201
|
Wang Y, Yan X, Mi S, Li Z, Wang Y, Zhu H, Sun X, Zhao B, Zhao C, Zou Y, Hu K, Ding X, Sun A, Ge J. Naoxintong attenuates Ischaemia/reperfusion Injury through inhibiting NLRP3 inflammasome activation. J Cell Mol Med 2016; 21:4-12. [PMID: 27785882 PMCID: PMC5192872 DOI: 10.1111/jcmm.12915] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 05/27/2016] [Indexed: 12/04/2022] Open
Abstract
Naoxintong (NXT) is a Chinese Materia Medica standardized product extracted from 16 various kinds of Chinese traditional herbal medicines including Salvia miltiorrhiza, Angelica sinensis, Astragali Radix. Naoxintong is clinically effective in treating ischaemia heart disease. Nucleotide‐binding oligomerization domain‐Like Receptor with a Pyrin domain 3 (NLRP3) inflammasome has been critically involved in myocardial ischaemia/reperfusion (I/R) injury. Here, we have been suggested that NXT might attenuate myocardial I/R injury via suppression of NLRP3 inflammasome activation. Male C57BL6 mice were subjected to myocardial I/R injury via 45 min. coronary ligation and release for the indicated times. Naoxintong (0.7 g/kg/day) and PBS were orally administrated for 2 weeks before surgery. Cardiac function assessed by echocardiography was significantly improved in the NXT group compared to PBS group at day 2 after myocardial I/R. NLRP3 inflammasome activation is crucially involved in the initial inflammatory response after myocardial I/R injury, leading to cleaved caspase‐1, mature interleukin (IL)‐1β production, accompanying by macrophage and neutrophil infiltration. The cardioprotective effect of NXT was associated with a diminished NLRP3 inflammasome activation, decreased pro‐inflammatory macrophage (M1 macrophages) and neutrophil infiltration after myocardial I/R injury. In addition, serum levels of IL‐1β, indicators of NLRP3 inflammasome activation, were also significantly suppressed in the NXT treated group after I/R injury. Naoxintong exerts cardioprotive effects at least partly by suppression of NLRP3 inflammasome activation in this I/R injury model.
Collapse
Affiliation(s)
- Yaqiong Wang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoxiang Yan
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shouling Mi
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhang Li
- SIBS (Institute of Health Sciences)-Changzheng Hospital Joint Center for Translational Medicine, Institute of Health Sciences, Shanghai Changzheng Hospital, Institutes for Translational Medicine (CAS-SMMU), Shanghai, China.,Key Laboratory of Stem Cell Biology, Institute of Health Sciences, SIBS, Chinese Academy of Sciences/Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yuexiang Wang
- SIBS (Institute of Health Sciences)-Changzheng Hospital Joint Center for Translational Medicine, Institute of Health Sciences, Shanghai Changzheng Hospital, Institutes for Translational Medicine (CAS-SMMU), Shanghai, China.,Key Laboratory of Stem Cell Biology, Institute of Health Sciences, SIBS, Chinese Academy of Sciences/Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Hong Zhu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaolei Sun
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Buchang Zhao
- Shandong Buchang Pharmaceutical Co., Ltd, Shandong, China
| | - Chao Zhao
- Shandong Buchang Pharmaceutical Co., Ltd, Shandong, China
| | - Yunzeng Zou
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,Institute of Biomedical Science, Fudan University, Shanghai, China
| | - Kai Hu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Aijun Sun
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,Institute of Biomedical Science, Fudan University, Shanghai, China
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,Institute of Biomedical Science, Fudan University, Shanghai, China
| |
Collapse
|
202
|
Homoplantaginin Inhibits Palmitic Acid-induced Endothelial Cells Inflammation by Suppressing TLR4 and NLRP3 Inflammasome. J Cardiovasc Pharmacol 2016; 67:93-101. [PMID: 26355761 DOI: 10.1097/fjc.0000000000000318] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Palmitic acid (PA)-induced vascular endothelial inflammation plays a pivotal role in the occurrence and development of vascular diseases. The present study was conducted to examine the effect of homoplantaginin, a main flavonoid from a traditional Chinese medicine Salvia plebeia R. Br., on PA-treated human umbilical vein endothelial cells inflammation and the underlying molecular mechanism. Firstly, we found that homoplantaginin (0.1, 1, 10 μM) dose-dependently reduced expression of toll-like receptor-4 evoked by PA (100 μM). The inhibitory effect of homoplantaginin was further confirmed under lipopolysaccharide challenge. In addition, downstream adapted proteins including myeloid differentiation primary response gene 88, toll/interleukin-1 receptor-domain containing adaptor-inducing interferon-β and tumor necrosis factors receptor associated factor-6 were successfully inhibited by homoplantaginin under PA treatment. Also, we found that homoplantaginin tightly controlled PA-induced reactive oxygen species to prevent nucleotide-binding domain-like receptor 3 (NLRP3) inflammasome activation by suppressing reactive oxygen species-sensitive thioredoxin-interacting protein, NLRP3, and caspase-1. Meanwhile, protein and mRNA levels of inflammatory mediators (interleukin-1β, intercellular cell adhesion molecule-1, and monocyte chemotactic protein-1) were decreased by homoplantaginin. Furthermore, homoplantaginin restored PA-impaired nitric oxide generation. Taken together, these results indicated that homoplantaginin protected endothelial cells from ameliorating PA-induced endothelial inflammation via suppressing toll-like receptor-4 and NLRP3 pathways, and restoring nitric oxide generation, suggesting it may be a potential candidate for further development in the prevention and treatment of vascular diseases.
Collapse
|
203
|
Taskintuna I, Elsayed MEAA, Schatz P. Update on Clinical Trials in Dry Age-related Macular Degeneration. Middle East Afr J Ophthalmol 2016; 23:13-26. [PMID: 26957835 PMCID: PMC4759891 DOI: 10.4103/0974-9233.173134] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
This review article summarizes the most recent clinical trials for dry age-related macular degeneration (AMD), the most common cause of vision loss in the elderly in developed countries. A literature search through websites https://www.pubmed.org and https://www.clinicaltrials.gov/, both accessed no later than November 04, 2015, was performed. We identified three Phase III clinical trials that were completed over the recent 5 years Age-Related Eye Disease Study 2 (AREDS2), implantable miniature telescope and tandospirone, and several other trials targeting a variety of mechanisms including, oxidative stress, complement inhibition, visual cycle inhibition, retinal and choroidal blood flow, stem cells, gene therapy, and visual rehabilitation. To date, none of the biologically oriented therapies have resulted in improved vision. Vision improvement was reported with an implantable mini telescope. Stem cells therapy holds a potential for vision improvement. The AREDS2 formulas did not add any further reduced risk of progression to advanced AMD, compared to the original AREDS formula. Several recently discovered pathogenetic mechanisms in dry AMD have enabled development of new treatment strategies, and several of these have been tested in recent clinical trials and are currently being tested in ongoing trials. The rapid development and understanding of pathogenesis holds promise for the future.
Collapse
Affiliation(s)
- Ibrahim Taskintuna
- Division of Vitreoretinal, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | | | - Patrik Schatz
- Division of Vitreoretinal, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia; Department of Ophthalmology, Clinical Sciences, Scane County University Hospital, University of Lund, Sweden
| |
Collapse
|
204
|
Kong F, Ye B, Lin L, Cai X, Huang W, Huang Z. Atorvastatin suppresses NLRP3 inflammasome activation via TLR4/MyD88/NF-κB signaling in PMA-stimulated THP-1 monocytes. Biomed Pharmacother 2016; 82:167-72. [DOI: 10.1016/j.biopha.2016.04.043] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 04/22/2016] [Accepted: 04/22/2016] [Indexed: 12/12/2022] Open
|
205
|
Conos SA, Lawlor KE, Vaux DL, Vince JE, Lindqvist LM. Cell death is not essential for caspase-1-mediated interleukin-1β activation and secretion. Cell Death Differ 2016; 23:1827-1838. [PMID: 27419363 DOI: 10.1038/cdd.2016.69] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 05/20/2016] [Accepted: 06/20/2016] [Indexed: 12/12/2022] Open
Abstract
Caspase-1 cleaves and activates the pro-inflammatory cytokine interleukin-1 beta (IL-1β), yet the mechanism of IL-1β release and its dependence on cell death remains controversial. To address this issue, we generated a novel inflammasome independent system in which we directly activate caspase-1 by dimerization. In this system, caspase-1 dimerization induced the cleavage and secretion of IL-1β, which did not require processing of caspase-1 into its p20 and p10 subunits. Moreover, direct caspase-1 dimerization allowed caspase-1 activation of IL-1β to be separated from cell death. Specifically, we demonstrate at the single cell level that IL-1β can be released from live, metabolically active, cells following caspase-1 activation. In addition, we show that dimerized or endogenous caspase-8 can also directly cleave IL-1β into its biologically active form, in the absence of canonical inflammasome components. Therefore, cell death is not obligatory for the robust secretion of bioactive IL-1β.
Collapse
Affiliation(s)
- S A Conos
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - K E Lawlor
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - D L Vaux
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - J E Vince
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - L M Lindqvist
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia
| |
Collapse
|
206
|
3,4-Methylenedioxy-β-Nitrostyrene Ameliorates Experimental Burn Wound Progression by Inhibiting the NLRP3 Inflammasome Activation. Plast Reconstr Surg 2016; 137:566e-575e. [PMID: 26910701 DOI: 10.1097/01.prs.0000479972.06934.83] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Burn wound progression remains a challenging problem in the clinic. Secondary tissue damage caused by unlimited inflammatory response is considered to be one of the key factors contributing to this clinical problem. Nucleotide-binding oligomerization domain-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome has recently been found to play important roles in immune activation and the inflammatory response after burn/trauma. This experimental study aims (1) to observe the expression and distribution of NLRP3 inflammasome in burn wounds of a rat burn model and (2) to study whether inhibiting the NLRP3 inflammasome activation would ameliorate burn wound progression. METHODS A deep second-degree burn was inflicted on the backs of Wistar rats. The expression of NLRP3 inflammasome components and interleukin-1β were determined by Western blot and coimmunoprecipitation. The distribution of NLRP3 inflammasome was assessed by immunohistochemical staining and double-labeling immunofluorescence. Neutrophil infiltration, wound perfusion, burn depth, and wound healing time were assessed. RESULTS Burn induced remarkable NLRP3 inflammasome activation and cleavage of interleukin-1β. The NLRP3 inflammasome was observed mainly in macrophages of the zone of stasis. 3,4-Methylenedioxy-β-nitrostyrene significantly inhibited NLRP3 inflammasome activation and inflammatory cytokine production in burn wounds. Consequently, neutrophil infiltration was reduced, wound perfusion was restored, burn wound progression was ameliorated, and wound healing was accelerated. CONCLUSIONS In this study, the authors demonstrated that burn induced NLRP3 inflammasome activation and inflammatory response in wounds, which may be associated with burn wound progression. Treatment with 3,4-methylenedioxy-β-nitrostyrene inhibited NLRP3 inflammasome activation, ameliorated burn wound progression, and promoted wound healing.
