201
|
The nociceptin/orphanin FQ receptor agonist SR-8993 as a candidate therapeutic for alcohol use disorders: validation in rat models. Psychopharmacology (Berl) 2016; 233:3553-63. [PMID: 27515665 PMCID: PMC5021736 DOI: 10.1007/s00213-016-4385-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 07/16/2016] [Indexed: 12/30/2022]
Abstract
RATIONALE Alcoholism is a complex disorder in which diverse pathophysiological processes contribute to initiation and progression, resulting in a high degree of heterogeneity among patients. Few pharmacotherapies are presently available, and patient responses to these are variable. The nociceptin/orphanin FQ (NOP) receptor has been suggested to play a role both in alcohol reward and in negatively reinforced alcohol seeking. Previous studies have shown that NOP-receptor activation reduces alcohol intake in genetically selected alcohol-preferring as well as alcohol-dependent rats. NOP activation also blocks stress- and cue-induced reinstatement of alcohol-seeking behavior. OBJECTIVES Here, we aimed to examine a novel, potent, and brain-penetrant small-molecule NOP-receptor agonist, SR-8993, in animal models of alcohol- as well as anxiety-related behavior using male Wistar rats. RESULTS SR-8993 was mildly anxiolytic when given to naïve animals and potently reversed acute alcohol withdrawal-induced ("hangover") anxiety. SR-8993 reduced both home-cage limited access drinking, operant responding for alcohol, and escalation induced through prolonged intermittent access to alcohol. SR-8993 further attenuated stress- as well as cue-induced relapse to alcohol seeking. For the effective dose (1.0 mg/kg), non-specific effects such as sedation may be limited, since a range of control behaviors were unaffected, and this dose did not interact with alcohol elimination. CONCLUSION These findings provide further support for NOP-receptor agonism as a promising candidate treatment for alcoholism and establish SR-8993 or related molecules as suitable for further development as therapeutics.
Collapse
|
202
|
Zhou Y, Leri F. Neuroscience of opiates for addiction medicine. PROGRESS IN BRAIN RESEARCH 2016; 223:237-51. [DOI: 10.1016/bs.pbr.2015.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
203
|
Heilig M, Sommer WH, Spanagel R. The Need for Treatment Responsive Translational Biomarkers in Alcoholism Research. Curr Top Behav Neurosci 2016; 28:151-171. [PMID: 27240677 DOI: 10.1007/7854_2015_5006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Over the past two decades, major advances have been made in the basic neuroscience of alcohol addiction. However, few of these have been translated into clinically useful treatments, which remain limited. In the past decade, psychiatric drug development in general has been stalled, with many preclinically validated mechanisms failing in clinical development. Despite the existence of appealing preclinical models in the area of addictive disorders, drug development for these conditions has been impacted by the exodus of major pharma from psychiatric neuroscience. Here, we discuss translational biomarker strategies that may help turn this tide. Following an approach patterned on an endophenotype approach to complex behavioral traits, we hypothesize that relatively simple biological measures should be sought that can be obtained both in experimental animals and in humans, and that may be responsive to alcoholism medications. These biomarkers have to be tailored to the specific mechanism targeted by candidate medications and may in fact also help identify biologically more homogeneous subpopulations of patients. We introduce as examples alcohol-induced dopamine (DA) release, measures of central glutamate levels, and network connectivity, and discuss our experience to date with these biomarker strategies.
Collapse
Affiliation(s)
- Markus Heilig
- Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, SE-58183, Linköping, Sweden.
| | - Wolfgang H Sommer
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
204
|
Pani PP, Maremmani AGI, Trogu E, Vigna-Taglianti F, Mathis F, Diecidue R, Kirchmayer U, Amato L, Ghibaudi J, Camposeragna A, Saponaro A, Davoli M, Faggiano F, Maremmani I. Psychopathology of addiction: May a SCL-90-based five dimensions structure be applied irrespectively of the involved drug? Ann Gen Psychiatry 2016; 15:13. [PMID: 27118983 PMCID: PMC4845431 DOI: 10.1186/s12991-016-0100-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 04/14/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We previously found a five cluster of psychological symptoms in heroin use disorder (HUD) patients: 'worthlessness-being trapped', 'somatic-symptoms', 'sensitivity-psychoticism', 'panic-anxiety', and 'violence-suicide'. We demonstrated that this aggregation is independent of the chosen treatment, of intoxication status and of the presence of psychiatric problems. METHODS 2314 Subjects, with alcohol, heroin or cocaine dependence were assigned to one of the five clusters. Differences between patients dependent on alcohol, heroin and cocaine in the frequency of the five clusters and in their severity were analysed. The association between the secondary abuse of alcohol and cocaine and the five clusters was also considered in the subsample of HUD patients. RESULTS We confirmed a positive association of the 'somatic symptoms' dimension with the condition of heroin versus cocaine dependence and of the 'sensitivity-psychoticism' dimension with the condition of alcohol versus heroin dependence. 'Somatic symptoms' and 'panic anxiety' successfully discriminated between patients as being alcohol, heroin or cocaine dependents. Looking at the subsample of heroin dependents, no significant differences were observed. CONCLUSIONS The available evidence coming from our results, taken as a whole, seems to support the extension of the psychopathological structure previously observed in opioid addicts to the population of alcohol and cocaine dependents.
Collapse
Affiliation(s)
- Pier Paolo Pani
- Social and Health Services, Cagliari Public Health Trust (ASL Cagliari), Cagliari, Italy
| | - Angelo G I Maremmani
- Vincent P. Dole Dual Diagnosis Unit, Department of Neurosciences, Santa Chiara University Hospital, University of Pisa, Via Roma, 67, 56100 Pisa, Italy ; Association for the Application of Neuroscientific Knowledge to Social Aims (AU-CNS), Pietrasanta, Lucca Italy
| | - Emanuela Trogu
- Department of Psychiatry, Cagliari Public Health Trust (ASL Cagliari), Cagliari, Italy
| | - Federica Vigna-Taglianti
- Piedmont Centre for Drug Addiction Epidemiology, ASLTO3, Grugliasco, Province of Turin Italy ; Department of Clinical and Biological Sciences, San Luigi Gonzaga University, Turin, Regione Gonzole 10, 10043 Orbassano, Province of Turin Italy
| | - Federica Mathis
- Piedmont Centre for Drug Addiction Epidemiology, ASLTO3, Grugliasco, Province of Turin Italy
| | - Roberto Diecidue
- Piedmont Centre for Drug Addiction Epidemiology, ASLTO3, Grugliasco, Province of Turin Italy
| | - Ursula Kirchmayer
- Department of Epidemiology, Latium Regional Health Service, Rome, Italy
| | - Laura Amato
- Department of Epidemiology, Latium Regional Health Service, Rome, Italy
| | - Joli Ghibaudi
- National Coordination Hospitality Communities (CNCA), Rome, Italy
| | | | - Alessio Saponaro
- Regional Epidemiological Observatory, Emilia Romagna Regional Health Service, Bologna, Italy
| | - Marina Davoli
- Department of Epidemiology, Latium Regional Health Service, Rome, Italy
| | - Fabrizio Faggiano
- Department of Translational Medicine, Avogadro University, Novara, Italy
| | - Icro Maremmani
- Vincent P. Dole Dual Diagnosis Unit, Department of Neurosciences, Santa Chiara University Hospital, University of Pisa, Via Roma, 67, 56100 Pisa, Italy ; Association for the Application of Neuroscientific Knowledge to Social Aims (AU-CNS), Pietrasanta, Lucca Italy ; G. De Lisio Institute of Behavioural Sciences, Pisa, Italy
| |
Collapse
|
205
|
Hernandez RV, Puro AC, Manos JC, Huitron-Resendiz S, Reyes KC, Liu K, Vo K, Roberts AJ, Gruol DL. Transgenic mice with increased astrocyte expression of IL-6 show altered effects of acute ethanol on synaptic function. Neuropharmacology 2015; 103:27-43. [PMID: 26707655 DOI: 10.1016/j.neuropharm.2015.12.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/21/2015] [Accepted: 12/14/2015] [Indexed: 11/29/2022]
Abstract
A growing body of evidence has revealed that resident cells of the central nervous system (CNS), and particularly the glial cells, comprise a neuroimmune system that serves a number of functions in the normal CNS and during adverse conditions. Cells of the neuroimmune system regulate CNS functions through the production of signaling factors, referred to as neuroimmune factors. Recent studies show that ethanol can activate cells of the neuroimmune system, resulting in the elevated production of neuroimmune factors, including the cytokine interleukin-6 (IL-6). Here we analyzed the consequences of this CNS action of ethanol using transgenic mice that express elevated levels of IL-6 through increased astrocyte expression (IL-6-tg) to model the increased IL-6 expression that occurs with ethanol use. Results show that increased IL-6 expression induces neuroadaptive changes that alter the effects of ethanol. In hippocampal slices from non-transgenic (non-tg) littermate control mice, synaptically evoked dendritic field excitatory postsynaptic potential (fEPSP) and somatic population spike (PS) at the Schaffer collateral to CA1 pyramidal neuron synapse were reduced by acute ethanol (20 or 60 mM). In contrast, acute ethanol enhanced the fEPSP and PS in hippocampal slices from IL-6 tg mice. Long-term synaptic plasticity of the fEPSP (i.e., LTP) showed the expected dose-dependent reduction by acute ethanol in non-tg hippocampal slices, whereas LTP in the IL-6 tg hippocampal slices was resistant to this depressive effect of acute ethanol. Consistent with altered effects of acute ethanol on synaptic function in the IL-6 tg mice, EEG recordings showed a higher level of CNS activity in the IL-6 tg mice than in the non-tg mice during the period of withdrawal from an acute high dose of ethanol. These results suggest a potential role for neuroadaptive effects of ethanol-induced astrocyte production of IL-6 as a mediator or modulator of the actions of ethanol on the CNS, including persistent changes in CNS function that contribute to cognitive dysfunction and the development of alcohol dependence.
