional activation, promoting reactivation. Previously expressed GAL1 at the nuclear periphery is activated much more rapidly than long-term repressed GAL1 in the nucleoplasm, even after six generations of repression. Localization of INO1 at the nuclear periphery is necessary and sufficient to promote more rapid activation. This form of transcriptional memory is chromatin based; the histone variant H2A.Z is incorporated into nucleosomes within the recently repressed INO1 promoter and is specifically required for rapid reactivation of both INO1 and GAL1. Furthermore, H2A.Z is required to retain INO1 at the nuclear periphery after repression. Therefore, H2A.Z-mediated localization of recently repressed genes at the nuclear periphery represents an epigenetic state that confers memory of transcriptional activation and promotes reactivation. Eukaryotic cells control the spatial arrangement of chromosomes; the localization of genes can both reflect and contribute to their transcriptional state. A number of genes in the simple eukaryote brewer's yeast are “recruited” to the nuclear periphery through interactions with the nuclear pore complex when they are expressed. The functional significance of peripheral recruitment is unclear. Here, we show that recruited genes are actively retained at the periphery for generations after transcription is repressed. This suggests that localization at the nuclear periphery represents a novel inherited state that might allow simple eukaryotic organisms to “remember” previous transcriptional activation. This type of memory allows for more robust reactivation of genes, suggesting that it is adaptive. Finally, both retention at the nuclear periphery and rapid reactivation require a variant form of histone H2A. Adaptive memory is distinct from other types of transcriptional memory. In developmental memory, transcriptional states established by transcriptional regulators early in embryogenesis are propagated long after these regulators have disappeared. Adaptive memory does not propagate a state, but represents a novel state that serves as a source of information. In this way, it resembles a rudimentary form of cellular learning that allows cells to benefit from recent experience. Recruitment of active genes to the periphery of the yeast nucleus does not require concurrent transcription.
Collapse
Affiliation(s)
- Donna Garvey Brickner
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, Illinois, United States of America
| | - Ivelisse Cajigas
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, Illinois, United States of America
| | - Yvonne Fondufe-Mittendorf
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, Illinois, United States of America
| | - Sara Ahmed
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, Illinois, United States of America
| | - Pei-Chih Lee
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, Illinois, United States of America
| | - Jonathan Widom
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, Illinois, United States of America
| | - Jason H Brickner
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, Illinois, United States of America
- * To whom correspondence should be addressed.
| |
Collapse
|
239
|
Ju Z, Volpi SA, Hassan R, Martinez N, Giannini SL, Gold T, Birshtein BK. Evidence for physical interaction between the immunoglobulin heavy chain variable region and the 3' regulatory region. J Biol Chem 2007; 282:35169-78. [PMID: 17921139 DOI: 10.1074/jbc.m705719200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
B cell-specific expression of immunoglobulin heavy chain (IgH) genes utilizes two cis regulatory regions, the intronic enhancer (Emicro), located in the J(H)-Cmicro intron, and a complex regulatory region that lies 3' to the IgH gene cluster, 3' RR. We hypothesized that the 3' RR is involved in IgH gene transcription in plasma cells via physical interaction between distal 3' RR enhancers and target V(H) sequences, with loop formation by intervening DNA. In support of this hypothesis we report sequence data at DNA recombination breakpoints as evidence for loop formation preceding DNA inversion in a plasma cell line. In addition, using the chromosome conformation capture technique, physical interactions between V(H) and 3' RR were analyzed directly and detected in MPC11 plasma cells and variants and normal splenic B cells but not detected in splenic T cells or in non-B cells. V(H)-3' RR interactions were present in the absence of Emicro, but when the hs1,2 enhancer was replaced by a Neo(R) gene in a variant cell line lacking Emicro, H chain expression was lost, and interactions between V(H) and 3' RR and among the 3' RR regulators themselves were severely disrupted. In addition, the chromosome conformation capture technique detected interactions between the myc promoter and 3' RR elements in MPC11, which like other plasmacytomas contains a reciprocal translocation between the c-myc and the IgH locus. In sum, our data support a hypothesis that cis V(H)-3' RR and myc-3' RR interactions involve physical interactions between these DNA elements.
Collapse
Affiliation(s)
- Zhongliang Ju
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | |
Collapse
|
240
|
Sexton T, Umlauf D, Kurukuti S, Fraser P. The role of transcription factories in large-scale structure and dynamics of interphase chromatin. Semin Cell Dev Biol 2007; 18:691-7. [PMID: 17950637 DOI: 10.1016/j.semcdb.2007.08.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2007] [Accepted: 08/22/2007] [Indexed: 02/04/2023]
Abstract
The genome is spatially organized inside nuclei, with chromosomes and genes occupying preferential positions relative to each other and to various nuclear landmarks. What drives this organization is unclear, but recent findings suggest there are extensive intra- and inter-chromosomal communications between various genomic regions that appear to play important roles in genome function. Here we review transcription factories, distinct sub-nuclear foci where nascent transcription occurs. We argue that the spatially restricted, limited number of transcription sites compels transcribed regions of the genome to dynamically self-organize into tissue-specific conformations, thus playing a major role in the three-dimensional interphase organization of the genome.
