201
|
Nitsche T, De S, Barkhofen S, Meyer-Scott E, Tiedau J, Sperling J, Gábris A, Jex I, Silberhorn C. Local Versus Global Two-Photon Interference in Quantum Networks. PHYSICAL REVIEW LETTERS 2020; 125:213604. [PMID: 33275016 DOI: 10.1103/physrevlett.125.213604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/27/2020] [Indexed: 06/12/2023]
Abstract
We devise an approach to characterizing the intricate interplay between classical and quantum interference of two-photon states in a network, which comprises multiple time-bin modes. By controlling the phases of delocalized single photons, we manipulate the global mode structure, resulting in distinct two-photon interference phenomena for time-bin resolved (local) and time-bucket (global) coincidence detection. This coherent control over the photons' mode structure allows for synthesizing two-photon interference patterns, where local measurements yield standard Hong-Ou-Mandel dips while the global two-photon visibility is governed by the overlap of the delocalized single-photon states. Thus, our experiment introduces a method for engineering distributed quantum interferences in networks.
Collapse
Affiliation(s)
- Thomas Nitsche
- Applied Physics, Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany
| | - Syamsundar De
- Applied Physics, Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany
| | - Sonja Barkhofen
- Applied Physics, Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany
| | - Evan Meyer-Scott
- Applied Physics, Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany
| | - Johannes Tiedau
- Applied Physics, Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany
| | - Jan Sperling
- Applied Physics, Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany
| | - Aurél Gábris
- Department of Physics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 115 19 Praha 1-Staré Město, Czech Republic
- Wigner Research Centre for Physics, Konkoly-Thege M. út 29-33, H-1121 Budapest, Hungary
| | - Igor Jex
- Department of Physics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 115 19 Praha 1-Staré Město, Czech Republic
| | - Christine Silberhorn
- Applied Physics, Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany
| |
Collapse
|
202
|
Abstract
Hong-Ou-Mandel (HOM) effect is known to be one of the main phenomena in quantum optics. It is believed that the effect occurs when two identical single-photon waves enter a 1:1 beam splitter, one in each input port. When the photons are identical, they will extinguish each other. In this work, it is shown that these fundamental provisions of the HOM interference may not always be fulfilled. One of the main elements of the HOM interferometer is the beam splitter, which has its own coefficients of reflection \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$R = 1/2$$\end{document}R=1/2 and transmission \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ T = 1/2 $$\end{document}T=1/2. Here we consider the general mechanism of the interaction of two photons in a beam splitter, which shows that in the HOM theory of the effect it is necessary to know (including when planning the experiment) not only \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ R = 1/2 $$\end{document}R=1/2 and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ T = 1/2 $$\end{document}T=1/2, but also their root-mean-square fluctuations \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \Delta R ^ 2, \Delta T ^ 2 $$\end{document}ΔR2,ΔT2, which arise due to the dependence of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$R = R(\omega _1, \omega _2) $$\end{document}R=R(ω1,ω2) and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ T = T (\omega _1, \omega _2) $$\end{document}T=T(ω1,ω2) on the frequencies where \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\omega _1, \omega _2$$\end{document}ω1,ω2 are the frequencies of the first and second photons, respectively. Under certain conditions, specifically when the dependence of the fluctuations \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \Delta R^2 $$\end{document}ΔR2 and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \Delta T^2 $$\end{document}ΔT2 can be neglected and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ R=T=1/2 $$\end{document}R=T=1/2 is chosen, the developed theory coincides with previously known results.
Collapse
|
203
|
Wang D, Liu Y, Ding J, Qiang X, Liu Y, Huang A, Fu X, Xu P, Deng M, Yang X, Wu J. Remote-controlled quantum computing by quantum entanglement. OPTICS LETTERS 2020; 45:6298-6301. [PMID: 33186974 DOI: 10.1364/ol.401921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
Quantum entanglement enables measurement on one party to affect the other's state. Based on this peculiar feature, we propose a model of remote-controlled quantum computing and design an optical scheme to realize this model for a single qubit. As an experimental demonstration of this scheme, we further implement three Pauli operators, Hardmard gate, phase gate, and π/8 gate. The minimal fidelity obtained by quantum process tomography reaches 82%. Besides, as a potential application, our model contributes to secure remote quantum information processing.
Collapse
|
204
|
Makarov DN. Theory of HOM interference on coupled waveguides. OPTICS LETTERS 2020; 45:6322-6325. [PMID: 33186980 DOI: 10.1364/ol.410518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
It is well known that the Hong-Ou-Mandel (HOM) effect can be realized on beam splitters (BSs) in the form of coupled waveguides. It is believed that in this case, the theory is similar to HOM interference on conventional BSs. In this work, it is shown that if a BS is used in the form of a coupled waveguide, the theory of HOM interference can differ significantly from the known one. It is shown that even in the case of completely identical photons, the visibility of V can essentially differ from unity. The developed theory must be taken into account in quantum optical schemes, where BSs are represented mainly as coupled waveguides.
Collapse
|
205
|
Istrati D, Pilnyak Y, Loredo JC, Antón C, Somaschi N, Hilaire P, Ollivier H, Esmann M, Cohen L, Vidro L, Millet C, Lemaître A, Sagnes I, Harouri A, Lanco L, Senellart P, Eisenberg HS. Sequential generation of linear cluster states from a single photon emitter. Nat Commun 2020; 11:5501. [PMID: 33127924 PMCID: PMC7603328 DOI: 10.1038/s41467-020-19341-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 10/07/2020] [Indexed: 11/29/2022] Open
Abstract
Light states composed of multiple entangled photons—such as cluster states—are essential for developing and scaling-up quantum computing networks. Photonic cluster states can be obtained from single-photon sources and entangling gates, but so far this has only been done with probabilistic sources constrained to intrinsically low efficiencies, and an increasing hardware overhead. Here, we report the resource-efficient generation of polarization-encoded, individually-addressable photons in linear cluster states occupying a single spatial mode. We employ a single entangling-gate in a fiber loop configuration to sequentially entangle an ever-growing stream of photons originating from the currently most efficient single-photon source technology—a semiconductor quantum dot. With this apparatus, we demonstrate the generation of linear cluster states up to four photons in a single-mode fiber. The reported architecture can be programmed for linear-cluster states of any number of photons, that are required for photonic one-way quantum computing schemes. Generating photonic cluster states using a single non-heralded source and a single entangling gate would optimise scalability and reduce resource overhead. Here, the authors generate up to 4-photon cluster states using a quantum dot coupled to a fibre loop, with a fourfold generation rate of 10 Hz.
Collapse
Affiliation(s)
- D Istrati
- Racah Institute of Physics, Hebrew University of Jerusalem, 91904, Jerusalem, Israel.
| | - Y Pilnyak
- Racah Institute of Physics, Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | - J C Loredo
- CNRS Centre for Nanoscience and Nanotechnology, Université Paris-Sud, Université Paris-Saclay, Palaiseau, France
| | - C Antón
- CNRS Centre for Nanoscience and Nanotechnology, Université Paris-Sud, Université Paris-Saclay, Palaiseau, France
| | | | - P Hilaire
- CNRS Centre for Nanoscience and Nanotechnology, Université Paris-Sud, Université Paris-Saclay, Palaiseau, France.,Université Paris Diderot, Paris, France
| | - H Ollivier
- CNRS Centre for Nanoscience and Nanotechnology, Université Paris-Sud, Université Paris-Saclay, Palaiseau, France
| | - M Esmann
- CNRS Centre for Nanoscience and Nanotechnology, Université Paris-Sud, Université Paris-Saclay, Palaiseau, France
| | - L Cohen
- Racah Institute of Physics, Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | - L Vidro
- Racah Institute of Physics, Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | - C Millet
- CNRS Centre for Nanoscience and Nanotechnology, Université Paris-Sud, Université Paris-Saclay, Palaiseau, France
| | - A Lemaître
- CNRS Centre for Nanoscience and Nanotechnology, Université Paris-Sud, Université Paris-Saclay, Palaiseau, France
| | - I Sagnes
- CNRS Centre for Nanoscience and Nanotechnology, Université Paris-Sud, Université Paris-Saclay, Palaiseau, France
| | - A Harouri
- CNRS Centre for Nanoscience and Nanotechnology, Université Paris-Sud, Université Paris-Saclay, Palaiseau, France
| | - L Lanco
- CNRS Centre for Nanoscience and Nanotechnology, Université Paris-Sud, Université Paris-Saclay, Palaiseau, France.,Université Paris Diderot, Paris, France
| | - P Senellart
- CNRS Centre for Nanoscience and Nanotechnology, Université Paris-Sud, Université Paris-Saclay, Palaiseau, France
| | - H S Eisenberg
- Racah Institute of Physics, Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| |
Collapse
|
206
|
Qu LY, Liu LC, Cotler J, Ma F, Guan JY, Zheng MY, Yao Q, Xie X, Chen YA, Zhang Q, Wilczek F, Pan JW. Chromatic interferometry with small frequency differences. OPTICS EXPRESS 2020; 28:32294-32301. [PMID: 33114918 DOI: 10.1364/oe.402560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
By developing a 'two-crystal' method for color erasure, we can broaden the scope of chromatic interferometry to include optical photons whose frequency difference falls outside of the 400 nm to 4500 nm wavelength range, which is the passband of a PPLN crystal. We demonstrate this possibility experimentally, by observing interference patterns between sources at 1064.4 nm and 1063.6 nm, corresponding to a frequency difference of about 200 GHz.