Collapse
Affiliation(s)
- Ruben V Hernandez
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Alana C Puro
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jessica C Manos
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Salvador Huitron-Resendiz
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kenneth C Reyes
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kevin Liu
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Khanh Vo
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Amanda J Roberts
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Donna L Gruol
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
206
|
Interactions between ethanol and the endocannabinoid system at GABAergic synapses on basolateral amygdala principal neurons. Alcohol 2015; 49:781-94. [PMID: 26603632 DOI: 10.1016/j.alcohol.2015.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 08/11/2015] [Accepted: 08/25/2015] [Indexed: 12/30/2022]
Abstract
The basolateral amygdala (BLA) plays crucial roles in stimulus value coding, as well as drug and alcohol dependence. Ethanol alters synaptic transmission in the BLA, while endocannabinoids (eCBs) produce presynaptic depression at BLA synapses. Recent studies suggest interactions between ethanol and eCBs that have important consequences for alcohol drinking behavior. To determine how ethanol and eCBs interact in the BLA, we examined the physiology and pharmacology of GABAergic synapses onto BLA pyramidal neurons in neurons from young rats. Application of ethanol at concentrations relevant to intoxication increased, in both young and adult animals, the frequency of spontaneous and miniature GABAergic inhibitory postsynaptic currents, indicating a presynaptic site of ethanol action. Ethanol did not potentiate sIPSCs during inhibition of adenylyl cyclase while still exerting its effect during inhibition of protein kinase A. Activation of type 1 cannabinoid receptors (CB1) in the BLA inhibited GABAergic transmission via an apparent presynaptic mechanism, and prevented ethanol potentiation. Surprisingly, ethanol potentiation was also prevented by CB1 antagonists/inverse agonists. Brief depolarization of BLA pyramidal neurons suppressed GABAergic transmission (depolarization-induced suppression of inhibition [DSI]), an effect previously shown to be mediated by postsynaptic eCB release and presynaptic CB1 activation. A CB1-mediated suppression of GABAergic transmission was also produced by combined afferent stimulation at 0.1 Hz (LFS), and postsynaptic loading with the eCB arachidonoyl ethanolamide (AEA). Both DSI and LFS-induced synaptic depression were prevented by ethanol. Our findings indicate antagonistic interactions between ethanol and eCB/CB1 modulation at GABAergic BLA synapses that may contribute to eCB roles in ethanol seeking and drinking.
Collapse
|
207
|
Follesa P, Floris G, Asuni GP, Ibba A, Tocco MG, Zicca L, Mercante B, Deriu F, Gorini G. Chronic Intermittent Ethanol Regulates Hippocampal GABA(A) Receptor Delta Subunit Gene Expression. Front Cell Neurosci 2015; 9:445. [PMID: 26617492 PMCID: PMC4637418 DOI: 10.3389/fncel.2015.00445] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/26/2015] [Indexed: 12/26/2022] Open
Abstract
Chronic ethanol consumption causes structural and functional reorganization in the hippocampus and induces alterations in the gene expression of gamma-aminobutyric acid type A receptors (GABAARs). Distinct forced intermittent exposure models have been used previously to investigate changes in GABAAR expression, with contrasting results. Here, we used repeated cycles of a Chronic Intermittent Ethanol paradigm to examine the relationship between voluntary, dependence-associated ethanol consumption, and GABAAR gene expression in mouse hippocampus. Adult male C57BL/6J mice were exposed to four 16-h ethanol vapor (or air) cycles in inhalation chambers alternated with limited-access two-bottle choice between ethanol (15%) and water consumption. The mice exposed to ethanol vapor showed significant increases in ethanol consumption compared to their air-matched controls. GABAAR alpha4 and delta subunit gene expression were measured by qRT-PCR at different stages. There were significant changes in GABAAR delta subunit transcript levels at different time points in ethanol-vapor exposed mice, while the alpha4 subunit levels remained unchanged. Correlated concurrent blood ethanol concentrations suggested that GABAAR delta subunit mRNA levels fluctuate depending on ethanol intoxication, dependence, and withdrawal state. Using a vapor-based Chronic Intermittent Ethanol procedure with combined two-bottle choice consumption, we corroborated previous evidences showing that discontinuous ethanol exposure affects GABAAR delta subunit expression but we did not observe changes in alpha4 subunit. These findings indicate that hippocampal GABAAR delta subunit expression changes transiently over the course of a Chronic Intermittent Ethanol paradigm associated with voluntary intake, in response to ethanol-mediated disturbance of GABAergic neurotransmission.
Collapse
Affiliation(s)
- Paolo Follesa
- Department of Life and Environmental Sciences, University of Cagliari Cagliari, Italy
| | - Gabriele Floris
- Department of Life and Environmental Sciences, University of Cagliari Cagliari, Italy
| | - Gino P Asuni
- Department of Life and Environmental Sciences, University of Cagliari Cagliari, Italy
| | - Antonio Ibba
- Department of Public Health, Clinical and Molecular Medicine, University of Cagliari Cagliari, Italy
| | - Maria G Tocco
- Department of Public Health, Clinical and Molecular Medicine, University of Cagliari Cagliari, Italy
| | - Luca Zicca
- Department of Public Health, Clinical and Molecular Medicine, University of Cagliari Cagliari, Italy
| | | | - Franca Deriu
- Department of Biomedical Sciences, University of Sassari Sassari, Italy
| | - Giorgio Gorini
- Department of Life and Environmental Sciences, University of Cagliari Cagliari, Italy
| |
Collapse
|
208
|
Heilig M, Leggio L. What the alcohol doctor ordered from the neuroscientist: Theragnostic biomarkers for personalized treatments. PROGRESS IN BRAIN RESEARCH 2015; 224:401-18. [PMID: 26822368 DOI: 10.1016/bs.pbr.2015.07.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Major advances in the neuroscientific understanding of alcohol actions have so far not translated into measurably improved clinical outcomes in alcoholism. Future treatment development should be guided by accumulating insights into a diverse range of biological mechanisms that maintain the pathophysiology of alcoholism in different individuals, but also at different points in time within any given patient. This biological diversity calls for the development and use of biological markers predictive of treatment response in the individual case, at the specific stage of the disease, here called "theragnostics." As novel therapeutic mechanisms and molecules targeting these mechanisms are discovered, the use of theragnostics will be critical for their successful clinical development, as well as their optimal subsequent clinical use. During clinical development, lest theragnostics are utilized, efficacy signals will risk remaining undetected when diluted in study populations that are not appropriately selected. Similarly, for treatments that reach approval, clinical acceptance, and optimal use will require the proper identification of responsive patients. Here, we discuss desirable properties of theragnostic biomarkers in alcohol addiction using two examples: alcohol-induced activation of brain reward circuitry as assessed using positron emission tomography of functional magnetic resonance imaging; and central glutamate tone, as assessed using MR spectroscopy.
Collapse
Affiliation(s)
- Markus Heilig
- Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| | - Lorenzo Leggio
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA; Intramural Research Program, National Institute on Drug Abuse, Bethesda, MD, USA
| |
Collapse
|
209
|
Wiers CE, Shumay E, Volkow ND, Frieling H, Kotsiari A, Lindenmeyer J, Walter H, Bermpohl F. Effects of depressive symptoms and peripheral DAT methylation on neural reactivity to alcohol cues in alcoholism. Transl Psychiatry 2015; 5:e648. [PMID: 26418276 PMCID: PMC5545640 DOI: 10.1038/tp.2015.141] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 08/01/2015] [Accepted: 08/05/2015] [Indexed: 02/08/2023] Open
Abstract
In alcohol-dependent (AD) patients, alcohol cues induce strong activations in brain areas associated with alcohol craving and relapse, such as the nucleus accumbens (NAc) and amygdala. However, little is known about the influence of depressive symptoms, which are common in AD patients, on the brain's reactivity to alcohol cues. The methylation state of the dopamine transporter gene (DAT) has been associated with alcohol dependence, craving and depression, but its influence on neural alcohol cue reactivity has not been tested. Here, we compared brain reactivity to alcohol cues in 38 AD patients and 17 healthy controls (HCs) using functional magnetic resonance imaging and assessed the influence of depressive symptoms and peripheral DAT methylation in these responses. We show that alcoholics with low Beck's Depression Inventory scores (n=29) had higher cue-induced reactivity in NAc and amygdala than those with mild/moderate depression scores (n=9), though subjective perception of craving was higher in those with mild/moderate depression scores. We corroborated a higher DAT methylation in AD patients than HCs, and showed higher DAT methylation in AD patients with mild/moderate than low depression scores. Within the AD cohort, higher methylation predicted craving and, at trend level (P=0.095), relapse 1 year after abstinence. Finally, we show that amygdala cue reactivity correlated with craving and DAT methylation only in AD patients with low depression scores. These findings suggest that depressive symptoms and DAT methylation are associated with alcohol craving and associated brain processes in alcohol dependence, which may have important consequences for treatment. Moreover, peripheral DAT methylation may be a clinically relevant biomarker in AD patients.
