201
|
Fischer BB, Dayer R, Schwarzenbach Y, Lemaire SD, Behra R, Liedtke A, Eggen RIL. Function and regulation of the glutathione peroxidase homologous gene GPXH/GPX5 in Chlamydomonas reinhardtii. PLANT MOLECULAR BIOLOGY 2009; 71:569-83. [PMID: 19690965 DOI: 10.1007/s11103-009-9540-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 08/09/2009] [Indexed: 05/02/2023]
Abstract
When exposed to strong sunlight, photosynthetic organisms encounter photooxidative stress by the increased production of reactive oxygen species causing harmful damages to proteins and membranes. Consequently, a fast and specific induction of defense mechanisms is required to protect the organism from cell death. In Chlamydomonas reinhardtii, the glutathione peroxidase homologous gene GPXH/GPX5 was shown to be specifically upregulated by singlet oxygen formed during high light conditions presumably to prevent the accumulation of lipid hydroperoxides and membrane damage. We now showed that the GPXH protein is a thioredoxin-dependent peroxidase catalyzing the reduction of hydrogen peroxide and organic hydroperoxides.Furthermore, the GPXH gene seems to encode a dual-targeted protein, predicted to be localized both in the chloroplast and the cytoplasm, which is active with either plastidic TRXy or cytosolic TRXh1. Putative dual-targeting is achieved by alternative transcription and translation start sites expressed independently from either a TATA-box or an Initiator core promoter. Expression of both transcripts was upregulated by photooxidative stress even though with different strengths. The induction required the presence of the core promoter sequences and multiple upstream regulatory elements including a Sp1-like element and an earlier identified CRE/AP-1 homologous sequence. This element was further characterized by mutation analysis but could not be confirmed to be a consensus CRE or AP1 element. Instead, it rather seems to be another member of the large group of TGAC-transcription factor binding sites found to be involved in the response of different genes to oxidative stress.
Collapse
Affiliation(s)
- Beat B Fischer
- Department of Environmental Toxicology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600 Duebendorf, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
202
|
Halusková L, Valentovicová K, Huttová J, Mistrík I, Tamás L. Effect of abiotic stresses on glutathione peroxidase and glutathione S-transferase activity in barley root tips. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2009; 47:1069-74. [PMID: 19733091 DOI: 10.1016/j.plaphy.2009.08.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 07/08/2009] [Accepted: 08/14/2009] [Indexed: 05/21/2023]
Abstract
In the present work we investigated the activity of glutathione S-transferase (GST) and glutathione peroxidase (GPX) in barley root tip and their relation to root growth inhibition induced by different abiotic stresses. Cadmium-induced root growth inhibition is strongly correlated with increased GST and GPX activity. Similarly, strong induction of GPX and GST activity was observed in Hg-treated root tips, where also the highest root growth inhibition was detected. Relationship between increased GST activity and root growth inhibition was also observed during other heavy metal treatments. On the other hand, only a slight increase of GPX activity was observed after application of Pb, Ni, and Zn, while Co did not affect GPX activity. Similarly to Hg and Cd, Cu treatment caused a strong increase in GPX activity. GPX activity in barley root tips was not affected by cold, heat or drought treatment and only a slight increase was observed after salt or H(2)O(2) treatment. Apart from salt treatment, only a weak increase in GST activity was observed during heat, drought and H(2)O(2) stresses, while during cold treatment its activity slightly decreased. Some detected differences in the spatial distribution of GST and GPX activity along the root tip suggests that at least two proteins are responsible for these activities. These proteins play a crucial role not only during stresses, but also in unstressed seedlings in the differentiation processes of root tip. The application of different inhibitors suggests that the main proportion of these activities detected in barley root tip are probably catalysed by GSTs possessing also GPX activity.
Collapse
Affiliation(s)
- L'ubica Halusková
- Institute of Botany, Slovak Academy of Sciences, Dúbravská cesta 14, SK-84523 Bratislava, Slovak Republic
| | | | | | | | | |
Collapse
|
203
|
Van Aken O, Zhang B, Carrie C, Uggalla V, Paynter E, Giraud E, Whelan J. Defining the mitochondrial stress response in Arabidopsis thaliana. MOLECULAR PLANT 2009; 2:1310-24. [PMID: 19995732 DOI: 10.1093/mp/ssp053] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
To obtain a global overview of how mitochondria respond to stress, we aimed to define the plant mitochondrial stress response (MSR). By combining a set of 1196 Arabidopsis thaliana genes that putatively encode mitochondrial proteins with 16 microarray experiments on stress-related conditions, 45 nuclear encoded genes were defined as widely stress-responsive. Using green fluorescent protein (GFP) fusion assays, the mitochondrial targeting of a large number of these proteins was tested, confirming in total 26 proteins as mitochondrially targeted. Several of these proteins were observed to be dual targeted to mitochondria and plastids, including the small heat shock proteins sHSP23.5 and sHSP23.6. In addition to the well defined stress components of mitochondria, such as alternative oxidases, nicotinamide adenine dinucleotide (NAD(P)H) dehydrogenases, and heat shock proteins, a variety of other proteins, many with unknown function, were identified. The mitochondrial carrier protein family was over-represented in the stress-responsive genes, suggesting that stress induces altered needs for metabolite transport across the mitochondrial inner membrane. Although the genes encoding many of these proteins contain common cis-acting regulatory elements, it was apparent that a number of distinct regulatory processes or signals likely triggered the MSR. Therefore, these genes provide new model systems to study mitochondrial retrograde regulation, in addition to the widely used alternative oxidase model. Additionally, as changes in proteins responsive to stress did not correlate well with changes at a transcript level, it suggests that post-transcriptional mechanisms also play an important role in defining the MSR.
Collapse
Affiliation(s)
- Olivier Van Aken
- ARC Centre of Excellence in Plant Energy Biology, MCS Building M316, University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia, Australia
| | | | | | | | | | | | | |
Collapse
|
204
|
Komatsu S, Yamamoto R, Nanjo Y, Mikami Y, Yunokawa H, Sakata K. A comprehensive analysis of the soybean genes and proteins expressed under flooding stress using transcriptome and proteome techniques. J Proteome Res 2009; 8:4766-78. [PMID: 19658438 DOI: 10.1021/pr900460x] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The inducible genes and proteins were analyzed using transcriptome and proteome techniques to explore the mechanisms underlying soybean response to flooding stress. Soybean seedlings were germinated for 2 days and subjected to flooding for 12 h, and the total RNAs and proteins were extracted from the root and hypocotyl. High-coverage gene expression profiling analysis as transcriptome technique was performed. Ninety-seven out of the 29,388 peaks observed demonstrated a greater than 25-fold change following 12 h of flood-induced stress. Furthermore, 34 proteins out of 799 proteins were changed by 12 h stress. Genes associated with alcohol fermentation, ethylene biosynthesis, pathogen defense, and cell wall loosening were significantly up-regulated. Hemoglobin, acid phosphatase, and Kunitz trypsin protease inhibitor were altered at both transcriptional and translational levels. Reactive oxygen species scavengers and chaperons were changed only at the translational level. It is suggested that the early response of soybean under flooding might be important stress adaptation to ensure survival against not only hypoxia but also the direct damage of cell by water.