Collapse
|
207
|
Wang H, Qin J, Chen S, Chen MC, You X, Ding X, Huo YH, Yu Y, Schneider C, Höfling S, Scully M, Lu CY, Pan JW. Observation of Intensity Squeezing in Resonance Fluorescence from a Solid-State Device. PHYSICAL REVIEW LETTERS 2020; 125:153601. [PMID: 33095635 DOI: 10.1103/physrevlett.125.153601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/02/2020] [Indexed: 06/11/2023]
Abstract
Intensity squeezing-i.e., photon number fluctuations below the shot-noise limit-is a fundamental aspect of quantum optics and has wide applications in quantum metrology. It was predicted in 1979 that intensity squeezing could be observed in resonance fluorescence from a two-level quantum system. However, its experimental observation in solid states was hindered by inefficiencies in generating, collecting, and detecting resonance fluorescence. Here, we report the intensity squeezing in a single-mode fiber-coupled resonance fluorescence single-photon source based on a quantum dot-micropillar system. We detect pulsed single-photon streams with 22.6% system efficiency, which show sub-shot-noise intensity fluctuation with an intensity squeezing of 0.59 dB. We estimate a corrected squeezing of 3.29 dB at the first lens. The observed intensity squeezing provides the last piece of the fundamental picture of resonance fluorescence, which can be used as a new standard for optical radiation and in scalable quantum metrology with indistinguishable single photons.
Collapse
Affiliation(s)
- Hui Wang
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
- Shanghai Branch, CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
| | - Jian Qin
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
- Shanghai Branch, CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
| | - Si Chen
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
- Shanghai Branch, CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
| | - Ming-Cheng Chen
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
- Shanghai Branch, CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
| | - Xiang You
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
- Shanghai Branch, CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
| | - Xing Ding
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
- Shanghai Branch, CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
| | - Y-H Huo
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
- Shanghai Branch, CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
| | - Ying Yu
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510000, China
| | - C Schneider
- Technische Physik, Physikalisches Instität and Wilhelm Conrad Röntgen-Center for Complex Material Systems, Universitat Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Sven Höfling
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
- Technische Physik, Physikalisches Instität and Wilhelm Conrad Röntgen-Center for Complex Material Systems, Universitat Würzburg, Am Hubland, D-97074 Würzburg, Germany
- SUPA, School of Physics and Astronomy, University of St. Andrews, St. Andrews KY16 9SS, United Kingdom
| | - Marlan Scully
- Institute for Quantum Science and Engineering, Texas A&M University, College Station, Texas 77843, USA
- Department of Physics, Baylor University, Waco, Texas 76798, USA
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Chao-Yang Lu
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
- Shanghai Branch, CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
| | - Jian-Wei Pan
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
- Shanghai Branch, CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
| |
Collapse
|
208
|
Kannan B, Campbell DL, Vasconcelos F, Winik R, Kim DK, Kjaergaard M, Krantz P, Melville A, Niedzielski BM, Yoder JL, Orlando TP, Gustavsson S, Oliver WD. Generating spatially entangled itinerant photons with waveguide quantum electrodynamics. SCIENCE ADVANCES 2020; 6:eabb8780. [PMID: 33028523 PMCID: PMC7541065 DOI: 10.1126/sciadv.abb8780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/21/2020] [Indexed: 05/31/2023]
Abstract
Realizing a fully connected network of quantum processors requires the ability to distribute quantum entanglement. For distant processing nodes, this can be achieved by generating, routing, and capturing spatially entangled itinerant photons. In this work, we demonstrate the deterministic generation of such photons using superconducting transmon qubits that are directly coupled to a waveguide. In particular, we generate two-photon N00N states and show that the state and spatial entanglement of the emitted photons are tunable via the qubit frequencies. Using quadrature amplitude detection, we reconstruct the moments and correlations of the photonic modes and demonstrate state preparation fidelities of 84%. Our results provide a path toward realizing quantum communication and teleportation protocols using itinerant photons generated by quantum interference within a waveguide quantum electrodynamics architecture.
Collapse
Affiliation(s)
- B Kannan
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - D L Campbell
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - F Vasconcelos
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - R Winik
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - D K Kim
- MIT Lincoln Laboratory, 244 Wood Street, Lexington, MA 02420, USA
| | - M Kjaergaard
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - P Krantz
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - A Melville
- MIT Lincoln Laboratory, 244 Wood Street, Lexington, MA 02420, USA
| | - B M Niedzielski
- MIT Lincoln Laboratory, 244 Wood Street, Lexington, MA 02420, USA
| | - J L Yoder
- MIT Lincoln Laboratory, 244 Wood Street, Lexington, MA 02420, USA
| | - T P Orlando
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - S Gustavsson
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - W D Oliver
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- MIT Lincoln Laboratory, 244 Wood Street, Lexington, MA 02420, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
209
|
Kolenderska SM, Vanholsbeeck F, Kolenderski P. Fourier domain quantum optical coherence tomography. OPTICS EXPRESS 2020; 28:29576-29589. [PMID: 33114855 DOI: 10.1364/oe.399913] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
Quantum optical coherence tomography (Q-OCT) is the non-classical counterpart of optical coherence tomography (OCT), a high-resolution 3D imaging technique based on white-light interferometry. Because Q-OCT uses a source of frequency-entangled photon pairs, not only is the axial resolution not affected by dispersion mismatch in the interferometer but is also inherently improved by a factor of two. Unfortunately, practical applications of Q-OCT are hindered by image-scrambling artefacts and slow acquisition times. Here, we present a theoretical analysis of a novel approach that is free of these problems: Fourier domain Q-OCT (Fd-Q-OCT). Based on a photon pair coincidence detection as in the standard Q-OCT configuration, it also discerns each photon pair by their wavelength. We show that all the information about the internal structures of the object is encoded in the joint spectrum and can be easily retrieved through Fourier transformation. No depth scanning is required, making our technique potentially faster than standard Q-OCT. Finally, we show that the data available in the joint spectrum enables artefact removal and discuss prospective algorithms for doing so.
Collapse
|
210
|
Jones AE, Menssen AJ, Chrzanowski HM, Wolterink TAW, Shchesnovich VS, Walmsley IA. Multiparticle Interference of Pairwise Distinguishable Photons. PHYSICAL REVIEW LETTERS 2020; 125:123603. [PMID: 33016763 DOI: 10.1103/physrevlett.125.123603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
One of the central principles of quantum mechanics is that if there are multiple paths that lead to the same event and there is no way to distinguish between them, interference occurs. It is often assumed that distinguishing information in the preparation, evolution, or measurement of a system is sufficient to destroy interference. However, it is still possible for photons in distinguishable, separable states to interfere due to the indistinguishability of paths corresponding to possible exchange processes. Here we experimentally measure an interference signal that depends only on the multiparticle interference of four photons in a four-port interferometer despite pairs of them occupying distinguishable states.
Collapse
Affiliation(s)
- Alex E Jones
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
- Blackett Laboratory, Imperial College London, London SW7 2BW, United Kingdom
| | - Adrian J Menssen
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - Helen M Chrzanowski
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - Tom A W Wolterink
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - Valery S Shchesnovich
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo 09210-170, Brazil
| | - Ian A Walmsley
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
- Blackett Laboratory, Imperial College London, London SW7 2BW, United Kingdom
| |
Collapse
|
211
|
Ishizaki A. Probing excited-state dynamics with quantum entangled photons: Correspondence to coherent multidimensional spectroscopy. J Chem Phys 2020; 153:051102. [DOI: 10.1063/5.0015432] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Akihito Ishizaki
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585, Japan and School of Physical Sciences, Graduate University for Advanced Studies, Okazaki 444-8585, Japan
| |
Collapse
|
212
|
Deterministic control of photonic de Broglie waves using coherence optics. Sci Rep 2020; 10:12899. [PMID: 32733015 PMCID: PMC7393373 DOI: 10.1038/s41598-020-69950-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 07/23/2020] [Indexed: 11/09/2022] Open
Abstract
Photonic de Broglie waves offer a unique property of quantum mechanics satisfying the complementarity between the particle and wave natures of light, where the photonic de Broglie wavelength is inversely proportional to the number of entangled photons acting on a beam splitter. Very recently, the nonclassical feature of photon bunching has been newly interpreted using the pure wave nature of coherence optics [Sci. Rep. 10, 7,309 (2020)], paving the road to unconditionally secured classical key distribution [Sci. Rep. 10, 11,687 (2020)]. Here, deterministic photonic de Broglie waves are presented in a coherence regime to uncover new insights in both fundamental quantum physics and potential applications of coherence-quantum metrology.