Collapse
Affiliation(s)
- C E Wiers
- National Institute on Alcohol Abuse and Alcoholism, Laboratory of Neuroimaging, National Institutes of Health, Bethesda, MD, USA,National Institute on Alcohol Abuse and Alcoholism, Laboratory of Neuroimaging, National Institutes of Health, 10 Center Drive, Room B2L124, Bethesda, MD 20892, USA. E-mail:
| | - E Shumay
- National Institute on Alcohol Abuse and Alcoholism, Laboratory of Neuroimaging, National Institutes of Health, Bethesda, MD, USA
| | - N D Volkow
- National Institute on Alcohol Abuse and Alcoholism, Laboratory of Neuroimaging, National Institutes of Health, Bethesda, MD, USA,National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA
| | - H Frieling
- Department of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - A Kotsiari
- Department of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | | | - H Walter
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Berlin, Germany,Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - F Bermpohl
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Berlin, Germany,Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
210
|
Hogarth L, He Z, Chase HW, Wills AJ, Troisi J, Leventhal AM, Mathew AR, Hitsman B. Negative mood reverses devaluation of goal-directed drug-seeking favouring an incentive learning account of drug dependence. Psychopharmacology (Berl) 2015; 232:3235-47. [PMID: 26041336 PMCID: PMC4534490 DOI: 10.1007/s00213-015-3977-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/20/2015] [Indexed: 10/30/2022]
Abstract
BACKGROUND Two theories explain how negative mood primes smoking behaviour. The stimulus-response (S-R) account argues that in the negative mood state, smoking is experienced as more reinforcing, establishing a direct (automatic) association between the negative mood state and smoking behaviour. By contrast, the incentive learning account argues that in the negative mood state smoking is expected to be more reinforcing, which integrates with instrumental knowledge of the response required to produce that outcome. OBJECTIVES One differential prediction is that whereas the incentive learning account anticipates that negative mood induction could augment a novel tobacco-seeking response in an extinction test, the S-R account could not explain this effect because the extinction test prevents S-R learning by omitting experience of the reinforcer. METHODS To test this, overnight-deprived daily smokers (n = 44) acquired two instrumental responses for tobacco and chocolate points, respectively, before smoking to satiety. Half then received negative mood induction to raise the expected value of tobacco, opposing satiety, whilst the remainder received positive mood induction. Finally, a choice between tobacco and chocolate was measured in extinction to test whether negative mood could augment tobacco choice, opposing satiety, in the absence of direct experience of tobacco reinforcement. RESULTS Negative mood induction not only abolished the devaluation of tobacco choice, but participants with a significant increase in negative mood increased their tobacco choice in extinction, despite satiety. CONCLUSIONS These findings suggest that negative mood augments drug-seeking by raising the expected value of the drug through incentive learning, rather than through automatic S-R control.
Collapse
Affiliation(s)
- Lee Hogarth
- School of Psychology, University of Exeter, Washington Singer Building, Perry Road, Exeter, EX4 4QG, UK,
| | | | | | | | | | | | | | | |
Collapse
|
211
|
Abstract
The aim of Addiction Biology is to advance our understanding of the action of drugs of abuse and addictive processes via the publication of high-impact clinical and pre-clinical findings resulting from behavioral, molecular, genetic, biochemical, neurobiological and pharmacological research. As of 2013, Addiction Biology is ranked number 1 in the category of Substance Abuse journals (SCI). Occasionally, Addiction Biology likes to highlight via review important findings focused on a particular topic and recently published in the journal. The current review summarizes a number of key publications from Addiction Biology that have contributed to the current knowledge of nicotine research, comprising a wide spectrum of approaches, both clinical and pre-clinical, at the cellular, molecular, systems and behavioral levels. A number of findings from human studies have identified, using imaging techniques, alterations in common brain circuits, as well as morphological and network activity changes, associated with tobacco use. Furthermore, both clinical and pre-clinical studies have characterized a number of mechanistic targets critical to understanding the effects of nicotine and tobacco addiction. Together, these findings will undoubtedly drive future studies examining the dramatic impact of tobacco use and the development of treatments to counter nicotine dependence.
Collapse
Affiliation(s)
- Rick E. Bernardi
- Institute of Psychopharmacology; Central Institute of Mental Health; Medical Faculty Mannheim/Heidelberg University; Germany
| |
Collapse
|
212
|
Chronic nicotine activates stress/reward-related brain regions and facilitates the transition to compulsive alcohol drinking. J Neurosci 2015; 35:6241-53. [PMID: 25878294 DOI: 10.1523/jneurosci.3302-14.2015] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Alcohol and nicotine are the two most co-abused drugs in the world. Previous studies have shown that nicotine can increase alcohol drinking in nondependent rats, yet it is unknown whether nicotine facilitates the transition to alcohol dependence. We tested the hypothesis that chronic nicotine will speed up the escalation of alcohol drinking in rats and that this effect will be accompanied by activation of sparsely distributed neurons (neuronal ensembles) throughout the brain that are specifically recruited by the combination of nicotine and alcohol. Rats were trained to respond for alcohol and made dependent using chronic, intermittent exposure to alcohol vapor, while receiving daily nicotine (0.8 mg/kg) injections. Identification of neuronal ensembles was performed after the last operant session, using immunohistochemistry. Nicotine produced an early escalation of alcohol drinking associated with compulsive alcohol drinking in dependent, but not in nondependent rats (air exposed), as measured by increased progressive-ratio responding and increased responding despite adverse consequences. The combination of nicotine and alcohol produced the recruitment of discrete and phenotype-specific neuronal ensembles (∼4-13% of total neuronal population) in the nucleus accumbens core, dorsomedial prefrontal cortex, central nucleus of the amygdala, bed nucleus of stria terminalis, and posterior ventral tegmental area. Blockade of nicotinic receptors using mecamylamine (1 mg/kg) prevented both the behavioral and neuronal effects of nicotine in dependent rats. These results demonstrate that nicotine and activation of nicotinic receptors are critical factors in the development of alcohol dependence through the dysregulation of a set of interconnected neuronal ensembles throughout the brain.
Collapse
|
213
|
DNA methylation in the medial prefrontal cortex regulates alcohol-induced behavior and plasticity. J Neurosci 2015; 35:6153-64. [PMID: 25878287 DOI: 10.1523/jneurosci.4571-14.2015] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recent studies have suggested an association between alcoholism and DNA methylation, a mechanism that can mediate long-lasting changes in gene transcription. Here, we examined the contribution of DNA methylation to the long-term behavioral and molecular changes induced by a history of alcohol dependence. In search of mechanisms underlying persistent rather than acute dependence-induced neuroadaptations, we studied the role of DNA methylation regulating medial prefrontal cortex (mPFC) gene expression and alcohol-related behaviors in rats 3 weeks into abstinence following alcohol dependence. Postdependent rats showed escalated alcohol intake, which was associated with increased DNA methylation as well as decreased expression of genes encoding synaptic proteins involved in neurotransmitter release in the mPFC. Infusion of the DNA methyltransferase inhibitor RG108 prevented both escalation of alcohol consumption and dependence-induced downregulation of 4 of the 7 transcripts modified in postdependent rats. Specifically, RG108 treatment directly reversed both downregulation of synaptotagmin 2 (Syt2) gene expression and hypermethylation on CpG#5 of its first exon. Lentiviral inhibition of Syt2 expression in the mPFC increased aversion-resistant alcohol drinking, supporting a mechanistic role of Syt2 in compulsive-like behavior. Our findings identified a functional role of DNA methylation in alcohol dependence-like behavioral phenotypes and a candidate gene network that may mediate its effects. Together, these data provide novel evidence for DNA methyltransferases as potential therapeutic targets in alcoholism.
Collapse
|
214
|
Brower KJ. Assessment and treatment of insomnia in adult patients with alcohol use disorders. Alcohol 2015; 49:417-27. [PMID: 25957855 DOI: 10.1016/j.alcohol.2014.12.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 12/03/2014] [Indexed: 11/25/2022]
Abstract
Insomnia in patients with alcohol dependence has increasingly become a target of treatment due to its prevalence, persistence, and associations with relapse and suicidal thoughts, as well as randomized controlled studies demonstrating efficacy with behavior therapies and non-addictive medications. This article focuses on assessing and treating insomnia that persists despite 4 or more weeks of sobriety in alcohol-dependent adults. Selecting among the various options for treatment follows a comprehensive assessment of insomnia and its multifactorial causes. In addition to chronic, heavy alcohol consumption and its effects on sleep regulatory systems, contributing factors include premorbid insomnia; co-occurring medical, psychiatric, and other sleep disorders; use of other substances and medications; stress; environmental factors; and inadequate sleep hygiene. The assessment makes use of history, rating scales, and sleep diaries as well as physical, mental status, and laboratory examinations to rule out these factors. Polysomnography is indicated when another sleep disorder is suspected, such as sleep apnea or periodic limb movement disorder, or when insomnia is resistant to treatment. Sobriety remains a necessary, first-line treatment for insomnia, and most patients will have some improvement. If insomnia-specific treatment is needed, then brief behavioral therapies are the treatment of choice, because they have shown long-lasting benefit without worsening of drinking outcomes. Medications work faster, but they generally work only as long as they are taken. Melatonin agonists; sedating antidepressants, anticonvulsants, and antipsychotics; and benzodiazepine receptor agonists each have their benefits and risks, which must be weighed and monitored to optimize outcomes. Some relapse prevention medications may also have sleep-promoting activity. Although it is assumed that treatment for insomnia will help prevent relapse, this has not been firmly established. Therefore, insomnia and alcohol dependence might be best thought of as co-occurring disorders, each of which requires its own treatment.
Collapse
|
215
|
Repunte-Canonigo V, Herman M, Kawamura T, Kranzler HR, Sherva R, Gelernter J, Farrer LA, Roberto M, Sanna PP. Nf1 regulates alcohol dependence-associated excessive drinking and gamma-aminobutyric acid release in the central amygdala in mice and is associated with alcohol dependence in humans. Biol Psychiatry 2015; 77:870-879. [PMID: 25483400 PMCID: PMC4428692 DOI: 10.1016/j.biopsych.2014.07.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 07/15/2014] [Accepted: 07/17/2014] [Indexed: 11/22/2022]
Abstract
BACKGROUND The neurofibromatosis type 1 (Nf1) gene encodes a GTPase activating protein that negatively regulates small GTPases of the Ras family. METHODS We assessed alcohol-related behaviors including alcohol sensitivity, dependent and nondependent drinking, and basal and alcohol-induced gamma-aminobutyric acid (GABA) release in the central nucleus of the amygdala (CeA) in Nf1 heterozygous null mice (Nf1(+/-)). We also investigated the associations of NF1 polymorphisms with alcohol dependence risk and severity in humans. RESULTS Nf1(+/-) mice do not differ from wild-type mice in nondependent drinking, such as 24-hour, 2-bottle choice drinking in the dark binge drinking or limited access 2-bottle choice. However, Nf1(+/-) mice failed to escalate alcohol drinking following chronic intermittent ethanol vapor exposure (CIE) to induce dependence. Alcohol acutely increases GABA release in the CeA and alcohol dependence is characterized by increased baseline GABA release in CeA. Interestingly, GABA release in Nf1(+/-) mice is greater at baseline than wild-type mice, is not elevated by induction of dependence by CIE, and failed to show alcohol-induced facilitation both before and after CIE. Additionally, we observed that multiple variants in the human NF1 gene are associated with a quantitative measure of alcohol dependence in both African Americans and European Americans. CONCLUSIONS In this translational investigation, we found that Nf1 activity regulates excessive drinking and basal and ethanol-stimulated GABA release in the mouse central amygdala. We also found that genetic variation in NF1 may confer an inherent susceptibility to the transition from nondependent to dependent drinking in humans.