Collapse
Affiliation(s)
- Tom Sexton
- Laboratory of Chromatin and Gene Expression, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | | | | | | |
Collapse
|
241
|
Soutoglou E, Misteli T. Mobility and immobility of chromatin in transcription and genome stability. Curr Opin Genet Dev 2007; 17:435-42. [PMID: 17905579 PMCID: PMC2118061 DOI: 10.1016/j.gde.2007.08.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 07/16/2007] [Accepted: 08/17/2007] [Indexed: 01/07/2023]
Abstract
Chromatin is increasingly recognized as a highly dynamic entity. Chromosome sites in lower and higher eukaryotes undergo frequent, rapid, and constrained local motion and occasional slow, long-range movements. Recent observations have revealed some of the functional relevance of chromatin mobility. Paradoxically, both the mobility and immobility of chromatin appear to have functional consequences: Local diffusional motion of chromatin is important in gene regulation, but global chromatin immobility plays a key role in maintenance of genomic stability.
Collapse
Affiliation(s)
- Evi Soutoglou
- National Cancer Institute, NIH, Bethesda, MD 20892, E:
| | - Tom Misteli
- National Cancer Institute, NIH, Bethesda, MD 20892, E:
| |
Collapse
|
242
|
Chuang CH, Belmont AS. Moving chromatin within the interphase nucleus-controlled transitions? Semin Cell Dev Biol 2007; 18:698-706. [PMID: 17905613 PMCID: PMC2117624 DOI: 10.1016/j.semcdb.2007.08.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Accepted: 08/22/2007] [Indexed: 12/17/2022]
Abstract
The past decade has seen an increasing appreciation for nuclear compartmentalization as an underlying determinant of interphase chromosome nuclear organization. To date, attention has focused primarily on describing differential localization of particular genes or chromosome regions as a function of differentiation, cell cycle position, and/or transcriptional activity. The question of how exactly interphase chromosome compartmentalization is established and in particular how interphase chromosomes might move during changes in nuclear compartmentalization has received less attention. Here we review what is known concerning chromatin mobility in relationship to physiologically regulated changes in nuclear interphase chromosome organization.
Collapse
Affiliation(s)
- Chien-Hui Chuang
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, USA
| | - Andrew S. Belmont
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, USA
| |
Collapse
|
243
|
Abstract
T lymphocyte development is directed by a gene-expression program that occurs in the complex nucleoprotein environment of chromatin. This review examines basic principles of chromatin regulation and evaluates ongoing progress toward understanding how the chromatin template is manipulated to control gene expression and gene recombination in developing thymocytes. Special attention is devoted to the loci encoding T cell receptors alpha and beta, T cell coreceptors CD4 and CD8, and the enzyme terminal deoxynucleotidyl transferase. The properties of SATB1, a notable organizer of thymocyte chromatin, are also addressed.
Collapse
Affiliation(s)
- Michael S Krangel
- Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710 USA.
| |
Collapse
|
244
|
Osborne CS, Chakalova L, Mitchell JA, Horton A, Wood AL, Bolland DJ, Corcoran AE, Fraser P. Myc dynamically and preferentially relocates to a transcription factory occupied by Igh. PLoS Biol 2007; 5:e192. [PMID: 17622196 PMCID: PMC1945077 DOI: 10.1371/journal.pbio.0050192] [Citation(s) in RCA: 315] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Accepted: 05/16/2007] [Indexed: 02/08/2023] Open
Abstract
Transcription in mammalian nuclei is highly compartmentalized in RNA polymerase II-enriched nuclear foci known as transcription factories. Genes in cis and trans can share the same factory, suggesting that genes migrate to preassembled transcription sites. We used fluorescent in situ hybridization to investigate the dynamics of gene association with transcription factories during immediate early (IE) gene induction in mouse B lymphocytes. Here, we show that induction involves rapid gene relocation to transcription factories. Importantly, we find that the Myc proto-oncogene on Chromosome 15 is preferentially recruited to the same transcription factory as the highly transcribed Igh gene located on Chromosome 12. Myc and Igh are the most frequent translocation partners in plasmacytoma and Burkitt lymphoma. Our results show that transcriptional activation of IE genes involves rapid relocation to preassembled transcription factories. Furthermore, the data imply a direct link between the nonrandom interchromosomal organization of transcribed genes at transcription factories and the incidence of specific chromosomal translocations.