Collapse
|
213
|
Varnavski O, Goodson T. Two-Photon Fluorescence Microscopy at Extremely Low Excitation Intensity: The Power of Quantum Correlations. J Am Chem Soc 2020; 142:12966-12975. [PMID: 32644814 DOI: 10.1021/jacs.0c01153] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Quantum entanglement has been shown to imply correlations stronger than those allowed by classical models. The possibility of performing tasks that are classically impossible has made quantum entanglement a powerful resource for the development of novel methods and applications in various fields of research such as quantum computing, quantum cryptography, and quantum metrology. There is a great need for the development of next generation instrumentation and technologies utilizing entangled quantum light. Among the many applications of nonclassical states of light, nonlinear microscopy has the potential to make an impact in broad areas of science from physics to biology. Here, the microscopic image created by the fluorescence selectively excited by the process of the entangled two-photon absorption is reported. Entangled two-photon microscopy offers nonlinear imaging capabilities at an unprecedented low excitation intensity 107, which is 6 orders of magnitude lower than the excitation level for the classical two-photon image. The nonmonotonic dependence of the image on the femtosecond delay between the components of the entangled photon pair is demonstrated. This delay dependence is a result of specific quantum interference effects associated with the entanglement and this is not observable with classical excitation light. In combination with novel spectroscopic capabilities provided by a nonclassical light excitation, this is of critical importance for sensing and biological applications.
Collapse
|
214
|
Ham BS. Unconditionally secured classical cryptography using quantum superposition and unitary transformation. Sci Rep 2020; 10:11687. [PMID: 32669598 PMCID: PMC7363683 DOI: 10.1038/s41598-020-68038-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 06/15/2020] [Indexed: 11/09/2022] Open
Abstract
Over decades quantum cryptography has been intensively studied for unconditionally secured key distribution in a quantum regime. Due to the quantum loopholes caused by imperfect single photon detectors and/or lossy quantum channels, however, the quantum cryptography is practically inefficient and even vulnerable to eavesdropping. Here, a method of unconditionally secured key distribution potentially compatible with current fiber-optic communications networks is proposed in a classical regime for high-speed optical backbone networks. The unconditional security is due to the quantum superposition-caused measurement indistinguishability between paired transmission channels and its unitary transformation resulting in deterministic randomness corresponding to the no-cloning theorem in a quantum key distribution protocol.
Collapse
Affiliation(s)
- Byoung S Ham
- Center for Photon Information Processing, School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea.
| |
Collapse
|
215
|
Wan NH, Lu TJ, Chen KC, Walsh MP, Trusheim ME, De Santis L, Bersin EA, Harris IB, Mouradian SL, Christen IR, Bielejec ES, Englund D. Large-scale integration of artificial atoms in hybrid photonic circuits. Nature 2020; 583:226-231. [DOI: 10.1038/s41586-020-2441-3] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 04/02/2020] [Indexed: 12/24/2022]
|
216
|
Agne S, Jin J, Kuntz KB, Miatto FM, Bourgoin JP, Jennewein T. Hong-Ou-Mandel interference of unconventional temporal laser modes. OPTICS EXPRESS 2020; 28:20943-20953. [PMID: 32680144 DOI: 10.1364/oe.396183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
The Hong-Ou-Mandel (HOM) effect ranks among the most notable quantum interference phenomena, and is central to many applications in quantum technologies. The fundamental effect appears when two independent and indistinguishable photons are superimposed on a beam splitter, which achieves a complete suppression of coincidences between the two output ports. Much less studied, however, is when the fields share coherence (continuous-wave lasers) or mode envelope properties (pulsed lasers). In this case, we expect the existence of two distinct and concurrent HOM interference regimes: the traditional HOM dip on the coherence length time scale, and a structured HOM interference pattern on the pulse length scale. We develop a theoretical framework that describes HOM interference for laser fields having arbitrary temporal waveforms and only partial overlap in time. We observe structured HOM interference from a continuous-wave laser via fast polarization modulation and time-resolved single photon detection fast enough to resolve these structured HOM dips.
Collapse
|
217
|
Rosławska A, Leon CC, Grewal A, Merino P, Kuhnke K, Kern K. Atomic-Scale Dynamics Probed by Photon Correlations. ACS NANO 2020; 14:6366-6375. [PMID: 32479059 PMCID: PMC7315641 DOI: 10.1021/acsnano.0c03704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Light absorption and emission have their origins in fast atomic-scale phenomena. To characterize these basic steps (e.g., in photosynthesis, luminescence, and quantum optics), it is necessary to access picosecond temporal and picometer spatial scales simultaneously. In this Perspective, we describe how state-of-the-art picosecond photon correlation spectroscopy combined with luminescence induced at the atomic scale with a scanning tunneling microscope (STM) enables such studies. We outline recent STM-induced luminescence work on single-photon emitters and the dynamics of excitons, charges, molecules, and atoms as well as several prospective experiments concerning light-matter interactions at the nanoscale. We also describe future strategies for measuring and rationalizing ultrafast phenomena at the nanoscale.
Collapse
Affiliation(s)
- Anna Rosławska
- Max-Planck-Institut
für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Christopher C. Leon
- Max-Planck-Institut
für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Abhishek Grewal
- Max-Planck-Institut
für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Pablo Merino
- Max-Planck-Institut
für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany
- Instituto
de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, E28049 Madrid, Spain
- Instituto
de Física Fundamental, CSIC, Serrano 121, E28006 Madrid, Spain
| | - Klaus Kuhnke
- Max-Planck-Institut
für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Klaus Kern
- Max-Planck-Institut
für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany
- Institut
de Physique, École Polytechnique
Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
218
|
Thiel V, Davis AOC, Sun K, D'Ornellas P, Jin XM, Smith BJ. Single-photon characterization by two-photon spectral interferometry. OPTICS EXPRESS 2020; 28:19315-19324. [PMID: 32672211 DOI: 10.1364/oe.396960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
Single-photon sources are a fundamental resource in quantum optics and quantum information science. Photons with differing spectral and temporal shapes do not interfere well and inhibit the performance of quantum applications such as linear optics quantum computing, boson sampling, and quantum networks. Indistinguishability and purity of photons emitted from different sources are crucial properties for many quantum applications. The ability to determine the state of single-photon sources therefore provides a means to assess their quality, compare different sources, and provide feedback for source tuning. Here, we propose and demonstrate a single-configuration experimental method enabling complete characterization of the spectral-temporal state of a pulsed single-photon source having both pure and mixed states. The method involves interference of the unknown single-photon source with a reference at a balanced beam splitter followed by frequency-resolved coincidence detection at the outputs. Fourier analysis of the joint-spectral two-photon interference pattern reveals the density matrix of the single-photon source in the frequency basis. We present an experimental realization of this method for pure and mixed state pulsed single-photon sources.
Collapse
|
219
|
Nomerotski A, Keach M, Stankus P, Svihra P, Vintskevich S. Counting of Hong-Ou-Mandel Bunched Optical Photons Using a Fast Pixel Camera. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3475. [PMID: 32575595 PMCID: PMC7349248 DOI: 10.3390/s20123475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/14/2020] [Accepted: 06/17/2020] [Indexed: 11/16/2022]
Abstract
The uses of a silicon-pixel camera with very good time resolution (∼nanosecond) for detecting multiple, bunched optical photons is explored. We present characteristics of the camera and describe experiments proving its counting capabilities. We use a spontaneous parametric down-conversion source to generate correlated photon pairs, and exploit the Hong-Ou-Mandel (HOM) interference effect in a fiber-coupled beam splitter to bunch the pair onto the same output fiber. It is shown that the time and spatial resolution of the camera enables independent detection of two photons emerging simultaneously from a single spatial mode.
Collapse
Affiliation(s)
- Andrei Nomerotski
- Brookhaven National Laboratory, Upton, NY 11973, USA; (M.K.); (P.S.)
| | - Michael Keach
- Brookhaven National Laboratory, Upton, NY 11973, USA; (M.K.); (P.S.)
| | - Paul Stankus
- Brookhaven National Laboratory, Upton, NY 11973, USA; (M.K.); (P.S.)