Collapse
Affiliation(s)
- Vez Repunte-Canonigo
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Melissa Herman
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tomoya Kawamura
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Henry R. Kranzler
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, and the VISN 4 MIRECC, Philadelphia VAMC, Philadelphia, PA 19104
| | - Richard Sherva
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA 02118, USA
| | - Joel Gelernter
- Departments of Psychiatry, Genetics, and Neurobiology, Yale University School of Medicine, VA CT Healthcare Center, West Haven, CT, and Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06516, USA
| | - Lindsay A. Farrer
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA 02118, USA
- Departments of Neurology, Ophthalmology, Epidemiology, and Biostatistics, Boston; University Schools of Medicine and Public Health, Boston, MA 02118, USA
| | - Marisa Roberto
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Pietro Paolo Sanna
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
216
|
Gibula-Bruzda E, Marszalek-Grabska M, Witkowska E, Izdebski J, Kotlinska JH. Enkephalin analog, cyclo[N(ε),N(β)-carbonyl-D-Lys(2),Dap(5)] enkephalinamide (cUENK6), inhibits the ethanol withdrawal-induced anxiety-like behavior in rats. Alcohol 2015; 49:229-36. [PMID: 25716198 DOI: 10.1016/j.alcohol.2015.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 01/20/2015] [Accepted: 01/22/2015] [Indexed: 01/08/2023]
Abstract
An analog of enkephalin, cyclo[N(ε),N(β)-carbonyl-D-Lys(2),Dap(5)] enkephalinamide (cUENK6), is predominantly a functional agonist of μ-opioid receptors (MOPr) and, to a lesser extent, of δ-opioid receptors (DOPr) in vitro. The aim of the present study was to determine whether cUENK6 could affect ethanol withdrawal-induced anxiety-like behavior in the elevated plus maze (EPM) test in rats. An anxiety-like effect of withdrawal was predicted to occur in the EPM test 24 h after the last ethanol administration (2 g/kg, intraperitoneally [i.p.]; 15% w/v once daily for 9 days). Ethanol withdrawal decreased the percent of time spent by rats in the open arms and the percent of open-arms entries. cUENK6 (0.25 nmol), given by intracerebroventricular (i.c.v.) injection, significantly reversed these anxiety-like effects of ethanol withdrawal and elevated the percent of time spent by rats in the open arms and the percent of open-arms entries. These effects of cUENK6 were significantly inhibited by the DOPr antagonist naltrindole (NTI) (5 nmol, i.c.v.), but not by the MOPr antagonist β-funaltrexamine (β-FNA) (5 nmol, i.c.v.). The preferential DOPr agonist [Leu(5)]-enkephalin (LeuEnk) (2.7 and 5.4 nmol, i.c.v.) and the MOPr agonist morphine (6.5 and 13 nmol, i.c.v.) reduced the anxiety-like effects of ethanol withdrawal. cUENK6 at the dose of 0.25 nmol did not disturb locomotor activity in the EPM, in contrast to cUENK6 at the dose of 0.5 nmol, and morphine at 6.5 and 13 nmol. However, similarly to LeuEnk, cUENK6 induced the anxiolytic-like effects in naïve rats. Thus, our study suggests that cUENK6 reduced ethanol withdrawal-induced anxiety-like behavior by activation of δ-opioid receptors rather than μ-opioid receptors.
Collapse
|
217
|
Perez EE, De Biasi M. Assessment of affective and somatic signs of ethanol withdrawal in C57BL/6J mice using a short-term ethanol treatment. Alcohol 2015; 49:237-43. [PMID: 25817777 DOI: 10.1016/j.alcohol.2015.02.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 02/16/2015] [Accepted: 02/17/2015] [Indexed: 11/16/2022]
Abstract
Alcohol is one of the most prevalent addictive substances in the world. Withdrawal symptoms result from abrupt cessation of alcohol consumption in habitual drinkers. The emergence of both affective and physical symptoms produces a state that promotes relapse. Mice provide a preclinical model that could be used to study alcohol dependence and withdrawal while controlling for both genetic and environmental variables. The use of a liquid ethanol diet offers a reliable method for the induction of alcohol dependence in mice, but this approach is impractical when conducting high-throughput pharmacological screens or when comparing multiple strains of genetically engineered mice. The goal of this study was to compare withdrawal-associated behaviors in mice chronically treated with a liquid ethanol diet vs. mice treated with a short-term ethanol treatment that consisted of daily ethanol injections containing the alcohol dehydrogenase inhibitor, 4-methylpyrazole. Twenty-four hours after ethanol treatment, mice were tested in the open field arena, the elevated plus maze, the marble burying test, or for changes in somatic signs during spontaneous ethanol withdrawal. Anxiety-like and compulsive-like behaviors, as well as physical signs, were all significantly elevated in mice undergoing withdrawal, regardless of the route of ethanol administration. Therefore, a short-term ethanol treatment can be utilized as a screening tool for testing genetic and pharmacological agents before investing in a more time-consuming ethanol treatment.
Collapse
Affiliation(s)
- E E Perez
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - M De Biasi
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
218
|
June HL, Liu J, Warnock KT, Bell KA, Balan I, Bollino D, Puche A, Aurelian L. CRF-amplified neuronal TLR4/MCP-1 signaling regulates alcohol self-administration. Neuropsychopharmacology 2015; 40:1549-59. [PMID: 25567426 PMCID: PMC4397415 DOI: 10.1038/npp.2015.4] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 12/16/2014] [Accepted: 12/16/2014] [Indexed: 12/11/2022]
Abstract
Alcohol dependence is a complex disorder that initiates with episodes of excessive alcohol drinking known as binge drinking. It has a 50-60% risk contribution from inherited susceptibility genes; however, their exact identity and function are still poorly understood. We report that alcohol-preferring P rats have innately elevated levels of Toll-like receptor 4 (TLR4) and monocyte chemotactic protein-1 (MCP-1) that colocalize in neurons from the central nucleus of the amygdala (CeA) and ventral tegmental area (VTA). To examine the potential role of a TLR4/MCP-1 signal, we used Herpes Simplex Virus (HSV) vectors (amplicons) that retain in vivo neurotropism. Infusion of amplicons for TLR4 or MCP-1 siRNA into the CeA or VTA from the P rats inhibited target gene expression and blunted binge drinking. A similarly delivered amplicon for scrambled siRNA did not inhibit TLR4 or MCP-1 expression nor reduce binge drinking, identifying a neuronal TLR4/MCP-1 signal that regulates the initiation of voluntary alcohol self-administration. The signal was sustained during alcohol drinking by increased expression of corticotropin-releasing factor and its feedback regulation of TLR4 expression, likely contributing to the transition to alcohol dependence.
Collapse
Affiliation(s)
- Harry L June
- Neuropsychopharmacology Laboratory, Department of Psychiatry and Behavioral Sciences, Howard University College of Medicine, Washington, DC, USA
| | - Juan Liu
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kaitlin T Warnock
- Neuropsychopharmacology Laboratory, Department of Psychiatry and Behavioral Sciences, Howard University College of Medicine, Washington, DC, USA
| | - Kimberly A Bell
- Neuropsychopharmacology Laboratory, Department of Psychiatry and Behavioral Sciences, Howard University College of Medicine, Washington, DC, USA
| | - Irina Balan
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Dominique Bollino
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Adam Puche
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Laure Aurelian
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA,Department of Pharmacology and Experimental Therapeutics, University of Maryland, 655 West Baltimore Street, Baltimore, MD 21201, USA, Tel: +1 410 7063895, Fax: +1 410 7062513, E-mail:
| |
Collapse
|
219
|
The corticotropin releasing hormone-1 (CRH1) receptor antagonist pexacerfont in alcohol dependence: a randomized controlled experimental medicine study. Neuropsychopharmacology 2015; 40:1053-63. [PMID: 25409596 PMCID: PMC4367465 DOI: 10.1038/npp.2014.306] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 10/27/2014] [Accepted: 10/30/2014] [Indexed: 01/10/2023]
Abstract
Extensive preclinical data implicate corticotropin-releasing hormone (CRH), acting through its CRH1 receptor, in stress- and dependence-induced alcohol seeking. We evaluated pexacerfont, an orally available, brain penetrant CRH1 antagonist for its ability to suppress stress-induced alcohol craving and brain responses in treatment seeking alcohol-dependent patients in early abstinence. Fifty-four anxious alcohol-dependent participants were admitted to an inpatient unit at the NIH Clinical Center, completed withdrawal treatment, and were enrolled in a double-blind, randomized, placebo-controlled study with pexacerfont (300 mg/day for 7 days, followed by 100 mg/day for 23 days). After reaching steady state, participants were assessed for alcohol craving in response to stressful or alcohol-related cues, neuroendocrine responses to these stimuli, and functional magnetic resonance imaging (fMRI) responses to alcohol-related stimuli or stimuli with positive or negative emotional valence. A separate group of 10 patients received open-label pexacerfont following the same dosing regimen and had cerebrospinal fluid sampled to estimate central nervous system exposure. Pexacerfont treatment had no effect on alcohol craving, emotional responses, or anxiety. There was no effect of pexacerfont on neural responses to alcohol-related or affective stimuli. These results were obtained despite drug levels in cerebrospinal fluid (CSF) that predict close to 90% central CRH1 receptor occupancy. CRH1 antagonists have been grouped based on their receptor dissociation kinetics, with pexacerfont falling in a category characterized by fast dissociation. Our results may indicate that antagonists with slow offset are required for therapeutic efficacy. Alternatively, the extensive preclinical data on CRH1 antagonism as a mechanism to suppress alcohol seeking may not translate to humans.