Collapse
|
207
|
Abstract
Elevated levels of cholesteryl ester (CE)-enriched apoB containing plasma lipoproteins lead to increased foam cell formation, the first step in the development of atherosclerosis. Unregulated uptake of low-density lipoprotein cholesterol by circulating monocytes and other peripheral blood cells takes place through scavenger receptors and over time causes disruption in cellular cholesterol homeostasis. As lipoproteins are taken up, their CE core is hydrolyzed by liposomal lipases to generate free cholesterol (FC). FC can be either re-esterified and stored as CE droplets or shuttled to the plasma membrane for ATP-binding cassette transporter A1-mediated efflux. Because cholesterol is an essential component of all cellular membranes, some FC may be incorporated into microdomains or lipid rafts. These platforms are essential for receptor signaling and transduction, requiring rapid assembly and disassembly. ATP-binding cassette transporter A1 plays a major role in regulating microdomain cholesterol and is most efficient when lipid-poor apolipoprotein AI (apoAI) packages raft cholesterol into soluble particles that are eventually catabolized by the liver. If FC is not effluxed from the cell, it becomes esterified, CE droplets accumulate and microdomain cholesterol content becomes poorly regulated. This dysregulation leads to prolonged activation of immune cell signaling pathways, resulting in receptor oversensitization. The availability of apoAI or other amphipathic α-helix-rich apoproteins relieves the burden of excess microdomain cholesterol in immune cells allowing a reduction in immune cell proliferation and infiltration, thereby stimulating regression of foam cells in the artery. Therefore, cellular balance between FC and CE is essential for proper immune cell function and prevents chronic immune cell overstimulation and proliferation.
Collapse
Affiliation(s)
- Mary G Sorci-Thomas
- From the Division of Endocrinology, Metabolism and Clinical Nutrition, Department of Medicine and Senior Investigator, Blood Research Institute, BloodCenter of Wisconsin (M.G.S.-T.) and Department of Pharmacology and Toxicology (M.J.T.), Medical College of Wisconsin, Milwaukee, WI.
| | - Michael J Thomas
- From the Division of Endocrinology, Metabolism and Clinical Nutrition, Department of Medicine and Senior Investigator, Blood Research Institute, BloodCenter of Wisconsin (M.G.S.-T.) and Department of Pharmacology and Toxicology (M.J.T.), Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
208
|
Arbore G, West EE, Spolski R, Robertson AAB, Klos A, Rheinheimer C, Dutow P, Woodruff TM, Yu ZX, O'Neill LA, Coll RC, Sher A, Leonard WJ, Köhl J, Monk P, Cooper MA, Arno M, Afzali B, Lachmann HJ, Cope AP, Mayer-Barber KD, Kemper C. T helper 1 immunity requires complement-driven NLRP3 inflammasome activity in CD4⁺ T cells. Science 2016; 352:aad1210. [PMID: 27313051 DOI: 10.1126/science.aad1210] [Citation(s) in RCA: 373] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 04/20/2016] [Indexed: 12/12/2022]
Abstract
The NLRP3 inflammasome controls interleukin-1β maturation in antigen-presenting cells, but a direct role for NLRP3 in human adaptive immune cells has not been described. We found that the NLRP3 inflammasome assembles in human CD4(+) T cells and initiates caspase-1-dependent interleukin-1β secretion, thereby promoting interferon-γ production and T helper 1 (T(H)1) differentiation in an autocrine fashion. NLRP3 assembly requires intracellular C5 activation and stimulation of C5a receptor 1 (C5aR1), which is negatively regulated by surface-expressed C5aR2. Aberrant NLRP3 activity in T cells affects inflammatory responses in human autoinflammatory disease and in mouse models of inflammation and infection. Our results demonstrate that NLRP3 inflammasome activity is not confined to "innate immune cells" but is an integral component of normal adaptive T(H)1 responses.
Collapse
Affiliation(s)
- Giuseppina Arbore
- MRC Centre for Transplantation, Division of Transplant Immunology and Mucosal Biology, King's College London, London SE1 9RT, UK
| | - Erin E West
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, Bethesda, MD 20892, USA
| | - Rosanne Spolski
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, Bethesda, MD 20892, USA
| | - Avril A B Robertson
- Institute for Molecular Bioscience and School of Biomedical Sciences, University of Queensland, QLD 4072, Australia
| | - Andreas Klos
- Institute for Medical Microbiology and Hospital Epidemiology, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Claudia Rheinheimer
- Institute for Medical Microbiology and Hospital Epidemiology, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Pavel Dutow
- Institute for Medical Microbiology and Hospital Epidemiology, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Trent M Woodruff
- Institute for Molecular Bioscience and School of Biomedical Sciences, University of Queensland, QLD 4072, Australia
| | - Zu Xi Yu
- Pathology Core, National Heart, Lung, and Blood Institute, Bethesda, MD 20892, USA
| | - Luke A O'Neill
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Rebecca C Coll
- Institute for Molecular Bioscience and School of Biomedical Sciences, University of Queensland, QLD 4072, Australia
| | - Alan Sher
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Warren J Leonard
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, Bethesda, MD 20892, USA
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Pete Monk
- Department of Infection and Immunity, University of Sheffield, Sheffield S10 2RX, UK
| | - Matthew A Cooper
- Institute for Molecular Bioscience and School of Biomedical Sciences, University of Queensland, QLD 4072, Australia
| | - Matthew Arno
- Genomics Centre, Faculty of Life Sciences and Medicine, King's College London, London SE1 9NH, UK
| | - Behdad Afzali
- MRC Centre for Transplantation, Division of Transplant Immunology and Mucosal Biology, King's College London, London SE1 9RT, UK.,Lymphocyte Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD 20892, USA
| | - Helen J Lachmann
- UK National Amyloidosis Centre, Division of Medicine, University College London, Royal Free Campus, London NW3 2PF, UK
| | - Andrew P Cope
- Academic Department of Rheumatology, Division of Immunology, Infection and Inflammatory Diseases, King's College London, London SE1 1UL, UK
| | - Katrin D Mayer-Barber
- Laboratory of Clinical Infectious Diseases, Inflammation and Innate Immunity Unit, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Claudia Kemper
- MRC Centre for Transplantation, Division of Transplant Immunology and Mucosal Biology, King's College London, London SE1 9RT, UK.,Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, Bethesda, MD 20892, USA
| |
Collapse
|
209
|
Arbore G, Kemper C. A novel "complement-metabolism-inflammasome axis" as a key regulator of immune cell effector function. Eur J Immunol 2016; 46:1563-73. [PMID: 27184294 PMCID: PMC5025719 DOI: 10.1002/eji.201546131] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/27/2016] [Accepted: 05/13/2016] [Indexed: 12/20/2022]
Abstract
The inflammasomes are intracellular multiprotein complexes that induce and regulate the generation of the key pro‐inflammatory cytokines IL‐1β and IL‐18 in response to infectious microbes and cellular stress. The activation of inflammasomes involves several upstream signals including classic pattern or danger recognition systems such as the TLRs. Recently, however, the activation of complement receptors, such as the anaphylatoxin C3a and C5a receptors and the complement regulator CD46, in conjunction with the sensing of cell metabolic changes, for instance increased amino acid influx and glycolysis (via mTORC1), have emerged as additional critical activators of the inflammasome. This review summarizes recent advances in our knowledge about complement‐mediated inflammasome activation, with a specific focus on a novel “complement – metabolism – NLRP3 inflammasome axis.”
Collapse
Affiliation(s)
- Giuseppina Arbore
- MRC Centre for Transplantation, Division of Transplant Immunology and Mucosal Biology, King's College London, London, UK
| | - Claudia Kemper
- MRC Centre for Transplantation, Division of Transplant Immunology and Mucosal Biology, King's College London, London, UK.,Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
210
|
Vince JE, Silke J. The intersection of cell death and inflammasome activation. Cell Mol Life Sci 2016; 73:2349-67. [PMID: 27066895 PMCID: PMC11108284 DOI: 10.1007/s00018-016-2205-2] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 02/07/2023]
Abstract
Inflammasomes sense cellular danger to activate the cysteine-aspartic protease caspase-1, which processes precursor interleukin-1β (IL-1β) and IL-18 into their mature bioactive fragments. In addition, activated caspase-1 or the related inflammatory caspase, caspase-11, can cleave gasdermin D to induce a lytic cell death, termed pyroptosis. The intertwining of IL-1β activation and cell death is further highlighted by research showing that the extrinsic apoptotic caspase, caspase-8, may, like caspase-1, directly process IL-1β, activate the NLRP3 inflammasome itself, or bind to inflammasome complexes to induce apoptotic cell death. Similarly, RIPK3- and MLKL-dependent necroptotic signaling can activate the NLRP3 inflammasome to drive IL-1β inflammatory responses in vivo. Here, we review the mechanisms by which cell death signaling activates inflammasomes to initiate IL-1β-driven inflammation, and highlight the clinical relevance of these findings to heritable autoinflammatory diseases. We also discuss whether the act of cell death can be separated from IL-1β secretion and evaluate studies suggesting that several cell death regulatory proteins can directly interact with, and modulate the function of, inflammasome and IL-1β containing protein complexes.
Collapse
Affiliation(s)
- James E Vince
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3050, Australia.
| | - John Silke
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3050, Australia
| |
Collapse
|
211
|
Campbell L, Raheem I, Malemud CJ, Askari AD. The Relationship between NALP3 and Autoinflammatory Syndromes. Int J Mol Sci 2016; 17:ijms17050725. [PMID: 27187378 PMCID: PMC4881547 DOI: 10.3390/ijms17050725] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/06/2016] [Accepted: 05/06/2016] [Indexed: 12/22/2022] Open
Abstract
The nucleotide-binding domain, leucine-rich repeat/pyrin domain-containing-3 (NALP3) inflammasome, which is required for synthesis of interleukin-1β, has been implicated in the pathogenesis of several autoinflammatory syndromes. This review of the literature summarizes the interconnectedness of NALP3 inflammasome with some of these disorders. Familial Mediterranean fever results from a mutation in the Mediterranean fever (MEFV) gene, which encodes the pyrin protein. Previous study results suggest that pyrin suppresses caspase-1 activation, perhaps by competing for the adaptor protein, termed, pyrin domain of apoptosis/speck-like protein containing a caspase-recruitment domain (ACS) which therefore interferes with NALP3 inflammasome activation. The nucleotide-binding domain, leucine-rich repeat/pyrin domain-containing-3 (NALP3) inflammasome is constitutively activated in cryopyrin-associated periodic syndromes due to gain-of-function mutations resulting from point mutations within the neuronal apoptosis inhibitor protein/class 2 transcription factor/heterokaryon incompatibility/telomerase-associated protein-1 (NACHT) domain of the NALP3 protein. Pyogenic arthritis, pyoderma gangrenosum and acne (PAPA) syndrome is caused by mutations in the genes encoding proline-serine-threonine phosphatase interacting protein 1 (PSTPIP1). These PSTPIP1 mutants are thought to bind to pyrin causing an increase in the pyrin domain of apoptosis/speck-like protein containing a caspase-recruitment domain (ASC) pyroptosome assembly leading to procaspase-1 recruitment and therefore its activation. Hyperimmunoglublinemia D syndrome is caused by mevalonate kinase (MVK) deficiency, which may be affected by protein accumulation that leads to NALP3 inflammasome activation. Tumor necrosis factor receptor-associated periodic syndrome is associated with mutations in the tumor necrosis factor receptor superfamily, member 1A (TNFRSF1A) gene which decreases the level of soluble tumor necrosis factor receptor-1 (TNFR1) leading to neutralization of tumor necrosis factor (TNF)-α. In general, these autoinflammatory disorders have shown a clinical response to interleukin-1 (IL-1) antagonists, suggesting that the NALP3 inflammasome serves a critical role in their pathogenesis.