Collapse
Affiliation(s)
- Setsuko Komatsu
- National Institute of Crop Science, Tsukuba 305-8518, Japan.
| | | | | | | | | | | |
Collapse
|
205
|
Bae YA, Cai GB, Kim SH, Zo YG, Kong Y. Modular evolution of glutathione peroxidase genes in association with different biochemical properties of their encoded proteins in invertebrate animals. BMC Evol Biol 2009; 9:72. [PMID: 19344533 PMCID: PMC2679728 DOI: 10.1186/1471-2148-9-72] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 04/06/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phospholipid hydroperoxide glutathione peroxidases (PHGPx), the most abundant isoforms of GPx families, interfere directly with hydroperoxidation of lipids. Biochemical properties of these proteins vary along with their donor organisms, which has complicated the phylogenetic classification of diverse PHGPx-like proteins. Despite efforts for comprehensive analyses, the evolutionary aspects of GPx genes in invertebrates remain largely unknown. RESULTS We isolated GPx homologs via in silico screening of genomic and/or expressed sequence tag databases of eukaryotic organisms including protostomian species. Genes showing strong similarity to the mammalian PHGPx genes were commonly found in all genomes examined. GPx3- and GPx7-like genes were additionally detected from nematodes and platyhelminths, respectively. The overall distribution of the PHGPx-like proteins with different biochemical properties was biased across taxa; selenium- and glutathione (GSH)-dependent proteins were exclusively detected in platyhelminth and deuterostomian species, whereas selenium-independent and thioredoxin (Trx)-dependent enzymes were isolated in the other taxa. In comparison of genomic organization, the GSH-dependent PHGPx genes showed a conserved architectural pattern, while their Trx-dependent counterparts displayed complex exon-intron structures. A codon for the resolving Cys engaged in reductant binding was found to be substituted in a series of genes. Selection pressure to maintain the selenocysteine codon in GSH-dependent genes also appeared to be relaxed during their evolution. With the dichotomized fashion in genomic organizations, a highly polytomic topology of their phylogenetic trees implied that the GPx genes have multiple evolutionary intermediate forms. CONCLUSION Comparative analysis of invertebrate GPx genes provides informative evidence to support the modular pathways of GPx evolution, which have been accompanied with sporadic expansion/deletion and exon-intron remodeling. The differentiated enzymatic properties might be acquired by the evolutionary relaxation of selection pressure and/or biochemical adaptation to the acting environments. Our present study would be beneficial to get detailed insights into the complex GPx evolution, and to understand the molecular basis of the specialized physiological implications of this antioxidant system in their respective donor organisms.
Collapse
Affiliation(s)
- Young-An Bae
- Department of Molecular Parasitology, Sungkyunkwan University School of Medicine and Center for Molecular Medicine, Samsung Biomedical Research Institute, Suwon, Gyeonggi-do 440-746, Korea.
| | | | | | | | | |
Collapse
|
206
|
Hashiguchi A, Sakata K, Komatsu S. Proteome analysis of early-stage soybean seedlings under flooding stress. J Proteome Res 2009; 8:2058-69. [PMID: 19714819 DOI: 10.1021/pr801051m] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Proteomic analyses of soybean seedlings responding to flooding were conducted to identify proteins involved in such response. Soybean was germinated for 48 h and then subjected to flooding stress for 6-48 h. Proteomic analysis of hypocotyl and root was used in a time-dependent manner, and altered proteins were identified using soybean protein data file constructed for this research. Under flooding stress, 35 proteins were up-regulated, whereas 16 proteins were down-regulated at a 24-h time point. Changes in energy generation was recognized because several glycolytic enzymes were up-regulated. General stress response was also shown to occur as various reactive oxygen species scavengers were up-regulated. Other identified proteins with diverse functional categories suggest that flooding stress includes not only hypoxic stress, but also other stresses such as weak light, disease, and water stresses. In addition, proteins with unknown functions were shown to be positioned as hubs which activate other proteins in system response networks by protein-protein interaction analysis, suggesting that this type of interaction analysis is useful for screening of important factors in plant response to environmental stresses.
Collapse
|
207
|
Marri L, Zaffagnini M, Collin V, Issakidis-Bourguet E, Lemaire SD, Pupillo P, Sparla F, Miginiac-Maslow M, Trost P. Prompt and easy activation by specific thioredoxins of calvin cycle enzymes of Arabidopsis thaliana associated in the GAPDH/CP12/PRK supramolecular complex. MOLECULAR PLANT 2009; 2:259-69. [PMID: 19825612 DOI: 10.1093/mp/ssn061] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The Calvin cycle enzymes glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK) can form under oxidizing conditions a supramolecular complex with the regulatory protein CP12. Both GAPDH and PRK activities are inhibited within the complex, but they can be fully restored by reduced thioredoxins (TRXs). We have investigated the interactions of eight different chloroplast thioredoxin isoforms (TRX f1, m1, m2, m3, m4, y1, y2, x) with GAPDH (A(4), B(4), and B(8) isoforms), PRK and CP12 (isoform 2), all from Arabidopsis thaliana. In the complex, both A(4)-GAPDH and PRK were promptly activated by TRX f1, or more slowly by TRXs m1 and m2, but all other TRXs were ineffective. Free PRK was regulated by TRX f1, m1, or m2, while B(4)- and B(8)-GAPDH were absolutely specific for TRX f1. Interestingly, reductive activation of PRK caged in the complex was much faster than reductive activation of free oxidized PRK, and activation of A(4)-GAPDH in the complex was much faster (and less demanding in terms of reducing potential) than activation of free oxidized B(4)- or B(8)-GAPDH. It is proposed that CP12-assembled supramolecular complex may represent a reservoir of inhibited enzymes ready to be released in fully active conformation following reduction and dissociation of the complex by TRXs upon the shift from dark to low light. On the contrary, autonomous redox-modulation of GAPDH (B-containing isoforms) would be more suited to conditions of very active photosynthesis.
Collapse
Affiliation(s)
- Lucia Marri
- Laboratory of Molecular Plant Physiology, Department of Experimental Evolutionary Biology, University of Bologna, Via Irnerio 42, I-40126 Bologna, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
208
|
Bashandy T, Taconnat L, Renou JP, Meyer Y, Reichheld JP. Accumulation of flavonoids in an ntra ntrb mutant leads to tolerance to UV-C. MOLECULAR PLANT 2009; 2:249-58. [PMID: 19825611 DOI: 10.1093/mp/ssn065] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
NADPH-dependent thioredoxin reductases (NTRs) are key regulatory enzymes determining the redox state of thioredoxins. There are two genes encoding NTRs (NTRA and NTRB) in the Arabidopsis genome, each encoding a cytosolic and a mitochondrial isoform. A double ntra ntrb mutant has recently been characterized and shows slower plant growth, slightly wrinkled seeds and a remarkable hypersensitivity to buthionine sulfoximine (BSO), a specific inhibitor of glutathione biosynthesis. In this paper, we demonstrate that this mutant also accumulates higher level of flavonoids. Analysis of transcriptome data showed that several genes of the flavonoid pathway are overexpressed in the ntra ntrb mutant. Accumulation of flavonoids is generally considered a hallmark of plant stress. Nevertheless, no elevation of the expression of genes encoding ROS-detoxification enzymes was observed, suggesting that the ntra ntrb plants do not suffer from oxidative disease. Another hypothesis suggests that flavonoids are specifically synthesized in the ntra ntrb mutant in order to rescue the inactivation of NTR. To test this, the ntra ntrb mutant was crossed with transparent testa 4 (tt4) plants with a mutation in the gene encoding the first enzyme in flavonoid biosynthesis. As ntra ntrb plants are more resistant to UV-C treatment than wild-type plants, this higher resistance was abolished in the ntra ntrb tt4 mutant, suggesting that accumulation of flavonoids in the ntra ntrb mutant protects plants against UV-light.