Collapse
|
220
|
Abstract
Alcohol use disorder is a heterogeneous illness with a complex biology that is controlled by many genes and gene-by-environment interactions. Several efficacious, evidence-based treatments currently exist for treating and managing alcohol use disorder, including a number of pharmacotherapies that target specific aspects of biology that initiate and maintain dangerous alcohol misuse. This article reviews the neurobiological and neurobehavioral foundation of alcohol use disorder, the mechanisms of action and evidence for the efficacy of currently approved medications for treatment, and the literature on other emerging pharmacotherapies.
Collapse
Affiliation(s)
- Robert M Swift
- From the Department of Psychiatry and Human Behavior, Brown University Alpert School of Medicine (Dr. Swift); Center for Alcohol and Addiction Studies, Brown University School of Public Health (Drs. Swift and Aston); VA Medical Center, Providence, RI (Dr. Swift)
| | | |
Collapse
|
221
|
|
222
|
Griffin WC, Ramachandra VS, Knackstedt LA, Becker HC. Repeated cycles of chronic intermittent ethanol exposure increases basal glutamate in the nucleus accumbens of mice without affecting glutamate transport. Front Pharmacol 2015; 6:27. [PMID: 25755641 PMCID: PMC4337330 DOI: 10.3389/fphar.2015.00027] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 02/02/2015] [Indexed: 11/28/2022] Open
Abstract
Repeated cycles of chronic intermittent ethanol (CIE) exposure increase voluntary consumption of ethanol in mice. Previous work has shown that extracellular glutamate in the nucleus accumbens (NAc) is significantly elevated in ethanol-dependent mice and that pharmacologically manipulating glutamate concentrations in the NAc will alter ethanol drinking, indicating that glutamate homeostasis plays a crucial role in ethanol drinking in this model. The present studies were designed to measure extracellular glutamate at a time point in which mice would ordinarily be allowed voluntary access to ethanol in the CIE model and, additionally, to measure glutamate transport capacity in the NAc at the same time point. Extracellular glutamate was measured using quantitative microdialysis procedures. Glutamate transport capacity was measured under Na+-dependent and Na+-independent conditions to determine whether the function of excitatory amino acid transporters (also known as system XAG) or of system Xc– (glial cysteine–glutamate exchanger) was influenced by CIE exposure. The results of the quantitative microdialysis experiment confirm increased extracellular glutamate (approximately twofold) in the NAc of CIE exposed mice (i.e., ethanol-dependent) compared to non-dependent mice in the NAc, consistent with earlier work. However, the increase in extracellular glutamate was not due to altered transporter function in the NAc of ethanol-dependent mice, because neither Na+-dependent nor Na+-independent glutamate transport was significantly altered by CIE exposure. These findings point to the possibility that hyperexcitability of cortical–striatal pathways underlies the increases in extracellular glutamate found in the ethanol-dependent mice.
Collapse
Affiliation(s)
- William C Griffin
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina , Charleston, SC, USA
| | - Vorani S Ramachandra
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina , Charleston, SC, USA
| | - Lori A Knackstedt
- Department of Psychology, University of Florida , Gainesville, FL, USA
| | - Howard C Becker
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina , Charleston, SC, USA ; Department of Neurosciences, Medical University of South Carolina , Charleston, SC, USA ; Ralph H. Johnson VA Medical Center , Charleston, SC, USA
| |
Collapse
|
223
|
Repunte-Canonigo V, Shin W, Vendruscolo LF, Lefebvre C, van der Stap L, Kawamura T, Schlosburg JE, Alvarez M, Koob GF, Califano A, Sanna PP. Identifying candidate drivers of alcohol dependence-induced excessive drinking by assembly and interrogation of brain-specific regulatory networks. Genome Biol 2015; 16:68. [PMID: 25886852 PMCID: PMC4410476 DOI: 10.1186/s13059-015-0593-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 01/21/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A systems biology approach based on the assembly and interrogation of gene regulatory networks, or interactomes, was used to study neuroadaptation processes associated with the transition to alcohol dependence at the molecular level. RESULTS Using a rat model of dependent and non-dependent alcohol self-administration, we reverse engineered a global transcriptional regulatory network during protracted abstinence, a period when relapse rates are highest. We then interrogated the network to identify master regulator genes that mechanistically regulate brain region-specific signatures associated with dependent and non-dependent alcohol self-administration. Among these, the gene coding for the glucocorticoid receptor was independently identified as a master regulator in multiple brain regions, including the medial prefrontal cortex, nucleus accumbens, central nucleus of the amygdala, and ventral tegmental area, consistent with the view that brain reward and stress systems are dysregulated during protracted abstinence. Administration of the glucocorticoid antagonist mifepristone in either the nucleus accumbens or ventral tegmental area selectively decreased dependent, excessive, alcohol self-administration in rats but had no effect on non-dependent, moderate, alcohol self-administration. CONCLUSIONS Our study suggests that assembly and analysis of regulatory networks is an effective strategy for the identification of key regulators of long-term neuroplastic changes within specific brain regions that play a functional role in alcohol dependence. More specifically, our results support a key role for regulatory networks downstream of the glucocorticoid receptor in excessive alcohol drinking during protracted alcohol abstinence.
Collapse
Affiliation(s)
- Vez Repunte-Canonigo
- Molecular and Integrative Neuroscience Department, The Scripps Research Institute, La Jolla, CA, USA.
| | - William Shin
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA. .,Department of Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, 10032, USA.
| | - Leandro F Vendruscolo
- Committee for the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA. .,Current affiliation: Intramural Research Program, NIDA-NIH, Baltimore, MD, 21224, USA.
| | - Celine Lefebvre
- Department of Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, 10032, USA. .,Current affiliation: Inserm Unit U981, Gustave Roussy Institute, Villejuif, France.
| | - Lena van der Stap
- Molecular and Integrative Neuroscience Department, The Scripps Research Institute, La Jolla, CA, USA.
| | - Tomoya Kawamura
- Molecular and Integrative Neuroscience Department, The Scripps Research Institute, La Jolla, CA, USA.
| | - Joel E Schlosburg
- Committee for the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA.
| | - Mariano Alvarez
- Department of Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, 10032, USA.
| | - George F Koob
- Committee for the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA. .,Current affiliation: National Institute on Alcohol Abuse and Alcoholism, Rockville, MD, 20852, USA.
| | - Andrea Califano
- Department of Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, 10032, USA. .,Department of Biomedical Informatics, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, 10032, USA. .,Institute for Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, 10032, USA. .,Department of Biochemistry and Molecular Biophysics, Hammer Health Sciences Center, Columbia University, New York, NY, 10032, USA. .,Cancer Regulatory Network Program, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, 10032, USA. .,The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| | - Pietro Paolo Sanna
- Molecular and Integrative Neuroscience Department, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
224
|
Ortiz V, Giachero M, Espejo PJ, Molina VA, Martijena ID. The effect of Midazolam and Propranolol on fear memory reconsolidation in ethanol-withdrawn rats: influence of d-cycloserine. Int J Neuropsychopharmacol 2015; 18:pyu082. [PMID: 25617327 PMCID: PMC4360226 DOI: 10.1093/ijnp/pyu082] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Withdrawal from chronic ethanol facilitates the formation of contextual fear memory and delays the onset to extinction, with its retrieval promoting an increase in ethanol consumption. Consequently, manipulations aimed to reduce these aversive memories, may be beneficial in the treatment of alcohol discontinuation symptoms. Related to this, pharmacological memory reconsolidation blockade has received greater attention due to its therapeutic potential. METHODS Here, we examined the effect of post-reactivation amnestic treatments such as Midazolam (MDZ, 3 mg/kg i.p) and Propranolol (PROP, 5 mg/kg i.p) on contextual fear memory reconsolidation in ethanol- withdrawn (ETOH) rats. Next, we examined whether the activation of N-methyl-D-aspartate (NMDA) receptors induced by d-cycloserine (DCS, 5 mg/kg i.p., a NMDA partial agonist) before memory reactivation can facilitate the disruptive effect of PROP and MDZ on fear memory in ETOH rats. RESULTS We observed a resistance to the disruptive effect of both MDZ and PROP following memory reactivation. Although intra-basolateral amygdala (BLA; 1.25 ug/side) and systemic PROP administration attenuated fear memory in DCS pre-treated ETOH rats, DCS/MDZ treatment did not affect memory in these animals. Finally, a decrease of both total and surface protein expression of the α1 GABAA receptor (GABAA-R) subunit in BLA was found in the ETOH rats. CONCLUSIONS Ethanol withdrawal facilitated the formation of fear memory resistant to labilization post-reactivation. DCS administration promoted the disruptive effect of PROP on memory reconsolidation in ETOH rats. The resistance to MDZ's disruptive effect on fear memory reconsolidation may be, at least in part, associated with changes in the GABAA-R composition induced by chronic ethanol administration/withdrawal.
Collapse
Affiliation(s)
| | | | | | | | - Irene Delia Martijena
- IFEC-CONICET, Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina (Ms Ortiz, Dr Giachero, Mr Espejo, PharmD, Drs Molina and Martijena)
| |
Collapse
|
225
|
Linke SE, Ussher M. Exercise-based treatments for substance use disorders: evidence, theory, and practicality. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2015; 41:7-15. [PMID: 25397661 PMCID: PMC4831948 DOI: 10.3109/00952990.2014.976708] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Epidemiological studies reveal that individuals who report risky substance use are generally less likely to meet physical activity guidelines (with the exception of certain population segments, such as adolescents and athletes). A growing body of evidence suggests that individuals with substance use disorders (SUDs) are interested in exercising and that they may derive benefits from regular exercise, in terms of both general health/fitness and SUD recovery. OBJECTIVES The aims of this paper were to: (i) summarize the research examining the effects of exercise-based treatments for SUDs; (ii) discuss the theoretical mechanisms and practical reasons for investigating this topic; (iii) identify the outstanding relevant research questions that warrant further inquiry; and (iv) describe potential implications for practice. METHODS The following databases were searched for peer-reviewed original and review papers on the topic of substance use and exercise: PubMed Central, MEDLINE, EMBASE, PsycINFO, and CINAHL Plus. Reference lists of these publications were subsequently searched for any missed but relevant manuscripts. Identified papers were reviewed and summarized by both authors. RESULTS The limited research conducted suggests that exercise may be an effective adjunctive treatment for SUDs. In contrast to the scarce intervention trials to date, a relative abundance of literature on the theoretical and practical reasons supporting the investigation of this topic has been published. CONCLUSIONS Definitive conclusions are difficult to draw due to diverse study protocols and low adherence to exercise programs, among other problems. Despite the currently limited and inconsistent evidence, numerous theoretical and practical reasons support exercise-based treatments for SUDs, including psychological, behavioral, neurobiological, nearly universal safety profile, and overall positive health effects.
