201
|
Mur LAJ, Kenton P, Atzorn R, Miersch O, Wasternack C. The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death. PLANT PHYSIOLOGY 2006; 140:249-262. [PMID: 16377744 DOI: 10.2307/4282048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Salicylic acid (SA) has been proposed to antagonize jasmonic acid (JA) biosynthesis and signaling. We report, however, that in salicylate hydroxylase-expressing tobacco (Nicotiana tabacum) plants, where SA levels were reduced, JA levels were not elevated during a hypersensitive response elicited by Pseudomonas syringae pv phaseolicola. The effects of cotreatment with various concentrations of SA and JA were assessed in tobacco and Arabidopsis (Arabidopsis thaliana). These suggested that there was a transient synergistic enhancement in the expression of genes associated with either JA (PDF1.2 [defensin] and Thi1.2 [thionin]) or SA (PR1 [PR1a-beta-glucuronidase in tobacco]) signaling when both signals were applied at low (typically 10-100 microm) concentrations. Antagonism was observed at more prolonged treatment times or at higher concentrations. Similar results were also observed when adding the JA precursor, alpha-linolenic acid with SA. Synergic effects on gene expression and plant stress were NPR1- and COI1-dependent, SA- and JA-signaling components, respectively. Electrolyte leakage and Evans blue staining indicated that application of higher concentrations of SA + JA induced plant stress or death and elicited the generation of apoplastic reactive oxygen species. This was indicated by enhancement of hydrogen peroxide-responsive AoPR10-beta-glucuronidase expression, suppression of plant stress/death using catalase, and direct hydrogen peroxide measurements. Our data suggests that the outcomes of JA-SA interactions could be tailored to pathogen/pest attack by the relative concentration of each hormone.
Collapse
Affiliation(s)
- Luis A J Mur
- Institute of Biological Science, University of Wales, Aberystwyth, United Kingdom.
| | | | | | | | | |
Collapse
|
202
|
van Loon LC, Rep M, Pieterse CMJ. Significance of inducible defense-related proteins in infected plants. ANNUAL REVIEW OF PHYTOPATHOLOGY 2006; 44:135-62. [PMID: 16602946 DOI: 10.1146/annurev.phyto.44.070505.143425] [Citation(s) in RCA: 1711] [Impact Index Per Article: 90.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Inducible defense-related proteins have been described in many plant species upon infection with oomycetes, fungi, bacteria, or viruses, or insect attack. Several types of proteins are common and have been classified into 17 families of pathogenesis-related proteins (PRs). Others have so far been found to occur more specifically in some plant species. Most PRs and related proteins are induced through the action of the signaling compounds salicylic acid, jasmonic acid, or ethylene, and possess antimicrobial activities in vitro through hydrolytic activities on cell walls, contact toxicity, and perhaps an involvement in defense signaling. However, when expressed in transgenic plants, they reduce only a limited number of diseases, depending on the nature of the protein, plant species, and pathogen involved. As exemplified by the PR-1 proteins in Arabidopsis and rice, many homologous proteins belonging to the same family are regulated developmentally and may serve different functions in specific organs or tissues. Several defense-related proteins are induced during senescence, wounding or cold stress, and some possess antifreeze activity. Many defense-related proteins are present constitutively in floral tissues and a substantial number of PR-like proteins in pollen, fruits, and vegetables can provoke allergy in humans. The evolutionary conservation of similar defense-related proteins in monocots and dicots, but also their divergent occurrence in other conditions, suggest that these proteins serve essential functions in plant life, whether in defense or not.
Collapse
Affiliation(s)
- L C van Loon
- Phytopathology, Institute of Environmental Biology, Science Faculty, Utrecht University, 3508 TB Utrecht, The Netherlands.
| | | | | |
Collapse
|
203
|
Narusaka Y, Narusaka M, Seki M, Ishida J, Shinozaki K, Nan Y, Park P, Shiraishi T, Kobayashi M. Cytological and molecular analyses of non-host resistance of Arabidopsis thaliana to Alternaria alternata. MOLECULAR PLANT PATHOLOGY 2005; 6:615-27. [PMID: 20565684 DOI: 10.1111/j.1364-3703.2005.00310.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
SUMMARY When challenged with the necrotrophic fungal pathogen Alternaria alternata Japanese pear pathotype, all tested ecotypes of Arabidopsis plants failed to show hypersensitive cell death, accumulation of detectable levels of reactive oxygen species or accumulation of phytoalexin. We operationally define A. alternata as a non-host pathogen for Arabidopsis plants and show that the protection against A. alternata demonstrated in this study is a non-host penetration resistance. To characterize non-host penetration resistance, we examined the expression patterns of c. 7000 genes by cDNA microarray analysis in Arabidopsis Col-0 plants after inoculation with A. alternata. After inoculation with A. alternata, the transcript levels of 48 genes increased in Col-0 plants. The expression of genes associated with hypersensitive reaction was induced in the non-host penetration resistance to A. alternata, despite the fact that A. alternata had no visible effect on the plants. The non-host penetration resistance to A. alternata was clearly associated with activation of the jasmonate- and ethylene-signalling pathways. In addition, analysis using histochemical staining of GUS activity suggests that defence reactions in non-host penetration resistance are activated locally. The characterization of non-host pathosystem involving Arabidopsis and A. alternata offers an overview of non-host penetration resistance.
Collapse
Affiliation(s)
- Yoshihiro Narusaka
- Department of Biology, Tokyo Gakugei University, 4-1-1 Nukuikita-machi, Koganei-shi, Tokyo 184-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
204
|
Tang D, Ade J, Frye CA, Innes RW. Regulation of plant defense responses in Arabidopsis by EDR2, a PH and START domain-containing protein. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 44:245-57. [PMID: 16212604 PMCID: PMC1797612 DOI: 10.1111/j.1365-313x.2005.02523.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We have identified an Arabidopsis mutant that displays enhanced disease resistance (edr2) to the biotrophic powdery mildew pathogen Erysiphe cichoracearum. Inhibition of fungal growth on edr2 mutant leaves occurred at a late stage of the infection process and coincided with formation of necrotic lesions approximately 5 days after inoculation. Double-mutant analysis revealed that edr2-mediated resistance is suppressed by mutations that inhibit salicylic acid (SA)-induced defense signaling, including npr1, pad4 and sid2, demonstrating that edr2-mediated disease resistance is dependent on SA. However, edr2 showed normal responses to the bacterial pathogen Pseudomonas syringae pv. tomato strain DC3000. EDR2 appears to be constitutively transcribed in all tissues and organs and encodes a novel protein, consisting of a putative pleckstrin homology (PH) domain and a steroidogenic acute regulatory protein-related lipid-transfer (START) domain, and contains an N-terminal mitochondrial targeting sequence. The PH and START domains are implicated in lipid binding, suggesting that EDR2 may provide a link between lipid signaling and activation of programmed cell death mediated by mitochondria.
Collapse
Affiliation(s)
- Dingzhong Tang
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | | | | |
Collapse
|
205
|
Fitzgerald HA, Canlas PE, Chern MS, Ronald PC. Alteration of TGA factor activity in rice results in enhanced tolerance to Xanthomonas oryzae pv. oryzae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 43:335-47. [PMID: 16045470 DOI: 10.1111/j.1365-313x.2005.02457.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In dicotyledonous plants broad-spectrum resistance to pathogens is established after the induction of the systemic acquired resistance (SAR) response. In Arabidopsis the NPR1 protein can regulate SAR by interacting with members of the TGA class of basic, leucine-zipper transcription factors to alter pathogenesis-related (PR) gene expression. Overexpression of (At)NPR1 in Arabidopsis enhances resistance to multiple pathogens. Similarly, overexpression of (At)NPR1 in rice enhances resistance to the bacterial pathogen, Xanthomonas oryzae pv. oryzae (Xoo). These results suggest that components of the (At)NPR1-mediated SAR defense response may be conserved between monocots and dicots. To determine whether or not rice TGA factors are involved in disease resistance responses, the effect of altering the function of rice TGA2.1 was analyzed in transgenic plants. Transgenic rice overexpressing an rTGA2.1 mutant, that can no longer bind DNA, and transgenic rice that have the endogenous rTGA2.1 silenced by dsRNA-mediated silencing were generated. Both types of transgenic rice displayed increased tolerance to Xoo, were dwarfed, and had altered accumulation of PR genes. The results presented in this study suggest that wild-type rTGA2.1 has primarily a negative role in rice basal defense responses to bacterial pathogens.
Collapse
|
206
|
Coego A, Ramirez V, Gil MJ, Flors V, Mauch-Mani B, Vera P. An Arabidopsis homeodomain transcription factor, OVEREXPRESSOR OF CATIONIC PEROXIDASE 3, mediates resistance to infection by necrotrophic pathogens. THE PLANT CELL 2005; 17:2123-37. [PMID: 15923348 PMCID: PMC1167556 DOI: 10.1105/tpc.105.032375] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The mechanisms controlling plant resistance to necrotrophic fungal pathogens are poorly understood. We previously reported on Ep5C, a gene shown to be induced by the H(2)O(2) generated during a plant-pathogen interaction. To identify novel plant components operating in pathogen-induced signaling cascades, we initiated a large-scale screen using Arabidopsis thaliana plants carrying the beta-glucuronidase reporter gene under control of the H(2)O(2)-responsive Ep5C promoter. Here, we report the identification and characterization of a mutant, ocp3 (for overexpressor of cationic peroxidase 3), in which the reporter construct is constitutively expressed. Healthy ocp3 plants show increased accumulation of H(2)O(2) and express constitutively the Glutathione S-transferase1 and Plant Defensine 1.2 marker genes, but not the salicylic acid (SA)-dependent pathogenesis-related PR-1 gene. Strikingly, the ocp3 mutant shows enhanced resistance to the necrotrophic pathogens Botrytis cinerea and Plectosphaerella cucumerina. Conversely, resistance to virulent forms of the biotrophic oomycete Hyaloperonospora parasitica and the bacterial pathogen Pseudomonas syringae pv tomato DC3000 remains unaffected in ocp3 plants when compared with wild-type plants. Consistently with this, ocp3 plants are not affected in SA perception and express normal levels of PR genes after pathogen attack. To analyze signal transduction pathways where ocp3 operates, epistasis analyses between ocp3 and pad4, nahG, npr1, ein2, jin1, or coi1 were performed. These studies revealed that the resistance signaling to necrotrophic infection in ocp3 is fully dependent on appropriate perception of jasmonic acid through COI1 and does not require SA or ethylene perception through NPR1 or EIN2, respectively. The OCP3 gene encodes a homeodomain transcription factor that is constitutively expressed in healthy plants but repressed in response to infection by necrotrophic fungi. Together, these results suggest that OCP3 is an important factor for the COI1-dependent resistance of plants to infection by necrotrophic pathogens.