Collapse
Affiliation(s)
- Talaat Bashandy
- Laboratoire Génome et Développement des Plantes, Université de Perpignan, UMR CNRS 5096, 52 avenue Paul Alduy, 66860 Perpignan, France
| | | | | | | | | |
Collapse
|
209
|
Tripathi BN, Bhatt I, Dietz KJ. Peroxiredoxins: a less studied component of hydrogen peroxide detoxification in photosynthetic organisms. PROTOPLASMA 2009; 235:3-15. [PMID: 19219525 DOI: 10.1007/s00709-009-0032-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Accepted: 01/08/2009] [Indexed: 05/21/2023]
Abstract
Peroxiredoxins (Prx) are ubiquitous thiol-dependent peroxidases capable of reducing a broad range of toxic peroxides and peroxinitrites. A cysteinyl residue of peroxiredoxins reacts with the peroxides as primary catalytic center and oxidizes to sulfenic acid. The regeneration of the reduced form of Prx is required as a next step to allow its entry into next catalytic cycle. Several proteins, such as thioredoxin, glutaredoxin, cyclophilin, among others, are known to facilitate the regeneration of the reduced (catalytically active) form of Prx in plants. Based on the cysteine residues conserved in the deduced amino acid sequence and their catalytic mechanisms, four groups of peroxiredoxins have been distinguished in plants, namely, 1-Cys Prx, 2-Cys Prx, Type II Prx and Prx Q. Peroxiredoxins are known to play an important role in combating the reactive oxygen species generated at the level of electron transport activities in the plant exposed to different types of biotic and abiotic stresses. In addition to their role in antioxidant defense mechanisms in plants, they also modulate redox signaling during development and adaptation. Besides these general properties, peroxiredoxins have been shown to protect DNA from damage in vitro and in vivo. They also regulate metabolism in thylakoids and mitochondria. The present review summarizes the most updated information on the structure and catalysis of Prx and their functional importance in plant metabolism.
Collapse
Affiliation(s)
- Bhumi Nath Tripathi
- Department of Bioscience and Biotechnology, Banasthali University, Banasthali, 304022, Rajasthan, India.
| | | | | |
Collapse
|
210
|
Lindahl M, Kieselbach T. Disulphide proteomes and interactions with thioredoxin on the track towards understanding redox regulation in chloroplasts and cyanobacteria. J Proteomics 2009; 72:416-38. [PMID: 19185068 DOI: 10.1016/j.jprot.2009.01.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 12/31/2008] [Accepted: 01/07/2009] [Indexed: 12/11/2022]
Abstract
Light-dependent disulphide/dithiol exchange catalysed by thioredoxin is a classical example of redox regulation of chloroplast enzymes. Recent proteome studies have mapped thioredoxin target proteins in all chloroplast compartments ranging from the envelope to the thylakoid lumen. Progress in the methodologies has made it possible to identify which cysteine residues interact with thioredoxin and to tackle membrane-bound thioredoxin targets. To date, more than hundred targets of thioredoxin and glutaredoxin have been found in plastids from Arabidopsis, spinach, poplar and Chlamydomonas reinhardtii. Thioredoxin-mediated redox control appears to be a feature of the central pathways for assimilation and storage of carbon, sulphur and nitrogen, as well as for translation and protein folding. Cyanobacteria are oxygenic photosynthetic prokaryotes, which presumably share a common ancestor with higher plant plastids. As in chloroplasts, cyanobacterial thioredoxins receive electrons from the photosynthetic electron transport, and thioredoxin-targeted proteins are therefore highly interesting in the context of acclimation of these organisms to their environment. Studies of the unicellular model cyanobacterium Synechocystis sp. PCC 6803 revealed 77 thioredoxin target proteins. Notably, the functions of all these thioredoxin targets highlight essentially the same processes as those described in chloroplasts suggesting that thioredoxin-mediated redox signalling is equally significant in oxygenic photosynthetic prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Marika Lindahl
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Centro de Investigaciones Científicas Isla de la Cartuja, Seville, Spain
| | | |
Collapse
|
211
|
Ramos J, Matamoros MA, Naya L, James EK, Rouhier N, Sato S, Tabata S, Becana M. The glutathione peroxidase gene family of Lotus japonicus: characterization of genomic clones, expression analyses and immunolocalization in legumes. THE NEW PHYTOLOGIST 2009; 181:103-114. [PMID: 18826485 DOI: 10.1111/j.1469-8137.2008.02629.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Despite the multiple roles played by antioxidants in rhizobia-legume symbioses, little is known about glutathione peroxidases (GPXs) in legumes. Here the characterization of six GPX genes of Lotus japonicus is reported. Expression of GPX genes was analysed by quantitative reverse transcription-polymerase chain reaction in L. japonicus and Lotus corniculatus plants exposed to various treatments known to generate reactive oxygen and/or nitrogen species. LjGPX1 and LjGPX3 were the most abundantly expressed genes in leaves, roots and nodules. Compared with roots, LjGPX1 and LjGPX6 were highly expressed in leaves and LjGPX3 and LjGPX6 in nodules. In roots, salinity decreased GPX4 expression, aluminium decreased expression of the six genes, and cadmium caused up-regulation of GPX3, GPX4 and GPX5 after 1 h and down-regulation of GPX1, GPX2, GPX4 and GPX6 after 3-24 h. Exposure of roots to sodium nitroprusside (a nitric oxide donor) for 1 h increased the mRNA levels of GPX4 and GPX6 by 3.3- and 30-fold, respectively. Thereafter, the GPX6 mRNA level remained consistently higher than that of the control. Immunogold labelling revealed the presence of GPX proteins in root and nodule amyloplasts and in leaf chloroplasts of L. japonicus and other legumes. Labelling was associated with starch grains. These results underscore the differential regulation of GPX expression in response to cadmium, aluminium and nitric oxide, and strongly support a role for GPX6 and possibly other GPX genes in stress and/or metabolic signalling.