Collapse
Affiliation(s)
- Sarah E. Linke
- Department of Family & Preventive Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Michael Ussher
- Division of Population Health Sciences and Education, St George’s, University of London, London, UK
| |
Collapse
|
226
|
Alcohol Dependence Syndrome. Subst Abus 2015. [DOI: 10.1007/978-1-4939-1951-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
227
|
Meinhardt MW, Sommer WH. Postdependent state in rats as a model for medication development in alcoholism. Addict Biol 2015; 20:1-21. [PMID: 25403107 DOI: 10.1111/adb.12187] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Rational development of novel therapeutic strategies for alcoholism requires understanding of its underlying neurobiology and pathophysiology. Obtaining this knowledge largely relies on animal studies. Thus, choosing the appropriate animal model is one of the most critical steps in pre-clinical medication development. Among the range of animal models that have been used to investigate excessive alcohol consumption in rodents, the postdependent model stands out. It was specifically developed to test the role of negative affect as a key driving force in a perpetuating addiction cycle for alcoholism. Here, we will describe our approach to make rats dependent via chronic intermittent exposure to alcohol, discuss the validity of this model, and compare it with other commonly used animal models of alcoholism. We will summarize evidence that postdependent rats fulfill several criteria of a 'Diagnostic and Statistical Manual of Mental Disorders IV/V-like' diagnostic system. Importantly, these animals show long-lasting excessive consumption of and increased motivation for alcohol, and evidence for loss of control over alcohol intake. Our conclusion that postdependent rats are an excellent model for medication development for alcoholism is underscored by a summary of more than two dozen pharmacological tests aimed at reversing these abnormal alcohol responses. We will end with open questions on the use of this model. In the tradition of the Sanchis-Segura and Spanagel review, we provide comic strips that illustrate the postdependent procedure and relevant phenotypes in this review.
Collapse
Affiliation(s)
| | - Wolfgang H. Sommer
- Institute of Psychopharmacology; University of Heidelberg; Germany
- Department of Addiction Medicine; Central Institute of Mental Health; Medical Faculty Mannheim; University of Heidelberg; Germany
| |
Collapse
|
228
|
FKBP5 variation is associated with the acute and chronic effects of nicotine. THE PHARMACOGENOMICS JOURNAL 2014; 15:340-6. [PMID: 25532758 DOI: 10.1038/tpj.2014.76] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/24/2014] [Accepted: 11/05/2014] [Indexed: 01/20/2023]
Abstract
Stress and hormones released in response to stress influence the effects of nicotine and the severity of nicotine withdrawal. Here, we systematically examine the contribution of a stress response gene, FKBP5, to the acute and chronic behavioral effects of nicotine in smokers. Subjects were European- and African-American (EA and AA) heavy smokers who participated in an intravenous (IV) nicotine administration study (total n=169). FKBP5 rs3800373 genotype was analyzed for association to several outcomes, including nicotine withdrawal and the acute subjective, heart rate (HR), blood pressure and plasma cortisol responses to IV nicotine. Nicotine withdrawal was also examined in relation to rs3800373 allele frequencies in an independent cohort of EA and AA current smokers (n=3821). For a subset of laboratory subjects FKBP5 mRNA (n=48) expression was explored for an association to the same outcomes. The rs3800373 minor allele was associated with less severe nicotine withdrawal in laboratory subjects and the independent cohort of smokers. The rs3800373 minor allele was also associated with lower subjective ratings of negative drug effects in response to IV nicotine. Low FKBP5 mRNA expression was associated lower cortisol levels, lower subjective ratings of negative drug effects and a blunted HR response to nicotine. Stress hormone regulation via FKBP5 warrants further investigation as a potential contributor to the effects of nicotine withdrawal, which occurs commonly, and has an important role in the maintenance of smoking behavior and relapse following a quit attempt.
Collapse
|
229
|
|
230
|
Lopez MF, Becker HC, Chandler LJ. Repeated episodes of chronic intermittent ethanol promote insensitivity to devaluation of the reinforcing effect of ethanol. Alcohol 2014; 48:639-45. [PMID: 25266936 PMCID: PMC4250386 DOI: 10.1016/j.alcohol.2014.09.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Studies in animal models have shown that repeated episodes of alcohol dependence and withdrawal promote escalation of drinking that is presumably associated with alterations in the addiction neurocircuitry. Using a lithium chloride-ethanol pairing procedure to devalue the reinforcing properties of ethanol, the present study determined whether multiple cycles of chronic intermittent ethanol (CIE) exposure by vapor inhalation also alters the sensitivity of drinking behavior to the devaluation of ethanol's reinforcing effects. The effect of devaluation on operant ethanol self-administration and extinction was examined in mice prior to initiation of CIE (short drinking history) and after repeated cycles of CIE or air control exposure (long drinking history). Devaluation significantly attenuated the recovery of baseline ethanol self-administration when tested either prior to CIE or in the air-exposed controls that had experienced repeated bouts of drinking but no CIE. In contrast, in mice that had undergone repeated cycles of CIE exposure that promoted escalation of ethanol drinking, self-administration was completely resistant to the effect of devaluation. Devaluation had no effect on the time course of extinction training in either pre-CIE or post-CIE mice. Taken together, these results are consistent with the suggestion that repeated cycles of ethanol dependence and withdrawal produce escalation of ethanol self-administration that is associated with a change in sensitivity to devaluation of the reinforcing properties of ethanol.
Collapse
Affiliation(s)
- M F Lopez
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - H C Becker
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA; RHJ Department of Veterans Affairs Medical Center, Charleston, SC 29425, USA
| | - L J Chandler
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
231
|
Kenna GA, Zywiak WH, Swift RM, McGeary JE, Clifford JS, Shoaff JR, Fricchione S, Brickley M, Beaucage K, Haass-Koffler CL, Leggio L. Ondansetron and sertraline may interact with 5-HTTLPR and DRD4 polymorphisms to reduce drinking in non-treatment seeking alcohol-dependent women: exploratory findings. Alcohol 2014; 48:515-22. [PMID: 25212749 DOI: 10.1016/j.alcohol.2014.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 04/23/2014] [Accepted: 04/23/2014] [Indexed: 01/30/2023]
Abstract
The purpose of this exploratory study was to examine the interaction of 5-HTTLPR and DRD4 exon III polymorphisms with gender in non-treatment seeking alcohol-dependent (AD) individuals while alternately taking ondansetron and sertraline. Evidence suggests that alcohol dependence may be influenced by a genetic interaction that may be gender-specific with temporal changes making pharmacological treatment with serotonergic drugs complex. The main trial was a within-subject double-blind placebo-controlled human laboratory study with 77 non-treatment-seeking AD individuals randomized (55 completed, 49 complete data) to receive 200 mg/day of sertraline or 0.5 mg/day of ondansetron for 3 weeks followed by an alcohol self-administration experiment (ASAE), then placebo for 3 weeks followed by a second ASAE, then receive the alternate drug, in a counterbalanced order, for 3 weeks followed by a third ASAE. Results for men were not significant. Women with the LL 5-HTTLPR genotype receiving ondansetron and SS/SL 5-HTTLPR genotype receiving sertraline (matched), drank significantly fewer drinks per drinking day (DDD) during the 7 days prior to the first and third ASAEs than women receiving the mismatched medication (i.e., sertraline to LL and ondansetron to SS/SL). In a 3-way interaction, 5-HTTLPR alleles by DRD4 alleles by medications, women with the LL genotype who received ondansetron and had DRD4≥7 exon III repeats drank significantly fewer DDD as did SS/SL women who received sertraline but conversely had DRD4<7 repeats in the 7-day period leading up to the first and third ASAEs. Consistent with these data was a significant reduction of milliliters consumed ad libitum during these same ASAEs. These exploratory findings add possible support to gender and genetic differences among AD individuals in response to serotonergic pharmacotherapies. Future trials should be powerful enough to take into account that endophenotypes and a targeting of serotonergic interactions may be essential to successfully treat alcohol dependence.
Collapse
|
232
|
Effects of different ethanol-administration regimes on mRNA and protein levels of steroid 5α-reductase isozymes in prefrontal cortex of adolescent male rats. Psychopharmacology (Berl) 2014; 231:3273-80. [PMID: 24714925 DOI: 10.1007/s00213-014-3558-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 03/17/2014] [Indexed: 12/17/2022]
Abstract
RATIONALE Underage drinking is a leading public health problem in developed countries. An increasing proportion of adolescents consume alcoholic beverages every weekend. Increased anxiety, irritability, and depression among adolescents may induce them to seek for the anxiolytic and rewarding properties of alcohol. Allopregnanolone (AlloP) shares rewarding effects of ethanol and modulates ethanol intake. The rate-limiting enzyme in the biosynthesis of AlloP is steroid 5α-reductase (5α-R), which is expressed as three isozymes, 5α-R1, 5α-R2, and 5α-R3. OBJECTIVE The objective of this study was to quantify the expression levels of 5α-R isozymes in prefrontal cortex (PFC) of adolescent male rats after three different regimes of ethanol administration. METHODS Adolescent male Wistar rats were administered with ethanol (4 g/kg) or saline intraperitoneally for 1 day (acute), for 7 days (chronic), or every 72 h for 14 days (chronic intermittent). Messenger (m)RNA and protein levels of 5α-R isozymes were measured by quantitative RT-PCR and Western blot, respectively. RESULTS Ethanol significantly increased mRNA and protein levels of 5α-R1, 5α-R2, and 5α-R3 in the three different regimes of ethanol administration, being higher in the chronic intermittent regime in comparison with the others. CONCLUSIONS The expression of the AlloP-biosynthetic enzyme 5α-Rs increases in the prefrontal cortex of adolescent male rats under acute, chronic, and chronic intermittent regime of ethanol administration. The latter is very interesting because it mimics the teenage drinking behavior.