Collapse
Affiliation(s)
- Alberto Coego
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain
| | | | | | | | | | | |
Collapse
|
207
|
Ahn IP, Kim S, Lee YH. Vitamin B1 functions as an activator of plant disease resistance. PLANT PHYSIOLOGY 2005; 138:1505-15. [PMID: 15980201 PMCID: PMC1176421 DOI: 10.1104/pp.104.058693] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Revised: 03/28/2005] [Accepted: 04/04/2005] [Indexed: 05/03/2023]
Abstract
Vitamin B(1) (thiamine) is an essential nutrient for humans. Vitamin B(1) deficiency causes beriberi, which disturbs the central nervous and circulatory systems. In countries in which rice (Oryza sativa) is a major food, thiamine deficiency is prevalent because polishing of rice removes most of the thiamine in the grain. We demonstrate here that thiamine, in addition to its nutritional value, induces systemic acquired resistance (SAR) in plants. Thiamine-treated rice, Arabidopsis (Arabidopsis thaliana), and vegetable crop plants showed resistance to fungal, bacterial, and viral infections. Thiamine treatment induces the transient expression of pathogenesis-related (PR) genes in rice and other plants. In addition, thiamine treatment potentiates stronger and more rapid PR gene expression and the up-regulation of protein kinase C activity. The effects of thiamine on disease resistance and defense-related gene expression mobilize systemically throughout the plant and last for more than 15 d after treatment. Treatment of Arabidopsis ecotype Columbia-0 plants with thiamine resulted in the activation of PR-1 but not PDF1.2. Furthermore, thiamine prevented bacterial infection in Arabidopsis mutants insensitive to jasmonic acid or ethylene but not in mutants impaired in the SAR transduction pathway. These results clearly demonstrate that thiamine induces SAR in plants through the salicylic acid and Ca(2+)-related signaling pathways. The findings provide a novel paradigm for developing alternative strategies for the control of plant diseases.
Collapse
Affiliation(s)
- Il-Pyung Ahn
- School of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University, Seoul 151-742, Korea
| | | | | |
Collapse
|
208
|
Heidel AJ, Clarke JD, Antonovics J, Dong X. Fitness costs of mutations affecting the systemic acquired resistance pathway in Arabidopsis thaliana. Genetics 2005; 168:2197-206. [PMID: 15611186 PMCID: PMC1448715 DOI: 10.1534/genetics.104.032193] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
This study investigated the fitness effects of four mutations (npr1, cpr1, cpr5, and cpr6) and two transgenic genotypes (NPR1-L and NPR1-H) affecting different points of the systemic acquired resistance (SAR) signaling pathway associated with pathogen defense in Arabidopsis thaliana. The npr1 mutation, which resulted in a failure to express SAR, had no effect on fitness under growth chamber conditions, but decreased fitness in the field. The expression of NPR1 positively correlated with the fitness in the field. Constitutive activation of SAR by cpr1, cpr5, and cpr6 generally decreased fitness in the field and under two nutrient levels in two growth chamber conditions. At low-nutrient levels, fitness differences between wild type and the constitutive mutants were unchanged or reduced (especially in cpr5). The reduced fitness of the constitutive mutants suggests that this pathway is costly, with the precise fitness consequences highly dependent on the environmental context.
Collapse
Affiliation(s)
- Andrew J Heidel
- Department of Biology, Duke University, Durham, North Carolina 27708, USA
| | | | | | | |
Collapse
|
209
|
Tang D, Christiansen KM, Innes RW. Regulation of plant disease resistance, stress responses, cell death, and ethylene signaling in Arabidopsis by the EDR1 protein kinase. PLANT PHYSIOLOGY 2005; 138:1018-26. [PMID: 15894742 PMCID: PMC1150416 DOI: 10.1104/pp.105.060400] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Revised: 03/08/2005] [Accepted: 03/08/2005] [Indexed: 05/02/2023]
Abstract
ENHANCED DISEASE RESISTANCE 1 (EDR1) encodes a CTR1-like kinase and was previously reported to function as a negative regulator of disease resistance and ethylene-induced senescence. Here, we report that the edr1 mutant displays enhanced stress responses and spontaneous necrotic lesions under drought conditions in the absence of pathogen, suggesting that EDR1 is also involved in stress response signaling and cell death regulation. Double mutant analysis revealed that these drought-induced phenotypes require salicylic acid but not ethylene signaling pathways. In addition, the edr1-mediated ethylene-induced senescence phenotype was suppressed by mutations in EIN2, but not by mutations in SID2, PAD4, EDS1, or NPR1, suggesting that EDR1 functions at a point of cross talk between ethylene and salicylic acid signaling that impinges on senescence and cell death. Two edr1-associated phenotypes, drought-induced growth inhibition and ethylene-induced senescence, were suppressed by mutations in ORE9, implicating ubiquitin-mediated protein degradation in the regulation of these phenotypes. However, the ore9 mutation did not suppress edr1-mediated enhanced disease resistance to powdery mildew or spontaneous lesions, indicating that these phenotypes are controlled by separate signaling pathways. To investigate the function of the EDR1 kinase domain, we expressed the C-terminal third of EDR1 in wild-type Columbia and edr1 backgrounds under the control of a dexamethasone-inducible promoter. Overexpression of the EDR1 kinase domain in an edr1 background had no obvious effect on edr1-associated phenotypes. However, overexpression of the EDR1 kinase domain in a wild-type Columbia background caused dominant negative phenotypes, including enhanced disease resistance to powdery mildew and enhanced ethylene-induced senescence; thus, the overexpressed EDR1 kinase domain alone does not exert EDR1 function, but rather negatively affects the function of native EDR1 protein.
Collapse
Affiliation(s)
- Dingzhong Tang
- Department of Biology, Indiana University, Bloomington, Indiana 47405-7107, USA
| | | | | |
Collapse
|
210
|
Glocova I, Thor K, Roth B, Babbick M, Pfitzner AJP, Pfitzner UM. Salicylic acid (SA)-dependent gene activation can be uncoupled from cell death-mediated gene activation: the SA-inducible NIMIN-1 and NIMIN-2 promoters, unlike the PR-1a promoter, do not respond to cell death signals in tobacco. MOLECULAR PLANT PATHOLOGY 2005; 6:299-314. [PMID: 20565658 DOI: 10.1111/j.1364-3703.2005.00288.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
SUMMARY Tobacco pathogenesis-related (PR) genes of group 1 are induced during pathogen defence (hypersensitive response, HR, and systemic acquired resistance, SAR), after exogenous application of salicylic acid (SA), and by developmental cues. Likewise, SA enhances transcripts for Arabidopsis NIMIN-1 and NIMIN-2, which interact with NPR1/NIM1, a key regulator of SAR. To further illuminate gene activation during pathogen defence, reporter gene expression from the NIMIN-1 and NIMIN-2 promoters was analysed in transgenic tobacco plants in direct comparison to PR-1 gene expression. NIMIN[GUS] chimeric genes were highly sensitive to SA, whereas NIMIN[GUS], unlike PR1a[GUS], expression was only weak in necrotic tissue exhibiting HR. Furthermore, PR-1a, but not NIMIN, promoter constructs were activated systemically in response to local cell death elicited by expression of the proapoptotic Bax gene. Conversely, NIMIN-1[GUS] expression was completely suppressed during pathogen defence in plants depleted from SA, whereas PR-1 proteins still accumulated in necrotic tissue. These findings demonstrate that SA-dependent gene activation can be uncoupled from cell death-induced gene activation. Whereas PR-1a induction during the HR and SAR responses is mediated by HR-associated signals and SA, activation of the NIMIN-1 and NIMIN-2 promoters in infected tobacco relies on SA, but not on cell death signals.
Collapse
Affiliation(s)
- Ivana Glocova
- Universität Hohenheim, Institut für Genetik, FG Allgemeine Virologie, D-70593 Stuttgart, Germany
| | | | | | | | | | | |
Collapse
|
211
|
Weigel RR, Pfitzner UM, Gatz C. Interaction of NIMIN1 with NPR1 modulates PR gene expression in Arabidopsis. THE PLANT CELL 2005. [PMID: 15749762 DOI: 10.1105/tpc.104.02744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The Arabidopsis thaliana NONEXPRESSER OF PR GENES1 (NPR1, also known as NIM1) protein is an essential positive regulator of salicylic acid (SA)-induced PATHOGENESIS-RELATED (PR) gene expression and systemic acquired resistance (SAR). PR gene activity is regulated at the level of redox-dependent nuclear transport of NPR1. NPR1 interacts with members of the TGA family of transcription factors that are known to bind to SA-responsive elements in the PR-1 promoter. In an attempt to identify proteins involved in SA-mediated signal transduction, we previously described the isolation of three novel genes encoding distinct albeit structurally related proteins designated NIMIN1 (for NIM1-INTERACTING1), NIMIN2, and NIMIN3 that interact with NPR1 in the yeast two-hybrid system. Here, we show that NIMIN1 and NPR1 can be copurified from plant extracts, providing biochemical evidence for their interaction. We provide functional evidence for this interaction by describing transgenic plants constitutively expressing high amounts of NIMIN1. These plants show reduced SA-mediated PR gene induction and a compromised SAR, thus mimicking the described phenotype conferred by npr1. Moreover, they showed reduced RESISTANCE gene-mediated protection. These effects were dependent on the ability of NIMIN1 to interact with NPR1. Mutant plants with a T-DNA insertion in NIMIN1 as well as transgenic plants with reduced NIMIN1 mRNA levels showed hyperactivation of PR-1 gene expression after SA treatment but no effect on the disease resistance phenotype. Our results strongly suggest that NIMIN1 negatively regulates distinct functions of NPR1, providing a mechanism to modulate specific features of SAR.
Collapse
MESH Headings
- Arabidopsis/drug effects
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/isolation & purification
- Arabidopsis Proteins/metabolism
- Carrier Proteins/genetics
- Carrier Proteins/isolation & purification
- Carrier Proteins/metabolism
- Conserved Sequence
- DNA, Bacterial/genetics
- Down-Regulation/drug effects
- Down-Regulation/genetics
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/genetics
- Gene Expression Regulation, Plant/drug effects
- Gene Expression Regulation, Plant/genetics
- Immunity, Innate/drug effects
- Immunity, Innate/genetics
- Molecular Sequence Data
- Mutation/genetics
- Phenotype
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- RNA, Messenger/metabolism
- Regulatory Elements, Transcriptional/drug effects
- Regulatory Elements, Transcriptional/genetics
- Salicylic Acid/pharmacology
- Sequence Homology, Amino Acid
- Transcription Factors
- Transcriptional Activation
Collapse
Affiliation(s)
- Ralf R Weigel
- Albrecht-von-Haller-Institut fuer Pflanzenwissenschaften, Allgemeine und Entwicklungsphysiologie, Georg-August-Universitaet Goettingen, 37073 Goettingen, Germany.
| | | | | |
Collapse
|
212
|
Weigel RR, Pfitzner UM, Gatz C. Interaction of NIMIN1 with NPR1 modulates PR gene expression in Arabidopsis. THE PLANT CELL 2005; 17:1279-91. [PMID: 15749762 PMCID: PMC1088002 DOI: 10.1105/tpc.104.027441] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Accepted: 01/17/2005] [Indexed: 05/05/2023]
Abstract
The Arabidopsis thaliana NONEXPRESSER OF PR GENES1 (NPR1, also known as NIM1) protein is an essential positive regulator of salicylic acid (SA)-induced PATHOGENESIS-RELATED (PR) gene expression and systemic acquired resistance (SAR). PR gene activity is regulated at the level of redox-dependent nuclear transport of NPR1. NPR1 interacts with members of the TGA family of transcription factors that are known to bind to SA-responsive elements in the PR-1 promoter. In an attempt to identify proteins involved in SA-mediated signal transduction, we previously described the isolation of three novel genes encoding distinct albeit structurally related proteins designated NIMIN1 (for NIM1-INTERACTING1), NIMIN2, and NIMIN3 that interact with NPR1 in the yeast two-hybrid system. Here, we show that NIMIN1 and NPR1 can be copurified from plant extracts, providing biochemical evidence for their interaction. We provide functional evidence for this interaction by describing transgenic plants constitutively expressing high amounts of NIMIN1. These plants show reduced SA-mediated PR gene induction and a compromised SAR, thus mimicking the described phenotype conferred by npr1. Moreover, they showed reduced RESISTANCE gene-mediated protection. These effects were dependent on the ability of NIMIN1 to interact with NPR1. Mutant plants with a T-DNA insertion in NIMIN1 as well as transgenic plants with reduced NIMIN1 mRNA levels showed hyperactivation of PR-1 gene expression after SA treatment but no effect on the disease resistance phenotype. Our results strongly suggest that NIMIN1 negatively regulates distinct functions of NPR1, providing a mechanism to modulate specific features of SAR.