Collapse
Affiliation(s)
- Lorna Campbell
- Rheumatology Fellows at University Hospitals Case Medical Center, Cleveland, OH 44106-5076, USA.
| | - Irfan Raheem
- Rheumatology Fellows at University Hospitals Case Medical Center, Cleveland, OH 44106-5076, USA.
| | - Charles J Malemud
- Department of Medicine, Division of Rheumatic Diseases, Case Western Reserve University School of Medicine and University Hospitals Case Medical Center, 2061 Cornell Road, Cleveland, OH 44106-5076, USA.
| | - Ali D Askari
- Department of Medicine, Division of Rheumatic Diseases, Case Western Reserve University School of Medicine and University Hospitals Case Medical Center, 2061 Cornell Road, Cleveland, OH 44106-5076, USA.
| |
Collapse
|
212
|
Chun J, Chung H, Wang X, Barry R, Taheri ZM, Platnich JM, Ahmed SB, Trpkov K, Hemmelgarn B, Benediktsson H, James MT, Muruve DA. NLRP3 Localizes to the Tubular Epithelium in Human Kidney and Correlates With Outcome in IgA Nephropathy. Sci Rep 2016; 6:24667. [PMID: 27093923 PMCID: PMC4837396 DOI: 10.1038/srep24667] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 04/01/2016] [Indexed: 01/03/2023] Open
Abstract
Nod-like receptor pyrin domain-containing-3 (NLRP3) has been implicated in the pathogenesis of experimental renal injury, yet its characterization in human kidney disease remains largely unexplored. NLRP3 expression was evaluated in human kidney biopsies, primary renal tubular cells (HPTC) and correlated to disease outcomes in patients with IgA nephropathy (IgAN). NLRP3 localized to renal tubules in normal human kidney tissue and to mitochondria within HPTC by immunohistochemistry and immunofluorescence microscopy. Compared to control kidneys, NLRP3 gene expression was increased in biopsies of patients with IgAN. While NLRP3 expression in IgAN was detected in glomeruli, it remained largely confined to the tubular epithelial compartment. In vitro NLRP3 mRNA and protein expression were transiently induced in HPTC by TGF-β1 but subsequently diminished over time as cells lost their epithelial phenotype in a process regulated by transcription and ubiquitin-mediated degradation. Consistent with the in vitro data, low NLRP3 mRNA expression in kidney biopsies was associated with a linear trend of higher risk of composite endpoint of doubling serum creatinine and end stage renal disease in patients with IgAN. Taken together, these data show that NLRP3 is primarily a kidney tubule-expressed protein that decreases in abundance in progressive IgAN.
Collapse
Affiliation(s)
- Justin Chun
- Department of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Hyunjae Chung
- Department of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Xiangyu Wang
- Department of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Rebecca Barry
- Department of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Zohreh Mohammad Taheri
- Department of Pathology and Laboratory Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Jaye M Platnich
- Department of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Sofia B Ahmed
- Department of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Kiril Trpkov
- Department of Pathology and Laboratory Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Brenda Hemmelgarn
- Department of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Hallgrimur Benediktsson
- Department of Pathology and Laboratory Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Matthew T James
- Department of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Daniel A Muruve
- Department of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
213
|
Mattoo H, Mahajan VS, Maehara T, Deshpande V, Della-Torre E, Wallace ZS, Kulikova M, Drijvers JM, Daccache J, Carruthers MN, Castelino FV, Stone JR, Stone JH, Pillai S. Clonal expansion of CD4(+) cytotoxic T lymphocytes in patients with IgG4-related disease. J Allergy Clin Immunol 2016; 138:825-838. [PMID: 26971690 DOI: 10.1016/j.jaci.2015.12.1330] [Citation(s) in RCA: 261] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/30/2015] [Accepted: 12/14/2015] [Indexed: 12/24/2022]
Abstract
BACKGROUND IgG4-related disease (IgG4-RD) is a systemic condition of unknown cause characterized by highly fibrotic lesions with dense lymphoplasmacytic infiltrates. CD4(+) T cells constitute the major inflammatory cell population in IgG4-RD lesions. OBJECTIVE We used an unbiased approach to characterize CD4(+) T-cell subsets in patients with IgG4-RD based on their clonal expansion and ability to infiltrate affected tissue sites. METHODS We used flow cytometry to identify CD4(+) effector/memory T cells in a cohort of 101 patients with IgG4-RD. These expanded cells were characterized by means of gene expression analysis and flow cytometry. Next-generation sequencing of the T-cell receptor β chain gene was performed on CD4(+)SLAMF7(+) cytotoxic T lymphocytes (CTLs) and CD4(+)GATA3(+) TH2 cells in a subset of patients to identify their clonality. Tissue infiltration by specific T cells was examined by using quantitative multicolor imaging. RESULTS CD4(+) effector/memory T cells with a cytolytic phenotype were expanded in patients with IgG4-RD. Next-generation sequencing revealed prominent clonal expansions of these CD4(+) CTLs but not CD4(+)GATA3(+) memory TH2 cells in patients with IgG4-RD. The dominant T cells infiltrating a range of inflamed IgG4-RD tissue sites were clonally expanded CD4(+) CTLs that expressed SLAMF7, granzyme A, IL-1β, and TGF-β1. Clinical remission induced by rituximab-mediated B-cell depletion was associated with a reduction in numbers of disease-associated CD4(+) CTLs. CONCLUSIONS IgG4-RD is prominently linked to clonally expanded IL-1β- and TGF-β1-secreting CD4(+) CTLs in both peripheral blood and inflammatory tissue lesions. These active, terminally differentiated, cytokine-secreting effector CD4(+) T cells are now linked to a human disease characterized by chronic inflammation and fibrosis.
Collapse
Affiliation(s)
- Hamid Mattoo
- Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Vinay S Mahajan
- Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Takashi Maehara
- Massachusetts General Hospital, Harvard Medical School, Boston, Mass; Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Fukuoka, Japan
| | - Vikram Deshpande
- Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | | | - Zachary S Wallace
- Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Maria Kulikova
- Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Jefte M Drijvers
- Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Joe Daccache
- Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | | | | | - James R Stone
- Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - John H Stone
- Massachusetts General Hospital, Harvard Medical School, Boston, Mass.
| | - Shiv Pillai
- Massachusetts General Hospital, Harvard Medical School, Boston, Mass.
| |
Collapse
|
214
|
Romero R, Xu Y, Plazyo O, Chaemsaithong P, Chaiworapongsa T, Unkel R, Than NG, Chiang PJ, Dong Z, Xu Z, Tarca AL, Abrahams VM, Hassan SS, Yeo L, Gomez-Lopez N. A Role for the Inflammasome in Spontaneous Labor at Term. Am J Reprod Immunol 2016; 79:e12440. [PMID: 26952361 DOI: 10.1111/aji.12440] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 09/28/2015] [Indexed: 12/15/2022] Open
Abstract
PROBLEM Inflammasomes are signaling platforms that, upon sensing pathogens and sterile stressors, mediate the release of mature forms of interleukin (IL)-1β and IL-18. The aims of this study were to determine (i) the expression of major inflammasome components in the chorioamniotic membranes in spontaneous labor at term, (ii) whether there are changes in the inflammasome components associated with the activation of caspase-1 and caspase-4, and (iii) whether these events are associated with the release of the mature forms of IL-1β and IL-18. METHOD OF STUDY Chorioamniotic membranes were collected from women at term with and without spontaneous labor. mRNA abundance and protein concentrations of inflammasome components, nucleotide-binding oligomerization domain-containing (NOD)1 and NOD2 proteins, caspase-1, caspase-4, IL-1β, and IL-18 were quantified by qRT-PCR (n = 28-29 each), ELISA (n = 10 each) or immunoblotting (n = 8 each), and immunohistochemistry (n = 10 each). Active caspase-1 and caspase-4, as well as mature IL-18, were determined by immunoblotting (n = 4 each), and pro- and mature forms of IL-1β were determined by ELISA (n = 4-7 each). RESULTS Inflammasome components and NOD proteins were expressed in the chorioamniotic membranes obtained from women at term. The chorioamniotic membranes from women who underwent labor had (i) higher concentrations of NLRP3 (NOD-like receptor family, pyrin domain-containing protein 3) and NOD1 protein, (ii) greater immunoreactivity for caspase-1 and caspase-4, (iii) a greater quantity of the active form of caspase-1 (p20), and (iv) higher mRNA abundance and protein concentrations of pro- and mature IL-1β. However, mRNA abundance and protein concentrations of the mature form of IL-18 were not increased in tissues from women who underwent labor at term. CONCLUSIONS Spontaneous labor at term is characterized by the expression of inflammasome components, which may participate in the activation of caspase-1 and lead to the cleavage and release of mature IL-1β by the chorioamniotic membranes. These results support the participation of the inflammasome in the mechanisms responsible for spontaneous parturition at term.
Collapse
Affiliation(s)
- Roberto Romero
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Yi Xu
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Olesya Plazyo
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Piya Chaemsaithong
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ronald Unkel
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Nandor Gabor Than
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA.,Institute of Enzymology, Momentum Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Maternity Private Department, Kutvolgyi Clinical Block, Semmelweis University, Budapest, Hungary.,First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Po Jen Chiang
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA
| | - Zhong Dong
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Zhonghui Xu
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Adi L Tarca
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Vikki M Abrahams
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - Sonia S Hassan
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Lami Yeo
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
215
|
NLRP3 Inflammasome Plays an Important Role in the Pathogenesis of Collagen-Induced Arthritis. Mediators Inflamm 2016; 2016:9656270. [PMID: 27034595 PMCID: PMC4807043 DOI: 10.1155/2016/9656270] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/18/2016] [Accepted: 02/01/2016] [Indexed: 11/29/2022] Open
Abstract
Objective. To investigate the relationship between NLRP3 and the pathogenesis of collagen-induced arthritis. Methods. We used the collagen-induced arthritis (CIA) mouse model. The mice were divided into two groups: the model group (CIA, n = 16) and the control group (Normal, n = 8). The mice were sacrificed seven weeks after immunization. The arthritis score and imaging evaluation (X-rays, Micro-CT, and MRI) were performed. Synovial tissue NLRP3 expression and peripheral blood cytokine levels were analyzed. Results. The arthritis score (6.00 ± 2.52), imaging score (4.63 ± 0.92), and synovial tissue NLRP3 expression (4.00 ± 2.03) significantly increased in the CIA mice. The expression of synovial NLRP3 was positively correlated with arthritis clinical and radiographic scores (r = 0.792 and r = 0.669, resp.). Conclusions. The synovial NLRP3 expression increased at the early onset of RA. Synovial NLRP3 expression level was correlated with the clinical arthritis severity and extent of radiological destruction, suggesting that NLRP3 is involved in the pathogenesis of RA.
Collapse
|
216
|
Yuk JM, Jin HS, Jo EK. Small Heterodimer Partner and Innate Immune Regulation. Endocrinol Metab (Seoul) 2016; 31:17-24. [PMID: 26754583 PMCID: PMC4803555 DOI: 10.3803/enm.2016.31.1.17] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 12/21/2015] [Accepted: 12/31/2015] [Indexed: 12/31/2022] Open
Abstract
The nuclear receptor superfamily consists of the steroid and non-steroid hormone receptors and the orphan nuclear receptors. Small heterodimer partner (SHP) is an orphan family nuclear receptor that plays an essential role in the regulation of glucose and cholesterol metabolism. Recent studies reported a previously unidentified role for SHP in the regulation of innate immunity and inflammation. The innate immune system has a critical function in the initial response against a variety of microbial and danger signals. Activation of the innate immune response results in the induction of inflammatory cytokines and chemokines to promote anti-microbial effects. An excessive or uncontrolled inflammatory response is potentially harmful to the host, and can cause tissue damage or pathological threat. Therefore, the innate immune response should be tightly regulated to enhance host defense while preventing unwanted immune pathologic responses. In this review, we discuss recent studies showing that SHP is involved in the negative regulation of toll-like receptor-induced and NLRP3 (NACHT, LRR and PYD domains-containing protein 3)-mediated inflammatory responses in innate immune cells. Understanding the function of SHP in innate immune cells will allow us to prevent or modulate acute and chronic inflammation processes in cases where dysregulated innate immune activation results in damage to normal tissues.