Collapse
Affiliation(s)
- Javier Ramos
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apdo 13034, 50080 Zaragoza, Spain;College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK;UMR 1136 Tree-Microbes Interactions, IFR110, Nancy University, Vandoeuvre-les-Nancy, France;Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Manuel A Matamoros
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apdo 13034, 50080 Zaragoza, Spain;College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK;UMR 1136 Tree-Microbes Interactions, IFR110, Nancy University, Vandoeuvre-les-Nancy, France;Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Loreto Naya
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apdo 13034, 50080 Zaragoza, Spain;College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK;UMR 1136 Tree-Microbes Interactions, IFR110, Nancy University, Vandoeuvre-les-Nancy, France;Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Euan K James
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apdo 13034, 50080 Zaragoza, Spain;College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK;UMR 1136 Tree-Microbes Interactions, IFR110, Nancy University, Vandoeuvre-les-Nancy, France;Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Nicolas Rouhier
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apdo 13034, 50080 Zaragoza, Spain;College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK;UMR 1136 Tree-Microbes Interactions, IFR110, Nancy University, Vandoeuvre-les-Nancy, France;Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Shusei Sato
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apdo 13034, 50080 Zaragoza, Spain;College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK;UMR 1136 Tree-Microbes Interactions, IFR110, Nancy University, Vandoeuvre-les-Nancy, France;Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Satoshi Tabata
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apdo 13034, 50080 Zaragoza, Spain;College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK;UMR 1136 Tree-Microbes Interactions, IFR110, Nancy University, Vandoeuvre-les-Nancy, France;Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Manuel Becana
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apdo 13034, 50080 Zaragoza, Spain;College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK;UMR 1136 Tree-Microbes Interactions, IFR110, Nancy University, Vandoeuvre-les-Nancy, France;Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| |
Collapse
|
212
|
Cai GB, Bae YA, Kim SH, Sohn WM, Lee YS, Jiang MS, Kim TS, Kong Y. Vitellocyte-specific expression of phospholipid hydroperoxide glutathione peroxidases in Clonorchis sinensis. Int J Parasitol 2008; 38:1613-23. [DOI: 10.1016/j.ijpara.2008.05.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 05/16/2008] [Accepted: 05/20/2008] [Indexed: 11/26/2022]
|
213
|
Rouhier N, Koh CS, Gelhaye E, Corbier C, Favier F, Didierjean C, Jacquot JP. Redox based anti-oxidant systems in plants: Biochemical and structural analyses. Biochim Biophys Acta Gen Subj 2008; 1780:1249-60. [DOI: 10.1016/j.bbagen.2007.12.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 12/11/2007] [Accepted: 12/17/2007] [Indexed: 12/18/2022]
|
214
|
Affiliation(s)
- Abderrakib Zahid
- Université de Toulouse–Ecole d'Ingénieurs de Purpan, Laboratoire d'Agrophysiologie, UPSP/DGER 115, 75 voie du Toec, BP 57611, 31076 Toulouse cedex 03, France
| | - Samia Afoulous
- Université de Toulouse–Ecole d'Ingénieurs de Purpan, Laboratoire d'Agrophysiologie, UPSP/DGER 115, 75 voie du Toec, BP 57611, 31076 Toulouse cedex 03, France
| | - Roland Cazalis
- Université de Toulouse–Ecole d'Ingénieurs de Purpan, Laboratoire d'Agrophysiologie, UPSP/DGER 115, 75 voie du Toec, BP 57611, 31076 Toulouse cedex 03, France
- Corresponding author. Phone: 33-561152989. Fax: 33-561153060. E-mail address:
| |
Collapse
|
215
|
Melchers J, Diechtierow M, Fehér K, Sinning I, Tews I, Krauth-Siegel RL, Muhle-Goll C. Structural basis for a distinct catalytic mechanism in Trypanosoma brucei tryparedoxin peroxidase. J Biol Chem 2008; 283:30401-11. [PMID: 18684708 PMCID: PMC2662087 DOI: 10.1074/jbc.m803563200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 07/24/2008] [Indexed: 12/22/2022] Open
Abstract
Trypanosoma brucei, the causative agent of African sleeping sickness, encodes three cysteine homologues (Px I-III) of classical selenocysteine-containing glutathione peroxidases. The enzymes obtain their reducing equivalents from the unique trypanothione (bis(glutathionyl)spermidine)/tryparedoxin system. During catalysis, these tryparedoxin peroxidases cycle between an oxidized form with an intramolecular disulfide bond between Cys(47) and Cys(95) and the reduced peroxidase with both residues in the thiol state. Here we report on the three-dimensional structures of oxidized T. brucei Px III at 1.4A resolution obtained by x-ray crystallography and of both the oxidized and the reduced protein determined by NMR spectroscopy. Px III is a monomeric protein unlike the homologous poplar thioredoxin peroxidase (TxP). The structures of oxidized and reduced Px III are essentially identical in contrast to what was recently found for TxP. In Px III, Cys(47), Gln(82), and Trp(137) do not form the catalytic triad observed in the selenoenzymes, and related proteins and the latter two residues are unaffected by the redox state of the protein. The mutational analysis of three conserved lysine residues in the vicinity of the catalytic cysteines revealed that exchange of Lys(107) against glutamate abrogates the reduction of hydrogen peroxide, whereas Lys(97) and Lys(99) play a crucial role in the interaction with tryparedoxin.
Collapse
Affiliation(s)
- Johannes Melchers
- Department of Structure and Biocomputing, EMBL, 69117 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
216
|
Abstract
Thiol/selenol peroxidases are ubiquitous nonheme peroxidases. They are divided into two major subfamilies: peroxiredoxins (PRXs) and glutathione peroxidases (GPXs). PRXs are present in diverse subcellular compartments and divided into four types: 2-cys PRX, 1-cys PRX, PRX-Q, and type II PRX (PRXII). In mammals, most GPXs are selenoenzymes containing a highly reactive selenocysteine in their active site while yeast and land plants are devoid of selenoproteins but contain nonselenium GPXs. The presence of a chloroplastic 2-cys PRX, a nonselenium GPX, and two selenium-dependent GPXs has been reported in the unicellular green alga Chlamydomonas reinhardtii. The availability of the Chlamydomonas genome sequence offers the opportunity to complete our knowledge on thiol/selenol peroxidases in this organism. In this article, Chlamydomonas PRX and GPX families are presented and compared to their counterparts in Arabidopsis, human, yeast, and Synechocystis sp. A summary of the current knowledge on each family of peroxidases, especially in photosynthetic organisms, phylogenetic analyses, and investigations of the putative subcellular localization of each protein and its relative expression level, on the basis of EST data, are presented. We show that Chlamydomonas PRX and GPX families share some similarities with other photosynthetic organisms but also with human cells. The data are discussed in view of recent results suggesting that these enzymes are important scavengers of reactive oxygen species (ROS) and reactive nitrogen species (RNS) but also play a role in ROS signaling.
Collapse
|
217
|
Zhang WJ, He YX, Yang Z, Yu J, Chen Y, Zhou CZ. Crystal structure of glutathione-dependent phospholipid peroxidase Hyr1 from the yeast Saccharomyces cerevisiae. Proteins 2008; 73:1058-62. [DOI: 10.1002/prot.22220] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
218
|
Toppo S, Vanin S, Bosello V, Tosatto SCE. Evolutionary and structural insights into the multifaceted glutathione peroxidase (Gpx) superfamily. Antioxid Redox Signal 2008; 10:1501-14. [PMID: 18498225 DOI: 10.1089/ars.2008.2057] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Glutathione peroxidase (GPx) is a widespread protein superfamily found in many organisms throughout all kingdoms of life. Although it was initially thought to use only glutathione as reductant, recent evidence suggests that the majority of GPxs have specificity for thioredoxin. We present a thorough in silico analysis performed on 724 sequences and 12 structures aimed to clarify the evolutionary, structural, and sequence determinants of GPx specificity. Structural variability was found to be limited to only two regions, termed oligomerization loop and functional helix, which modulate both reduced substrate specificity and oligomerization state. We show that mammalian GPx-1, the canonic selenocysteine-based tetrameric glutathione peroxidase, is a recent "invention" during evolution. Contrary to common belief, cysteine-based thioredoxin-specific GPx, which we propose the TGPx, are both more common and more ancient. This raises interesting evolutionary considerations regarding oligomerization and the use of active-site selenocysteine residue. In addition, phylogenetic analysis has revealed the presence of a novel member belonging to the GPx superfamily in Mammalia and Amphibia, for which we propose the name GPx-8, following the present numeric order of the mammalian GPxs.