Collapse
MESH Headings
- Arabidopsis/drug effects
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/isolation & purification
- Arabidopsis Proteins/metabolism
- Carrier Proteins/genetics
- Carrier Proteins/isolation & purification
- Carrier Proteins/metabolism
- Conserved Sequence
- DNA, Bacterial/genetics
- Down-Regulation/drug effects
- Down-Regulation/genetics
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/genetics
- Gene Expression Regulation, Plant/drug effects
- Gene Expression Regulation, Plant/genetics
- Immunity, Innate/drug effects
- Immunity, Innate/genetics
- Molecular Sequence Data
- Mutation/genetics
- Phenotype
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- RNA, Messenger/metabolism
- Regulatory Elements, Transcriptional/drug effects
- Regulatory Elements, Transcriptional/genetics
- Salicylic Acid/pharmacology
- Sequence Homology, Amino Acid
- Transcription Factors
- Transcriptional Activation
Collapse
Affiliation(s)
- Ralf R Weigel
- Albrecht-von-Haller-Institut fuer Pflanzenwissenschaften, Allgemeine und Entwicklungsphysiologie, Georg-August-Universitaet Goettingen, 37073 Goettingen, Germany.
| | | | | |
Collapse
|
213
|
Nandi A, Moeder W, Kachroo P, Klessig DF, Shah J. Arabidopsis ssi2-conferred susceptibility to Botrytis cinerea is dependent on EDS5 and PAD4. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:363-70. [PMID: 15828688 DOI: 10.1094/mpmi-18-0363] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Loss of a stearoyl-ACP desaturase activity in the Arabidopsis thaliana ssi2 mutant confers susceptibility to the necrotroph, Botrytis cinerea. In contrast, the ssi2 mutant exhibits enhanced resistance to Pseudomonas syringae, Peronospora parasitica, and Cucumber mosaic virus. The altered basal resistance to these pathogens in the ssi2 mutant plant is accompanied by the constitutive accumulation of elevated salicylic acid (SA) level and expression of the pathogenesis-related 1 (PR1) gene, the inability of jasmonic acid (JA) to activate expression of the defensin gene, PDF1.2, and the spontaneous death of cells. Here, we show that presence of the eds5 and pad4 mutant alleles compromises the ssi2-conferred resistance to Pseudomonas syringae pv. maculicola. In contrast, resistance to B. cinerea was restored in the ssi2 eds5 and ssi2 pad4 double-mutant plants. However, resistance to B. cinerea was not accompanied by the restoration of JA responsiveness in the ssi2 eds5 and ssi2 pad4 plants. The ssi2 eds5 and ssi2 pad4 plants retain the ssi2-conferred spontaneous cell death phenotype, suggesting that cell death is not a major factor that predisposes the ssi2 mutant to infection by B. cinerea. Furthermore, the high SA content of the ssi2 pad4 plant, combined with our previous observation that the SA-deficient ssi2 nahG plant succumbs to infection by B. cinerea, suggests that elevated SA level does not have a causal role in the ssi2-conferred susceptibility to B. cinerea. Our results suggest that interaction between an SSI2-dependent factor or factors and an EDS5- and PAD4-dependent mechanism or mechanisms modulates defense to B. cinerea.
Collapse
Affiliation(s)
- Ashis Nandi
- Division of Biology, Cellular and Developmental Biology Program, Kansas State University, Manhattan 66506, USA
| | | | | | | | | |
Collapse
|
214
|
Kang HG, Klessig DF. Salicylic acid-inducible Arabidopsis CK2-like activity phosphorylates TGA2. PLANT MOLECULAR BIOLOGY 2005; 57:541-57. [PMID: 15821979 DOI: 10.1007/s11103-005-0409-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Accepted: 01/10/2005] [Indexed: 05/17/2023]
Abstract
We demonstrate that TGA2, TGA5 and TGA6, and TGA3 to a lesser extent, are phosphorylated by an activity in rabbit reticulocytes. Using deletion and point mutagenesis of TGA2, three amino acid (aa) residues, (11)Ser, (12)Thr and (16)Thr, were found to be critical for efficient phosphorylation by a kinase(s) in rabbit reticulocytes. These three residues also were important for phosphorylation by recombinant human Casein Kinase II (CK2) and by a CK2-like kinase in Arabidopsis leaf extracts. Salicylic acid (SA) treatment enhanced the phosphorylation of recombinant TGA2 in vitro; it also enhanced phosphorylation of a TGA2-GFP fusion protein in vivo. By contrast, in vivo phosphorylation of a TGA2-A-GFP fusion protein, in which the (11)Ser, (12)Thr and (16)Thr residues were mutated to non-phosphorylable alanine, was only poorly if at all stimulated by SA treatment. Mutation of the putative CK2 phosphorylation motif did not affect nuclear localization of TGA2. However, the DNA binding activity of TGA2 was reduced by CK2 treatment, whereas that of TGA2-A was unaffected; TGA2's DNA binding activity after incubation in a rabbit reticulocyte lysate also was substantially lower than that of comparably treated TGA2-A. Taken together, these results suggest that phosphorylation at the putative CK2 phosphorylation site negatively regulates the DNA binding activity of TGA2. Analysis of transgenic Arabidopsis overexpressing TGA2-GFP or TGA2-A-GFP, in the absence of SA treatment, revealed that they accumulated similarly elevated levels of PR-1 gene transcripts. Possible reasons why mutations in the putative CK2 phosphorylation site had little effect on PR-1 induction by TGA2 are discussed.
Collapse
Affiliation(s)
- Hong-Gu Kang
- Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY 14853, USA
| | | |
Collapse
|
215
|
Huang Z, Yeakley JM, Garcia EW, Holdridge JD, Fan JB, Whitham SA. Salicylic acid-dependent expression of host genes in compatible Arabidopsis-virus interactions. PLANT PHYSIOLOGY 2005; 137:1147-59. [PMID: 15728340 PMCID: PMC1065414 DOI: 10.1104/pp.104.056028] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2004] [Revised: 11/30/2004] [Accepted: 11/30/2004] [Indexed: 05/18/2023]
Abstract
Plant viruses elicit the expression of common sets of genes in susceptible hosts. Studies in Arabidopsis (Arabidopsis thaliana) and tomato (Lycopersicon esculentum) indicate that at least one-third of the genes induced in common by viruses have been previously associated with plant defense and stress responses. The genetic and molecular requirements for the induction of these stress and defense-related genes during compatible host-virus interactions were investigated with a panel of Arabidopsis mutant and transgenic plants defective in one or more defense signaling pathways. pad4, eds5, NahG, npr1, jar1, ein2, sid2, eds1, and wild-type Columbia-0 and Wassilewskija-2 plants were infected with two different viruses, cucumber mosaic virus and oilseed rape mosaic virus. Gene expression was assayed by a high-throughput fiber-optic bead array consisting of 388 genes and by RNA gel blots. These analyses demonstrated that, in compatible host-virus interactions, the expression of the majority of defense-related genes is induced by a salicylic acid-dependent, NPR1-independent signaling pathway with a few notable exceptions that did require NPR1. Interestingly, none of the mutant or transgenic plants showed enhanced susceptibility to either cucumber mosaic virus or oilseed rape mosaic virus based on both symptoms and virus accumulation. This observation is in contrast to the enhanced disease susceptibility phenotypes that these mutations or transgenes confer to some bacterial and fungal pathogens. These experimental results suggest that expression of many defense-related genes in compatible host plants might share components of signaling pathways involved in incompatible host-pathogen interactions, but their increased expression has no negative effect on viral infection.
Collapse
Affiliation(s)
- Zhonglian Huang
- Department of Plant Pathology, Iowa State University, Ames, Iowa 50011-1020, USA
| | | | | | | | | | | |
Collapse
|
216
|
Desveaux D, Maréchal A, Brisson N. Whirly transcription factors: defense gene regulation and beyond. TRENDS IN PLANT SCIENCE 2005; 10:95-102. [PMID: 15708347 DOI: 10.1016/j.tplants.2004.12.008] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Members of the Whirly family of proteins are found throughout the plant kingdom and are predicted to share the ability to bind to single-stranded DNA. Arabidopsis and potato Whirly orthologs act as transcription factors that regulate defense gene expression; the Arabidopsis Whirly protein AtWhy1 contributes to both basal and specific defense responses. Analysis of the crystal structure of potato StWhy1 has provided insight into the DNA-binding mechanism of this family of proteins, their mode of action and possible autoregulation. There is evidence to suggest that Whirly proteins might play roles in processes other than defense responses and could function in the chloroplast as well as in the nucleus.
Collapse
Affiliation(s)
- Darrell Desveaux
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
217
|
Thatcher LF, Anderson JP, Singh KB. Plant defence responses: what have we learnt from Arabidopsis? FUNCTIONAL PLANT BIOLOGY : FPB 2005; 32:1-19. [PMID: 32689107 DOI: 10.1071/fp04135] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2004] [Accepted: 09/19/2004] [Indexed: 05/27/2023]
Abstract
To overcome the attack of invading pathogens, a plant's defence system relies on preformed and induced responses. The induced responses are activated following detection of a pathogen, with the subsequent transmission of signals and orchestrated cellular events aimed at eliminating the pathogen and preventing its spread. Numerous studies are proving that the activated signalling pathways are not simply linear, but rather, form complex networks where considerable cross talk takes place. This review covers the recent application of powerful genetic and genomic approaches to identify key defence signalling pathways in the model plant Arabidopsis thaliana (L.) Heynh. The identification of key regulatory components of these pathways may offer new approaches to increase the defence capabilities of crop plants.
Collapse
Affiliation(s)
- Louise F Thatcher
- CSIRO Plant Industry, Centre for Environment and Life Sciences, Private Bag 5, Wembley, WA 6913, Australia
| | - Jonathan P Anderson
- CSIRO Plant Industry, Centre for Environment and Life Sciences, Private Bag 5, Wembley, WA 6913, Australia
| | - Karam B Singh
- CSIRO Plant Industry, Centre for Environment and Life Sciences, Private Bag 5, Wembley, WA 6913, Australia
| |
Collapse
|
218
|
Cui J, Bahrami AK, Pringle EG, Hernandez-Guzman G, Bender CL, Pierce NE, Ausubel FM. Pseudomonas syringae manipulates systemic plant defenses against pathogens and herbivores. Proc Natl Acad Sci U S A 2005; 102:1791-6. [PMID: 15657122 PMCID: PMC547856 DOI: 10.1073/pnas.0409450102] [Citation(s) in RCA: 194] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Many pathogens are virulent because they specifically interfere with host defense responses and therefore can proliferate. Here, we report that virulent strains of the bacterial phytopathogen Pseudomonas syringae induce systemic susceptibility to secondary P. syringae infection in the host plant Arabidopsis thaliana. This systemic induced susceptibility (SIS) is in direct contrast to the well studied avirulence/R gene-dependent resistance response known as the hypersensitive response that elicits systemic acquired resistance. We show that P. syringae-elicited SIS is caused by the production of coronatine (COR), a pathogen-derived functional and structural mimic of the phytohormone jasmonic acid (JA). These data suggest that SIS may be a consequence of the previously described mutually antagonistic interaction between the salicylic acid and JA signaling pathways. Virulent P. syringae also has the potential to induce net systemic susceptibility to herbivory by an insect (Trichoplusia ni, cabbage looper), but this susceptibility is not caused by COR. Rather, consistent with its role as a JA mimic, COR induces systemic resistance to T. ni. These data highlight the complexity of defense signaling interactions among plants, pathogens, and herbivores.