| | - Peter Svihra
- Department of Physics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University, 115 19 Prague, Czech Republic;
- Department of Physics and Astronomy, School of Natural Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Stephen Vintskevich
- Moscow Institute of Physics and Technology, Institutskii Per. 9, Dolgoprudny, 141700 Moscow, Moscow Region, Russia;
| |
Collapse
|
220
|
Jin R, Cai W, Ding C, Mei F, Deng G, Shimizu R, Zhou Q. Spectrally uncorrelated biphotons generated from “the family of BBO crystal”. ACTA ACUST UNITED AC 2020. [DOI: 10.1002/que2.38] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rui‐Bo Jin
- Hubei Key Laboratory of Optical Information and Pattern RecognitionWuhan Institute of Technology Wuhan China
- State Key Laboratory of Quantum Optics and Quantum Optics DevicesInstitute of Laser Spectroscopy, Shanxi University Taiyuan China
| | - Wu‐Hao Cai
- Hubei Key Laboratory of Optical Information and Pattern RecognitionWuhan Institute of Technology Wuhan China
| | - Chunling Ding
- Hubei Key Laboratory of Optical Information and Pattern RecognitionWuhan Institute of Technology Wuhan China
| | - Feng Mei
- State Key Laboratory of Quantum Optics and Quantum Optics DevicesInstitute of Laser Spectroscopy, Shanxi University Taiyuan China
- Collaborative Innovation Center of Extreme OpticsShanxi University Taiyuan China
| | - Guang‐Wei Deng
- Institute of Fundamental and Frontier Sciences and School of Optoelectronic Science and EngineeringUniversity of Electronic Science and Technology of China Chengdu China
- CAS Key Laboratory of Quantum InformationUniversity of Science and Technology of China Hefei China
| | | | - Qiang Zhou
- Institute of Fundamental and Frontier Sciences and School of Optoelectronic Science and EngineeringUniversity of Electronic Science and Technology of China Chengdu China
- CAS Key Laboratory of Quantum InformationUniversity of Science and Technology of China Hefei China
| |
Collapse
|
221
|
Paneru D, Cohen E, Fickler R, Boyd RW, Karimi E. Entanglement: quantum or classical? REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2020; 83:064001. [PMID: 32235071 DOI: 10.1088/1361-6633/ab85b9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
From its seemingly non-intuitive and puzzling nature, most evident in numerous EPR-like gedanken experiments to its almost ubiquitous presence in quantum technologies, entanglement is at the heart of modern quantum physics. First introduced by Erwin Schrödinger nearly a century ago, entanglement has remained one of the most fascinating ideas that came out of quantum mechanics. Here, we attempt to explain what makes entanglement fundamentally different from any classical phenomenon. To this end, we start with a historical overview of entanglement and discuss several hidden variables models that were conceived to provide a classical explanation and demystify quantum entanglement. We discuss some inequalities and bounds that are violated by quantum states thereby falsifying the existence of some of the classical hidden variables theories. We also discuss some exciting manifestations of entanglement, such as N00N states and the non-separable single particle states. We conclude by discussing some contemporary results regarding quantum correlations and present a future outlook for the research of quantum entanglement.
Collapse
Affiliation(s)
- Dilip Paneru
- Department of Physics, University of Ottawa, 25 Templeton Street, Ottawa, Ontario, K1N 6N5 Canada
| | | | | | | | | |
Collapse
|
222
|
|
223
|
Holmes Z, Anders J, Mintert F. Enhanced Energy Transfer to an Optomechanical Piston from Indistinguishable Photons. PHYSICAL REVIEW LETTERS 2020; 124:210601. [PMID: 32530653 DOI: 10.1103/physrevlett.124.210601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 03/24/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
Thought experiments involving gases and pistons, such as Maxwell's demon and Gibbs' mixing, are central to our understanding of thermodynamics. Here, we present a quantum thermodynamic thought experiment in which the energy transfer from two photonic gases to a piston membrane grows quadratically with the number of photons for indistinguishable gases, while it grows linearly for distinguishable gases. This signature of bosonic bunching may be observed in optomechanical experiments, highlighting the potential of these systems for the realization of thermodynamic thought experiments in the quantum realm.
Collapse
Affiliation(s)
- Zoë Holmes
- Controlled Quantum Dynamics Theory Group, Imperial College London, Prince Consort Road, London SW7 2BW, United Kingdom
| | - Janet Anders
- Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom
- Institut für Physik, Potsdam University, 14476 Potsdam, Germany
| | - Florian Mintert
- Controlled Quantum Dynamics Theory Group, Imperial College London, Prince Consort Road, London SW7 2BW, United Kingdom
| |
Collapse
|
224
|
Kim Y, Teo YS, Ahn D, Im DG, Cho YW, Leuchs G, Sánchez-Soto LL, Jeong H, Kim YH. Universal Compressive Characterization of Quantum Dynamics. PHYSICAL REVIEW LETTERS 2020; 124:210401. [PMID: 32530676 DOI: 10.1103/physrevlett.124.210401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
Recent quantum technologies utilize complex multidimensional processes that govern the dynamics of quantum systems. We develop an adaptive diagonal-element-probing compression technique that feasibly characterizes any unknown quantum processes using much fewer measurements compared to conventional methods. This technique utilizes compressive projective measurements that are generalizable to an arbitrary number of subsystems. Both numerical analysis and experimental results with unitary gates demonstrate low measurement costs, of order O(d^{2}) for d-dimensional systems, and robustness against statistical noise. Our work potentially paves the way for a reliable and highly compressive characterization of general quantum devices.
Collapse
Affiliation(s)
- Yosep Kim
- Department of Physics, Pohang University of Science and Technology (POSTECH), 37673 Pohang, Korea
| | - Yong Siah Teo
- Department of Physics and Astronomy, Seoul National University, 08826 Seoul, Korea
| | - Daekun Ahn
- Department of Physics and Astronomy, Seoul National University, 08826 Seoul, Korea
| | - Dong-Gil Im
- Department of Physics, Pohang University of Science and Technology (POSTECH), 37673 Pohang, Korea
| | - Young-Wook Cho
- Center for Quantum Information, Korea Institute of Science and Technology (KIST), 02792 Seoul, Korea
| | - Gerd Leuchs
- Max-Planck-Institut für die Physik des Lichts, Staudtstraße 2, 91058 Erlangen, Germany
- Institute of Applied Physics, Russian Academy of Sciences, 603950 Nizhny Novgorod, Russia
| | - Luis L Sánchez-Soto
- Max-Planck-Institut für die Physik des Lichts, Staudtstraße 2, 91058 Erlangen, Germany
- Departamento de Óptica, Facultad de Física, Universidad Complutense, 28040 Madrid, Spain
| | - Hyunseok Jeong
- Department of Physics and Astronomy, Seoul National University, 08826 Seoul, Korea
| | - Yoon-Ho Kim
- Department of Physics, Pohang University of Science and Technology (POSTECH), 37673 Pohang, Korea
| |
Collapse
|
225
|
Morioka N, Babin C, Nagy R, Gediz I, Hesselmeier E, Liu D, Joliffe M, Niethammer M, Dasari D, Vorobyov V, Kolesov R, Stöhr R, Ul-Hassan J, Son NT, Ohshima T, Udvarhelyi P, Thiering G, Gali A, Wrachtrup J, Kaiser F. Spin-controlled generation of indistinguishable and distinguishable photons from silicon vacancy centres in silicon carbide. Nat Commun 2020; 11:2516. [PMID: 32433556 PMCID: PMC7239935 DOI: 10.1038/s41467-020-16330-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/28/2020] [Indexed: 12/02/2022] Open
Abstract
Quantum systems combining indistinguishable photon generation and spin-based quantum information processing are essential for remote quantum applications and networking. However, identification of suitable systems in scalable platforms remains a challenge. Here, we investigate the silicon vacancy centre in silicon carbide and demonstrate controlled emission of indistinguishable and distinguishable photons via coherent spin manipulation. Using strong off-resonant excitation and collecting zero-phonon line photons, we show a two-photon interference contrast close to 90% in Hong-Ou-Mandel type experiments. Further, we exploit the system’s intimate spin-photon relation to spin-control the colour and indistinguishability of consecutively emitted photons. Our results provide a deep insight into the system’s spin-phonon-photon physics and underline the potential of the industrially compatible silicon carbide platform for measurement-based entanglement distribution and photonic cluster state generation. Additional coupling to quantum registers based on individual nuclear spins would further allow for high-level network-relevant quantum information processing, such as error correction and entanglement purification. Defects in silicon carbide can act as single photon sources that also have the benefit of a host material that is already used in electronic devices. Here the authors demonstrate that they can control the distinguishability of the emitted photons by changing the defect spin state.
Collapse
Affiliation(s)
- Naoya Morioka
- 3rd Institute of Physics, University of Stuttgart and Institute for Quantum Science and Technology IQST, 70569, Stuttgart, Germany. .,Advanced Research and Innovation Center, DENSO CORPORATION, Nisshin, 470-0111, Japan.