Collapse
Affiliation(s)
- Stefano Toppo
- Department of Biological Chemistry, University of Padova, Italy.
| | | | | | | |
Collapse
|
219
|
Advances of calcium signals involved in plant anti-drought. C R Biol 2008; 331:587-96. [DOI: 10.1016/j.crvi.2008.03.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 03/31/2008] [Accepted: 03/31/2008] [Indexed: 01/23/2023]
|
220
|
Margis R, Dunand C, Teixeira FK, Margis-Pinheiro M. Glutathione peroxidase family - an evolutionary overview. FEBS J 2008; 275:3959-70. [DOI: 10.1111/j.1742-4658.2008.06542.x] [Citation(s) in RCA: 310] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
221
|
Abstract
Forty years ago, ferredoxin (Fdx) was shown to activate fructose 1,6-bisphosphatase in illuminated chloroplast preparations, thereby laying the foundation for the field now known as "redox biology." Enzyme activation was later shown to require the ubiquitous protein thioredoxin (Trx), reduced photosynthetically by Fdx via an enzyme then unknown-ferredoxin:thioredoxin reductase (FTR). These proteins, Fdx, FTR, and Trx, constitute a regulatory ensemble, the "Fdx/Trx system." The redox biology field has since grown beyond all expectations and now embraces a spectrum of processes throughout biology. Progress has been notable with plants that possess not only the plastid Fdx/Trx system, but also the earlier known NADP/Trx system in the cytosol, endoplasmic reticulum, and mitochondria. Plants contain at least 19 types of Trx (nine in chloroplasts). In this review, we focus on the structure and mechanism of action of members of the photosynthetic Fdx/Trx system and on biochemical processes linked to Trx. We also summarize recent evidence that extends the Fdx/Trx system to amyloplasts-heterotrophic plastids functional in the biosynthesis of starch and other cell components. The review highlights the plant as a model system to uncover principles of redox biology that apply to other organisms.
Collapse
Affiliation(s)
- Peter Schürmann
- Laboratoire de Biologie Moléculaire et Cellulaire, Université de Neuchâtel, Neuchâtel, Switzerland.
| | | |
Collapse
|
222
|
Gama F, Bréhélin C, Gelhaye E, Meyer Y, Jacquot JP, Rey P, Rouhier N. Functional analysis and expression characteristics of chloroplastic Prx IIE. PHYSIOLOGIA PLANTARUM 2008; 133:599-610. [PMID: 18422870 DOI: 10.1111/j.1399-3054.2008.01097.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Peroxiredoxins (Prxs) are ubiquitous thiol-dependent peroxidases capable of eliminating a variety of peroxides through reactive catalytic cysteines, which are regenerated by reducing systems. Based on amino acid sequences and their mode of catalysis, five groups of thiol peroxidases have been distinguished in plants, and type II Prx is one of them with representatives in many sub-cellular compartments. The mature form of poplar chloroplastic Prx IIE was expressed as a recombinant protein in Escherichia coli. The protein is able to reduce H2O2 and tert-butyl hydroperoxide and is regenerated by both glutaredoxin (Grx) and thioredoxin (Trx) systems. Nevertheless, compared with Trxs, Grxs, and more especially chloroplastic Grx S12, are far more efficient reductants towards Prx IIE. The expression of Prx IIE at both the mRNA and protein levels as a function of organ type and abiotic stress conditions was investigated. Western blot analysis revealed that Prx IIE gene is constitutively expressed in Arabidopsis thaliana, mostly in young and mature leaves and in flowers. Under photo-oxidative treatment and water deficit, almost no change was observed in the abundance of Prx IIE in A. thaliana, while the level of Prx Q (one of the two other chloroplastic Prxs with 2-Cys Prx) increased in response to both stresses, indicating that plastidic members of the Prx family exhibit specific patterns of expression under stress.
Collapse
Affiliation(s)
- Filipe Gama
- Unité Mixte de Recherches 1136 INRA UHP (Interactions Arbres Microorganismes), IFR 110 Génomique Ecophysiologie et Ecologie Fonctionnelles, Université Henri Poincaré BP 239, 54506 Vandoeuvre-lès-Nancy Cedex, France
| | | | | | | | | | | | | |
Collapse
|
223
|
Koh CS, Navrot N, Didierjean C, Rouhier N, Hirasawa M, Knaff DB, Wingsle G, Samian R, Jacquot JP, Corbier C, Gelhaye E. An atypical catalytic mechanism involving three cysteines of thioredoxin. J Biol Chem 2008; 283:23062-72. [PMID: 18552403 DOI: 10.1074/jbc.m802093200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Unlike other thioredoxins h characterized so far, a poplar thioredoxin of the h type, PtTrxh4, is reduced by glutathione and glutaredoxin (Grx) but not NADPH:thioredoxin reductase (NTR). PtTrxh4 contains three cysteines: one localized in an N-terminal extension (Cys(4)) and two (Cys(58) and Cys(61)) in the classical thioredoxin active site ((57)WCGPC(61)). The property of a mutant in which Cys(58) was replaced by serine demonstrates that it is responsible for the initial nucleophilic attack during the catalytic cycle. The observation that the C4S mutant is inactive in the presence of Grx but fully active when dithiothreitol is used as a reductant indicates that Cys(4) is required for the regeneration of PtTrxh4 by Grx. Biochemical and x-ray crystallographic studies indicate that two intramolecular disulfide bonds involving Cys(58) can be formed, linking it to either Cys(61) or Cys(4). We propose thus a four-step disulfide cascade mechanism involving the transient glutathionylation of Cys(4) to convert this atypical thioredoxin h back to its active reduced form.