Collapse
|
233
|
Unterrainer H, Chen ML, Gruzelier J. EEG-neurofeedback and psychodynamic psychotherapy in a case of adolescent anhedonia with substance misuse: Mood/theta relations. Int J Psychophysiol 2014; 93:84-95. [DOI: 10.1016/j.ijpsycho.2013.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 12/23/2012] [Accepted: 03/15/2013] [Indexed: 10/27/2022]
|
234
|
Huang MC, Schwandt ML, Chester JA, Kirchhoff AM, Kao CF, Liang T, Tapocik JD, Ramchandani VA, George DT, Hodgkinson CA, Goldman D, Heilig M. FKBP5 moderates alcohol withdrawal severity: human genetic association and functional validation in knockout mice. Neuropsychopharmacology 2014; 39:2029-38. [PMID: 24603855 PMCID: PMC4059914 DOI: 10.1038/npp.2014.55] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 01/31/2014] [Accepted: 02/25/2014] [Indexed: 01/18/2023]
Abstract
Alcohol withdrawal is associated with hypothalamic-pituitary-adrenal (HPA) axis dysfunction. The FKBP5 gene codes for a co-chaperone, FK506-binding protein 5, that exerts negative feedback on HPA axis function. This study aimed to examine the effects of single-nucleotide polymorphisms (SNPs) of the FKBP5 gene in humans and the effect of Fkbp5 gene deletion in mice on alcohol withdrawal severity. We genotyped six FKBP5 SNPs (rs3800373, rs9296158, rs3777747, rs9380524, rs1360780, and rs9470080) in 399 alcohol-dependent inpatients with alcohol consumption 48 h before admission and recorded scores from the Clinical Institute Withdrawal Assessment-Alcohol revised (CIWA-Ar). Fkbp5 gene knockout (KO) and wild-type (WT) mice were assessed for alcohol withdrawal using handling-induced convulsions (HICs) following both acute and chronic alcohol exposure. We found the minor alleles of rs3800373 (G), rs9296158 (A), rs1360780 (T), and rs9470080 (T) were significantly associated with lower CIWA-Ar scores whereas the minor alleles of rs3777747 (G) and rs9380524 (A) were associated with higher scores. The haplotype-based analyses also showed an association with alcohol withdrawal severity. Fkbp5 KO mice showed significantly greater HICs during withdrawal from chronic alcohol exposure compared with WT controls. This study is the first to show a genetic effect of FKBP5 on the severity of alcohol withdrawal syndrome. In mice, the absence of the Fkbp5 gene enhances sensitivity to alcohol withdrawal. We suggest that FKBP5 variants may trigger different adaptive changes in HPA axis regulation during alcohol withdrawal with concomitant effects on withdrawal severity.
Collapse
Affiliation(s)
- Ming-Chyi Huang
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan,Department of Psychiatry, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Melanie L Schwandt
- Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Julia A Chester
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA,Department of Medicine, Indiana University, School of Medicine, Indianapolis, IN, USA
| | - Aaron M Kirchhoff
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA,Department of Medicine, Indiana University, School of Medicine, Indianapolis, IN, USA
| | - Chung-Feng Kao
- Department of Public Health and Institute of Epidemiology and Preventive Medicine, College of Public Health, Taipei, Taiwan
| | - Tiebing Liang
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA,Department of Medicine, Indiana University, School of Medicine, Indianapolis, IN, USA
| | - Jenica D Tapocik
- Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Vijay A Ramchandani
- Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - David T George
- Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Colin A Hodgkinson
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism/National Institutes of Health, Bethesda, MD, USA
| | - David Goldman
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism/National Institutes of Health, Bethesda, MD, USA
| | - Markus Heilig
- Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA,Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA, Tel: +1 301 768 7326, Fax: +1 301 451 7498, E-mail:
| |
Collapse
|
235
|
The alcohol deprivation effect model for studying relapse behavior: a comparison between rats and mice. Alcohol 2014; 48:313-20. [PMID: 24811155 DOI: 10.1016/j.alcohol.2014.03.002] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 03/01/2014] [Accepted: 03/01/2014] [Indexed: 12/22/2022]
Abstract
Understanding the psychological mechanisms and underlying neurobiology of relapse behavior is essential for improving the treatment of addiction. Because the neurobiology of relapse behavior cannot be well studied in patients, we must rely on appropriate animal models. The alcohol deprivation effect (ADE) is a phenomenon in laboratory animals that models a relapse-like drinking situation, providing excellent face and predictive validity. In rodents, relapse-like behavior is largely influenced by the genetic make-up of an animal. It is not clear which other factors are responsible for variability of this behavior, but there seems to be no correlation between levels of baseline alcohol intake and the occurrence, duration, and robustness of the ADE. Rats that undergo long-term alcohol drinking for several months with repeated deprivation phases develop a compulsive drinking behavior during a relapse situation, characterized by insensitivity to taste adulteration with quinine, a loss of circadian drinking patterns during relapse-like drinking, and a shift toward drinking highly concentrated alcohol solutions to rapidly increase blood alcohol concentrations and achieve intoxication. Some mouse strains also exhibit an ADE, but this is usually of shorter duration than in rats. However, compulsive drinking in mice during a relapse situation has yet to be demonstrated. We extend our review section with original data showing that during long-term alcohol consumption, mice show a decline in alcohol intake, and the ADE fades with repeated deprivation phases. Furthermore, anti-relapse compounds that produce reliable effects on the ADE in rats produce paradoxical effects in mice. We conclude that the rat provides a better model system to study alcohol relapse and putative anti-relapse compounds.
Collapse
|
236
|
Lopez MF, Becker HC. Operant ethanol self-administration in ethanol dependent mice. Alcohol 2014; 48:295-9. [PMID: 24721194 DOI: 10.1016/j.alcohol.2014.02.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 02/17/2014] [Accepted: 02/19/2014] [Indexed: 12/28/2022]
Abstract
While rats have been predominantly used to study operant ethanol self-administration behavior in the context of dependence, several studies have employed operant conditioning procedures to examine changes in ethanol self-administration behavior as a function of chronic ethanol exposure and withdrawal experience in mice. This review highlights some of the advantages of using operant conditioning procedures for examining the motivational effects of ethanol in animals with a history of dependence. As reported in rats, studies using various operant conditioning procedures in mice have demonstrated significant escalation of ethanol self-administration behavior in mice rendered dependent via forced chronic ethanol exposure in comparison to nondependent mice. This paper also presents a summary of these findings, as well as suggestions for future studies.
Collapse
|
237
|
Rodent models for compulsive alcohol intake. Alcohol 2014; 48:253-64. [PMID: 24731992 DOI: 10.1016/j.alcohol.2014.03.001] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 03/07/2014] [Accepted: 03/12/2014] [Indexed: 11/22/2022]
Abstract
Continued seeking and drinking of alcohol despite adverse legal, health, economic, and societal consequences is a central hallmark of human alcohol use disorders. This compulsive drive for alcohol, defined by resistance to adverse and deleterious consequences, represents a major challenge when attempting to treat alcoholism clinically. Thus, there has long been interest in developing pre-clinical rodent models for the compulsive drug use that characterizes drug addiction. Here, we review recent studies that have attempted to model compulsive aspects of alcohol and cocaine intake in rodents, and consider technical and conceptual issues that need to be addressed when trying to recapitulate compulsive aspects of human addiction. Aversion-resistant alcohol intake has been examined by pairing intake or seeking with the bitter tastant quinine or with footshock, and exciting recent work has used these models to identify neuroadaptations in the amygdala, cortex, and striatal regions that promote compulsive intake. Thus, rodent models do seem to reflect important aspects of compulsive drives that sustain human addiction, and will likely provide critical insights into the molecular and circuit underpinnings of aversion-resistant intake as well as novel therapeutic interventions for compulsive aspects of addiction.
Collapse
|
238
|
Corticotropin releasing factor: a key role in the neurobiology of addiction. Front Neuroendocrinol 2014; 35:234-44. [PMID: 24456850 PMCID: PMC4213066 DOI: 10.1016/j.yfrne.2014.01.001] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 01/03/2014] [Accepted: 01/06/2014] [Indexed: 11/20/2022]
Abstract
Drug addiction is a chronically relapsing disorder characterized by loss of control over intake and dysregulation of stress-related brain emotional systems. Since the discovery by Wylie Vale and his colleagues of corticotropin-releasing factor (CRF) and the structurally-related urocortins, CRF systems have emerged as mediators of the body's response to stress. Relatedly, CRF systems have a prominent role in driving addiction via actions in the central extended amygdala, producing anxiety-like behavior, reward deficits, excessive, compulsive-like drug self-administration and stress-induced reinstatement of drug seeking. CRF neuron activation in the medial prefrontal cortex may also contribute to the loss of control. Polymorphisms in CRF system molecules are associated with drug use phenotypes in humans, often in interaction with stress history. Drug discovery efforts have yielded brain-penetrant CRF1 antagonists with activity in preclinical models of addiction. The results support the hypothesis that brain CRF-CRF1 systems contribute to the etiology and maintenance of addiction.