Collapse
Affiliation(s)
- Jae Min Yuk
- Department of Infection Biology, Chungnam National University School of Medicine, Daejeon, Korea
- Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon, Korea
| | - Hyo Sun Jin
- Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon, Korea
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, Korea
| | - Eun Kyeong Jo
- Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon, Korea
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, Korea.
| |
Collapse
|
217
|
Chow SH, Deo P, Naderer T. Macrophage cell death in microbial infections. Cell Microbiol 2016; 18:466-74. [PMID: 26833712 DOI: 10.1111/cmi.12573] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/21/2016] [Accepted: 01/27/2016] [Indexed: 12/26/2022]
Abstract
Macrophages can respond to microbial infections with programmed cell death. The major cell death pathways of apoptosis, pyroptosis and necroptosis are tightly regulated to ensure adequate immune reactions to virulent and persistent invaders. Macrophage death eliminates the replicative niche of intracellular pathogens and induces immune attack. Not surprisingly, successful pathogens have evolved strategies to modulate macrophage cell death pathways to enable microbial survival and replication. Uncontrolled macrophage death can also lead to tissue damage, which may augment bacterial dissemination and pathology. In this review, we highlight how pathogens hijack macrophage cell death signals to promote microbial survival and immune evasion.
Collapse
Affiliation(s)
- Seong H Chow
- Department of Biochemistry and Molecular Biology and the Biomedicine Discovery Institute, Monash University, Clayton, 3800, VIC, Australia
| | - Pankaj Deo
- Department of Biochemistry and Molecular Biology and the Biomedicine Discovery Institute, Monash University, Clayton, 3800, VIC, Australia
| | - Thomas Naderer
- Department of Biochemistry and Molecular Biology and the Biomedicine Discovery Institute, Monash University, Clayton, 3800, VIC, Australia
| |
Collapse
|
218
|
Gicquel T, Robert S, Victoni T, Lagente V. [The NLRP3 inflammasome: Physiopathology and therapeutic application]. Presse Med 2016; 45:438-46. [PMID: 26880081 DOI: 10.1016/j.lpm.2016.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 12/30/2015] [Accepted: 01/11/2016] [Indexed: 11/19/2022] Open
Abstract
The innate immune system constitutes the first line of host defense against pathogens. "Nonself", such as exogenous particles or pathogens, triggers an inflammatory response. Inflammasomes are molecular platforms activated upon cellular infection or stress that trigger the maturation of proinflammatory cytokines such as IL-1β. Activation of the NLRP3 inflammasome pathway, the most extensively studied, appears to be the corner stone of many inflammatory diseases, including Crohn's disease, rheumatoid arthritis and gout. Cryopyrine-associated periodic syndromes (CAPS) are NLRP3 inflammasome-associated diseases. Canakinumab (Ilaris(®)) is the only drug approved for CAPS treatment in France. Targeted therapy against NLRP3 inflammasome and IL-1β might be the new anti-inflammatory drugs.
Collapse
Affiliation(s)
- Thomas Gicquel
- CHU de Rennes, laboratoire de toxicologie biologique et médicolégale, 35033 Rennes, France; Université Rennes 1, faculté de pharmacie, 35043 Rennes, France; Inserm, UMR991 « foie, métabolismes et cancer », 35043 Rennes, France.
| | - Sacha Robert
- Université Rennes 1, faculté de pharmacie, 35043 Rennes, France; Inserm, UMR991 « foie, métabolismes et cancer », 35043 Rennes, France
| | - Tatiana Victoni
- Université Rennes 1, faculté de pharmacie, 35043 Rennes, France; Inserm, UMR991 « foie, métabolismes et cancer », 35043 Rennes, France
| | - Vincent Lagente
- Université Rennes 1, faculté de pharmacie, 35043 Rennes, France; Inserm, UMR991 « foie, métabolismes et cancer », 35043 Rennes, France
| |
Collapse
|
219
|
Abstract
The relationship between dementia and cancer is complex. A wealth of observational data suggest (1) reduced risk of certain cancers in Alzheimer and Parkinson diseases; and (2) increased risk of other cancers in Parkinson disease. These relationships persist despite correcting for reporting artifacts and survival bias. Several potential mechanisms have been proposed and warrant further investigation. Aging is a risk factor for both. Common environmental exposures, such as smoking, may play roles. Common mechanisms such as chronic inflammation and immunosenescence, and common risk factors such as diabetes and obesity, have been implicated. Shared genetic pathways are a major focus, particularly those favoring apoptosis and cell proliferation at opposite ends of the spectrum. To complicate the picture further, certain cancer chemotherapy and adjuvant therapy agents have neurotoxic effects, whereas animal studies show other cancer drugs reducing neurodegeneration, raising the possibility of repurposing those agents for use in Alzheimer disease. These multiple potential lines of evidence must be disentangled to investigate underlying mechanisms, the end-game being to develop and to test potential prevention and treatment strategies.
Collapse
|
220
|
Galam L, Rajan A, Failla A, Soundararajan R, Lockey RF, Kolliputi N. Deletion of P2X7 attenuates hyperoxia-induced acute lung injury via inflammasome suppression. Am J Physiol Lung Cell Mol Physiol 2016; 310:L572-81. [PMID: 26747786 DOI: 10.1152/ajplung.00417.2015] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 01/05/2016] [Indexed: 12/13/2022] Open
Abstract
Increasing evidence shows that hyperoxia is a serious complication of oxygen therapy in acutely ill patients that causes excessive production of free radicals leading to hyperoxia-induced acute lung injury (HALI). Our previous studies have shown that P2X7 receptor activation is required for inflammasome activation during HALI. However, the role of P2X7 in HALI is unclear. The main aim of this study was to determine the effect of P2X7 receptor gene deletion on HALI. Wild-type (WT) and P2X7 knockout (P2X7 KO) mice were exposed to 100% O2 for 72 h. P2X7 KO mice treated with hyperoxia had enhanced survival in 100% O2 compared with the WT mice. Hyperoxia-induced recruitment of inflammatory cells and elevation of IL-1β, TNF-α, monocyte chemoattractant protein-1, and IL-6 levels were attenuated in P2X7 KO mice. P2X7 deletion decreased lung edema and alveolar protein content, which are associated with enhanced alveolar fluid clearance. In addition, activation of the inflammasome was suppressed in P2X7-deficient alveolar macrophages and was associated with suppression of IL-1β release. Furthermore, P2X7-deficient alveolar macrophage in type II alveolar epithelial cells (AECs) coculture model abolished protein permeability across mouse type II AEC monolayers. Deletion of P2X7 does not lead to a decrease in epithelial sodium channel expression in cocultures of alveolar macrophages and type II AECs. Taken together, these findings show that deletion of P2X7 is a protective factor and therapeutic target for the amelioration of hyperoxia-induced lung injury.
Collapse
Affiliation(s)
- Lakshmi Galam
- Division of Allergy and Immunology, Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Ashna Rajan
- Division of Allergy and Immunology, Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Athena Failla
- Division of Allergy and Immunology, Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Ramani Soundararajan
- Division of Allergy and Immunology, Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Richard F Lockey
- Division of Allergy and Immunology, Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Narasaiah Kolliputi
- Division of Allergy and Immunology, Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| |
Collapse
|
221
|
Qiao J, Huang Y, Xia Y, Chu P, Yao H, Xu L, Qi K, Liu Y, Xu K, Zeng L. Busulfan and cyclosphamide induce liver inflammation through NLRP3 activation in mice after hematopoietic stem cell transplantation. Sci Rep 2015; 5:17828. [PMID: 26635145 PMCID: PMC4669461 DOI: 10.1038/srep17828] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 11/06/2015] [Indexed: 01/29/2023] Open
Abstract
The aim of this study was to evaluate the role of NLRP3 inflammasome on BU/CY-induced liver inflammation in mice after HSCT. HSCT mice model was established through infusion of 5 × 106 bone marrow mononuclear cells after conditioned with BU/CY. On day 7, 14, 21 and 28 after HSCT, mice were sacrificed for analysis of liver inflammation, cytokine secretion, NLRP3 expression and caspase-1 activation as well as release of ATP and high-mobility group protein B1 (HMGB1). Furthermore, NLRP3 selective inhibitor (BAY 11-7082) was administrated into mice after HSCT to evaluate its effects on liver inflammation. Severe liver inflammation and damage with elevated secretion of IL-1β and IL-18 were found in mice after HSCT. Meanwhile, elevated expressions of NLRP3 and caspase-1 activation in liver were found. In addition, increased release of ATP and HMGB1 were observed. Selective inhibition of NLRP3 decreased caspase-1 activation and secretion of IL-1β and IL-18. Furthermore, NLRP3 inhibition also reduced infiltration of macrophages and neutrophils and improved liver function. In conclusion, NLRP3 was involved in BU/CY-induced liver inflammation after HSCT and selectively inhibited it ameliorated liver inflammation and improved liver function, suggesting targeting NLRP3 might be a new approach in the prophylaxis of liver inflammation after HSCT.
Collapse
Affiliation(s)
- Jianlin Qiao
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical College, Xuzhou 221002, China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou 221002, China
| | - Yujin Huang
- Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou 221002, China
| | - Yuan Xia
- Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou 221002, China
| | - Peipei Chu
- Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou 221002, China
| | - Haina Yao
- Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou 221002, China
| | - Linyan Xu
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical College, Xuzhou 221002, China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou 221002, China
| | - Kunming Qi
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical College, Xuzhou 221002, China
| | - Yun Liu
- Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou 221002, China
| | - Kailin Xu
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical College, Xuzhou 221002, China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou 221002, China
| | - Lingyu Zeng
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical College, Xuzhou 221002, China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou 221002, China
| |
Collapse
|
222
|
Cordero MD, Alcocer-Gómez E, Marín-Aguilar F, Rybkina T, Cotán D, Pérez-Pulido A, Alvarez-Suarez JM, Battino M, Sánchez-Alcazar JA, Carrión AM, Culic O, Navarro-Pando JM, Bullón P. Mutation in cytochrome b gene of mitochondrial DNA in a family with fibromyalgia is associated with NLRP3-inflammasome activation. J Med Genet 2015; 53:113-22. [PMID: 26566881 DOI: 10.1136/jmedgenet-2015-103392] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/08/2015] [Indexed: 01/24/2023]
Abstract
BACKGROUND Fibromyalgia (FM) is a worldwide diffuse musculoskeletal chronic pain condition that affects up to 5% of the general population. Many symptoms associated with mitochondrial diseases are reported in patients with FM such as exercise intolerance, fatigue, myopathy and mitochondrial dysfunction. In this study, we report a mutation in cytochrome b gene of mitochondrial DNA (mtDNA) in a family with FM with inflammasome complex activation. METHODS mtDNA from blood cells of five patients with FM were sequenced. We clinically and genetically characterised a patient with FM and family with a new mutation in mtCYB. Mitochondrial mutation phenotypes were determined in skin fibroblasts and transmitochondrial cybrids. RESULTS After mtDNA sequence in patients with FM, we found a mitochondrial homoplasmic mutation m.15804T>C in the mtCYB gene in a patient and family, which was maternally transmitted. Mutation was observed in several tissues and skin fibroblasts showed a very significant mitochondrial dysfunction and oxidative stress. Increased NLRP3-inflammasome complex activation was observed in blood cells from patient and family. CONCLUSIONS We propose further studies on mtDNA sequence analysis in patients with FM with evidences for maternal inheritance. The presence of similar symptoms in mitochondrial myopathies could unmask mitochondrial diseases among patients with FM. On the other hand, the inflammasome complex activation by mitochondrial dysfunction could be implicated in the pathophysiology of mitochondrial diseases.