| | - Charles Babin
- 3rd Institute of Physics, University of Stuttgart and Institute for Quantum Science and Technology IQST, 70569, Stuttgart, Germany
| | - Roland Nagy
- 3rd Institute of Physics, University of Stuttgart and Institute for Quantum Science and Technology IQST, 70569, Stuttgart, Germany
| | - Izel Gediz
- 3rd Institute of Physics, University of Stuttgart and Institute for Quantum Science and Technology IQST, 70569, Stuttgart, Germany
| | - Erik Hesselmeier
- 3rd Institute of Physics, University of Stuttgart and Institute for Quantum Science and Technology IQST, 70569, Stuttgart, Germany
| | - Di Liu
- 3rd Institute of Physics, University of Stuttgart and Institute for Quantum Science and Technology IQST, 70569, Stuttgart, Germany
| | - Matthew Joliffe
- 3rd Institute of Physics, University of Stuttgart and Institute for Quantum Science and Technology IQST, 70569, Stuttgart, Germany
| | - Matthias Niethammer
- 3rd Institute of Physics, University of Stuttgart and Institute for Quantum Science and Technology IQST, 70569, Stuttgart, Germany
| | - Durga Dasari
- 3rd Institute of Physics, University of Stuttgart and Institute for Quantum Science and Technology IQST, 70569, Stuttgart, Germany
| | - Vadim Vorobyov
- 3rd Institute of Physics, University of Stuttgart and Institute for Quantum Science and Technology IQST, 70569, Stuttgart, Germany
| | - Roman Kolesov
- 3rd Institute of Physics, University of Stuttgart and Institute for Quantum Science and Technology IQST, 70569, Stuttgart, Germany
| | - Rainer Stöhr
- 3rd Institute of Physics, University of Stuttgart and Institute for Quantum Science and Technology IQST, 70569, Stuttgart, Germany
| | - Jawad Ul-Hassan
- Department of Physics, Chemistry and Biology, Linköping University, SE-58183, Linköping, Sweden
| | - Nguyen Tien Son
- Department of Physics, Chemistry and Biology, Linköping University, SE-58183, Linköping, Sweden
| | - Takeshi Ohshima
- National Institutes for Quantum and Radiological Science and Technology, Takasaki, 370-1292, Japan
| | - Péter Udvarhelyi
- Department of Biological Physics, Eötvös University, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary.,Wigner Research Centre for Physics, P.O. Box 49, 1525, Budapest, Hungary.,Department of Atomic Physics, Budapest University of Technology and Economics, Budafoki út 8., 1111, Budapest, Hungary
| | - Gergő Thiering
- Wigner Research Centre for Physics, P.O. Box 49, 1525, Budapest, Hungary
| | - Adam Gali
- Wigner Research Centre for Physics, P.O. Box 49, 1525, Budapest, Hungary.,Department of Atomic Physics, Budapest University of Technology and Economics, Budafoki út 8., 1111, Budapest, Hungary
| | - Jörg Wrachtrup
- 3rd Institute of Physics, University of Stuttgart and Institute for Quantum Science and Technology IQST, 70569, Stuttgart, Germany
| | - Florian Kaiser
- 3rd Institute of Physics, University of Stuttgart and Institute for Quantum Science and Technology IQST, 70569, Stuttgart, Germany.
| |
Collapse
|
226
|
Volkovich S, Shwartz S. Subattosecond x-ray Hong-Ou-Mandel metrology. OPTICS LETTERS 2020; 45:2728-2731. [PMID: 32412452 DOI: 10.1364/ol.382044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
We show that subattosecond delays and subangstrom optical path differences can be measured by using Hong-Ou-Mandel interference measurements with x-rays. Our scheme relies on the subattosecond correlation time of photon pairs that are generated by x-ray spontaneous parametric down-conversion, which leads to a dip in correlation measurements with a comparable width. Therefore, the precision of the measurements is expected to be better than 0.1 attosecond. We anticipate that the scheme we describe in this work will lead to the development of various techniques of quantum measurements with ultra-high precision at x-ray wavelengths.
Collapse
|
227
|
Zhu D, Colangelo M, Chen C, Korzh BA, Wong FNC, Shaw MD, Berggren KK. Resolving Photon Numbers Using a Superconducting Nanowire with Impedance-Matching Taper. NANO LETTERS 2020; 20:3858-3863. [PMID: 32271591 DOI: 10.1021/acs.nanolett.0c00985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Time- and number-resolved photon detection is crucial for quantum information processing. Existing photon-number-resolving (PNR) detectors usually suffer from limited timing and dark-count performance or require complex fabrication and operation. Here, we demonstrate a PNR detector at telecommunication wavelengths based on a single superconducting nanowire with an integrated impedance-matching taper. The taper provides a kΩ load impedance to the nanowire, making the detector's output amplitude sensitive to the number of photon-induced hotspots. The prototyping device was able to resolve up to four absorbed photons with 16.1 ps timing jitter and <2 c.p.s. device dark count rate. Its exceptional distinction between single- and two-photon responses is ideal for high-fidelity coincidence counting and allowed us to directly observe bunching of photon pairs from a single output port of a Hong-Ou-Mandel interferometer. This detector architecture may provide a practical solution to applications that require high timing resolution and few-photon discrimination.
Collapse
Affiliation(s)
- Di Zhu
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Marco Colangelo
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Changchen Chen
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Boris A Korzh
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, United States
| | - Franco N C Wong
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Matthew D Shaw
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, United States
| | - Karl K Berggren
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
228
|
Castelletto S, Inam FA, Sato SI, Boretti A. Hexagonal boron nitride: a review of the emerging material platform for single-photon sources and the spin-photon interface. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:740-769. [PMID: 32461875 PMCID: PMC7214868 DOI: 10.3762/bjnano.11.61] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/16/2020] [Indexed: 05/09/2023]
Abstract
Single-photon sources and their optical spin readout are at the core of applications in quantum communication, quantum computation, and quantum sensing. Their integration in photonic structures such as photonic crystals, microdisks, microring resonators, and nanopillars is essential for their deployment in quantum technologies. While there are currently only two material platforms (diamond and silicon carbide) with proven single-photon emission from the visible to infrared, a quantum spin-photon interface, and ancilla qubits, it is expected that other material platforms could emerge with similar characteristics in the near future. These two materials also naturally lead to monolithic integrated photonics as both are good photonic materials. While so far the verification of single-photon sources was based on discovery, assignment and then assessment and control of their quantum properties for applications, a better approach could be to identify applications and then search for the material that could address the requirements of the application in terms of quantum properties of the defects. This approach is quite difficult as it is based mostly on the reliability of modeling and predicting of color center properties in various materials, and their experimental verification is challenging. In this paper, we review some recent advances in an emerging material, low-dimensional (2D, 1D, 0D) hexagonal boron nitride (h-BN), which could lead to establishing such a platform. We highlight the recent achievements of the specific material for the expected applications in quantum technologies, indicating complementary outstanding properties compared to the other 3D bulk materials.
Collapse
Affiliation(s)
| | - Faraz A Inam
- Dept. of Physics, Aligarh Muslim University, Aligarh, U.P. 202002, India
| | - Shin-ichiro Sato
- National Institutes for Quantum and Radiological Science and Technology, Takasaki, Gunma, 370-1292, Japan
| | - Alberto Boretti
- Mechanical Engineering Department, College of Engineering, Prince Mohammad Bin Fahd University, Al Khobar 31952, Kingdom of Saudi Arabia
| |
Collapse
|
229
|
Ham BS. The origin of anticorrelation for photon bunching on a beam splitter. Sci Rep 2020; 10:7309. [PMID: 32355259 PMCID: PMC7193647 DOI: 10.1038/s41598-020-64441-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/17/2020] [Indexed: 11/13/2022] Open
Abstract
The Copenhagen interpretation, in which the core concepts are Heisenberg's uncertainty principle and nonlocal EPR correlation, has been long discussed. Second-order anticorrelation in a beam splitter represents the origin of these phenomena and cannot be achieved classically. Here, the anticorrelation of nonclassicality in a beam splitter is interpreted using the concept of coherence. Unlike the common understanding of photons having a particle nature, anticorrelation is rooted in the wave nature of coherence optics, described by coherence optics, wherein quantum superposition between two input fields plays a key role. This interpretation may pose fundamental questions about the nature of nonclassicality and pave a road to coherence-based quantum information.
Collapse
Affiliation(s)
- Byoung S Ham
- Center for Photon Information Processing, School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, South Korea.
| |
Collapse
|
230
|
Bartolomei H, Kumar M, Bisognin R, Marguerite A, Berroir JM, Bocquillon E, Plaçais B, Cavanna A, Dong Q, Gennser U, Jin Y, Fève G. Fractional statistics in anyon collisions. Science 2020; 368:173-177. [PMID: 32273465 DOI: 10.1126/science.aaz5601] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 03/12/2020] [Indexed: 11/03/2022]
Abstract
Two-dimensional systems can host exotic particles called anyons whose quantum statistics are neither bosonic nor fermionic. For example, the elementary excitations of the fractional quantum Hall effect at filling factor ν = 1/m (where m is an odd integer) have been predicted to obey Abelian fractional statistics, with a phase ϕ associated with the exchange of two particles equal to π/m However, despite numerous experimental attempts, clear signatures of fractional statistics have remained elusive. We experimentally demonstrate Abelian fractional statistics at filling factor ν = ⅓ by measuring the current correlations resulting from the collision between anyons at a beamsplitter. By analyzing their dependence on the anyon current impinging on the splitter and comparing with recent theoretical models, we extract ϕ = π/3, in agreement with predictions.