Collapse
Affiliation(s)
- Jianping Cui
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | | | | | | | | | | | | |
Collapse
|
219
|
Glazebrook J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. ANNUAL REVIEW OF PHYTOPATHOLOGY 2005; 43:205-27. [PMID: 16078883 DOI: 10.1146/annurev.phyto.43.040204.135923] [Citation(s) in RCA: 2410] [Impact Index Per Article: 120.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
It has been suggested that effective defense against biotrophic pathogens is largely due to programmed cell death in the host, and to associated activation of defense responses regulated by the salicylic acid-dependent pathway. In contrast, necrotrophic pathogens benefit from host cell death, so they are not limited by cell death and salicylic acid-dependent defenses, but rather by a different set of defense responses activated by jasmonic acid and ethylene signaling. This review summarizes results from Arabidopsis-pathogen systems regarding the contributions of various defense responses to resistance to several biotrophic and necrotrophic pathogens. While the model above seems generally correct, there are exceptions and additional complexities.
Collapse
Affiliation(s)
- Jane Glazebrook
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108, USA.
| |
Collapse
|
220
|
Bostock RM. Signal crosstalk and induced resistance: straddling the line between cost and benefit. ANNUAL REVIEW OF PHYTOPATHOLOGY 2005; 43:545-80. [PMID: 16078895 DOI: 10.1146/annurev.phyto.41.052002.095505] [Citation(s) in RCA: 315] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This review discusses recent progress in our understanding of signaling in induced plant resistance and susceptibility to pathogens and insect herbivores, with a focus on the connections and crosstalk among phytohormone signaling networks that regulate responses to these and other stresses. Multiple stresses, often simultaneous, reduce growth and yield in plants. However, prior challenge by a pathogen or insect herbivore also can induce resistance to subsequent challenge. This resistance, or failure of susceptibility, must be orchestrated within a larger physiological context that is strongly influenced by other biotic agents and by abiotic stresses such as inadequate light, temperature extremes, drought, nutrient limitation, and soil salinity. Continued research in this area is predicated on the notion that effective utilization of induced resistance in crop protection will require a functional understanding of the physiological consequences of the "induced" state of the plant, coupled with the knowledge of the specificity and compatibility of the signaling systems leading to this state. This information may guide related strategies to improve crop performance in suboptimal environments, and define the limits of induced resistance in certain agricultural contexts.
Collapse
Affiliation(s)
- Richard M Bostock
- Department of Plant Pathology, University of California, Davis, California 95616, USA.
| |
Collapse
|
221
|
Murray SL, Adams N, Kliebenstein DJ, Loake GJ, Denby KJ. A constitutive PR-1::luciferase expression screen identifies Arabidopsis mutants with differential disease resistance to both biotrophic and necrotrophic pathogens. MOLECULAR PLANT PATHOLOGY 2005; 6:31-41. [PMID: 20565636 DOI: 10.1111/j.1364-3703.2004.00261.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
SUMMARY A complex signal transduction network involving salicylic acid, jasmonic acid and ethylene underlies disease resistance in Arabidopsis. To understand this defence signalling network further, we identified mutants that expressed the marker gene PR-1::luciferase in the absence of pathogen infection. These cir mutants all display constitutive expression of a suite of defence-related genes but exhibit different disease resistance profiles to two biotrophic pathogens, Pseudomonas syringae pv. tomato and Peronospora parasitica NOCO2, and the necrotrophic pathogen Botrytis cinerea. We further characterized cir3, which displays enhanced resistance only to the necrotrophic pathogen. Cir3-mediated resistance to B. cinerea is dependent on accumulated salicylic acid and a functional EIN2 protein.
Collapse
Affiliation(s)
- Shane L Murray
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag, Rondebosch, 7701, South Africa
| | | | | | | | | |
Collapse
|
222
|
Liu G, Holub EB, Alonso JM, Ecker JR, Fobert PR. An Arabidopsis NPR1-like gene, NPR4, is required for disease resistance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 41:304-18. [PMID: 15634206 DOI: 10.1111/j.1365-313x.2004.02296.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The Arabidopsis genome contains six NPR1-related genes. Given the pivotal role played by NPR1 in controlling salicylic acid (SA)-mediated gene expression and disease resistance, functional characterization of other family members appears to be justified. Reverse genetics was used to analyze the role of one NPR1-like gene, which we called NPR4. The NPR4 protein shares 36% identity with NPR1 and interacts with the same spectrum of TGA transcription factors in yeast two-hybrid assays. Plants with T-DNA insertions in NPR4 are more susceptible to the virulent bacterial pathogen Pseudomonas syringe pv. tomato DC3000. This phenotype is complemented by expression of the wild type NPR4 coding region. As determined by the parasite reproduction, the npr4-1 mutant is more susceptible to the fungal pathogen Erysiphe cichoracearum, but does not differ markedly from wild type in its interaction with virulent and avirulent strains of the oomycete Peronospora parasitica. In leaves of wild-type plants, NPR4 mRNA levels increase following pathogen challenge or SA treatment, and decrease rapidly following methyl jasmonic acid (MeJA) treatment. Transcripts of the pathogenesis-related (PR) genes PR-1, PR-2, and PR-5 are only marginally reduced in the npr4-1 mutant following pathogen challenge or SA treatment. This reduction of PR gene expression is more pronounced when leaves are challenged with the bacterial pathogen following SA treatment. Expression of the jasmonic acid-dependent pathway marker gene PDF1.2 is compromised in npr4-1 leaves following application of MeJA or a combination of SA and MeJA. These results indicate that NPR4 is required for basal defense against pathogens, and that it may be implicated in the cross-talk between the SA- and JA-dependent signaling pathways.
Collapse
Affiliation(s)
- Guosheng Liu
- National Research Council, Plant Biotechnology Institute, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
| | | | | | | | | |
Collapse
|
223
|
Shah J. Lipids, lipases, and lipid-modifying enzymes in plant disease resistance. ANNUAL REVIEW OF PHYTOPATHOLOGY 2005; 43:229-60. [PMID: 16078884 DOI: 10.1146/annurev.phyto.43.040204.135951] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Lipids and lipid metabolites influence pathogenesis and resistance mechanisms associated with plant-microbe interactions. Some microorganisms sense their presence on a host by perceiving plant surface waxes, whereas others produce toxins that target plant lipid metabolism. In contrast, plants have evolved to recognize microbial lipopolysaccharides (LPSs), sphingolipids, and lipid-binding proteins as elicitors of defense response. Recent studies have demonstrated that the plasma membrane provides a surface on which some plant resistance (R) proteins perceive pathogen-derived effectors and thus confer race-specific resistance. Plant cell membranes also serve as reservoirs from which biologically active lipids and precursors of oxidized lipids are released. Some of these oxylipins, for example jasmonic acid (JA), are important signal molecules in plant defense. Arabidopsis thaliana is an excellent model plant to elucidate the biosynthesis and metabolism of lipids and lipid metabolites, and the characterization of signaling mechanisms involved in the modulation of plant defense responses by phytolipids. This review focuses on recent studies that highlight the involvement of lipids and lipid metabolites, and enzymes involved in lipid metabolism and modification in plant disease resistance.
Collapse
Affiliation(s)
- Jyoti Shah
- Division of Biology and Molecular, Cellular and Developmental Biology Program, Kansas State University, Manhattan, Kansas 66506, USA.
| |
Collapse
|
224
|
Dong HP, Peng J, Bao Z, Meng X, Bonasera JM, Chen G, Beer SV, Dong H. Downstream divergence of the ethylene signaling pathway for harpin-stimulated Arabidopsis growth and insect defense. PLANT PHYSIOLOGY 2004; 136:3628-38. [PMID: 15516507 PMCID: PMC527161 DOI: 10.1104/pp.104.048900] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2004] [Revised: 09/11/2004] [Accepted: 09/20/2004] [Indexed: 05/20/2023]
Abstract
Ethylene (ET) signal transduction may regulate plant growth and defense, depending on which components are recruited into the pathway in response to different stimuli. We report here that the ET pathway controls both insect resistance (IR) and plant growth enhancement (PGE) in Arabidopsis (Arabidopsis thaliana) plants responding to harpin, a protein produced by a plant pathogenic bacterium. PGE may result from spraying plant tops with harpin or by soaking seeds in harpin solution; the latter especially enhances root growth. Plants treated similarly develop resistance to the green peach aphid (Myzus persicae). The salicylic acid pathway, although activated by harpin, does not lead to PGE and IR. By contrast, PGE and IR are induced in both wild-type plants and genotypes that have defects in salicylic acid signaling. In response to harpin, levels of jasmonic acid (JA) decrease, and the COI1 gene, which is indispensable for JA signal transduction, is not expressed in wild-type plants. However, PGE and IR are stimulated in the JA-resistant mutant jar1-1. In the wild type, PGE and IR develop coincidently with increases in ET levels and the expression of several genes essential for ET signaling. The ET receptor gene ETR1 is required because both phenotypes are arrested in the etr1-1 mutant. Consistently, inhibition of ET perception nullifies the induction of both PGE and IR. The signal transducer EIN2 is required for IR, and EIN5 is required for PGE because IR and PGE are impaired correspondingly in the ein2-1 and ein5-1 mutants. Therefore, harpin activates ET signaling while conscribing EIN2 and EIN5 to confer IR and PGE, respectively.
Collapse
Affiliation(s)
- Hong-Ping Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | | | |
Collapse
|
225
|
Song JT, Lu H, McDowell JM, Greenberg JT. A key role for ALD1 in activation of local and systemic defenses in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 40:200-12. [PMID: 15447647 DOI: 10.1111/j.1365-313x.2004.02200.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The Arabidopsis thaliana agd2-like defense response protein1 (ald1) mutant was previously found to be hypersusceptible to the virulent bacterial pathogen Pseudomonas syringae and had reduced accumulation of the defense signal salicylic acid (SA). ALD1 was shown to possess aminotransferase activity in vitro, suggesting it generates an amino acid-derived defense signal. We now find ALD1 to be a key defense component that acts in multiple contexts and partially requires the PHYTOALEXIN DEFICIENT4 (PAD4) defense regulatory gene for its expression in response to infection. ald1 plants have increased susceptibility to avirulent P. syringae strains, are unable to activate systemic acquired resistance and are compromised for resistance to the oomycete pathogen Peronospora parasitica in mutants with constitutively active defenses. ALD1 and PAD4 can act additively to control SA, PATHOGENESIS RELATED GENE1 (PR1) transcript and camalexin (an antimicrobial metabolite) accumulation as well as disease resistance. Finally, ALD1 and PAD4 can mutually affect each other's expression in a constitutive defense mutant, suggesting that these two genes can act in a signal amplification loop.