Collapse
Affiliation(s)
- Mario D Cordero
- IBiS Institute of Biomedicine of Seville, University Hospital Virgen del Rocío-CSIC-University of Seville, Sevilla, Spain Research Laboratory, Oral Medicine Department, University of Sevilla, Sevilla, Spain
| | - Elísabet Alcocer-Gómez
- Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-CSIC-Junta de Andalucía, Sevilla, Spain Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Sevilla, Spain
| | - Fabiola Marín-Aguilar
- IBiS Institute of Biomedicine of Seville, University Hospital Virgen del Rocío-CSIC-University of Seville, Sevilla, Spain
| | - Tatyana Rybkina
- División de Neurociencias, Universidad Pablo de Olavide de Sevilla, Sevilla, Spain
| | - David Cotán
- Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-CSIC-Junta de Andalucía, Sevilla, Spain Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Sevilla, Spain
| | - Antonio Pérez-Pulido
- Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-CSIC-Junta de Andalucía, Sevilla, Spain
| | - José Miguel Alvarez-Suarez
- Escuela de Medicina Veterinaria y Zootecnia, Facultad de Ciencias de la Salud, Universidad de Las Américas, Quito, Ecuador
| | - Maurizio Battino
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche-Sez. Biochimica, Università Politecnica delle Marche, Ancona, Italy
| | - José Antonio Sánchez-Alcazar
- Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-CSIC-Junta de Andalucía, Sevilla, Spain Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Sevilla, Spain
| | - Angel M Carrión
- División de Neurociencias, Universidad Pablo de Olavide de Sevilla, Sevilla, Spain
| | - Ognjen Culic
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - José M Navarro-Pando
- Unidad de Reproducción Humana y Cirugía Endoscópica, Instituto para el Estudio de la Biología de la Reproducción Humana (INEBIR), Sevilla, Spain
| | - Pedro Bullón
- IBiS Institute of Biomedicine of Seville, University Hospital Virgen del Rocío-CSIC-University of Seville, Sevilla, Spain Research Laboratory, Oral Medicine Department, University of Sevilla, Sevilla, Spain
| |
Collapse
|
223
|
Jo EK, Kim JK, Shin DM, Sasakawa C. Molecular mechanisms regulating NLRP3 inflammasome activation. Cell Mol Immunol 2015; 13:148-59. [PMID: 26549800 DOI: 10.1038/cmi.2015.95] [Citation(s) in RCA: 961] [Impact Index Per Article: 106.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/14/2015] [Accepted: 10/14/2015] [Indexed: 02/06/2023] Open
Abstract
Inflammasomes are multi-protein signaling complexes that trigger the activation of inflammatory caspases and the maturation of interleukin-1β. Among various inflammasome complexes, the NLRP3 inflammasome is best characterized and has been linked with various human autoinflammatory and autoimmune diseases. Thus, the NLRP3 inflammasome may be a promising target for anti-inflammatory therapies. In this review, we summarize the current understanding of the mechanisms by which the NLRP3 inflammasome is activated in the cytosol. We also describe the binding partners of NLRP3 inflammasome complexes activating or inhibiting the inflammasome assembly. Our knowledge of the mechanisms regulating NLRP3 inflammasome signaling and how these influence inflammatory responses offers further insight into potential therapeutic strategies to treat inflammatory diseases associated with dysregulation of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 301-747, South Korea.,Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon 301-747, South Korea
| | - Jin Kyung Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 301-747, South Korea.,Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon 301-747, South Korea
| | - Dong-Min Shin
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 301-747, South Korea.,Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon 301-747, South Korea
| | - Chihiro Sasakawa
- Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan.,Nippon Institute for Biological Science, Tokyo 198-0024, Japan
| |
Collapse
|
224
|
DAMPs and neurodegeneration. Ageing Res Rev 2015; 24:17-28. [PMID: 25462192 DOI: 10.1016/j.arr.2014.11.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 11/06/2014] [Accepted: 11/16/2014] [Indexed: 12/22/2022]
Abstract
The concept of neuroinflammation has come a full circle; from being initially regarded as a controversial viewpoint to its present day acceptance as an integral component of neurodegenerative processes. A closer look at the etiopathogenesis of many neurodegenerative conditions will reveal a patho-symbiotic relationship between neuroinflammation and neurodegeneration, where the two liaise with each other to form a self-sustaining vicious cycle that facilitates neuronal demise. Here, we focus on damage associated molecular patterns or DAMPs as a potentially important nexus in the context of this lethal neuroinflammation-neurodegeneration alliance. Since their nomenclature as "DAMPs" about a decade ago, these endogenous moieties have consistently been reported as novel players in sterile (non-infective) inflammation. However, their roles in inflammatory responses in the central nervous system (CNS), especially during chronic neurodegenerative disorders are still being actively researched. The aim of this review is to first provide a general overview of the neuroimmune response in the CNS within the purview of DAMPs, its receptors and downstream signaling. This is then followed by discussions on some of the DAMP-mediated neuroinflammatory responses involved in chronic neurodegenerative diseases. Along the way, we also highlighted some important gaps in our existing knowledge regarding the role of DAMPs in neurodegeneration, the clarification of which we believe would aid in the prospects of developing treatment or screening strategies directed at these molecules.
Collapse
|
225
|
Guo W, Wang P, Liu Z, Yang P, Ye P. The activation of pyrin domain-containing-3 inflammasome depends on lipopolysaccharide from Porphyromonas gingivalis and extracellular adenosine triphosphate in cultured oral epithelial cells. BMC Oral Health 2015; 15:133. [PMID: 26511096 PMCID: PMC4625523 DOI: 10.1186/s12903-015-0115-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/10/2015] [Indexed: 01/15/2023] Open
Abstract
Background Gingival epithelial cells are the major population of the gingival tissue, acting as the front-line defense against microbial intrusion and regulating the homeostasis of the periodontal tissue in health and disease via NLR family pyrin domain-containing-3 (NLRP3) inflammasome, which recognizes pathogen- and danger-associated molecular patterns (PAMPs and DAMPs). The aim of this study was to determine whether the activation of NLRP3 inflammasome depends on infection with the periodontal pathogen Porphyromonas gingivalis (P. gingivalis), or stimulation with P. gingivalis lipopolysaccharide (LPS), and/or extracellular adenosine triphosphate (ATP). Methods An oral epithelial cell line was treated with P. gingivalis, P. gingivalis LPS and ATP. The gene and protein expression of NLRP3 inflammasome components were quantified by real time RT-PCR and immunoblots. Production of IL-1β and IL-18 was measured by ELISA. Results There was no increase in NLRP3 inflammasome gene expression after P. gingivalis infection unless pre-stimulated by ATP. Obvious increases of NLRP3 inflammasome gene expression was observed after P. gingivalis LPS stimulation, even pre-stimulated by ATP at 2 h. Conclusions The findings indicate that the activation of NLRP3 inflammasome does not rely on P. gingivalis infection, unless stimulated by P. gingivalis LPS and/or extracellular ATP, suggesting diverse signaling pathways are involved in the host immune response.
Collapse
Affiliation(s)
- Wei Guo
- Department of Periodontology, Shandong Provincial Key Laboratory of Oral Biomedicine, Shandong University, Jinan, 250012, People's Republic of China. .,Department of Endodontics, Yantai Stomatological Hospital, Yantai, Shandong Province, China.
| | - Peng Wang
- Yantai Stomatological Hospital, Yantai, Shandong Province, China.
| | - Zhonghao Liu
- Yantai Stomatological Hospital, Yantai, Shandong Province, China.
| | - Pishan Yang
- Department of Periodontology, Shandong Provincial Key Laboratory of Oral Biomedicine, Shandong University, Jinan, 250012, People's Republic of China.
| | - Ping Ye
- Institute of Dental Research, Westmead Millennium Institute and Westmead Centre for Oral Health, Westmead Hospital, Westmead, Australia.
| |
Collapse
|
226
|
Alcocer-Gómez E, Ulecia-Morón C, Marín-Aguilar F, Rybkina T, Casas-Barquero N, Ruiz-Cabello J, Ryffel B, Apetoh L, Ghiringhelli F, Bullón P, Sánchez-Alcazar JA, Carrión AM, Cordero MD. Stress-Induced Depressive Behaviors Require a Functional NLRP3 Inflammasome. Mol Neurobiol 2015; 53:4874-82. [DOI: 10.1007/s12035-015-9408-7] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/23/2015] [Indexed: 01/28/2023]
|
227
|
Jin T, Xiao TS. Activation and assembly of the inflammasomes through conserved protein domain families. Apoptosis 2015; 20:151-6. [PMID: 25398536 DOI: 10.1007/s10495-014-1053-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inflammasomes are oligomeric protein complexes assembled through interactions among the death domain superfamily members, in particular the CARD and PYD domains. Recent progress has shed lights on how the ASC PYD can polymerize to form filaments using multiple domain:domain interfaces, and how the caspase4 CARD can recognize LPS to activate the non-classical inflammasome pathway. Comprehensive understanding of the molecular mechanisms of inflammasome activation and assembly require more extensive structural and biophysical dissection of the inflammasome components and complexes, in particular additional CARD or PYD filaments. Because of the variations in death domain structures and complexes observed so far, future work will undoubtedly shed lights on the mechanisms of inflammasome assembly as well as more surprises on the versatile structure and function of the death domain superfamily.
Collapse
Affiliation(s)
- Tengchuan Jin
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA,
| | | |
Collapse
|
228
|
Thymol produces an antidepressant-like effect in a chronic unpredictable mild stress model of depression in mice. Behav Brain Res 2015; 291:12-19. [DOI: 10.1016/j.bbr.2015.04.052] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 04/23/2015] [Accepted: 04/28/2015] [Indexed: 12/26/2022]
|
229
|
Leong PK, Ko KM. Schisandrin B induces an Nrf2-mediated thioredoxin expression and suppresses the activation of inflammasome in vitro and in vivo. Biofactors 2015; 41:314-23. [PMID: 26307448 DOI: 10.1002/biof.1224] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 06/30/2015] [Indexed: 02/06/2023]
Abstract
Reactive oxygen species (ROS)-mediated activation of inflammasome is involved in the development of a wide spectrum of diseases. We aimed to investigate whether (-)schisandrin B [(-)Sch B], a phytochemical that can induce cellular antioxidant response, can suppress the inflammasome activation. Results showed that (-)Sch B can induce an nuclear factor erythroid 2-related factor 2-driven thioredoxin expression in primary peritoneal macrophages and cultured RAW264.7 macrophages. A 4-h priming of peritoneal macrophages with LPS followed by a 30-min incubation with ATP caused the activation of caspase 1 and the release of IL-1β, indicative of inflammasome activation. Although LPS/ATP did not activate inflammasome in RAW264.7 macrophages, it caused the ROS-dependent c-Jun N-terminal kinase1/2 (JNK1/2) activation and an associated lactate dehydrogenase (LDH) release in RAW264.7 macrophages, an indication of cytotoxicity. (-)Sch B suppressed the LPS/ATP-induced activation of caspase 1 and release of IL-1β in peritoneal macrophages. (-)Sch B also attenuated the LPS/ATP-induced ROS production, JNK1/2 activation and LDH release in RAW264.7 macrophages. The ability of (-)Sch B to suppress LPS/ATP-mediated inflammation in vitro was further confirmed by an animal study, in which schisandrin B treatment (2 mmol/kg p.o.) ameliorated the Imject Alum-induced peritonitis, as indicated by suppressions of caspase1 activation and plasma IL-1β level. The ensemble of results suggests that (-)Sch B may offer a promising prospect for preventing the inflammasome-mediated disorders.