Collapse
Affiliation(s)
- Cha San Koh
- Equipe Biocristallographie, UMR 7036 CNRS-Université Henri Poincaré, URAFPA, Equipe PB2P, Faculté des Sciences et Techniques, Nancy Université, BP 239, 54506 Vandoeuvre Cedex France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
224
|
Morel M, Kohler A, Martin F, Gelhaye E, Rouhier N. Comparison of the thiol-dependent antioxidant systems in the ectomycorrhizal Laccaria bicolor and the saprotrophic Phanerochaete chrysosporium. THE NEW PHYTOLOGIST 2008; 180:391-407. [PMID: 18513221 DOI: 10.1111/j.1469-8137.2008.02498.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Sequencing of the Laccaria bicolor and Phanerochaete chrysosporium genomes, together with the availability of many fungal genomes, allow careful comparison to be made of these two basidiomycetes, which possess a different way of life (either symbiotic or saprophytic), with other fungi. Central to the antioxidant systems are superoxide dismutases, catalases and thiol-dependent peroxidases (Tpx). The two reducing systems (thioredoxin (Trx) and glutathione/glutaredoxin (Grx)) are of particular importance against oxidative insults, both for detoxification, through the regeneration of thiol-peroxidases, and for developmental, physiological and signalling processes. Among those thiol-dependent antioxidant systems, special emphasis is given to the redoxin and methionine sulfoxide reductase (Msr) multigenic families. The genes coding for these enzymes were identified in the L. bicolor and P. chrysosporium genomes, were correctly annotated, and the gene content, organization and distribution were compared with other fungi. Expression of the Laccaria genes was also compiled from microarray data. A complete classification, based essentially on gene structure, on phylogenetic and sequence analysis, and on existing experimental data, was proposed. Comparison of the gene content of fungi from all phyla did not show huge differences for multigenic families in the reactive oxygen species (ROS) detoxification network, although some protein subgroups were absent in some fungi.
Collapse
Affiliation(s)
- Mélanie Morel
- Unité Mixte de Recherches 1136 Interactions Arbres/Microorganismes INRA/Nancy Université, IFR 110 Génomique Ecologie et Ecophysiologie Fonctionnelles. Faculté des Sciences BP 239, 54506 Vandoeuvre-lès-Nancy Cedex, France
| | - Annegret Kohler
- Unité Mixte de Recherches 1136 Interactions Arbres/Microorganismes INRA/Nancy Université, IFR 110 Génomique Ecologie et Ecophysiologie Fonctionnelles. Faculté des Sciences BP 239, 54506 Vandoeuvre-lès-Nancy Cedex, France
| | - Francis Martin
- Unité Mixte de Recherches 1136 Interactions Arbres/Microorganismes INRA/Nancy Université, IFR 110 Génomique Ecologie et Ecophysiologie Fonctionnelles. Faculté des Sciences BP 239, 54506 Vandoeuvre-lès-Nancy Cedex, France
| | - Eric Gelhaye
- Unité Mixte de Recherches 1136 Interactions Arbres/Microorganismes INRA/Nancy Université, IFR 110 Génomique Ecologie et Ecophysiologie Fonctionnelles. Faculté des Sciences BP 239, 54506 Vandoeuvre-lès-Nancy Cedex, France
| | - Nicolas Rouhier
- Unité Mixte de Recherches 1136 Interactions Arbres/Microorganismes INRA/Nancy Université, IFR 110 Génomique Ecologie et Ecophysiologie Fonctionnelles. Faculté des Sciences BP 239, 54506 Vandoeuvre-lès-Nancy Cedex, France
| |
Collapse
|
225
|
Morgan MJ, Lehmann M, Schwarzländer M, Baxter CJ, Sienkiewicz-Porzucek A, Williams TCR, Schauer N, Fernie AR, Fricker MD, Ratcliffe RG, Sweetlove LJ, Finkemeier I. Decrease in manganese superoxide dismutase leads to reduced root growth and affects tricarboxylic acid cycle flux and mitochondrial redox homeostasis. PLANT PHYSIOLOGY 2008; 147:101-14. [PMID: 18337490 PMCID: PMC2330298 DOI: 10.1104/pp.107.113613] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Accepted: 03/03/2008] [Indexed: 05/18/2023]
Abstract
Superoxide dismutases (SODs) are key components of the plant antioxidant defense system. While plastidic and cytosolic isoforms have been extensively studied, the importance of mitochondrial SOD at a cellular and whole-plant level has not been established. To address this, transgenic Arabidopsis (Arabidopsis thaliana) plants were generated in which expression of AtMSD1, encoding the mitochondrial manganese (Mn)SOD, was suppressed by antisense. The strongest antisense line showed retarded root growth even under control growth conditions. There was evidence for a specific disturbance of mitochondrial redox homeostasis in seedlings grown in liquid culture: a mitochondrially targeted redox-sensitive green fluorescent protein was significantly more oxidized in the MnSOD-antisense background. In contrast, there was no substantial change in oxidation of cytosolically targeted redox-sensitive green fluorescent protein, nor changes in antioxidant defense components. The consequences of altered mitochondrial redox status of seedlings were subtle with no widespread increase of mitochondrial protein carbonyls or inhibition of mitochondrial respiratory complexes. However, there were specific inhibitions of tricarboxylic acid (TCA) cycle enzymes (aconitase and isocitrate dehydrogenase) and an inhibition of TCA cycle flux in isolated mitochondria. Nevertheless, total respiratory CO2 output of seedlings was not decreased, suggesting that the inhibited TCA cycle enzymes can be bypassed. In older, soil-grown plants, redox perturbation was more pronounced with changes in the amount and/or redox poise of ascorbate and glutathione. Overall, the results demonstrate that reduced MnSOD affects mitochondrial redox balance and plant growth. The data also highlight the flexibility of plant metabolism with TCA cycle inhibition having little effect on overall respiratory rates.
Collapse
Affiliation(s)
- Megan J Morgan
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
226
|
Meyer Y, Siala W, Bashandy T, Riondet C, Vignols F, Reichheld JP. Glutaredoxins and thioredoxins in plants. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:589-600. [DOI: 10.1016/j.bbamcr.2007.10.017] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 10/26/2007] [Accepted: 10/30/2007] [Indexed: 12/22/2022]
|
227
|
Collin VC, Eymery F, Genty B, Rey P, Havaux M. Vitamin E is essential for the tolerance of Arabidopsis thaliana to metal-induced oxidative stress. PLANT, CELL & ENVIRONMENT 2008; 31:244-57. [PMID: 17996014 DOI: 10.1111/j.1365-3040.2007.01755.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) plants were grown in a hydroponic culture system for 7 to 14 d in the absence or presence of 75 microM Cd or 75 microM Cu. The Cu treatment resulted in visual leaf symptoms, together with anthocyanin accumulation and loss of turgor. Pronounced lipid peroxidation, which was detected by autoluminescence imaging and malondialdehyde titration, was observed in Cu-treated leaves. The Cd treatment also resulted in loss of leaf pigments but lipid peroxidation and oxidative stress were less pronounced than in the leaves exposed to Cu. Analysis of low-molecular-weight chloroplast and cytosolic antioxidants (ascorbate, glutathione, tocopherols, carotenoids) and antioxidant enzymes (thiol-based reductases and peroxidases) revealed relatively few responses to metal exposure. However, there was a marked increase in vitamin E (alpha-tocopherol) in response to Cd and Cu treatments. Ascorbate increased significantly in Cu-exposed leaves. Other antioxidants either remained stable or decreased in response to metal stress. Transcripts encoding enzymes of the vitamin E biosynthetic pathway were increased in response to metal exposure. In particular, VTE2 mRNA was enhanced in Cu- and Cd-treated plants, while VTE5 and hydroxylpyruvate dioxygenase (HPPD) mRNAs were only up-regulated in Cd-treated plants. Consistent increases in HPPD transcripts and protein were observed. The vitamin E-deficient (vte1) mutant exhibited an enhanced sensitivity towards both metals relative to the wild-type (WT) control. Unlike the vte1 mutants, which showed enhanced lipid peroxidation and oxidative stress in the presence of Cu or Cd, the ascorbate-deficient (vtc2) mutant showed WT responses to metal exposure. Taken together, these results demonstrate that vitamin E plays a crucial role in the tolerance of Arabidopsis to oxidative stress induced by heavy metals such as Cu and Cd.