Collapse
Affiliation(s)
- H Bartolomei
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
| | - M Kumar
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
| | - R Bisognin
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
| | - A Marguerite
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
| | - J-M Berroir
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
| | - E Bocquillon
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
| | - B Plaçais
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
| | - A Cavanna
- Centre de Nanosciences et de Nanotechnologies (C2N), CNRS, Université Paris-Saclay, Palaiseau, France
| | - Q Dong
- Centre de Nanosciences et de Nanotechnologies (C2N), CNRS, Université Paris-Saclay, Palaiseau, France
| | - U Gennser
- Centre de Nanosciences et de Nanotechnologies (C2N), CNRS, Université Paris-Saclay, Palaiseau, France
| | - Y Jin
- Centre de Nanosciences et de Nanotechnologies (C2N), CNRS, Université Paris-Saclay, Palaiseau, France
| | - G Fève
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France.
| |
Collapse
|
231
|
Joshi C, Farsi A, Dutt A, Kim BY, Ji X, Zhao Y, Bishop AM, Lipson M, Gaeta AL. Frequency-Domain Quantum Interference with Correlated Photons from an Integrated Microresonator. PHYSICAL REVIEW LETTERS 2020; 124:143601. [PMID: 32338976 DOI: 10.1103/physrevlett.124.143601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/11/2020] [Indexed: 06/11/2023]
Abstract
Frequency encoding of quantum information together with fiber and integrated photonic technologies can significantly reduce the complexity and resource requirements for realizing all-photonic quantum networks. The key challenge for such frequency domain processing of single photons is to realize coherent and selective interactions between quantum optical fields of different frequencies over a range of bandwidths. Here, we report frequency-domain Hong-Ou-Mandel interference with spectrally distinct photons generated from a chip-based microresonator. We use four-wave mixing to implement an active "frequency beam splitter" and achieve interference visibilities of 0.95±0.02. Our work establishes four-wave mixing as a tool for selective high-fidelity two-photon operations in the frequency domain which, combined with integrated single-photon sources, provides a building block for frequency-multiplexed photonic quantum networks.
Collapse
Affiliation(s)
- Chaitali Joshi
- Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, USA
- Applied and Engineering Physics, Cornell University, Ithaca, New York 14850, USA
| | - Alessandro Farsi
- Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, USA
| | - Avik Dutt
- Ginzton Laboratory and Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA
| | - Bok Young Kim
- Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, USA
| | - Xingchen Ji
- Department of Electrical Engineering, Columbia University, New York, New York 10027, USA
| | - Yun Zhao
- Department of Electrical Engineering, Columbia University, New York, New York 10027, USA
| | - Andrew M Bishop
- Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, USA
| | - Michal Lipson
- Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, USA
- Department of Electrical Engineering, Columbia University, New York, New York 10027, USA
| | - Alexander L Gaeta
- Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, USA
- Department of Electrical Engineering, Columbia University, New York, New York 10027, USA
| |
Collapse
|
232
|
Rodt S, Reitzenstein S, Heindel T. Deterministically fabricated solid-state quantum-light sources. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:153003. [PMID: 31791035 DOI: 10.1088/1361-648x/ab5e15] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The controlled generation of non-classical states of light is a challenging task at the heart of quantum optics. Aside from the mere spirit of science, the related research is strongly driven by applications in photonic quantum technologies, including the fields of quantum communication, quantum computation, and quantum metrology. In this context, the realization of integrated solid-state-based quantum-light sources is of particular interest, due to the prospects for scalability and device integration. This topical review focuses on solid-state quantum-light sources which are fabricated in a deterministic fashion. In this framework we cover quantum emitters represented by semiconductor quantum dots, colour centres in diamond, and defect-/strain-centres in two-dimensional materials. First, we introduce the topic of quantum-light sources and non-classical light generation for applications in photonic quantum technologies, motivating the need for the development of scalable device technologies to push the field towards real-world applications. In the second part, we summarize material systems hosting quantum emitters in the solid-state. The third part reviews deterministic fabrication techniques and comparatively discusses their advantages and disadvantages. The techniques are classified in bottom-up approaches, exploiting the site-controlled positioning of the quantum emitters themselves, and top-down approaches, allowing for the precise alignment of photonic microstructures to pre-selected quantum emitters. Special emphasis is put on the progress achieved in the development of in situ techniques, which significantly pushed the performance of quantum-light sources towards applications. Additionally, we discuss hybrid approaches, exploiting pick-and-place techniques or wafer-bonding. The fourth part presents state-of-the-art quantum-dot quantum-light sources based on the fabrication techniques presented in the previous sections, which feature engineered functionality and enhanced photon collection efficiency. The article closes by highlighting recent applications of deterministic solid-state-based quantum-light sources in the fields of quantum communication, quantum computing, and quantum metrology, and by discussing future perspectives in the field of solid-state quantum-light sources.
Collapse
Affiliation(s)
- Sven Rodt
- Institute of Solid-State Physics, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
| | | | | |
Collapse
|
233
|
Xu XY, Pan WW, Kedem Y, Wang QQ, Sun K, Xu JS, Han YJ, Chen G, Li CF, Guo GC. Experimental extraction of nonlocal weak values for demonstrating the failure of a product rule. OPTICS LETTERS 2020; 45:1715-1718. [PMID: 32235981 DOI: 10.1364/ol.375448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 02/13/2020] [Indexed: 06/11/2023]
Abstract
We experimentally demonstrate an alternative method for measuring nonlocal weak values in linear optics, avoiding the use of second-order interaction. The method is based on the concept of modular values. The paths of two photons, initialized in hyperentangled states, are adopted as the meter with the polarization acting as the system. The modular values are read out through the reconstructed final states of the meter. The weak value of nonlocal observables is given through its connection to the modular value. Comparing the weak values of local and nonlocal observables, we demonstrate the failure of product rules for an entangled system. Our results significantly simplify the task of measuring nonlocal weak values and will play an important role in the application of weak measurement.
Collapse
|
234
|
Meyer-Scott E, Silberhorn C, Migdall A. Single-photon sources: Approaching the ideal through multiplexing. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:041101. [PMID: 32357750 PMCID: PMC8078861 DOI: 10.1063/5.0003320] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We review the rapid recent progress in single-photon sources based on multiplexing multiple probabilistic photon-creation events. Such multiplexing allows higher single-photon probabilities and lower contamination from higher-order photon states. We study the requirements for multiplexed sources and compare various approaches to multiplexing using different degrees of freedom.
Collapse
Affiliation(s)
- Evan Meyer-Scott
- Integrated Quantum Optics, Department of Physics, University of Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
| | - Christine Silberhorn
- Integrated Quantum Optics, Department of Physics, University of Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
| | - Alan Migdall
- Joint Quantum Institute, University of Maryland, College Park, Maryland 20742, USA and National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
235
|
Prabhakar S, Shields T, Dada AC, Ebrahim M, Taylor GG, Morozov D, Erotokritou K, Miki S, Yabuno M, Terai H, Gawith C, Kues M, Caspani L, Hadfield RH, Clerici M. Two-photon quantum interference and entanglement at 2.1 μm. SCIENCE ADVANCES 2020; 6:eaay5195. [PMID: 32258399 PMCID: PMC7101225 DOI: 10.1126/sciadv.aay5195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 01/03/2020] [Indexed: 06/11/2023]
Abstract
Quantum-enhanced optical systems operating within the 2- to 2.5-μm spectral region have the potential to revolutionize emerging applications in communications, sensing, and metrology. However, to date, sources of entangled photons have been realized mainly in the near-infrared 700- to 1550-nm spectral window. Here, using custom-designed lithium niobate crystals for spontaneous parametric down-conversion and tailored superconducting nanowire single-photon detectors, we demonstrate two-photon interference and polarization-entangled photon pairs at 2090 nm. These results open the 2- to 2.5-μm mid-infrared window for the development of optical quantum technologies such as quantum key distribution in next-generation mid-infrared fiber communication systems and future Earth-to-satellite communications.
Collapse
Affiliation(s)
- Shashi Prabhakar
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| | - Taylor Shields
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| | - Adetunmise C. Dada
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| | - Mehdi Ebrahim
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| | - Gregor G. Taylor
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| | - Dmitry Morozov
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| | | | - Shigehito Miki
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, 588-2 Iwaoka, Nishi-ku, Kobe, Hyogo 651-2492, Japan
- Graduate School of Engineering Faculty of Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe-city, Hyogo 657-0013, Japan
| | - Masahiro Yabuno
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, 588-2 Iwaoka, Nishi-ku, Kobe, Hyogo 651-2492, Japan
| | - Hirotaka Terai
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, 588-2 Iwaoka, Nishi-ku, Kobe, Hyogo 651-2492, Japan
| | - Corin Gawith
- Covesion Ltd., Unit A7, The Premier Centre, Premier Way, Romsey, Hampshire SO51 9DG, UK
- Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, UK
| | - Michael Kues
- Hannover Center for Optical Technologies (HOT), Leibniz University Hannover, Hannover, Germany
- Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering–Innovation Across Disciplines), Hannover, Germany
| | - Lucia Caspani
- Institute of Photonics, Department of Physics, University of Strathclyde, Glasgow G1 1RD, UK
| | - Robert H. Hadfield
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| | - Matteo Clerici
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
236
|
Xu ZH, Li YH, Zhou ZY, Liu SL, Li Y, Liu SK, Yang C, Guo GC, Shi BS. High-quality versatile photonic sources for multiple quantum optical experiments. OPTICS EXPRESS 2020; 28:5077-5084. [PMID: 32121736 DOI: 10.1364/oe.386189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 01/31/2020] [Indexed: 06/10/2023]
Abstract
Entangled sources are important components for quantum information science and technology (QIST). The ability to generate high-quality entangled sources will determine the extent of progress in this field. Unlike previous schemes, a thin quasi-phase matching nonlinear crystal and a dense-wave-division-multiplexing device are used here to build high-quality versatile photonic sources with a simple configuration that can be used to perform Hong-Ou-Mandel interference, time-energy entanglement and multi-channel polarization entanglement experiments. The measurement results from various quantum optical experiments show the high quality of these photonic sources. These multi-functional photonic sources will be very useful in a variety of QIST applications.