Collapse
Affiliation(s)
- Pou Kuan Leong
- Division of Life Science, The Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong SAR, China
| | - Kam Ming Ko
- Division of Life Science, The Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong SAR, China
| |
Collapse
|
230
|
|
231
|
Liu D, Wen Y, Tang TT, Lv LL, Tang RN, Liu H, Ma KL, Crowley SD, Liu BC. Megalin/Cubulin-Lysosome-mediated Albumin Reabsorption Is Involved in the Tubular Cell Activation of NLRP3 Inflammasome and Tubulointerstitial Inflammation. J Biol Chem 2015; 290:18018-18028. [PMID: 26025362 DOI: 10.1074/jbc.m115.662064] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Indexed: 11/06/2022] Open
Abstract
Albuminuria contributes to the development and progression of chronic kidney disease by inducing tubulointerstitial inflammation (TI) and fibrosis. However, the exact mechanisms of TI in response to albuminuria are unresolved. We previously demonstrated that NLRP3 and inflammasomes mediate albumin-induced lesions in tubular cells. Here, we further investigated the role of endocytic receptors and lysosome rupture in NLRP3 inflammasome activation. A murine proteinuric nephropathy model was induced by albumin overload as described previously. The priming and activation signals for inflammasome complex formation were evoked simultaneously by albumin excess in tubular epithelial cells. The former signal was dependent on a albumin-triggered NF-κB pathway activation. This process is mediated by the endocytic receptor, megalin and cubilin. However, the silencing of megalin or cubilin inhibited the albumin-induced NLRP3 signal. Notably, subsequent lysosome rupture and the corresponding release of lysosomal hydrolases, especially cathepsin B, were observed in tubular epithelial cells exposed to albumin. Cathepsin B release and distribution are essential for NLRP3 signal activation, and inhibitors of cathepsin B suppressed the NLRP3 signal in tubular epithelial cells. Taken together, our findings suggest that megalin/cubilin and lysosome rupture are involved in albumin-triggered tubular injury and TI. This study provides novel insights into albuminuria-induced TI and implicates the active control of albuminuria as a critical strategy to halt the progression of chronic kidney disease.
Collapse
Affiliation(s)
- Dan Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing 210009, Jiangsu, China
| | - Yi Wen
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing 210009, Jiangsu, China
| | - Tao-Tao Tang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing 210009, Jiangsu, China
| | - Lin-Li Lv
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing 210009, Jiangsu, China
| | - Ri-Ning Tang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing 210009, Jiangsu, China
| | - Hong Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing 210009, Jiangsu, China
| | - Kun-Ling Ma
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing 210009, Jiangsu, China
| | - Steve D Crowley
- Department of Medicine, Division of Nephrology, Duke University, and Durham Veterans Affairs Medical Centers, Durham, North Carolina 27710
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing 210009, Jiangsu, China.
| |
Collapse
|
232
|
Lippai D, Bala S, Catalano D, Kodys K, Szabo G. Micro-RNA-155 deficiency prevents alcohol-induced serum endotoxin increase and small bowel inflammation in mice. Alcohol Clin Exp Res 2015; 38:2217-24. [PMID: 25156614 DOI: 10.1111/acer.12483] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 04/29/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND Chronic alcohol impairs gut barrier function and induces inflammatory cytokines. The effects of acute alcohol binge on the gut are partially understood. Micro-RNA-155 (miR-155), a modulator of cytokine and T-cell immune response in the gut, stabilizes tumor necrosis factor-α (TNFα) mRNA. Here, we investigated the role of the inflammation modulator miR-155 as well as the effects of acute binge and chronic alcohol feeding in the small bowel (SB) in mice. METHODS For the acute alcohol binge, wild-type (WT) mice received 5 g/kg 50% alcohol/d or equal amount of water oral gavage for 3 days. WT and miR-155-deficient (miR-155-knockout [KO]) mice received ethanol containing Lieber-DeCarli or isocaloric control diet for 5 weeks. MiR-155, antimicrobial peptide, regenerating islet-derived 3-beta (Reg3b), inflammation markers, Src homology 2-containing inositol phosphatase-1 (SHIP1), TNFα, and nuclear factor-κB (NF-κB) were measured in proximal intestinal tissue. Endotoxin was measured in the serum. RESULTS Acute alcohol binge enhanced, whereas chronic alcohol feeding decreased, Reg3b mRNA and protein levels in the SB. Both acute binge and chronic alcohol feeding increased serum endotoxin levels, intestinal NF-κB activation and TNFα mRNA levels. However, TNFα protein and miR-155 were increased only after chronic alcohol feeding in the SB. Furthermore, miR-155-KO mice were protected from chronic alcohol-induced increase in serum endotoxin, intestinal TNFα, and NF-κB activation. Also, alcohol-fed miR-155-KO mice had no decrease of Reg3b and SHIP1 levels. CONCLUSIONS These results demonstrate that both acute binge and chronic ethanol administration result in increased serum-endotoxin levels. Our study identifies a novel role for miR-155 in chronic alcohol-induced intestinal inflammation and barrier dysfunction.
Collapse
Affiliation(s)
- Dora Lippai
- 2nd Department of Medicine, Semmelweis University, Budapest, Hungary; Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | | | | | | | | |
Collapse
|
233
|
Single nucleotide polymorphism of toll-like receptor 4 (TLR4) is associated with juvenile spondyloarthritis in Croatian population. Clin Rheumatol 2015; 34:2079-86. [DOI: 10.1007/s10067-015-2952-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 04/21/2015] [Accepted: 04/21/2015] [Indexed: 02/04/2023]
|
234
|
Tong Y, Ding ZH, Zhan FX, Cai L, Yin X, Ling JL, Ye JJ, Hou SY, Lu Z, Wang ZH, Liu JF. The NLRP3 inflammasome and stroke. Int J Clin Exp Med 2015; 8:4787-4794. [PMID: 26131053 PMCID: PMC4483817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/24/2015] [Indexed: 06/04/2023]
Abstract
Inflammasome pattern recognition receptors, which belong to the family of multi-meric proteins, play an important role in innate immunity, including NLRPs, NLRC, and NAIP. Among these receptors, NLRP3 (nucleotide-binding domain (NOD)-like receptor protein 3) inflammasome may activate the inflammation and participate in atherosclerosis, pathophysiology of myocardial infarction, resultin ischemia/reperfusion injury and stroke and other cardiovascular diseases. Effective regulation of NLRP3 may help prevent or even treat stroke. In recent years, the role of inflammation in stroke has attracted much attention, and the in-depth study of its mechanism of action is gradually clear. This mini-review focuses on the association of regulatory mechanisms of NLRP3 inflammasome with the development of stroke, which may supply some clues for future therapies and novel drug targets for stroke.
Collapse
Affiliation(s)
- Yeqing Tong
- Hubei Center for Disease Control and PreventionWuhan 430079, P. R. China
- School of Public Health, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, P. R China
| | - Zhi-Hong Ding
- Xiangyang Hospital of Traditional Chinese Medical HospitalXiangyang 441021, P. R. China
| | - Fa-Xian Zhan
- Hubei Center for Disease Control and PreventionWuhan 430079, P. R. China
| | - Li Cai
- Wuhan Center for Disease Control and PreventionWuhan, 430015, P. R. China
| | - Xiaoxv Yin
- School of Public Health, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, P. R China
| | - Jin-Lian Ling
- Queens University BelfastNorthern Ireland, United Kingdom
| | - Jian-Jun Ye
- Hubei Center for Disease Control and PreventionWuhan 430079, P. R. China
| | - Shuang-Yi Hou
- Hubei Center for Disease Control and PreventionWuhan 430079, P. R. China
| | - Zuxun Lu
- School of Public Health, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, P. R China
| | - Zhi-Hong Wang
- Department of Neurology, Shenzhen NO. 2 People’s Hospital, The First Affiliated Hospital of Shenzhen UniversityShenzhen 518035, P. R. China
| | - Jia-Fa Liu
- Hubei Center for Disease Control and PreventionWuhan 430079, P. R. China
| |
Collapse
|
235
|
Resveratrol alleviates vascular inflammatory injury by inhibiting inflammasome activation in rats with hypercholesterolemia and vitamin D2 treatment. Inflamm Res 2015; 64:321-32. [DOI: 10.1007/s00011-015-0810-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 03/03/2015] [Accepted: 03/05/2015] [Indexed: 10/23/2022] Open
|
236
|
Martins JD, Liberal J, Silva A, Ferreira I, Neves BM, Cruz MT. Autophagy and inflammasome interplay. DNA Cell Biol 2015; 34:274-81. [PMID: 25757059 DOI: 10.1089/dna.2014.2752] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Inflammation is a defensive response of the organism to manage harmful stimuli sensed by innate immune cells. The signal alarm is triggered by the recognition of pathogen-associated molecular patterns, such as microbial components, or host-derived damage-associated molecular patterns (DAMPs), namely high-mobility group box 1 protein (HMGB1) and purine metabolites, through a set of highly conserved receptors in immune cells termed pattern recognition receptors. Among these receptors, membrane-associated toll-like receptors (TLRs) and cytosolic nucleotide binding and oligomerization domain (nod)-like receptors (NLRs) assume particular relevance in the inflammatory process. Once activated, NLRs induce the assembly of multiprotein complexes called inflammasomes, leading to production of proinflammatory cytokines (e.g., interleukin-1) and induction of inflammatory cell death (pyroptosis) through the activation of caspase-1. Although these processes intend to protect the body from insults, prolonged or exacerbated inflammatory responses associated with inflammasome activation are related to a growing number of diseases. Recently, inflammasome activation and autophagy were shown to be linked and to mutually influence each other. Therefore, we aim, in this review, to discuss the recent evidences concerning the cross talk between autophagy and inflammasome activation and its potential roles in disease progression.
Collapse
Affiliation(s)
- João D Martins
- 1 Center for Neuroscience and Cell Biology, University of Coimbra , Coimbra, Portugal
| | | | | | | | | | | |
Collapse
|
237
|
Zhang Y, Liu L, Liu YZ, Shen XL, Wu TY, Zhang T, Wang W, Wang YX, Jiang CL. NLRP3 Inflammasome Mediates Chronic Mild Stress-Induced Depression in Mice via Neuroinflammation. Int J Neuropsychopharmacol 2015; 18:pyv006. [PMID: 25603858 PMCID: PMC4571628 DOI: 10.1093/ijnp/pyv006] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 01/13/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Evidence from both clinical and experimental research indicates that the immune-brain interaction plays a pivotal role in the pathophysiology of depression. A multi-protein complex of the innate immune system, the NLRP3 inflammasome regulates cleavage and secretion of proinflammatory cytokine interleukin-1β. The inflammasome detects various pathogen-associated molecule patterns and damage-associated molecule patterns, which then leads to a series of immune-inflammatory reactions. METHODS To explore the role of inflammasome activation in the underlying biological mechanisms of depression, we established a mouse model of depression with unpredictable chronic mild stress. RESULTS Mice subjected to chronic mild stress for 4 weeks had significantly higher serum corticosterone levels, serum interleukin-1β levels, and hippocampal active interleukin-1β protein levels. They also displayed depressive-like symptoms, including decreased sucrose preference and increased immobility time. Moreover, the hippocampi of chronic mild stress-exposed mice had significantly higher activity of caspase-1, which accompanied by higher protein levels of NLRP3 and the apoptotic speck-containing protein with a card. Pretreatment with the NLRP3 inflammasome inhibitor VX-765 decreased serum and hippocampal levels of interleukin-1β protein and significantly moderated the depressive-like behaviors induced by chronic mild stress. CONCLUSIONS These data suggest the NLRP3 inflammasome mediates stress-induced depression via immune activation. Future procedures targeting the NLRP3 inflammasome may have promising effects in the prevention and treatment of depression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Chun-Lei Jiang
- Laboratory of Stress Medicine, Faculty of Psychology and Mental Health (Drs Y. Zhang, L. Liu, Y.-Z. Liu, X.-L. Shen, T.-Y. Wu, W. Wang, Y.-X. Wang, and C.-L. Jiang) and Department of Naval Aviation Medicine (Dr T. Zhang), Second Military Medical University, Shanghai, China.
| |
Collapse
|
238
|
RIPK3 promotes cell death and NLRP3 inflammasome activation in the absence of MLKL. Nat Commun 2015; 6:6282. [PMID: 25693118 PMCID: PMC4346630 DOI: 10.1038/ncomms7282] [Citation(s) in RCA: 481] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/13/2015] [Indexed: 12/22/2022] Open
Abstract
RIPK3 and its substrate MLKL are essential for necroptosis, a lytic cell death proposed to cause inflammation via the release of intracellular molecules. Whether and how RIPK3 might drive inflammation in a manner independent of MLKL and cell lysis remains unclear. Here we show that following LPS treatment, or LPS-induced necroptosis, the TLR adaptor protein TRIF and inhibitor of apoptosis proteins (IAPs: X-linked IAP, cellular IAP1 and IAP2) regulate RIPK3 and MLKL ubiquitylation. Hence, when IAPs are absent, LPS triggers RIPK3 to activate caspase-8, promoting apoptosis and NLRP3-caspase-1 activation, independent of RIPK3 kinase activity and MLKL. In contrast, in the absence of both IAPs and caspase-8, RIPK3 kinase activity and MLKL are essential for TLR-induced NLRP3 activation. Consistent with in vitro experiments, interleukin-1 (IL-1)-dependent autoantibody-mediated arthritis is exacerbated in mice lacking IAPs, and is reduced by deletion of RIPK3, but not MLKL. Therefore RIPK3 can promote NLRP3 inflammasome and IL-1β inflammatory responses independent of MLKL and necroptotic cell death.