Collapse
Affiliation(s)
- Jong Tae Song
- Department of Molecular Genetics and Cell Biology, Erman Biology Center, The University of Chicago, 1103 East 57th Street, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
226
|
Peng JL, Bao ZL, Ren HY, Wang JS, Dong HS. Expression of harpin(xoo) in transgenic tobacco induces pathogen defense in the absence of hypersensitive cell death. PHYTOPATHOLOGY 2004; 94:1048-55. [PMID: 18943792 DOI: 10.1094/phyto.2004.94.10.1048] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
ABSTRACT Harpin(Xoo), encoded by the hpaG(Xoo) gene of Xanthomonas oryzae pv. oryzae, is a member of the harpin group of proteins that induce pathogen resistance and hypersensitive cell death (HCD) in plants. We elaborated whether both processes are correlated in hpaG(Xoo)-expressing tobacco (HARTOB) plants, which produced harpin(Xoo) intracellularly. Resistance to fungal, bacterial, and viral pathogens increased in HARTOB, in correlation with the expression of hpaG(Xoo), the gene NPR1 that regulates several resistance pathways, and defense genes GST1, Chia5, PR-1a, and PR-1b that are mediated by different signals. However, reactive oxygen intermediate burst, the expression of HCD marker genes hsr203 and hin1, and cell death did not occur spontaneously in HARTOB, though they did in untransformed and HARTOB plants treated exogenously with harpin(Xoo). Thus, the transgenic expression of harpin(Xoo) confers nonspecific pathogen defense in the absence of HCD.
Collapse
|
227
|
Lummerzheim M, Kroj T, Ferreira M, Tronchet M, Godard F, VAN Montagu M, Roby D. An Arabidopsis mutant with altered hypersensitive response to Xanthomonas campestris pv. campestris, hxc1, displays a complex pathophenotype. MOLECULAR PLANT PATHOLOGY 2004; 5:453-464. [PMID: 20565620 DOI: 10.1111/j.1364-3703.2004.00245.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
SUMMARY The hxc1 mutant was identified by screening an EMS (ethylmethane sulphonate) mutagenized population of Arabidopsis Col-0 plants for an altered hypersensitive response (HR), after spray inoculation with an HR-inducing isolate of Xanthomonas campestris pv. campestris (Xcc) (strain 147). The hxc1 mutant shows a susceptible phenotype several days after initiation of the interaction with the avirulent strain. This macroscopically observed phenotype was confirmed by measurement of in planta bacterial growth and by microscopical analysis. Interestingly, the hxc1 mutation acts very specifically. Hxc1 displays a pathophenotype identical to that observed in the wild-type with several extensively characterized avirulent and virulent bacteria, except in response to Pseudomonas syringae pv. tomato strain DC3000/avrRpm1, for which a partial loss of resistance was observed. Finally, the mutation causes an attenuation of expression of several defence markers regulated through different signalling pathways. Together, these data underline the complexity of this novel defence mutant, and support the hypothesis of a mutation affecting a key component acting during the first steps of the plant defence response leading to resistance to Xcc147 and Pseudomonas syringae pv. tomato containing the avr gene, avrRpm1.
Collapse
Affiliation(s)
- Marie Lummerzheim
- Laboratoire des Interactions Plantes-Microorganismes, UMR CNRS/INRA 2594, 31326 Castanet-Tolosan, France
| | | | | | | | | | | | | |
Collapse
|
228
|
Staswick PE, Tiryaki I. The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. THE PLANT CELL 2004; 16:2117-2127. [PMID: 15258265 DOI: 10.1105/tpc.104.02354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Despite its importance in a variety of plant defense responses, our understanding of how jasmonic acid (JA) functions at the biochemical level is limited. Several amino acid conjugates of JA were tested for their ability to complement the JA-insensitive Arabidopsis thaliana mutant jar1-1. Unlike free JA, JA-Ile inhibited root growth in jar1-1 to the same extent as in the wild type, whereas JA-Val, JA-Leu, and JA-Phe were ineffective inhibitors in both genotypes. Thin-layer chromatography and gas chromatography-mass spectrometry (GC-MS) analysis of products produced in vitro by recombinant JAR1 demonstrated that this enzyme forms JA-amido conjugates with several amino acids, including JA-Ile. JA-Val, -Leu, -Ile, and -Phe were each quantified in Arabidopsis seedlings by GC-MS. JA-Ile was found at 29.6 pmole g(-1) fresh weight (FW) in the wild type but was more than sevenfold lower in two jar1 alleles. JA-Leu, -Val, and -Phe were present at only low levels in both genotypes. Expression of wild-type JAR1 in transgenic jar1-1 plants restored sensitivity to JA and elevated JA-Ile to the same level as in the wild type. The ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) conjugated to JA was also found in plant tissue at 18.4 pmole g(-1) FW. JA-ACC was determined not be an effective jasmonate root inhibitor, and surprisingly, was twofold higher in the mutants than in the wild type. This suggests that another JA-conjugating enzyme(s) is present in Arabidopsis. Synthesis of JA-ACC might provide a mechanism to coregulate the availability of JA and ACC for conversion to the active hormones JA-Ile and ethylene, respectively. We conclude that JAR1 is a JA-amino synthetase that is required to activate JA for optimal signaling in Arabidopsis. Plant hormone activation by conjugation to amino acids and the enzymes involved in their formation were previously unknown.
Collapse
Affiliation(s)
- Paul E Staswick
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, Nebraska 68583, USA.
| | | |
Collapse
|
229
|
Lorrain S, Lin B, Auriac MC, Kroj T, Saindrenan P, Nicole M, Balagué C, Roby D. Vascular associated death1, a novel GRAM domain-containing protein, is a regulator of cell death and defense responses in vascular tissues. THE PLANT CELL 2004; 16:2217-32. [PMID: 15269331 PMCID: PMC519209 DOI: 10.1105/tpc.104.022038] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2004] [Accepted: 05/11/2004] [Indexed: 05/18/2023]
Abstract
The hypersensitive response (HR) is a programmed cell death that is commonly associated with plant disease resistance. A novel lesion mimic mutant, vad1 (for vascular associated death1), that exhibits light conditional appearance of propagative HR-like lesions along the vascular system was identified. Lesion formation is associated with expression of defense genes, production of high levels of salicylic acid (SA), and increased resistance to virulent and avirulent strains of Pseudomonas syringae pv tomato. Analyses of the progeny from crosses between vad1 plants and either nahG transgenic plants, sid1, nonexpressor of PR1 (npr1), enhanced disease susceptibility1 (eds1), or non-race specific disease resistance1 (ndr1) mutants, revealed the vad1 cell death phenotype to be dependent on SA biosynthesis but NPR1 independent; in addition, both EDS1 and NDR1 are necessary for the proper timing and amplification of cell death as well as for increased resistance to Pseudomonas strains. VAD1 encodes a novel putative membrane-associated protein containing a GRAM domain, a lipid or protein binding signaling domain, and is expressed in response to pathogen infection at the vicinity of the hypersensitive lesions. VAD1 might thus represent a new potential function in cell death control associated with cells in the vicinity of vascular bundles.
Collapse
Affiliation(s)
- Séverine Lorrain
- Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique 2594, Boîte Postale 27, 31326 Castanet-Tolosan, Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
230
|
Staswick PE, Tiryaki I. The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. THE PLANT CELL 2004. [PMID: 15258265 DOI: 10.1105/tpc.104.023549.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Despite its importance in a variety of plant defense responses, our understanding of how jasmonic acid (JA) functions at the biochemical level is limited. Several amino acid conjugates of JA were tested for their ability to complement the JA-insensitive Arabidopsis thaliana mutant jar1-1. Unlike free JA, JA-Ile inhibited root growth in jar1-1 to the same extent as in the wild type, whereas JA-Val, JA-Leu, and JA-Phe were ineffective inhibitors in both genotypes. Thin-layer chromatography and gas chromatography-mass spectrometry (GC-MS) analysis of products produced in vitro by recombinant JAR1 demonstrated that this enzyme forms JA-amido conjugates with several amino acids, including JA-Ile. JA-Val, -Leu, -Ile, and -Phe were each quantified in Arabidopsis seedlings by GC-MS. JA-Ile was found at 29.6 pmole g(-1) fresh weight (FW) in the wild type but was more than sevenfold lower in two jar1 alleles. JA-Leu, -Val, and -Phe were present at only low levels in both genotypes. Expression of wild-type JAR1 in transgenic jar1-1 plants restored sensitivity to JA and elevated JA-Ile to the same level as in the wild type. The ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) conjugated to JA was also found in plant tissue at 18.4 pmole g(-1) FW. JA-ACC was determined not be an effective jasmonate root inhibitor, and surprisingly, was twofold higher in the mutants than in the wild type. This suggests that another JA-conjugating enzyme(s) is present in Arabidopsis. Synthesis of JA-ACC might provide a mechanism to coregulate the availability of JA and ACC for conversion to the active hormones JA-Ile and ethylene, respectively. We conclude that JAR1 is a JA-amino synthetase that is required to activate JA for optimal signaling in Arabidopsis. Plant hormone activation by conjugation to amino acids and the enzymes involved in their formation were previously unknown.
Collapse
Affiliation(s)
- Paul E Staswick
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, Nebraska 68583, USA.
| | | |
Collapse
|
231
|
Staswick PE, Tiryaki I. The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. THE PLANT CELL 2004; 16:2117-27. [PMID: 15258265 PMCID: PMC519202 DOI: 10.1105/tpc.104.023549] [Citation(s) in RCA: 739] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2004] [Accepted: 05/12/2004] [Indexed: 05/17/2023]
Abstract
Despite its importance in a variety of plant defense responses, our understanding of how jasmonic acid (JA) functions at the biochemical level is limited. Several amino acid conjugates of JA were tested for their ability to complement the JA-insensitive Arabidopsis thaliana mutant jar1-1. Unlike free JA, JA-Ile inhibited root growth in jar1-1 to the same extent as in the wild type, whereas JA-Val, JA-Leu, and JA-Phe were ineffective inhibitors in both genotypes. Thin-layer chromatography and gas chromatography-mass spectrometry (GC-MS) analysis of products produced in vitro by recombinant JAR1 demonstrated that this enzyme forms JA-amido conjugates with several amino acids, including JA-Ile. JA-Val, -Leu, -Ile, and -Phe were each quantified in Arabidopsis seedlings by GC-MS. JA-Ile was found at 29.6 pmole g(-1) fresh weight (FW) in the wild type but was more than sevenfold lower in two jar1 alleles. JA-Leu, -Val, and -Phe were present at only low levels in both genotypes. Expression of wild-type JAR1 in transgenic jar1-1 plants restored sensitivity to JA and elevated JA-Ile to the same level as in the wild type. The ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) conjugated to JA was also found in plant tissue at 18.4 pmole g(-1) FW. JA-ACC was determined not be an effective jasmonate root inhibitor, and surprisingly, was twofold higher in the mutants than in the wild type. This suggests that another JA-conjugating enzyme(s) is present in Arabidopsis. Synthesis of JA-ACC might provide a mechanism to coregulate the availability of JA and ACC for conversion to the active hormones JA-Ile and ethylene, respectively. We conclude that JAR1 is a JA-amino synthetase that is required to activate JA for optimal signaling in Arabidopsis. Plant hormone activation by conjugation to amino acids and the enzymes involved in their formation were previously unknown.