Collapse
|
237
|
Graffitti F, Barrow P, Pickston A, Brańczyk AM, Fedrizzi A. Direct Generation of Tailored Pulse-Mode Entanglement. PHYSICAL REVIEW LETTERS 2020; 124:053603. [PMID: 32083906 DOI: 10.1103/physrevlett.124.053603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
Photonic quantum technology increasingly uses frequency encoding to enable higher quantum information density and noise resilience. Pulsed time-frequency modes (TFM) represent a unique class of spectrally encoded quantum states of light that enable a complete framework for quantum information processing. Here, we demonstrate a technique for direct generation of entangled TFM-encoded states in single-pass, tailored down-conversion processes. We achieve unprecedented quality in state generation-high rates, heralding efficiency, and state fidelity-as characterized via highly resolved time-of-flight fiber spectroscopy and two-photon interference. We employ this technique in a four-photon entanglement swapping scheme as a primitive for TFM-encoded quantum protocols.
Collapse
Affiliation(s)
- Francesco Graffitti
- Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Peter Barrow
- Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Alexander Pickston
- Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Agata M Brańczyk
- Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada
| | - Alessandro Fedrizzi
- Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| |
Collapse
|
238
|
Zhao TM, Chen Y, Yu Y, Li Q, Davanco M, Liu J. Advanced technologies for quantum photonic devices based on epitaxial quantum dots. ADVANCED QUANTUM TECHNOLOGIES 2020; 3:10.1002/qute.201900034. [PMID: 36452403 PMCID: PMC9706462 DOI: 10.1002/qute.201900034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Indexed: 05/12/2023]
Abstract
Quantum photonic devices are candidates for realizing practical quantum computers and networks. The development of integrated quantum photonic devices can greatly benefit from the ability to incorporate different types of materials with complementary, superior optical or electrical properties on a single chip. Semiconductor quantum dots (QDs) serve as a core element in the emerging modern photonic quantum technologies by allowing on-demand generation of single-photons and entangled photon pairs. During each excitation cycle, there is one and only one emitted photon or photon pair. QD photonic devices are on the verge of unfolding for advanced quantum technology applications. In this review, we focus on the latest significant progress of QD photonic devices. We first discuss advanced technologies in QD growth, with special attention to droplet epitaxy and site-controlled QDs. Then we overview the wavelength engineering of QDs via strain tuning and quantum frequency conversion techniques. We extend our discussion to advanced optical excitation techniques recently developed for achieving the desired emission properties of QDs. Finally, the advances in heterogeneous integration of active quantum light-emitting devices and passive integrated photonic circuits are reviewed, in the context of realizing scalable quantum information processing chips.
Collapse
Affiliation(s)
- Tian Ming Zhao
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yan Chen
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Helmholtzstrasse 20, 01069 Dresden, Germany
| | - Ying Yu
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Qing Li
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Marcelo Davanco
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Jin Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
239
|
Identical Quantum Particles, Entanglement, and Individuality. ENTROPY 2020; 22:e22020134. [PMID: 33285909 PMCID: PMC7516542 DOI: 10.3390/e22020134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/06/2020] [Accepted: 01/12/2020] [Indexed: 11/17/2022]
Abstract
Particles in classical physics are distinguishable objects, which can be picked out individually on the basis of their unique physical properties. By contrast, in the philosophy of physics, the standard view is that particles of the same kind (“identical particles”) are completely indistinguishable from each other and lack identity. This standard view is problematic: Particle indistinguishability is irreconcilable not only with the very meaning of “particle” in ordinary language and in classical physical theory, but also with how this term is actually used in the practice of present-day physics. Moreover, the indistinguishability doctrine prevents a smooth transition from quantum particles to what we normally understand by “particles” in the classical limit of quantum mechanics. Elaborating on earlier work, we here analyze the premises of the standard view and discuss an alternative that avoids these and similar problems. As it turns out, this alternative approach connects to recent discussions in quantum information theory.
Collapse
|
240
|
Harnchaiwat N, Zhu F, Westerberg N, Gauger E, Leach J. Tracking the polarisation state of light via Hong-Ou-Mandel interferometry. OPTICS EXPRESS 2020; 28:2210-2220. [PMID: 32121916 DOI: 10.1364/oe.382622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
We provide a statistically robust and accurate framework to measure and track the polarisation state of light employing Hong-Ou-Mandel interference. This is achieved by combining the concepts of maximum likelihood estimation and Fisher information applied to photon detection events. Such an approach ensures that the Cramér-Rao bound is saturated and changes to the polarisation state are established in an optimal manner. Using this method, we show that changes in the linear polarisation state can be measured with 0.6 arcminute precision (0.01 degrees).
Collapse
|
241
|
Duan ZC, Deng YH, Yu Y, Chen S, Qin J, Wang H, Ding X, Peng LC, Schneider C, Wang DW, Höfling S, Dowling JP, Lu CY, Pan JW. Quantum Beat between Sunlight and Single Photons. NANO LETTERS 2020; 20:152-157. [PMID: 31841348 DOI: 10.1021/acs.nanolett.9b03512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We demonstrate fourth-order quantum beat between sunlight and single photons from a quantum dot. With a fast time-resolved detection system, we observed high-visibility quantum beat between the independent photons of different frequencies from the two astronomically separated light sources. The temporal dynamics of the beat oscillation indicate the coherent behavior of the interfering photons, and the raw visibility of two-photon interference shows violation of the classical limit with a frequency mismatch of three-times the line width.
Collapse
Affiliation(s)
- Zhao-Chen Duan
- Shanghai Branch, Department of Modern Physics and National Laboratory for Physical Sciences at Microscale , University of Science and Technology of China , Shanghai 201315 , China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Yu-Hao Deng
- Shanghai Branch, Department of Modern Physics and National Laboratory for Physical Sciences at Microscale , University of Science and Technology of China , Shanghai 201315 , China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Ying Yu
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, School of Physics , Sun Yat-sen University , Guangzhou , Guangdong 510275 , China
| | - Si Chen
- Shanghai Branch, Department of Modern Physics and National Laboratory for Physical Sciences at Microscale , University of Science and Technology of China , Shanghai 201315 , China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Jian Qin
- Shanghai Branch, Department of Modern Physics and National Laboratory for Physical Sciences at Microscale , University of Science and Technology of China , Shanghai 201315 , China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Hui Wang
- Shanghai Branch, Department of Modern Physics and National Laboratory for Physical Sciences at Microscale , University of Science and Technology of China , Shanghai 201315 , China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Xing Ding
- Shanghai Branch, Department of Modern Physics and National Laboratory for Physical Sciences at Microscale , University of Science and Technology of China , Shanghai 201315 , China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Li-Chao Peng
- Shanghai Branch, Department of Modern Physics and National Laboratory for Physical Sciences at Microscale , University of Science and Technology of China , Shanghai 201315 , China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Christian Schneider
- Technische Physik, Physikalisches Institüt and Wilhelm Conrad Röntgen-Center for Complex Material Systems , Universitat Würzburg , Am Hubland, D-97074 Würzburg , Germany
| | - Da-Wei Wang
- Department of Physics , Zhejiang University , Hangzhou , Zhejiang 310027 , China
| | - Sven Höfling
- Shanghai Branch, Department of Modern Physics and National Laboratory for Physical Sciences at Microscale , University of Science and Technology of China , Shanghai 201315 , China
- Technische Physik, Physikalisches Institüt and Wilhelm Conrad Röntgen-Center for Complex Material Systems , Universitat Würzburg , Am Hubland, D-97074 Würzburg , Germany
- SUPA, School of Physics and Astronomy , University of St. Andrews , St. Andrews KY16 9SS , United Kingdom
| | - Jonathan P Dowling
- Shanghai Branch, Department of Modern Physics and National Laboratory for Physical Sciences at Microscale , University of Science and Technology of China , Shanghai 201315 , China
- Hearne Institute for Theoretical Physics and Department of Physics and Astronomy , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
- NYU-ECNU Institute for Physics at NYU Shanghai , Shanghai 200062 , China
| | - Chao-Yang Lu
- Shanghai Branch, Department of Modern Physics and National Laboratory for Physical Sciences at Microscale , University of Science and Technology of China , Shanghai 201315 , China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Jian-Wei Pan
- Shanghai Branch, Department of Modern Physics and National Laboratory for Physical Sciences at Microscale , University of Science and Technology of China , Shanghai 201315 , China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
| |
Collapse
|
242
|
Mehta K, Achanta VG, Dasgupta S. Generation of non-classical states of photons from a metal-dielectric interface: a novel architecture for quantum information processing. NANOSCALE 2020; 12:256-261. [PMID: 31815988 DOI: 10.1039/c9nr06529f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We show the possibility to generate photons in a certain class of non-classical states from a metal-dielectric interface using dipole emitters on the interface. The photons emitted into the surface plasmon mode from the initially excited emitters radiate out in free space in a cone-shaped geometry. When detected at two detectors, these photons exhibit coalescence, a clear signature of non-classicality. Such a system can also be employed as a building block for a distributed quantum network. We further show that it is indeed feasible to implement our model using available technology.