Collapse
|
239
|
Liang F, Li C, Gao C, Li Z, Yang J, Liu X, Wang Y. Effects of hyperbaric oxygen therapy on NACHT domain-leucine-rich-repeat- and pyrin domain-containing protein 3 inflammasome expression in rats following spinal cord injury. Mol Med Rep 2015; 11:4650-6. [PMID: 25672366 DOI: 10.3892/mmr.2015.3314] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 11/05/2014] [Indexed: 11/06/2022] Open
Abstract
The clinical application of hyperbaric oxygen therapy (HBOT) in spinal cord injury (SCI) has been reported, however the mechanism underlying its therapeutic effects remains to be elucidated. In the present study, SCI was modeled in male Sprague‑Dawley rats. A total of 120 rats were randomly divided into four groups: Sham‑operated group (SH); sham‑operated and hyperbaric oxygen group (SH+HBO); spinal cord injury group (SCI) and spinal cord injury and hyperbaric oxygen treatment group (SCI+HBO). The rats in each group were randomly divided into five smaller groups (12 h, 1, 3, 7 and 14 days after surgery). The mRNA and protein expression levels of NACHT domain‑, leucine‑rich‑repeat‑ and pyrin domain‑containing protein 3 (NALP3) inflammasome, including NALP3, adaptor molecule apoptosis‑associated speck‑like protein (ASC) and caspase‑1 were determined at several time points following injury. The results of the present study demonstrated that HBOT compromised the mRNA and protein expression levels of NALP3, ASC and caspase‑1 in the SCI model rats and HBOT mitigated SCI‑induced interleukin 1β release in the injured spinal cord tissue. It was concluded that HBOT is an effective approach, which can prevent against spinal cord injury, likely by inactivating NALP3 inflammasome.
Collapse
Affiliation(s)
- Fang Liang
- Department of Hyperbaric Oxygen, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Chunsheng Li
- Department of Emergency, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Chunjin Gao
- Department of Hyperbaric Oxygen, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Zhuo Li
- Department of Hyperbaric Oxygen, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Jing Yang
- Department of Hyperbaric Oxygen, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Xuehua Liu
- Department of Hyperbaric Oxygen, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Yong Wang
- Department of Hyperbaric Oxygen, Beijing Fuxing Hospital, Capital Medical University, Beijing 100020, P.R. China
| |
Collapse
|
240
|
Stoecklein VM, Osuka A, Ishikawa S, Lederer MR, Wanke-Jellinek L, Lederer JA. Radiation exposure induces inflammasome pathway activation in immune cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 194:1178-89. [PMID: 25539818 PMCID: PMC4326002 DOI: 10.4049/jimmunol.1303051] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Radiation exposure induces cell and tissue damage, causing local and systemic inflammatory responses. Because the inflammasome pathway is triggered by cell death and danger-associated molecular patterns, we hypothesized that the inflammasome may signal acute and chronic immune responses to radiation. Using a mouse radiation model, we show that radiation induces a dose-dependent increase in inflammasome activation in macrophages, dendritic cells, NK cells, T cells, and B cells as judged by cleaved caspase-1 detection in cells. Time course analysis showed the appearance of cleaved caspase-1 in cells by day 1 and sustained expression until day 7 after radiation. Also, cells showing inflammasome activation coexpressed the cell surface apoptosis marker annexin V. The role of caspase-1 as a trigger for hematopoietic cell losses after radiation was studied in caspase-1(-/-) mice. We found less radiation-induced cell apoptosis and immune cell loss in caspase-1(-/-) mice than in control mice. Next, we tested whether uric acid might mediate inflammasome activation in cells by treating mice with allopurinol and discovered that allopurinol treatment completely blocked caspase-1 activation in cells. Finally, we demonstrate that radiation-induced caspase-1 activation occurs by a Nod-like receptor family protein 3-independent mechanism because radiation-exposed Nlrp3(-/-) mice showed caspase-1 activation profiles that were indistinguishable from those of wild-type mice. In summary, our data demonstrate that inflammasome activation occurs in many immune cell types following radiation exposure and that allopurinol prevented radiation-induced inflammasome activation. These results suggest that targeting the inflammasome may help control radiation-induced inflammation.
Collapse
Affiliation(s)
- Veit M Stoecklein
- Department of Surgery, Brigham and Women's Hospital/Harvard Medical School, Boston, MA 02115
| | - Akinori Osuka
- Department of Surgery, Brigham and Women's Hospital/Harvard Medical School, Boston, MA 02115
| | - Shizu Ishikawa
- Department of Surgery, Brigham and Women's Hospital/Harvard Medical School, Boston, MA 02115
| | - Madeline R Lederer
- Department of Surgery, Brigham and Women's Hospital/Harvard Medical School, Boston, MA 02115
| | - Lorenz Wanke-Jellinek
- Department of Surgery, Brigham and Women's Hospital/Harvard Medical School, Boston, MA 02115
| | - James A Lederer
- Department of Surgery, Brigham and Women's Hospital/Harvard Medical School, Boston, MA 02115
| |
Collapse
|
241
|
Jia R, Hashizume-Takizawa T, Du Y, Yamamoto M, Kurita-Ochiai T. Aggregatibacter actinomycetemcomitans induces Th17 cells in atherosclerotic lesions. Pathog Dis 2015; 73:ftu027. [PMID: 25743474 DOI: 10.1093/femspd/ftu027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Th17 cells have been linked to the pathogenesis of several chronic inflammatory and autoimmune diseases. However, the role of Th17 cells and IL-17 in atherosclerosis remains poorly understood. We previously reported that Aggregatibacter actinomycetemcomitans (Aa) bacteremia accelerated atherosclerosis accompanied by inflammation in apolipoprotein E-deficient spontaneously hyperlipidemic (Apoe(shl)) mice. In this study, we investigated whether Aa promotes the Th17 inducing pathway in Aa-challenged Apoe(shl) mice. Mice were intravenously injected with live Aa HK1651 or vehicles. Time-course analysis of splenic IL-17(+)CD4(+) cell frequencies, the proximal aorta lesion area, serum IL-17, IL-6, TGF-β and IL-1β levels, the mRNA expression of Th17-related molecules such as IL-1β, IL-6, IL17RA, STAT3, IL-21, IL-23, TGF-β and RORγt, Th17-related microRNA levels and the levels of AIM-2, Mincle and NLRP3 were examined. Challenge with Aa time dependently induced tropism of Th17 cells in the spleen and increase in atheromatous lesions in the aortic sinus of Apoe(shl) mice. Serum IL-17, IL-6, TGF-β and IL-1β levels were significantly enhanced by Aa. The gene expression of IL-1β, IL-6, IL-17RA, IL-21, IL-23, TGF-β, STAT3, RORγt, AIM-2, Mincle and NLRP3 was also time dependently stimulated in the aorta of Aa-challenged mice. Furthermore, Aa challenge significantly increased the expression of miR-146b and miR-155 in the aorta. Based on the results, it seems that Aa stimulates Th17 induction that affects the progression of Aa-accelerated atherosclerosis.
Collapse
Affiliation(s)
- Ru Jia
- Department of Microbiology and Immunology, Nihon University School of Dentistry at Matsudo, Matsudo-shi, Chiba 271-8587, Japan Stomatology Hospital, Tongji University, Shanghai, China
| | - Tomomi Hashizume-Takizawa
- Department of Microbiology and Immunology, Nihon University School of Dentistry at Matsudo, Matsudo-shi, Chiba 271-8587, Japan
| | - Yuan Du
- Department of Microbiology and Immunology, Nihon University School of Dentistry at Matsudo, Matsudo-shi, Chiba 271-8587, Japan Department of Stomatology, College of Tianjin Medical University, Tianjin, China
| | - Masafumi Yamamoto
- Department of Microbiology and Immunology, Nihon University School of Dentistry at Matsudo, Matsudo-shi, Chiba 271-8587, Japan
| | - Tomoko Kurita-Ochiai
- Department of Microbiology and Immunology, Nihon University School of Dentistry at Matsudo, Matsudo-shi, Chiba 271-8587, Japan
| |
Collapse
|
242
|
NLRP3 inflammasome: activation and regulation in age-related macular degeneration. Mediators Inflamm 2015; 2015:690243. [PMID: 25698849 PMCID: PMC4324923 DOI: 10.1155/2015/690243] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 12/15/2014] [Indexed: 12/22/2022] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of legal blindness in the elderly in industrialized countries. AMD is a multifactorial disease influenced by both genetic and environmental risk factors. Progression of AMD is characterized by an increase in the number and size of drusen, extracellular deposits, which accumulate between the retinal pigment epithelium (RPE) and Bruch's membrane (BM) in outer retina. The major pathways associated with its pathogenesis include oxidative stress and inflammation in the early stages of AMD. Little is known about the interactions among these mechanisms that drive the transition from early to late stages of AMD, such as geographic atrophy (GA) or choroidal neovascularization (CNV). As part of the innate immune system, inflammasome activation has been identified in RPE cells and proposed to be a causal factor for RPE dysfunction and degeneration. Here, we will first review the classic model of inflammasome activation, then discuss the potentials of AMD-related factors to activate the inflammasome in both nonocular immune cells and RPE cells, and finally introduce several novel mechanisms for regulating the inflammasome activity.
Collapse
|
243
|
Cain DJ, Del Arroyo AG, Ackland GL. Man is the new mouse: Elective surgery as a key translational model for multi-organ dysfunction and sepsis. J Intensive Care Soc 2015; 16:154-163. [PMID: 28979398 DOI: 10.1177/1751143714564826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Translational research in critically ill human patients presents many methodological challenges. Diagnostic uncertainty, coupled with poorly defined comorbidities, make the identification of a suitable control population for case-control investigations an arguably insurmountable challenge. Healthy volunteer experiments using endotoxin infusion as an inflammatory model are methodologically robust, but fail to replicate the onset of, and diverse therapeutic interventions associated with, sepsis/trauma. Animal models are also limited by many of these issues. Major elective surgery addresses many of these shortfalls and offers a key model for exploring the human biology underlying the sepsis syndrome. Surgery triggers highly conserved features of the human inflammatory response that are common to both tissue damage and infection. Surgical patients sustain a predictable and relatively high incidence of sepsis, particularly within the 'higher risk' group. The collection of preoperative samples enables each patient to act as their own control. Thus, the surgical model offers unique and elegant experimental design features that provide an important translational bridge between the basic biological understanding afforded by animal laboratory models and the de novo presentation of human sepsis.