Collapse
Affiliation(s)
- Paul E Staswick
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, Nebraska 68583, USA.
| | | |
Collapse
|
232
|
Berrocal-Lobo M, Molina A. Ethylene response factor 1 mediates Arabidopsis resistance to the soilborne fungus Fusarium oxysporum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:763-70. [PMID: 15242170 DOI: 10.1094/mpmi.2004.17.7.763] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Ethylene response factor 1 (ERF1) is a transcriptional factor from Arabidopsis thaliana that regulates plant resistance to the necrotrophic fungi Botrytis cinerea and Plectosphaerella cucumerina and whose overexpression enhances resistance to these fungi. Here, we show that ERF1 also mediates Arabidopsis resistance to the soilborne fungi Fusarium oxysporum sp. conglutinans and F. oxysporum f. sp. lycopersici, because its constitutive expression in Arabidopsis confers enhanced resistance to these pathogens. Expression of ERF1 was upregulated after inoculation with F. oxysporum f. sp. conglutinans, and this response was blocked in ein2-5 and coi1-1 mutants, impaired in the ethylene (ET) and jasmonic acid (JA) signal pathways, respectively, which further indicates that ERF1 is a downstream component of ET and JA defense responses. The signal transduction network controlling resistance to F. oxysporum fungi was explored using signaling-defective mutants in ET (ein2-5), JA (jar1-1), and salicylic acid (SA) (NahG, sid2-1, eds5-1, npr1-1, pad4-1, eds1-1, and pad2-1) transduction pathways. This analysis revealed that Arabidopsis resistance to F. oxysporum requires the ET, JA, and SA signaling pathways and the NPR1 gene, although it is independent of the PAD4 and EDS1 functions.
Collapse
Affiliation(s)
- Marta Berrocal-Lobo
- Laboratorio de Bioquímica y Biologia Molecular, Departamento de Biotecnología-UPM, ETS Ingenieros Agrónomos, Avda. Complutense, E-28040 Madrid, Spain
| | | |
Collapse
|
233
|
Takahashi H, Kanayama Y, Zheng MS, Kusano T, Hase S, Ikegami M, Shah J. Antagonistic interactions between the SA and JA signaling pathways in Arabidopsis modulate expression of defense genes and gene-for-gene resistance to cucumber mosaic virus. PLANT & CELL PHYSIOLOGY 2004; 45:803-9. [PMID: 15215516 DOI: 10.1093/pcp/pch085] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Gene-for-gene resistance to a yellow strain of cucumber mosaic virus [CMV(Y)] is conferred by the dominant RESISTANCE to CMV(Y) (RCY1) allele in the Arabidopsis thaliana ecotype C24. RCY1-conferred resistance to CMV(Y) and expression of the Pathogenesis-related 1 (PR-1) and PR-5 genes are partially compromised by the eds5 mutation and the nahG transgene that block accumulation of salicylic acid (SA). In contrast, the RCY1-conferred resistance to CMV(Y) is not affected by the jasmonic acid (JA)-insensitive coi1 and jar1 mutations. Interestingly, we report here that in contrast to the eds5 RCY1 plant, the eds5 coi1 RCY1 double-mutant plant exhibited a higher level of resistance to CMV(Y). Presence of the coi1 mutant allele also restored the CMV(Y)-activated expression of the PR-1 and PR-5 gene in the eds5 coi1 RCY1 plant. In contrast to the PR-1 and PR-5 genes, expression of the JA-dependent PLANT DEFENSIN 1.2 (PDF1.2) and HEVEIN-LIKE PROTEIN (HEL) genes was elevated in the CMV(Y)-inoculated leaves of the eds5 RCY1 plant, but not in the virus-inoculated leaves of the wild-type RCY1 and coi1 RCY1 plants. We propose that antagonistic interactions between the SA and JA signaling mechanisms modulate defense gene expression and the activation of RCY1-conferred gene-for-gene resistance to CMV(Y).
Collapse
Affiliation(s)
- Hideki Takahashi
- Department of Life Science, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, 981-8555 Japan.
| | | | | | | | | | | | | |
Collapse
|
234
|
Scott IM, Clarke SM, Wood JE, Mur LAJ. Salicylate accumulation inhibits growth at chilling temperature in Arabidopsis. PLANT PHYSIOLOGY 2004; 135:1040-9. [PMID: 15173571 PMCID: PMC514138 DOI: 10.1104/pp.104.041293] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2004] [Revised: 03/09/2004] [Accepted: 03/09/2004] [Indexed: 05/17/2023]
Abstract
The growth of Arabidopsis plants in chilling conditions could be related to their levels of salicylic acid (SA). Plants with the SA hydroxylase NahG transgene grew at similar rates to Col-0 wild types at 23 degrees C, and growth of both genotypes was slowed by transfer to 5 degrees C. However, at 5 degrees C, NahG plants displayed relative growth rates about one-third greater than Col-0, so that by 2 months NahG plants were typically 2.7-fold larger. This resulted primarily from greater cell expansion in NahG rosette leaves. Specific leaf areas and leaf area ratios remained similar in both genotypes. Net assimilation rates were similar in both genotypes at 23 degrees C, but higher in NahG at 5 degrees C. Chlorophyll fluorescence measurements revealed no PSII photodamage in chilled leaves of either genotype. Col-0 shoots at 5 degrees C accumulated SA, particularly in glucosylated form. SA in NahG shoots showed similar tendencies at 5 degrees C, but at greatly depleted levels. Catechol was not detected as a metabolite of the NahG transgene product. We also examined growth and SA levels in SA signaling and metabolism mutants at 5 degrees C. The partially SA-insensitive npr1 mutant displayed growth intermediate between NahG and Col-0, while the SA-deficient eds5 mutant behaved like NahG. In contrast, the cpr1 mutant at 5 degrees C accumulated very high levels of SA and its growth was much more inhibited than wild type. At both temperatures, cpr1 was the only SA-responsive genotype in which oxidative damage (measured as thiobarbituric acid-reactive substances) was significantly different from wild type.
Collapse
Affiliation(s)
- Ian M Scott
- Institute of Biological Sciences, University of Wales, Aberystwyth, SY23 3DA, United Kingdom.
| | | | | | | |
Collapse
|
235
|
Clarke SM, Mur LAJ, Wood JE, Scott IM. Salicylic acid dependent signaling promotes basal thermotolerance but is not essential for acquired thermotolerance in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 38:432-47. [PMID: 15086804 DOI: 10.1111/j.1365-313x.2004.02054.x] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Salicylic acid (SA) is reported to protect plants from heat shock (HS), but insufficient is known about its role in thermotolerance or how this relates to SA signaling in pathogen resistance. We tested thermotolerance and expression of pathogenesis-related (PR) and HS proteins (HSPs) in Arabidopsis thaliana genotypes with modified SA signaling: plants with the SA hydroxylase NahG transgene, the nonexpresser of PR proteins (npr1) mutant, and the constitutive expressers of PR proteins (cpr1 and cpr5) mutants. At all growth stages from seeds to 3-week-old plants, we found evidence for SA-dependent signaling in basal thermotolerance (i.e. tolerance of HS without prior heat acclimation). Endogenous SA correlated with basal thermotolerance, with the SA-deficient NahG and SA-accumulating cpr5 genotypes having lowest and highest thermotolerance, respectively. SA promoted thermotolerance during the HS itself and subsequent recovery. Recovery from HS apparently involved an NPR1-dependent pathway but thermotolerance during HS did not. SA reduced electrolyte leakage, indicating that it induced membrane thermoprotection. PR-1 and Hsp17.6 were induced by SA or HS, indicating common factors in pathogen and HS responses. SA-induced Hsp17.6 expression had a different dose-response to PR-1 expression. HS-induced Hsp17.6 protein appeared more slowly in NahG. However, SA only partially induced HSPs. Hsp17.6 induction by HS was more substantial than by SA, and we found no SA effect on Hsp101 expression. All genotypes, including NahG and npr1, were capable of expression of HSPs and acquisition of HS tolerance by prior heat acclimation. Although SA promotes basal thermotolerance, it is not essential for acquired thermotolerance.
Collapse
Affiliation(s)
- Shannon M Clarke
- Institute of Biological Sciences, University of Wales, Aberystwyth SY23 3DA, UK
| | | | | | | |
Collapse
|
236
|
Abstract
Molecular communication between plants and potential pathogens determines the ultimate outcome of their interaction. The directed delivery of microbial molecules into and around the host cell, and the subsequent perception of these by the invaded plant tissue (or lack thereof), determines the difference between disease and disease resistance. In theory, any foreign molecule produced by an invading pathogen could act as an elicitor of the broad physiological and transcriptional re-programming indicative of a plant defense response. The diversity of elicitors recognized by plants seems to support this hypothesis. Additionally, these elicitors are often virulence factors from the pathogen recognized by the host. This recognition, though genetically as simple as a ligand-receptor interaction, may require additional host proteins that are the nominal targets of virulence factor action. Transduction of recognition probably requires regulated protein degradation and results in massive changes in cellular homeostasis, including a programmed cell death known as the hypersensitive response that indicates a successful, if perhaps over-zealous, disease resistance response.
Collapse
Affiliation(s)
- Zachary Nimchuk
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA.
| | | | | | | |
Collapse
|
237
|
Fitzgerald HA, Chern MS, Navarre R, Ronald PC. Overexpression of (At)NPR1 in rice leads to a BTH- and environment-induced lesion-mimic/cell death phenotype. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:140-51. [PMID: 14964528 DOI: 10.1094/mpmi.2004.17.2.140] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Systemic acquired resistance (SAR) is an inducible defense response that protects plants against a broad spectrum of pathogens. A central regulator of SAR in Arabidopsis is NPR1 (nonexpresser of pathogenesis-related genes). In rice, overexpression of Arabidopsis NPR1 enhances plant resistance to the bacterial pathogen Xanthomonas oryzae pv. oryzae. This report demonstrates that overexpression of (At)NPR1 in rice also triggers a lesion-mimic/cell death (LMD) phenotype. The LMD phenotype is environmentally regulated and heritable. In addition, the development of lesions and death correlates with the expression of rice defense genes and the accumulation of hydrogen peroxide. Application of the salicylic acid (SA) analog, benzo(1,2,3) thiadiazole-7-carbothioc acid S-methyl ester (BTH), potentiates this phenotype Endogenous SA levels are reduced in rice overexpressing (At)NPR1 when compared with wildtype plants, supporting the idea that (At)NPR1 may perceive and modulate the accumulation of SA. The association of (At)NPR1 expression in rice with the development of an LMD phenotype suggests that (At)NPR1 has multiple roles in plant stress responses that may affect its efficacy as a transgenic tool for engineering broad-spectrum resistance.