Collapse
Affiliation(s)
- Valérie C Collin
- Laboratoire d'Ecophysiologie Moléculaire des Plantes, UMR 6191 CNRS-CEA-Université Aix-Marseille II, F-13108 Saint-Paul-lez-Durance, France
| | | | | | | | | |
Collapse
|
228
|
Barbey C, Rouhier N, Haouz A, Navaza A, Jacquot JP. Overproduction, purification, crystallization and preliminary X-ray analysis of the peroxiredoxin domain of a larger natural hybrid protein from Thermotoga maritima. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:29-31. [PMID: 18097097 PMCID: PMC2374002 DOI: 10.1107/s1744309107064391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Accepted: 11/29/2007] [Indexed: 11/10/2022]
Abstract
Thermotoga maritima contains a natural hybrid protein constituted of two moieties: a peroxiredoxin domain at the N-terminus and a nitroreductase domain at the C-terminus. The peroxiredoxin (Prx) domain has been overproduced and purified from Escherichia coli cells. The recombinant Prx domain, which is homologous to bacterial Prx BCP and plant Prx Q, folds properly into a stable protein that possesses biological activity. The recombinant protein was crystallized and synchrotron data were collected to 2.9 A resolution. The crystals belonged to the tetragonal space group I422, with unit-cell parameters a = b = 176.67, c = 141.20 A.
Collapse
Affiliation(s)
- Carole Barbey
- Laboratoire de Biophysique Moléculaire, Cellulaire et Tissulaire, UMR 7033, Université Paris 13, UFR SMBH, 74 Rue Marcel Cachin, 93017 Bobigny Cedex, France.
| | | | | | | | | |
Collapse
|
229
|
Rouhier N, Lemaire SD, Jacquot JP. The role of glutathione in photosynthetic organisms: emerging functions for glutaredoxins and glutathionylation. ANNUAL REVIEW OF PLANT BIOLOGY 2008; 59:143-66. [PMID: 18444899 DOI: 10.1146/annurev.arplant.59.032607.092811] [Citation(s) in RCA: 336] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Glutathione, a tripeptide with the sequence gamma-Glu-Cys-Gly, exists either in a reduced form with a free thiol group or in an oxidized form with a disulfide between two identical molecules. We describe here briefly the pathways involved in the synthesis, reduction, polymerization, and degradation of glutathione, as well as its distribution throughout the plant and its redox buffering capacities. The function of glutathione in xenobiotic and heavy metal detoxification, plant development, and plant-pathogen interactions is also briefly discussed. Several lines of evidence indicate that glutathione and glutaredoxins (GRXs) are implicated in the response to oxidative stress through the regeneration of enzymes involved in peroxide and methionine sulfoxide reduction. Finally, emerging functions for plant GRXs and glutathione concern the regulation of protein activity via glutathionylation and the capacity of some GRXs to bind iron sulfur centers and for some of them to transfer FeS clusters into apoproteins.
Collapse
Affiliation(s)
- Nicolas Rouhier
- Unité Mixte de Recherches, 1136 INRA-UHP Interaction Arbres-Microorganismes, IFR 110 GEEF, Nancy University, Faculté des Sciences, 54506 Vandoeuvre Cedex, France.
| | | | | |
Collapse
|
230
|
Ma LH, Takanishi CL, Wood MJ. Molecular mechanism of oxidative stress perception by the Orp1 protein. J Biol Chem 2007; 282:31429-36. [PMID: 17720812 DOI: 10.1074/jbc.m705953200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In this study we investigated the molecular mechanism by which the Orp1 (Gpx3) protein in Saccharomyces cerevisiae senses and reacts with hydrogen peroxide. Upon exposure to H(2)O(2) Orp1(Cys36) forms a disulfide-bonded complex with the C-terminal domain of the Yap1 protein (Yap1-cCRD). We used 4-nitrobenzo-2-oxa-1,3-diazole to identify a cysteine sulfenic acid (Cys-SOH) modification that forms on Cys(36) of Orp1(Cys36) upon exposure to H(2)O(2). Under similar conditions, neither Cys(82) of Orp1(Cys82) nor Cys(598) of Yap1 forms Cys-SOH. A homology-based molecular model of Orp1 suggests that the structure of the active site of Orp1 is similar to that found in mammalian selenocysteine glutathione peroxidases. Proposed active site residues Gln(70) and Trp(125) form a catalytic triad with Cys(36) in the Orp1 molecular model. The remainder of the active site pocket is formed by Phe(38), Asn(126), and Phe(127), which are evolutionarily conserved residues. We made Q70A and W125A mutants and tested the ability of these mutants to form Cys-SOH in response to H(2)O(2). Both mutants were unable to form Cys-SOH and did not form a H(2)O(2)-inducible disulfide-bonded complex with Yap1-cCRD. The pK(a) of Cys(36) was determined to be 5.1, which is 3.2 pH units lower than that of a free cysteine (8.3). In contrast, Orp1 Cys(82) (the resolving cysteine) has a pK(a) value of 8.3. The pK(a) of Cys(36) in the Q70A and W125A mutants is also 8.3, demonstrating the importance of these residues in modulating the nucleophilic character of Cys(36). Finally, we show that S. cerevisiae strains with ORP1 Q70A and W125A mutations are less tolerant to H(2)O(2) than those containing wild-type ORP1. The results of our study suggest that attempts to identify novel redox-regulated proteins and signal transduction pathways should focus on characterization of low pK(a) cysteines.
Collapse
Affiliation(s)
- Li-Hua Ma
- Department of Environmental Toxicology, University of California, Davis, California 95616, USA
| | | | | |
Collapse
|
231
|
Vieira Dos Santos C, Laugier E, Tarrago L, Massot V, Issakidis-Bourguet E, Rouhier N, Rey P. Specificity of thioredoxins and glutaredoxins as electron donors to two distinct classes of Arabidopsis plastidial methionine sulfoxide reductases B. FEBS Lett 2007; 581:4371-6. [PMID: 17761174 DOI: 10.1016/j.febslet.2007.07.081] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 07/24/2007] [Accepted: 07/26/2007] [Indexed: 12/30/2022]
Abstract
Methionine sulfoxide reductases (MSRs) A and B reduce methionine sulfoxide (MetSO) S- and R-diastereomers, respectively, back to Met using electrons generally supplied by thioredoxin. The physiological reductants for MSRBs remain unknown in plants, which display a remarkable variety of thioredoxins (Trxs) and glutaredoxins (Grxs). Using recombinant proteins, we show that Arabidopsis plastidial MSRB1 and MSRB2, which differ regarding the number of presumed redox-active cysteines, possess specific reductants. Most simple-module Trxs, especially Trx m1 and Trx y2, are preferential and efficient electron donors towards MSRB2, while the double-module CDSP32 Trx and Grxs can reduce only MSRB1. This study identifies novel types of reductants, related to Grxs and peculiar Trxs, for MSRB proteins displaying only one redox-active cysteine.