Collapse
Affiliation(s)
- Cameron S Osborne
- Laboratory of Chromatin and Gene Expression, The Babraham Institute, Cambridge, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
245
|
Ahmed S, Brickner JH. Regulation and epigenetic control of transcription at the nuclear periphery. Trends Genet 2007; 23:396-402. [PMID: 17566592 DOI: 10.1016/j.tig.2007.05.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 05/17/2007] [Accepted: 05/17/2007] [Indexed: 01/25/2023]
Abstract
The localization of DNA within the nucleus influences the regulation of gene transcription. Subnuclear environments at the nuclear periphery promote gene silencing and activation. Silenced regions of the genome, such as centromeres and telomeres, are statically tethered to the nuclear envelope. Recent work in yeast has revealed that certain genes can undergo dynamic recruitment to the periphery upon transcriptional activation. For such genes, localization to the periphery has been suggested to improve mRNA export and favor optimal transcription. In addition, maintenance of peripheral localization confers cellular memory of previous transcriptional activation, enabling cells to adapt rapidly to transcriptional cues.
Collapse
Affiliation(s)
- Sara Ahmed
- Department of Biochemistry, Molecular Biology and Cell Biology Northwestern University, Evanston, IL 60208, USA
| | | |
Collapse
|
246
|
Bolland DJ, Wood AL, Afshar R, Featherstone K, Oltz EM, Corcoran AE. Antisense intergenic transcription precedes Igh D-to-J recombination and is controlled by the intronic enhancer Emu. Mol Cell Biol 2007; 27:5523-33. [PMID: 17526723 PMCID: PMC1952079 DOI: 10.1128/mcb.02407-06] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 02/02/2007] [Accepted: 05/16/2007] [Indexed: 12/14/2022] Open
Abstract
V(D)J recombination is believed to be regulated by alterations in chromatin accessibility to the recombinase machinery, but the mechanisms responsible remain unclear. We previously proposed that antisense intergenic transcription, activated throughout the mouse Igh VH region in pro-B cells, remodels chromatin for VH-to-DJH recombination. Using RNA fluorescence in situ hybridization, we now show that antisense intergenic transcription occurs throughout the Igh DHJH region before D-to-J recombination, indicating that this is a widespread process in V(D)J recombination. Transcription initiates near the Igh intronic enhancer Emu and is abrogated in mice lacking this enhancer, indicating that Emu regulates DH antisense transcription. Emu was recently demonstrated to regulate DH-to-JH recombination of the Igh locus. Together, these data suggest that Emu controls DH-to-JH recombination by activating this form of germ line Igh transcription, thus providing a long-range, processive mechanism by which Emu can regulate chromatin accessibility throughout the DH region. In contrast, Emu deletion has no effect on VH antisense intergenic transcription, which is rarely associated with DH antisense transcription, suggesting differential regulation and separate roles for these processes at sequential stages of V(D)J recombination. These results support a directive role for antisense intergenic transcription in enabling access to the recombination machinery.
Collapse
Affiliation(s)
- Daniel J Bolland
- Laboratory of Chromatin and Gene Expression, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | | | | | | | | | | |
Collapse
|
247
|
Miles J, Mitchell JA, Chakalova L, Goyenechea B, Osborne CS, O'Neill L, Tanimoto K, Engel JD, Fraser P. Intergenic transcription, cell-cycle and the developmentally regulated epigenetic profile of the human beta-globin locus. PLoS One 2007; 2:e630. [PMID: 17637845 PMCID: PMC1910613 DOI: 10.1371/journal.pone.0000630] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Accepted: 06/16/2007] [Indexed: 11/18/2022] Open
Abstract
Several lines of evidence have established strong links between transcriptional activity and specific post-translation modifications of histones. Here we show using RNA FISH that in erythroid cells, intergenic transcription in the human beta-globin locus occurs over a region of greater than 250 kb including several genes in the nearby olfactory receptor gene cluster. This entire region is transcribed during S phase of the cell cycle. However, within this region there are approximately 20 kb sub-domains of high intergenic transcription that occurs outside of S phase. These sub-domains are developmentally regulated and enriched with high levels of active modifications primarily to histone H3. The sub-domains correspond to the beta-globin locus control region, which is active at all developmental stages in erythroid cells, and the region flanking the developmentally regulated, active globin genes. These results correlate high levels of non-S phase intergenic transcription with domain-wide active histone modifications to histone H3.