Collapse
|
238
|
Nandi A, Welti R, Shah J. The Arabidopsis thaliana dihydroxyacetone phosphate reductase gene SUPPRESSSOR OF FATTY ACID DESATURASE DEFICIENCY1 is required for glycerolipid metabolism and for the activation of systemic acquired resistance. THE PLANT CELL 2004; 16:465-77. [PMID: 14729910 PMCID: PMC341917 DOI: 10.1105/tpc.016907] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2003] [Accepted: 11/09/2003] [Indexed: 05/18/2023]
Abstract
Systemic acquired resistance (SAR) is a broad-spectrum resistance mechanism in plants that is activated in naive organs after exposure of another organ to a necrotizing pathogen. The organs manifesting SAR exhibit an increase in levels of salicylic acid (SA) and expression of the PATHOGENESIS-RELATED1 (PR1) gene. SA signaling is required for the manifestation of SAR. We demonstrate here that the Arabidopsis thaliana suppressor of fatty acid desaturase deficiency1 (sfd1) mutation compromises the SAR-conferred enhanced resistance to Pseudomonas syringae pv maculicola. In addition, the sfd1 mutation diminished the SAR-associated accumulation of elevated levels of SA and PR1 gene transcript in the distal leaves of plants previously exposed to an avirulent pathogen. However, the basal resistance to virulent and avirulent strains of P. syringae and the accumulation of elevated levels of SA and PR1 gene transcript in the pathogen-inoculated leaves of sfd1 were not compromised. Furthermore, the application of the SA functional analog benzothiadiazole enhanced disease resistance in the sfd1 mutant plants. SFD1 encodes a putative dihydroxyacetone phosphate (DHAP) reductase, which complemented the glycerol-3-phosphate auxotrophy of the DHAP reductase-deficient Escherichia coli gpsA mutant. Plastid glycerolipid composition was altered in the sfd1 mutant plant, suggesting that SFD1 is involved in lipid metabolism and that an SFD1 product lipid(s) is important for the activation of SAR.
Collapse
Affiliation(s)
- Ashis Nandi
- Division of Biology and Molecular, Cellular, and Developmental Biology Program, Kansas State University, Manhattan, Kansas 66506-4901
| | | | | |
Collapse
|
239
|
Li J, Brader G, Palva ET. The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. THE PLANT CELL 2004; 16:319-31. [PMID: 14742872 PMCID: PMC341906 DOI: 10.1105/tpc.016980] [Citation(s) in RCA: 755] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2003] [Accepted: 11/21/2003] [Indexed: 05/18/2023]
Abstract
Cross talk between salicylic acid (SA)- and jasmonic acid (JA)-dependent defense signaling has been well documented in plants, but how this cross talk is executed and the components involved remain to be elucidated. We demonstrate that the plant-specific transcription factor WRKY70 is a common component in SA- and JA-mediated signal pathways. Expression of WRKY70 is activated by SA and repressed by JA. The early induction of WRKY70 by SA is NPR1-independent, but functional NPR1 is required for full-scale induction. Epistasis analysis suggested that WRKY70 is downstream of NPR1 in an SA-dependent signal pathway. Modulation of WRKY70 transcript levels by constitutive overexpression increases resistance to virulent pathogens and results in constitutive expression of SA-induced pathogenesis-related genes. Conversely, antisense suppression of WRKY70 activates JA-responsive/COI1-dependent genes. The effect of WRKY70 is not caused by subsequent changes in SA or JA levels. We suggest that WRKY70 acts as an activator of SA-induced genes and a repressor of JA-responsive genes, integrating signals from these mutually antagonistic pathways.
Collapse
Affiliation(s)
- Jing Li
- Department of Biosciences, Division of Genetics, University of Helsinki, FIN-00014 Helsinki, Finland
| | | | | |
Collapse
|
240
|
Uquillas C, Letelier I, Blanco F, Jordana X, Holuigue L. NPR1-independent activation of immediate early salicylic acid-responsive genes in Arabidopsis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:34-42. [PMID: 14714866 DOI: 10.1094/mpmi.2004.17.1.34] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Salicylic acid (SA) is a key signal for the activation of defense genes in response to stress. The activation of late defense genes by SA, such as PR-1, involves the participation of the NPR1 protein. This protein acts as coactivator of the TGA factors that recognize as-1-like elements in the PR-1 promoter. Considering that functional as-1-like elements are also found in the promoter of SA- and auxin-responsive immediate early genes, we tested the hypothesis that NPR1 is also required for activation of these genes. The expression of the immediate early genes glutathione S-transferase (GST6) and glucosyltransferase (EIGT) was studied in npr1 mutant and wild-type Arabidopsis plants. In the npr1 mutant background, SA and 2,4-dichlorophenoxyacetic acid were unable to promote transcription of PR-1 but effectively stimulated the expression of GST6 and EIGT. Furthermore, increased binding of proteins to the GST6 as-1-like promoter element was detected in nuclear extracts from npr1 and wild-type plants after treatment with SA. In summary, these results indicate that activation of immediate early genes by SA proceeds through an NPR1-independent pathway. Therefore, we propose that activation by SA of immediate early and late genes occur by different mechanisms.
Collapse
Affiliation(s)
- Carolina Uquillas
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, P.O. Box 114-D, Santiago, Chile
| | | | | | | | | |
Collapse
|
241
|
Grüner R, Strompen G, Pfitzner AJP, Pfitzner UM. Salicylic acid and the hypersensitive response initiate distinct signal transduction pathways in tobacco that converge on the as-1-like element of the PR-1a promoter. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:4876-86. [PMID: 14653814 DOI: 10.1046/j.1432-1033.2003.03888.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tobacco pathogenesis-related protein 1a (PR-1a) is induced in plants during the hypersensitive response (HR) after exposure of plants to salicylic acid (SA) and by developmental cues. Gene activation by these diverse stimuli is mediated via an as-1-like element in the PR-1a upstream region. To further analyze the significance of this cis-acting sequence, an authentic as-1 element from the cauliflower mosaic virus 35S RNA promoter was inserted into the PR-1a promoter in place of the as-1-like motif. Reporter gene analysis in transgenic tobacco plants demonstrated that as-1 can functionally replace the as-1-like element in the PR-1a promoter in response to all stimuli. However, reporter gene induction from the as-1 carrying promoter was enhanced in response to SA compared to the wild-type promoter, and the ratio of reporter gene activities in SA treated leaf tissue to tissue exhibiting the HR increased with the as-1 promoter construct. Our findings support a model where PR-1a gene expression relies on at least two distinct signal transduction pathways initiated by SA and by a yet unknown signal produced during the HR, that promote different, albeit related, transcription complexes on the PR-1a as-1-like element. Analysis of PR-1 proteins in plants expressing salicylate hydroxylase yielded additional evidence that an HR dependent pathway leads to high level PR-1 gene induction in tobacco.
Collapse
Affiliation(s)
- Rose Grüner
- Universität Hohenheim, Institut für Genetik, FG Allgemeine Virologie, Stuttgart, Germany
| | | | | | | |
Collapse
|
242
|
Zhang Y, Goritschnig S, Dong X, Li X. A gain-of-function mutation in a plant disease resistance gene leads to constitutive activation of downstream signal transduction pathways in suppressor of npr1-1, constitutive 1. THE PLANT CELL 2003; 15:2636-46. [PMID: 14576290 PMCID: PMC280567 DOI: 10.1105/tpc.015842] [Citation(s) in RCA: 364] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2003] [Accepted: 09/03/2003] [Indexed: 05/17/2023]
Abstract
Plants have evolved sophisticated defense mechanisms against pathogen infections, during which resistance (R) genes play central roles in recognizing pathogens and initiating defense cascades. Most of the cloned R genes share two common domains: the central domain, which encodes a nucleotide binding adaptor shared by APAF-1, certain R proteins, and CED-4 (NB-ARC), plus a C-terminal region that encodes Leu-rich repeats (LRR). In Arabidopsis, a dominant mutant, suppressor of npr1-1, constitutive 1 (snc1), was identified previously that constitutively expresses pathogenesis-related (PR) genes and resistance against both Pseudomonas syringae pv maculicola ES4326 and Peronospora parasitica Noco2. The snc1 mutation was mapped to the RPP4 cluster. In snc1, one of the TIR-NB-LRR-type R genes contains a point mutation that results in a single amino acid change from Glu to Lys in the region between NB-ARC and LRR. Deletions of this R gene in snc1 reverted the plants to wild-type morphology and completely abolished constitutive PR gene expression and disease resistance. The constitutive activation of the defense responses was not the result of the overexpression of the R gene, because its expression level was not altered in snc1. Our data suggest that the point mutation in snc1 renders the R gene constitutively active without interaction with pathogens. To analyze signal transduction pathways downstream of snc1, epistasis analyses between snc1 and pad4-1 or eds5-3 were performed. Although the resistance signaling in snc1 was fully dependent on PAD4, it was only partially affected by blocking salicylic acid (SA) synthesis, suggesting that snc1 activates both SA-dependent and SA-independent resistance pathways.
Collapse
Affiliation(s)
- Yuelin Zhang
- Biotechnology Laboratory, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | | | | | | |
Collapse
|
243
|
Huitema E, Vleeshouwers VGAA, Francis DM, Kamoun S. Active defence responses associated with non-host resistance of Arabidopsis thaliana to the oomycete pathogen Phytophthora infestans. MOLECULAR PLANT PATHOLOGY 2003; 4:487-500. [PMID: 20569408 DOI: 10.1046/j.1364-3703.2003.00195.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
SUMMARY The molecular basis of non-host resistance, or species-specific resistance, remains one of the major unknowns in the study of plant-microbe interactions. In this paper, we describe the characterization of a non-host pathosystem involving the model plant Arabidopsis thaliana and the economically important and destructive oomycete pathogen Phytophthora infestans. Cytological investigations into the early stages of this interaction revealed the germination of P. infestans cysts on Arabidopsis leaves, direct penetration of epidermal cells, formation of infection vesicles and occasionally secondary hyphae, followed by a typical hypersensitive response. P. infestans biomass dynamics during infection of Arabidopsis was monitored using kinetic PCR, revealing an increase in biomass during the first 24 h after inoculation, followed by a decrease in the later stages. Transgenic reporter lines and RNA blot analyses were used to characterize the defence responses induced following P. infestans infection. Significant induction of PDF1.2 was observed at 48 h after inoculation, whereas elevated levels of PR gene expression were detected three days after inoculation. To further characterize this defence response, DNA microarray analyses were carried out to determine the expression profiles for c. 11 000 Arabidopsis cDNAs 16 h after infection. These analyses revealed a significant overlap between Arabidopsis non-host response and other defence-related treatments described in the literature. In particular, non-host response to P. infestans was clearly associated with activation of the jasmonate pathway. The described Arabidopsis-P. infestans pathosystem offers excellent prospects for improving our understanding of non-host resistance.