Collapse
Affiliation(s)
- Christina Vieira Dos Santos
- CEA, DSV, IBEB, SBVME, Laboratoire d'Ecophysiologie Moléculaire des Plantes (LEMP), UMR 6191, 13108 Saint-Paul-lez-Durance Cedex, France
| | | | | | | | | | | | | |
Collapse
|
232
|
Koh CS, Didierjean C, Navrot N, Panjikar S, Mulliert G, Rouhier N, Jacquot JP, Aubry A, Shawkataly O, Corbier C. Crystal Structures of a Poplar Thioredoxin Peroxidase that Exhibits the Structure of Glutathione Peroxidases: Insights into Redox-driven Conformational Changes. J Mol Biol 2007; 370:512-29. [PMID: 17531267 DOI: 10.1016/j.jmb.2007.04.031] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Revised: 04/06/2007] [Accepted: 04/09/2007] [Indexed: 01/29/2023]
Abstract
Glutathione peroxidases (GPXs) are a group of enzymes that regulate the levels of reactive oxygen species in cells and tissues, and protect them against oxidative damage. Contrary to most of their counterparts in animal cells, the higher plant GPX homologues identified so far possess cysteine instead of selenocysteine in their active site. Interestingly, the plant GPXs are not dependent on glutathione but rather on thioredoxin as their in vitro electron donor. We have determined the crystal structures of the reduced and oxidized form of Populus trichocarpaxdeltoides GPX5 (PtGPX5), using a selenomethionine derivative. PtGPX5 exhibits an overall structure similar to that of the known animal GPXs. PtGPX5 crystallized in the assumed physiological dimeric form, displaying a pseudo ten-stranded beta sheet core. Comparison of both redox structures indicates that a drastic conformational change is necessary to bring the two distant cysteine residues together to form an intramolecular disulfide bond. In addition, a computer model of a complex of PtGPX5 and its in vitro recycling partner thioredoxin h1 is proposed on the basis of the crystal packing of the oxidized form enzyme. A possible role of PtGPX5 as a heavy-metal sink is also discussed.
Collapse
Affiliation(s)
- Cha San Koh
- LCM3B, Equipe Biocristallographie, UMR 7036 CNRS-UHP, Faculté des Sciences et Techniques, Nancy Université, BP 239, 54506 Vandoeuvre-lès-Nancy, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
233
|
Reichheld JP, Khafif M, Riondet C, Droux M, Bonnard G, Meyer Y. Inactivation of thioredoxin reductases reveals a complex interplay between thioredoxin and glutathione pathways in Arabidopsis development. THE PLANT CELL 2007; 19:1851-65. [PMID: 17586656 PMCID: PMC1955716 DOI: 10.1105/tpc.107.050849] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
NADPH-dependent thioredoxin reductases (NTRs) are key regulatory enzymes determining the redox state of the thioredoxin system. The Arabidopsis thaliana genome has two genes coding for NTRs (NTRA and NTRB), both of which encode mitochondrial and cytosolic isoforms. Surprisingly, plants of the ntra ntrb knockout mutant are viable and fertile, although with a wrinkled seed phenotype, slower plant growth, and pollen with reduced fitness. Thus, in contrast with mammals, our data demonstrate that neither cytosolic nor mitochondrial NTRs are essential in plants. Nevertheless, in the double mutant, the cytosolic thioredoxin h3 is only partially oxidized, suggesting an alternative mechanism for thioredoxin reduction. Plant growth in ntra ntrb plants is hypersensitive to buthionine sulfoximine (BSO), a specific inhibitor of glutathione biosynthesis, and thioredoxin h3 is totally oxidized under this treatment. Interestingly, this BSO-mediated growth arrest is fully reversible, suggesting that BSO induces a growth arrest signal but not a toxic accumulation of activated oxygen species. Moreover, crossing ntra ntrb with rootmeristemless1, a mutant blocked in root growth due to strongly reduced glutathione synthesis, led to complete inhibition of both shoot and root growth, indicating that either the NTR or the glutathione pathway is required for postembryonic activity in the apical meristem.
Collapse
Affiliation(s)
- Jean-Philippe Reichheld
- Laboratoire Génome et Développement des Plantes, Université de Perpignan, Unité Mixte de Recherche, Centre National de la Recherche Scientifique 5096, Perpignan, France.
| | | | | | | | | | | |
Collapse
|
234
|
Lemaire SD, Michelet L, Zaffagnini M, Massot V, Issakidis-Bourguet E. Thioredoxins in chloroplasts. Curr Genet 2007; 51:343-65. [PMID: 17431629 DOI: 10.1007/s00294-007-0128-z] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2007] [Revised: 03/05/2007] [Accepted: 03/09/2007] [Indexed: 01/03/2023]
Abstract
Thioredoxins (TRXs) are small disulfide oxidoreductases of ca. 12 kDa found in all free living organisms. In plants, two chloroplastic TRXs, named TRX f and TRX m, were originally identified as light dependent regulators of several carbon metabolism enzymes including Calvin cycle enzymes. The availability of genome sequences revealed an unsuspected multiplicity of TRXs in photosynthetic eukaryotes, including new chloroplastic TRX types. Moreover, proteomic approaches and focused studies allowed identification of 90 potential chloroplastic TRX targets. Lately, recent studies suggest the existence of a complex interplay between TRXs and other redox regulators such as glutaredoxins (GRXs) or glutathione. The latter is involved in a post-translational modification, named glutathionylation that could be controlled by GRXs. Glutathionylation appears to specifically affect the activity of TRX f and other chloroplastic enzymes and could thereby constitute a previously undescribed regulatory mechanism of photosynthetic metabolism under oxidative stress. After summarizing the initial studies on TRX f and TRX m, this review will focus on the most recent developments with special emphasis on the contributions of genomics and proteomics to the field of TRXs. Finally, new emerging interactions with other redox signaling pathways and perspectives for future studies will also be discussed.
Collapse
Affiliation(s)
- Stéphane D Lemaire
- Institut de Biotechnologie des Plantes, Unité Mixte de Recherche 8618, Centre National de la Recherche Scientifique, Univ Paris-Sud, 91405 Orsay Cedex, France.
| | | | | | | | | |
Collapse
|
235
|
Abstract
Glutathione peroxidases (GPXs, EC 1.11.1.9) were first discovered in mammals as key enzymes involved in scavenging of activated oxygen species (AOS). Their efficient antioxidant activity depends on the presence of the rare amino-acid residue selenocysteine (SeCys) at the catalytic site. Nonselenium GPX-like proteins (NS-GPXs) with a Cys residue instead of SeCys have also been found in most organisms. As SeCys is important for GPX activity, the function of the NS-GPX can be questioned. Here, we highlight the evolutionary link between NS-GPX and seleno-GPX, particularly the evolution of the SeCys incorporation system. We then discuss what is known about the enzymatic activity and physiological functions of NS-GPX. Biochemical studies have shown that NS-GPXs are not true GPXs; notably they reduce AOS using reducing substrates other than glutathione, such as thioredoxin. We provide evidence that, in addition to their inefficient scavenging action, NS-GPXs act as AOS sensors in various signal-transduction pathways.
Collapse
|