Collapse
Affiliation(s)
- Karun Mehta
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India.
| | - Venu Gopal Achanta
- Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Shubhrangshu Dasgupta
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India.
| |
Collapse
|
243
|
Ma X, Zhang X, Huang K, Lu X. Low noise measurement method based on differential optical interferometer for cold atom experiments. OPTICS EXPRESS 2020; 28:175-183. [PMID: 32118948 DOI: 10.1364/oe.381560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
We proposed and realized a low noise measurement method based on differential optical interferometer to measure trapped cold atoms in a magneto-optical trap (MOT). The configuration is based on a Mach-Zehnder type interferometer, which is composed of two beams of different frequencies. A long-term stability in phase monitor has been obtained by use of the vibration immune mechanism through subtraction of the interferograms imaged on the two photodetectors. With this new configuration, the noise caused by environmental perturbation is greatly reduced at low frequency while the signal of phase shift keeps a good long-term stability.
Collapse
|
244
|
Acciai M, Calzona A, Carrega M, Sassetti M. Spectral features of voltage pulses in interacting helical channels. EPJ WEB OF CONFERENCES 2020. [DOI: 10.1051/epjconf/202023000009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We investigate the interplay of voltage-driven excitations and electron-electron interactions in a pair of counterpropagating helical channels capacitively coupled to a time-dependent gate. By focusing on the non-equilibrium spectral properties of the system, we show how the spectral function is modified by external drives with different time profile in presence of Coulomb interactions. In particular, we focus on a Lorentzian drive and a square single pulse. In presence of strong enough electron-electron interactions, we find that both drives can result in minimal excitations, i.e. characterized by an excess spectral function with a definite sign. This is in contrast with what happens in the non-interacting case, where only properly quantized Lorentzian pulses are able to produce minimal excitations.
Collapse
|
245
|
Qu LY, Cotler J, Ma F, Guan JY, Zheng MY, Xie X, Chen YA, Zhang Q, Wilczek F, Pan JW. Color Erasure Detectors Enable Chromatic Interferometry. PHYSICAL REVIEW LETTERS 2019; 123:243601. [PMID: 31922826 DOI: 10.1103/physrevlett.123.243601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Indexed: 06/10/2023]
Abstract
By engineering and manipulating quantum entanglement between incoming photons and experimental apparatus, we construct single-photon detectors which cannot distinguish between photons of very different wavelengths. These color-erasure detectors enable a new kind of intensity interferometry, with potential applications in microscopy and astronomy. We demonstrate chromatic interferometry experimentally, observing robust interference using both coherent and incoherent photon sources.
Collapse
Affiliation(s)
- Luo-Yuan Qu
- Shanghai Branch, National Laboratory for Physical Sciences at Microscale and Department of Modern Physics University of Science and Technology of China, Shanghai 201315, People's Republic of China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, Shanghai Branch, University of Science and Technology of China, Shanghai 201315, People's Republic of China
- Jinan Institute of Quantum Technology, Jinan 250101, People's Republic of China
| | - Jordan Cotler
- Stanford Institute for Theoretical Physics, Stanford University, Stanford, California 94305, USA
| | - Fei Ma
- Shanghai Branch, National Laboratory for Physical Sciences at Microscale and Department of Modern Physics University of Science and Technology of China, Shanghai 201315, People's Republic of China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, Shanghai Branch, University of Science and Technology of China, Shanghai 201315, People's Republic of China
- Jinan Institute of Quantum Technology, Jinan 250101, People's Republic of China
| | - Jian-Yu Guan
- Shanghai Branch, National Laboratory for Physical Sciences at Microscale and Department of Modern Physics University of Science and Technology of China, Shanghai 201315, People's Republic of China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, Shanghai Branch, University of Science and Technology of China, Shanghai 201315, People's Republic of China
| | - Ming-Yang Zheng
- Jinan Institute of Quantum Technology, Jinan 250101, People's Republic of China
| | - Xiuping Xie
- Jinan Institute of Quantum Technology, Jinan 250101, People's Republic of China
| | - Yu-Ao Chen
- Shanghai Branch, National Laboratory for Physical Sciences at Microscale and Department of Modern Physics University of Science and Technology of China, Shanghai 201315, People's Republic of China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, Shanghai Branch, University of Science and Technology of China, Shanghai 201315, People's Republic of China
| | - Qiang Zhang
- Shanghai Branch, National Laboratory for Physical Sciences at Microscale and Department of Modern Physics University of Science and Technology of China, Shanghai 201315, People's Republic of China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, Shanghai Branch, University of Science and Technology of China, Shanghai 201315, People's Republic of China
- Jinan Institute of Quantum Technology, Jinan 250101, People's Republic of China
| | - Frank Wilczek
- Center for Theoretical Physics, MIT, Cambridge, Massachusetts 02139, USA
- T. D. Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
- Wilczek Quantum Center, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
- Department of Physics, Stockholm University, Stockholm SE-106 91 Sweden
- Department of Physics and Origins Project, Arizona State University, Tempe, Arizona 25287, USA
| | - Jian-Wei Pan
- Shanghai Branch, National Laboratory for Physical Sciences at Microscale and Department of Modern Physics University of Science and Technology of China, Shanghai 201315, People's Republic of China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, Shanghai Branch, University of Science and Technology of China, Shanghai 201315, People's Republic of China
| |
Collapse
|
246
|
Abstract
The distinguishing of the multiphoton quantum interference effect from the classical one forms one of the most important issues in modern quantum mechanics and experimental quantum optics. For a long time, the two-photon interference (TPI) of correlated photons has been recognized as a pure quantum effect that cannot be simulated with classical lights. In the meantime, experiments have been carried out to investigate the classical analogues of the TPI. In this study, we conduct TPI experiments with uncorrelated photons with different center frequencies from a luminescent light source, and we compare our results with the previous ones of correlated photons. The observed TPI fringe can be expressed in the form of three phase terms related to the individual single-photon and two-photon states, and the fringe pattern is strongly affected by the two single-photon-interference fringes and also by their visibilities. With the exception of essential differences such as valid and accidental coincidence events within a given resolving time and the two-photon spectral bandwidth, the interference phenomenon itself exhibits the same features for both correlated and uncorrelated photons in the single-photon counting regime.
Collapse
|
247
|
|
248
|
Quantum mechanics with patterns of light: Progress in high dimensional and multidimensional entanglement with structured light. ACTA ACUST UNITED AC 2019. [DOI: 10.1116/1.5112027] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
249
|
Magaña-Loaiza OS, Boyd RW. Quantum imaging and information. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2019; 82:124401. [PMID: 31639774 DOI: 10.1088/1361-6633/ab5005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The maturity of fields such as optical physics and quantum optics has brought with it a new era where the photon represents a promising information resource. In the past few years, scientists and engineers have exploited multiple degrees of freedom of the photon to perform information processing for a wide variety of applications. Of particular importance, the transverse spatial degree of freedom has offered a flexible platform to test complex quantum information protocols in a relatively simple fashion. In this regard, novel imaging techniques that exploit the quantum properties of light have also been investigated. In this review article, we define the fundamental parameters that describe the spatial wavefunction of the photon and establish their importance for applications in quantum information processing. More specifically, we describe the underlying physics behind remarkable protocols in which information is processed through high-dimensional spatial states of photons with sub-shot-noise levels or where quantum images with unique resolution features are formed. We also discuss the fundamental role that certain imaging techniques have played in the development of novel methods for quantum information processing and vice versa.
Collapse
Affiliation(s)
- Omar S Magaña-Loaiza
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, United States of America
| | | |
Collapse
|
250
|
Schimpf C, Reindl M, Klenovský P, Fromherz T, Covre Da Silva SF, Hofer J, Schneider C, Höfling S, Trotta R, Rastelli A. Resolving the temporal evolution of line broadening in single quantum emitters. OPTICS EXPRESS 2019; 27:35290-35307. [PMID: 31878701 DOI: 10.1364/oe.27.035290] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/31/2019] [Indexed: 06/10/2023]
Abstract
Light emission from solid-state quantum emitters is inherently prone to environmental decoherence, which results in a line broadening and in the deterioration of photon indistinguishability. Here we employ photon correlation Fourier spectroscopy (PCFS) to study the temporal evolution of such a broadening in two prominent systems: GaAs and In(Ga)As quantum dots. Differently from previous experiments, the emitters are driven with short laser pulses as required for the generation of high-purity single photons, the time scales we probe range from a few nanoseconds to milliseconds and, simultaneously, the spectral resolution we achieve can be as small as ∼ 2µeV. We find pronounced differences in the temporal evolution of different optical transition lines, which we attribute to differences in their homogeneous linewidth and sensitivity to charge noise. We analyze the effect of irradiation with additional white light, which reduces blinking at the cost of enhanced charge noise. Due to its robustness against experimental imperfections and its high temporal resolution and bandwidth, PCFS outperforms established spectroscopy techniques, such as Michelson interferometry. We discuss its practical implementation and the possibility to use it to estimate the indistinguishability of consecutively emitted single photons for applications in quantum communication and photonic-based quantum information processing.
Collapse
|