Collapse
Affiliation(s)
- Edgar Huitema
- Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, Ohio 44691, USA
| | | | | | | |
Collapse
|
244
|
Kachroo P, Kachroo A, Lapchyk L, Hildebrand D, Klessig DF. Restoration of defective cross talk in ssi2 mutants: role of salicylic acid, jasmonic acid, and fatty acids in SSI2-mediated signaling. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2003; 16:1022-9. [PMID: 14601670 DOI: 10.1094/mpmi.2003.16.11.1022] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The Arabidopsis mutants ssi2 and fab2 are defective in stearoyl ACP desaturase, which causes altered salicylic acid (SA)- and jasmonic acid (JA)-mediated defense signaling. Both ssi2 and fab2 plants show spontaneous cell death, express PR genes constitutively, accumulate high levels of SA, and exhibit enhanced resistance to bacterial and oomycete pathogens. In contrast to constitutive activation of the SA pathway, ssi2 and fab2 plants are repressed in JA-mediated induction of the PDF1.2 gene, which suggests that the SSI2-mediated signaling pathway modulates cross talk between the SA and JA pathways. In this study, we have characterized two recessive nonallelic mutants in the ssi2 background, designated as rdc (restorer of defective cross talk) 2 and rdc8. Both ssi2 rdc mutants are suppressed in constitutive SA signaling, show basal level expression of PR-1 gene, and induce high levels of PDF1.2 in response to exogenous application of JA. Interestingly, while the rdc8 mutation completely abolishes spontaneous cell death in ssi2 rdc8 plants, the ssi2 rdc2 plants continue to show some albeit reduced cell death. Fatty acid (FA) analysis showed a reduction in 16:3 levels in ssi2 rdc8 plants, which suggests that this mutation may limit the flux of FAs into the prokaryotic pathway of glycerolipid biosynthesis. Both rdc2 and rdc8 continue to accumulate high levels of 18:0, which suggests that 18:0 levels were responsible for neither constitutive SA signaling nor repression of JA-induced expression of the PDF1.2 gene in ssi2 plants. We also analyzed SA and JA responses of the fab2-derived shs1 mutant, which accumulates levels of 18:0 over 50% lower than those in the fab2 plants. Even though fab2 shs1 plants were morphologically bigger than fab2 plants, they expressed PR genes constitutively, showed HR-like cell death, and accumulated elevated levels of SA. However, unlike the ssi2 rdc plants, fab2 shs1 plants were unable to induce high levels of PDF1.2 expression in response to exogenous application of JA. Together, these results show that defective cross talk in ssi2 can be restored by second site mutations and is independent of morphological size of the plants, cell death, and elevated levels of 18:0.
Collapse
Affiliation(s)
- Pradeep Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington 40546, USA.
| | | | | | | | | |
Collapse
|
245
|
Campbell EJ, Schenk PM, Kazan K, Penninckx IAMA, Anderson JP, Maclean DJ, Cammue BPA, Ebert PR, Manners JM. Pathogen-responsive expression of a putative ATP-binding cassette transporter gene conferring resistance to the diterpenoid sclareol is regulated by multiple defense signaling pathways in Arabidopsis. PLANT PHYSIOLOGY 2003; 133:1272-84. [PMID: 14526118 PMCID: PMC281622 DOI: 10.1104/pp.103.024182] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The ATP-binding cassette (ABC) transporters are encoded by large gene families in plants. Although these proteins are potentially involved in a number of diverse plant processes, currently, very little is known about their actual functions. In this paper, through a cDNA microarray screening of anonymous cDNA clones from a subtractive library, we identified an Arabidopsis gene (AtPDR12) putatively encoding a member of the pleiotropic drug resistance (PDR) subfamily of ABC transporters. AtPDR12 displayed distinct induction profiles after inoculation of plants with compatible and incompatible fungal pathogens and treatments with salicylic acid, ethylene, or methyl jasmonate. Analysis of AtPDR12 expression in a number of Arabidopsis defense signaling mutants further revealed that salicylic acid accumulation, NPR1 function, and sensitivity to jasmonates and ethylene were all required for pathogen-responsive expression of AtPDR12. Germination assays using seeds from an AtPDR12 insertion line in the presence of sclareol resulted in lower germination rates and much stronger inhibition of root elongation in the AtPDR12 insertion line than in wild-type plants. These results suggest that AtPDR12 may be functionally related to the previously identified ABC transporters SpTUR2 and NpABC1, which transport sclareol. Our data also point to a potential role for terpenoids in the Arabidopsis defensive armory.
Collapse
Affiliation(s)
- Emma J Campbell
- Cooperative Research Centre for Tropical Plant Protection, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
246
|
Nandi A, Krothapalli K, Buseman CM, Li M, Welti R, Enyedi A, Shah J. Arabidopsis sfd mutants affect plastidic lipid composition and suppress dwarfing, cell death, and the enhanced disease resistance phenotypes resulting from the deficiency of a fatty acid desaturase. THE PLANT CELL 2003; 15:2383-98. [PMID: 14507997 PMCID: PMC197303 DOI: 10.1105/tpc.015529] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2003] [Accepted: 08/03/2003] [Indexed: 05/18/2023]
Abstract
A loss-of-function mutation in the Arabidopsis SSI2/FAB2 gene, which encodes a plastidic stearoyl-acyl-carrier protein desaturase, has pleiotropic effects. The ssi2 mutant plant is dwarf, spontaneously develops lesions containing dead cells, accumulates increased salicylic acid (SA) levels, and constitutively expresses SA-mediated, NPR1-dependent and -independent defense responses. In parallel, jasmonic acid-regulated signaling is compromised in the ssi2 mutant. In an effort to discern the involvement of lipids in the ssi2-conferred developmental and defense phenotypes, we identified suppressors of fatty acid (stearoyl) desaturase deficiency (sfd) mutants. The sfd1, sfd2, and sfd4 mutant alleles suppress the ssi2-conferred dwarfing and lesion development, the NPR1-independent expression of the PATHOGENESIS-RELATED1 (PR1) gene, and resistance to Pseudomonas syringae pv maculicola. The sfd1 and sfd4 mutant alleles also depress ssi2-conferred PR1 expression in NPR1-containing sfd1 ssi2 and sfd4 ssi2 plants. By contrast, the sfd2 ssi2 plant retains the ssi2-conferred high-level expression of PR1. In parallel with the loss of ssi2-conferred constitutive SA signaling, the ability of jasmonic acid to activate PDF1.2 expression is reinstated in the sfd1 ssi2 npr1 plant. sfd4 is a mutation in the FAD6 gene that encodes a plastidic omega6-desaturase that is involved in the synthesis of polyunsaturated fatty acid-containing lipids. Because the levels of plastid complex lipid species containing hexadecatrienoic acid are depressed in all of the sfd ssi2 npr1 plants, we propose that these lipids are involved in the manifestation of the ssi2-conferred phenotypes.
Collapse
Affiliation(s)
- Ashis Nandi
- Division of Biology, Kansas State University, Manhattan, Kansas 66506, USA
| | | | | | | | | | | | | |
Collapse
|
247
|
Anand A, Schmelz EA, Muthukrishnan S. Development of a lesion-mimic phenotype in a transgenic wheat line overexpressing genes for pathogenesis-related (PR) proteins is dependent on salicylic acid concentration. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2003; 16:916-925. [PMID: 14558693 DOI: 10.1094/mpmi.2003.16.10.916] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In the course of coexpressing genes for pathogenesis-related (PR) proteins for a class IV chitinase and an acidic glucanase in transgenic wheat plants, we regenerated a wheat line that developed necrotic lesions containing dead cells in the T2 and subsequent generations. Lesion spots were detected at the booting stage (5- to 6-week-old plants) in lines homozygous for the transgene loci. In contrast, lesions were not observed in hemizygous transgenic lines or lines silenced for transgene expression, indicating a requirement for high levels of transgene expression for the development of the lesioned phenotype. Lesion development was associated with the accumulation of host-encoded PR proteins, e.g., chitinases, beta-1,3-glucanases, thaumatin-like protein, and production of reactive oxygen intermediates. F1 progeny of a cross between the lesion-plus transgenic line and wild-type nontransgenic plants produced progeny with a normal phenotype, while the F2 progenies segregated for the lesion phenotype. Salicylic acid (SA) levels in plants with the lesion-plus phenotype were found to be several times higher than controls and nearly double the levels in hemizygous transgenic plants that lack lesions. SA application activated lesion development in excised leaf pieces of these hemizygous transgenic plants. Similar activation of lesion development in control plants occurred only when high concentrations of SA were applied for prolonged periods. Transcripts for phenylalanine-ammonia lyase, which provides precursors of SA, were elevated in homozygous transgenic plants. Our data suggest that transgene-induced lesion-mimic phenotype correlates with enhanced SA biosynthesis.
Collapse
Affiliation(s)
- Ajith Anand
- Department of Biochemistry, Kansas State University, Manhattan, KS 66506, USA
| | | | | |
Collapse
|
248
|
Lu H, Rate DN, Song JT, Greenberg JT. ACD6, a novel ankyrin protein, is a regulator and an effector of salicylic acid signaling in the Arabidopsis defense response. THE PLANT CELL 2003; 15:2408-20. [PMID: 14507999 PMCID: PMC197305 DOI: 10.1105/tpc.015412] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2003] [Accepted: 08/01/2003] [Indexed: 05/18/2023]
Abstract
The previously reported Arabidopsis dominant gain-of-function mutant accelerated cell death6-1 (acd6-1) shows spontaneous cell death and increased disease resistance. acd6-1 also confers increased responsiveness to the major defense signal salicylic acid (SA). To further explore the role of ACD6 in the defense response, we cloned and characterized the gene. ACD6 encodes a novel protein with putative ankyrin and transmembrane regions. It is a member of one of the largest uncharacterized gene families in higher plants. Steady state basal expression of ACD6 mRNA required light, SA, and an intact SA signaling pathway. Additionally, ACD6 mRNA levels were increased in the systemic, uninfected tissue of Pseudomonas syringae-infected plants as well as in plants treated with the SA agonist benzothiazole (BTH). A newly isolated ACD6 loss-of-function mutant was less responsive to BTH and upon P. syringae infection had reduced SA levels and increased susceptibility. Conversely, plants overexpressing ACD6 showed modestly increased SA levels, increased resistance to P. syringae, and BTH-inducible and/or a low level of spontaneous cell death. Thus, ACD6 is a necessary and dose-dependent activator of the defense response against virulent bacteria and can activate SA-dependent cell death.
Collapse
Affiliation(s)
- Hua Lu
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
249
|
DEVOTO ALESSANDRA, TURNER JOHNG. Regulation of jasmonate-mediated plant responses in arabidopsis. ANNALS OF BOTANY 2003; 92:329-37. [PMID: 12871847 PMCID: PMC4257513 DOI: 10.1093/aob/mcg151] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Jasmonates (JAs) are signalling molecules that play a key role in the regulation of metabolic processes, reproduction, and defence against pathogens and insects. JAs regulate responses that are both local and systemic, and which are affected by outputs from signalling pathways regulated by ethylene, salicylic acid and auxin. This is a review of recent advances in our understanding of the regulation of JA perception in Arabidopsis thaliana, the different signalling functions of biologically active JAs, the post-translational control of JA responses leading to substantial transcriptional reprogramming, and the influence of other signalling pathways of systemic JA responses.
Collapse
Affiliation(s)
- ALESSANDRA DEVOTO
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - JOHN G. TURNER
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
- * For correspondence. E-mail:
| |
Collapse
|
250
|
Abstract
Salicylic acid is an important signal molecule in plant defense. In the past two years, significant progress has been made in understanding the mechanism of salicylic-acid biosynthesis and signaling in plants. A pathway similar to that found in some bacteria synthesizes salicylic acid from chorismate via isochorismate. Salicylic-acid signaling is mediated by at least two mechanisms, one requiring the NON-EXPRESSOR OF PR1 (NPR1) gene and a second that is independent of NPR1. Feedback loops involving salicylic acid modulate upstream signals. These feedback loops may provide a point for integrating developmental, environmental and other defense-associated signals, and thus fine-tune the defense responses of plants.
Collapse
Affiliation(s)
- Jyoti Shah
- Division of Biology, and The Molecular, Cellular and Developmental Biology Program, 303 Ackert Hall, Kansas State University, 66506-4901, Manhattan, Kansas, USA.
| |
Collapse
|