Collapse
Affiliation(s)
- Joanne Miles
- Laboratory of Chromatin and Gene Expression, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Jennifer A. Mitchell
- Laboratory of Chromatin and Gene Expression, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Lyubomira Chakalova
- Laboratory of Chromatin and Gene Expression, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Beatriz Goyenechea
- Laboratory of Chromatin and Gene Expression, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Cameron S. Osborne
- Laboratory of Chromatin and Gene Expression, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Laura O'Neill
- Institute of Biomedical Research, The Medical School, University of Birmingham, Birmingham, United Kingdom
| | - Keiji Tanimoto
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - James Douglas Engel
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Peter Fraser
- Laboratory of Chromatin and Gene Expression, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| |
Collapse
|
248
|
Kim SI, Bultman SJ, Jing H, Blobel GA, Bresnick EH. Dissecting molecular steps in chromatin domain activation during hematopoietic differentiation. Mol Cell Biol 2007; 27:4551-4565. [PMID: 17438135 PMCID: PMC1900038 DOI: 10.1128/mcb.00235-07] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Revised: 03/21/2007] [Accepted: 04/03/2007] [Indexed: 12/24/2022] Open
Abstract
GATA factors orchestrate hematopoiesis via multistep transcriptional mechanisms, but the interrelationships and importance of individual steps are poorly understood. Using complementation analysis with GATA-1-null cells and mice containing a hypomorphic allele of the chromatin remodeler BRG1, we dissected the pathway from GATA-1 binding to cofactor recruitment, chromatin loop formation, and transcriptional activation. Analysis of GATA-1-mediated activation of the beta-globin locus, in which GATA-1 assembles dispersed complexes at the promoters and the distal locus control region (LCR), revealed molecular intermediates, including GATA-1-independent and GATA-1-containing LCR subcomplexes, both defective in promoting loop formation. An additional intermediate consisted of an apparently normal LCR complex and a promoter complex with reduced levels of total RNA polymerase II (Pol II) and Pol II phosphorylated at serine 5 of the carboxy-terminal domain. Reduced BRG1 activity solely compromised Pol II and serine 5-phosphorylated Pol II occupancy at the promoter, phenocopying the LCR-deleted mouse. These studies defined a hierarchical order of GATA-1-triggered events at a complex locus and establish a novel mechanism of long-range gene regulation.
Collapse
Affiliation(s)
- Shin-Il Kim
- University of Wisconsin School of Medicine, Department of Pharmacology, 383 Medical Sciences Center, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
249
|
Zhao H, Friedman RD, Fournier REK. The locus control region activates serpin gene expression through recruitment of liver-specific transcription factors and RNA polymerase II. Mol Cell Biol 2007; 27:5286-95. [PMID: 17526725 PMCID: PMC1952087 DOI: 10.1128/mcb.00176-07] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human serine protease inhibitor (serpin) gene cluster at 14q32.1 comprises 11 serpin genes, many of which are expressed specifically in hepatic cells. Previous studies identified a locus control region (LCR) upstream of the human alpha1-antitrypsin (alpha1AT) gene that is required for gene activation, chromatin remodeling, and histone acetylation throughout the proximal serpin subcluster. Here we show that the LCR interacts with multiple liver-specific transcription factors, including hepatocyte nuclear factor 3beta (HNF-3beta), HNF-6alpha, CCAAT/enhancer binding protein alpha (C/EBPalpha), and C/EBPbeta. RNA polymerase II is also recruited to the locus through the LCR. Nongenic transcription at both the LCR and an upstream regulatory region was detected, but the deletion of the LCR abolished transcription at both sites. The deletion of HNF-3 and HNF-6 binding sites within the LCR reduced histone acetylation at both the LCR and the upstream regulatory region and decreased the transcription of the alpha1AT, corticosteroid binding globulin, and protein Z-dependent protease inhibitor genes. These results suggest that the LCR activates genes in the proximal serpin subcluster by recruiting liver-specific transcription factors and components of the general transcription machinery to regulatory regions upstream of the alpha1AT gene.
Collapse
Affiliation(s)
- Hui Zhao
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109, USA
| | | | | |
Collapse
|
250
|
Abstract
Much work has been published on the cis-regulatory elements that affect gene function locally, as well as on the biochemistry of the transcription factors and chromatin- and histone-modifying complexes that influence gene expression. However, surprisingly little information is available about how these components are organized within the three-dimensional space of the nucleus. Technological advances are now helping to identify the spatial relationships and interactions of genes and regulatory elements in the nucleus and are revealing an unexpectedly extensive network of communication within and between chromosomes. A crucial unresolved issue is the extent to which this organization affects gene function, rather than just reflecting it.
Collapse
Affiliation(s)
- Peter Fraser
- Laboratory of Chromatin and Gene Expression, The Babraham Institute, Cambridge CB2 4AT, UK.
| | | |
Collapse
|