Collapse
Affiliation(s)
- David J Cain
- Clinical Physiology, Department of Medicine, University College London, London, UK
| | | | - Gareth L Ackland
- Clinical Physiology, Department of Medicine, University College London, London, UK
| |
Collapse
|
244
|
Carney BC, Ortiz RT, Bullock RM, Prindeze NJ, Moffatt LT, Robson MC, Shupp JW. Reduction of a multidrug-resistant pathogen and associated virulence factors in a burn wound infection model: further understanding of the effectiveness of a hydroconductive dressing. EPLASTY 2014; 14:e45. [PMID: 25525484 PMCID: PMC4264520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVE Drawtex's ability to remove pathogens and associated virulence factors has been demonstrated in vitro. A model of burn wound infection was used to characterize the in vivo impact of this dressing on infection and wound healing. METHODS Paired burn wounds were created on the dorsum of Sprague Dawley rats and were inoculated with methicillin-resistant Staphylococcus aureus (MRSA). Animals were divided into 2 groups, half with wounds that received experimental dressing and the remaining half with control dressing-treated wounds. Dressings remained in place through 3, 6, 9, or 14 days after injury, and methicillin-resistant S aureus and virulence factors were quantified. Laser Doppler imaging was used to examine wound perfusion, and local host immune response was assessed through the quantification of mRNA expression. RESULTS By day 3, less methicillin-resistant S aureus was measured in wounds treated with experimental-dressing compared to control-dressing wounds. Quantities remained lower in the experimental group through day 14 (P < .001). More methicillin-resistant S aureus was quantified in the experimental dressing itself than in control dressing at all time points (P < .05). Experimental dressing-treated wounds contained less toxic shock syndrome toxin 1 and Panton-Valentine leukocidin than controls (P < .01) on days 6, 9, and 14. Induction of toll-like receptor 2, NOD-like receptor family, pyrin domain containing 3, and interleukin 6 was significantly lower in experimental-dressing treated wounds than in controls on days 6 and 9 (P < .05). CONCLUSIONS The hydroconductive dressing provided a significant reduction in pathogen and virulence factors compared to a control dressing. As a result of clearance of virulence factors from the wound bed, a requisite alteration in host innate immune response was observed.
Collapse
Affiliation(s)
- Bonnie C. Carney
- Firefighters’ Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC
| | - Rachel T. Ortiz
- Firefighters’ Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC
| | - Rachael M. Bullock
- Firefighters’ Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC
| | - Nicholas J. Prindeze
- Firefighters’ Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC
| | - Lauren T. Moffatt
- Firefighters’ Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC
| | | | - Jeffrey W. Shupp
- Firefighters’ Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC
- The Burn Center, Department of Surgery, MedStar Washington Hospital Center, Washington, DC
| |
Collapse
|
245
|
Ritter M, Straubinger K, Schmidt S, Busch DH, Hagner S, Garn H, Prazeres da Costa C, Layland LE. Functional relevance of NLRP3 inflammasome-mediated interleukin (IL)-1β during acute allergic airway inflammation. Clin Exp Immunol 2014; 178:212-23. [PMID: 24943899 DOI: 10.1111/cei.12400] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2014] [Indexed: 12/12/2022] Open
Abstract
Overall asthmatic symptoms can be controlled with diverse therapeutic agents. However, certain symptomatic individuals remain at risk for serious morbidity and mortality, which prompts the identification of novel therapeutic targets and treatment strategies. Thus, using an adjuvant-free T helper type 2 (Th2) murine model, we have deciphered the role of interleukin (IL)-1 signalling during allergic airway inflammation (AAI). Because functional IL-1β depends on inflammasome activation we first studied asthmatic manifestations in specific inflammasome-deficient [NACHT, LRR and PYD domains-containing protein 3 (NLRP3(-/-) ) and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC(-/-) )] and IL-1 receptor type 1(-/-) (IL-1R1(-/-) ) mice on the BALB/c background. To verify the onset of disease we assessed cellular infiltration in the bronchial regions, lung pathology, airway hyperresponsiveness and ovalbumin (OVA)-specific immune responses. In the absence of NLRP3 inflammasome-mediated IL-1β release all symptoms of AAI were reduced, except OVA-specific immunoglobulin levels. To address whether manipulating IL-1 signalling reduced asthmatic development, we administered the IL-1R antagonist anakinra (Kineret®) during critical immunological time-points: sensitization or challenge. Amelioration of asthmatic symptoms was only observed when anakinra was administered during OVA challenge. Our findings indicate that blocking IL-1 signalling could be a potential complementary therapy for allergic airway inflammation.
Collapse
Affiliation(s)
- M Ritter
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Clinic Bonn, Bonn, Germany; Institute of Medical Microbiology, Immunology and Hygiene (MIH), Technische Universität München, Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
246
|
Vijayaraj SL. 190. Cytokine 2014. [DOI: 10.1016/j.cyto.2014.07.197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
247
|
Galbiati V, Papale A, Galli CL, Marinovich M, Corsini E. Role of ROS and HMGB1 in Contact Allergen–Induced IL-18 Production in Human Keratinocytes. J Invest Dermatol 2014; 134:2719-2727. [DOI: 10.1038/jid.2014.203] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 03/18/2014] [Accepted: 04/07/2014] [Indexed: 12/25/2022]
|
248
|
Tsuchiya K, Hara H, Fang R, Hernandez-Cuellar E, Sakai S, Daim S, Chen X, Dewamitta SR, Qu H, Mitsuyama M, Kawamura I. The adaptor ASC exacerbates lethal Listeria monocytogenes infection by mediating IL-18 production in an inflammasome-dependent and -independent manner. Eur J Immunol 2014; 44:3696-707. [PMID: 25251560 DOI: 10.1002/eji.201444673] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 08/19/2014] [Accepted: 09/19/2014] [Indexed: 12/25/2022]
Abstract
Listeria monocytogenes induces the formation of inflammasomes and subsequent caspase-1 activation, and the adaptor apoptosis-associated speck-like protein containing a CARD (ASC) is crucial for this response. However, the role of ASC in L. monocytogenes infection in vivo is unclear. In this study, we demonstrate that ASC has a detrimental effect on host defense against L. monocytogenes infection at a lethal dose (10(6) CFU), but not at a sublethal dose (10(3) CFU). During lethal L. monocytogenes infection, serum levels of IL-18 and IL-10 were markedly elevated in WT mice, but not in ASC KO mice. IL-18 KO mice were more resistant to lethal L. monocytogenes infection than WT mice and had lower levels of serum IL-10. Furthermore, blockade of IL-10 receptor resulted in a reduction in bacterial counts, suggesting that ASC and IL-18 might exacerbate L. monocytogenes infection through induction of IL-10. We noticed that maturation of IL-18 during lethal infection was partially independent of caspase-1, but was critically dependent on ASC. ASC was required for the elevation of serum neutrophil serine protease activity, which correlated with caspase-1-independent IL-18 maturation and IL-10 production. Collectively, these results suggest that ASC plays a detrimental role in lethal L. monocytogenes infection through IL-18 production in an inflammasome-dependent and -independent manner.
Collapse
Affiliation(s)
- Kohsuke Tsuchiya
- Department of Microbiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
249
|
Liu D, Xu M, Ding LH, Lv LL, Liu H, Ma KL, Zhang AH, Crowley SD, Liu BC. Activation of the Nlrp3 inflammasome by mitochondrial reactive oxygen species: a novel mechanism of albumin-induced tubulointerstitial inflammation. Int J Biochem Cell Biol 2014; 57:7-19. [PMID: 25281528 DOI: 10.1016/j.biocel.2014.09.018] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/30/2014] [Accepted: 09/16/2014] [Indexed: 01/22/2023]
Abstract
Albuminuria is not only an important marker of chronic kidney disease but also a crucial contributor to tubulointerstitial inflammation (TIF). In this study, we determined whether activation of the Nlrp3 inflammasome is involved in albuminuria induced-TIF and the underlying mechanisms of inflammasome activation by mitochondrial reactive oxygen species (mROS). We established an albumin-overload induced rat nephropathy model characterised by albuminuria, renal infiltration of inflammatory cells, tubular dilation and atrophy. The renal expression levels of the Nlrp3 inflammasome, IL-1β and IL-18 were significantly increased in this animal model. In vitro, albumin time- and dose-dependently increased the expression levels of the Nlrp3 inflammasome, IL-1β and IL18. Moreover, the silencing of the Nlrp3 gene or the use of the caspase-1 inhibitor Z-VAD-fmk significantly attenuated the albumin-induced increase in IL-1β and IL-18 expression in HK2 cells. In addition, mROS generation was elevated by albumin stimulation, whereas the ROS scavenger N-acetyl-l-cysteine (NAC) inhibited Nlrp3 expression and the release of IL-1β and IL-18. In kidney biopsy specimens obtained from patients with IgA nephropathy, Nlrp3 expression was localised to the proximal tubular epithelial cells, and this result is closely correlated with the extent of proteinuria and TIF. In summary, this study demonstrates that albuminuria may serve as an endogenous danger-associated molecular pattern (DAMP) that stimulates TIF via the mROS-mediated activation of the cytoplasmic Nlrp3 inflammasome.
Collapse
Affiliation(s)
- Dan Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Min Xu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Li-Hong Ding
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Lin-Li Lv
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Hong Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Kun-Ling Ma
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Ai-Hua Zhang
- Institute of Pediatrics, Department of Nephrology, Nanjing Children's Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Steven D Crowley
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, NC, United States
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
250
|
Giguère PM, Gall BJ, Ezekwe EAD, Laroche G, Buckley BK, Kebaier C, Wilson JE, Ting JP, Siderovski DP, Duncan JA. G Protein signaling modulator-3 inhibits the inflammasome activity of NLRP3. J Biol Chem 2014; 289:33245-57. [PMID: 25271165 DOI: 10.1074/jbc.m114.578393] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inflammasomes are multi-protein complexes that regulate maturation of the interleukin 1β-related cytokines IL-1β and IL-18 through activation of the cysteine proteinase caspase-1. NOD-like receptor family, pyrin domain containing 3 (NLRP3) protein is a key component of inflammasomes that assemble in response to a wide variety of endogenous and pathogen-derived danger signals. Activation of the NLRP3-inflammasome and subsequent secretion of IL-1β is highly regulated by at least three processes: transcriptional activation of both NLRP3 and pro-IL-1β genes, non-transcriptional priming of NLRP3, and final activation of NLRP3. NLRP3 is predominantly expressed in cells of the hematopoietic lineage. Using a yeast two-hybrid screen, we identified the hematopoietic-restricted protein, G protein signaling modulator-3 (GPSM3), as a NLRP3-interacting protein and a negative regulator of IL-1β production triggered by NLRP3-dependent inflammasome activators. In monocytes, GPSM3 associates with the C-terminal leucine-rich repeat domain of NLRP3. Bone marrow-derived macrophages lacking GPSM3 expression exhibit an increase in NLRP3-dependent IL-1β, but not TNF-α, secretion. Furthermore, GPSM3-null mice have enhanced serum and peritoneal IL-1β production following Alum-induced peritonitis. Our findings suggest that GPSM3 acts as a direct negative regulator of NLRP3 function.
Collapse
Affiliation(s)
| | - Bryan J Gall
- the Department of Physiology & Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia 26506
| | | | | | | | - Chahnaz Kebaier
- Division of Infectious Diseases, The University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599 and
| | | | - Jenny P Ting
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, and
| | - David P Siderovski
- the Department of Physiology & Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia 26506
| | - Joseph A Duncan
- From the Department of Pharmacology, Division of Infectious Diseases, The University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599 and Lineberger Comprehensive Cancer Center, and
| |
Collapse
|