Collapse
|
239
|
Lowe SL, Wong CJ, Witcher J, Gonzales CR, Dickinson GL, Bell RL, Rorick-Kehn L, Weller M, Stoltz RR, Royalty J, Tauscher-Wisniewski S. Safety, tolerability, and pharmacokinetic evaluation of single- and multiple-ascending doses of a novel kappa opioid receptor antagonist LY2456302 and drug interaction with ethanol in healthy subjects. J Clin Pharmacol 2014; 54:968-78. [DOI: 10.1002/jcph.286] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 03/07/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Stephen L. Lowe
- Lilly-NUS Centre for Clinical Pharmacology; National University of Singapore; Singapore Singapore
| | - Conrad J. Wong
- Eli Lilly and Company; Lilly Corporate Center; Indianapolis IN USA
| | - Jennifer Witcher
- Eli Lilly and Company; Lilly Corporate Center; Indianapolis IN USA
| | | | | | - Robert L. Bell
- Eli Lilly and Company; Lilly Corporate Center; Indianapolis IN USA
| | | | | | | | - Jane Royalty
- Covance Clinical Research Unit, Inc.; Evansville IN USA
| | | |
Collapse
|
240
|
Spanagel R, Noori HR, Heilig M. Stress and alcohol interactions: animal studies and clinical significance. Trends Neurosci 2014; 37:219-27. [PMID: 24636458 DOI: 10.1016/j.tins.2014.02.006] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 02/04/2014] [Accepted: 02/07/2014] [Indexed: 01/05/2023]
Abstract
Alcohol is frequently consumed for stress relief, but the individual determinants and the temporal course of stress-induced alcohol use are not well understood. Preclinical studies may help shed light on these factors. We synthesize here the findings from numerous rodent studies of stress and alcohol interactions. Stress-induced alcohol consumption is age-dependent, has a high genetic load, and results from an interaction of the stress and reward systems. Specifically, glucocorticoids, acting within the nucleus accumbens (NAc), are important mediators of this stress-induced alcohol intake. In addition, increased activation of the corticotropin-releasing hormone (CRH) system within the extended amygdala appears to mediate stress-induced relapse. Finally, these preclinical studies have helped to identify several attractive targets for novel treatments of alcohol abuse and addiction.
Collapse
Affiliation(s)
- Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health (CIMH), University of Heidelberg, Medical Faculty Mannheim, Germany
| | - Hamid R Noori
- Institute of Psychopharmacology, Central Institute of Mental Health (CIMH), University of Heidelberg, Medical Faculty Mannheim, Germany
| | - Markus Heilig
- Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism (NIAAA), Bethesda, USA
| |
Collapse
|
241
|
Bergdahl L, Berman AH, Haglund K. Patients' experience of auricular acupuncture during protracted withdrawal. J Psychiatr Ment Health Nurs 2014; 21:163-9. [PMID: 23230968 DOI: 10.1111/jpm.12028] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/08/2012] [Indexed: 11/28/2022]
Abstract
Over the last decades interest in using auricular acupuncture for substance dependence care has increased. The specific auricular acupuncture protocol used follows the National Acupuncture Detoxification Association (NADA) definition. This paper describes patients' experiences of receiving auricular acupuncture during protracted withdrawal. Interviews were conducted with 15 patients treated at an outpatient clinic for substance dependence. Content analysis was used to analyse the interviews. The analysis resulted in seven categories of positive experiences and seven categories of negative experiences. The positive experiences were: Relaxation and well-being, Peacefulness and harmony, New behaviours, Positive physical impact, Importance of context, Anxiety reduction and Reduced drug and alcohol consumption. The negative experiences were: Nothing negative, Disturbing context, Short-term effect, Depending on someone else, Time-consuming, Physical distractions and Remaining cravings. The conclusion of this study is that all respondents appreciated NADA treatment. This study supports further research on using NADA in addiction treatment to reduce suffering during protracted withdrawal and in other contexts.
Collapse
Affiliation(s)
- L Bergdahl
- Department of Neuroscience, Psychiatry, Uppsala University, Uppsala, Sweden
| | | | | |
Collapse
|
242
|
Noori HR, Helinski S, Spanagel R. Cluster and meta-analyses on factors influencing stress-induced alcohol drinking and relapse in rodents. Addict Biol 2014; 19:225-32. [PMID: 24589296 DOI: 10.1111/adb.12125] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Numerous preclinical studies have focused on the identification of biological and environmental factors that modulate stress and alcohol interactions. Although there is a good qualitative description of the determinants of alcohol consumption in rodents, the magnitude of the variables influencing stress-induced ethanol intake and its dynamics are still poorly understood. We therefore carried out a clustered meta-analysis on stress-induced alcohol consumption in 1520 rats. Two-step clustering of the literature-derived dataset suggests a strong dependency of the experimental outcome on the method used to measure alcohol intake. Free-choice home cage drinking versus operant self-administration is the most critical determinant of stress-induced increases in alcohol consumption in rats. Stress does not typically result in enhanced alcohol consumption in operant self-administration paradigms, whereas it leads to increased home cage drinking. Stress-induced alcohol consumption is age dependent, with adults being more sensitive than adolescents. In addition, foot shock and forced swim stress enhance alcohol intake, while restraint stress does not. In contrast, a meta-analysis of 327 rats on stress-induced reinstatement of alcohol-seeking behavior shows less influence of those modulating factors, and usually foot shock or yohimbine leads to a reinstatement of approximately 300 percent of extinction level responding. Via accurate characterization of the significant factors in the interplay of alcohol consumption, relapse and stress, our quantitative description not only improves the understanding of underlying mechanisms, but also provides an appropriate framework for the optimal experimental design of preclinical studies that more accurately translates to the human condition.
Collapse
Affiliation(s)
- Hamid R. Noori
- Institute of Psychopharmacology; Central Institute of Mental Health (CIMH); Medical Faculty Mannheim; University of Heidelberg; Germany
| | - Sandra Helinski
- Institute of Psychopharmacology; Central Institute of Mental Health (CIMH); Medical Faculty Mannheim; University of Heidelberg; Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology; Central Institute of Mental Health (CIMH); Medical Faculty Mannheim; University of Heidelberg; Germany
| |
Collapse
|
243
|
Mejia-Toiber J, Boutros N, Markou A, Semenova S. Impulsive choice and anxiety-like behavior in adult rats exposed to chronic intermittent ethanol during adolescence and adulthood. Behav Brain Res 2014; 266:19-28. [PMID: 24566059 DOI: 10.1016/j.bbr.2014.02.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/07/2014] [Accepted: 02/13/2014] [Indexed: 11/24/2022]
Abstract
Binge drinking during adolescence and adulthood may have differential long-term effects on the brain. We investigated the long-term effects of chronic intermittent ethanol (CIE) exposure during adolescence and adulthood on impulsivity and anxiety-like behavior. Adolescent (adolescent-exposed) and adult (adult-exposed) rats were exposed to CIE/water on postnatal days (PND) 28-53 and PND146-171, respectively, and a 4-day ethanol/water binge on PND181-184 and PND271-274, respectively. During withdrawal from CIE and 4-day binge exposures, anxiety-like behavior and arousal were measured in the light-potentiated startle (LPS) and acoustic startle (ASR) procedures, respectively. Impulsive choice was evaluated in the delay discounting task (DDT) at baseline and after ethanol challenges. Independent of age, ASR and LPS were decreased during withdrawal from CIE exposure. In contrast, LPS was increased in adult-exposed, but not adolescent-exposed, rats during withdrawal from the 4-day ethanol binge. CIE exposure had no effect on preference for the large delayed reward at baseline, independent of age. During DDT acquisition, CIE-exposed, compared with water-exposed rats, omitted more responses, independent of age, suggesting the CIE-induced disruption of cognitive processes. Ethanol challenges decreased preference for the large reward in younger adolescent-exposed rats but had no effect in older adult-exposed rats, independent of previous CIE/water exposure. Taken together, the present studies demonstrate that CIE withdrawal-induced decreases in anxiety and arousal were not age-specific. CIE exposure had no long-term effects on baseline impulsive choice. Subsequent ethanol exposure produced age-dependent effects on impulsivity (increased impulsivity in younger adolescent-exposed rats) and anxiety-like behavior (increased anxiety-like behavior in older adult-exposed rats).
Collapse
Affiliation(s)
- Jana Mejia-Toiber
- Department of Psychiatry, School of Medicine, University of California San Diego, 9500 Gilman Drive, Mail Code 0603, La Jolla, CA 92093-0603, USA
| | - Nathalie Boutros
- Department of Psychiatry, School of Medicine, University of California San Diego, 9500 Gilman Drive, Mail Code 0603, La Jolla, CA 92093-0603, USA
| | - Athina Markou
- Department of Psychiatry, School of Medicine, University of California San Diego, 9500 Gilman Drive, Mail Code 0603, La Jolla, CA 92093-0603, USA
| | - Svetlana Semenova
- Department of Psychiatry, School of Medicine, University of California San Diego, 9500 Gilman Drive, Mail Code 0603, La Jolla, CA 92093-0603, USA.
| |
Collapse
|
244
|
Increased extracellular glutamate in the nucleus accumbens promotes excessive ethanol drinking in ethanol dependent mice. Neuropsychopharmacology 2014; 39:707-17. [PMID: 24067300 PMCID: PMC3895249 DOI: 10.1038/npp.2013.256] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 08/02/2013] [Accepted: 08/12/2013] [Indexed: 12/20/2022]
Abstract
Using a well-established model of ethanol dependence and relapse, this study examined adaptations in glutamatergic transmission in the nucleus accumbens (NAc) and their role in regulating voluntary ethanol drinking. Mice were first trained to drink ethanol in a free-choice, limited access (2 h/day) paradigm. One group (EtOH mice) received repeated weekly cycles of chronic intermittent ethanol (CIE) exposure with intervening weeks of test drinking sessions, whereas the remaining mice (CTL mice) were similarly treated but did not receive CIE treatment. Over repeated cycles of CIE exposure, EtOH mice exhibited significant escalation in drinking (up to ∼3.5 g/kg), whereas drinking remained relatively stable at baseline levels (2-2.5 g/kg) in CTL mice. Using in vivo microdialysis procedures, extracellular glutamate (GLUEX) levels in the NAc were increased approximately twofold in EtOH mice compared with CTL mice, and this difference was observed 7 days after final CIE exposure, indicating that this hyperglutamatergic state persisted beyond acute withdrawal. This finding prompted additional studies examining the effects of pharmacologically manipulating GLUEX in the NAc on ethanol drinking in the CIE model. The non-selective glutamate reuptake antagonist, threo-β-benzyloxyaspartate (TBOA), was bilaterally microinjected into the NAc and found to dose-dependently increase drinking in nondependent (CTL) mice to levels attained by dependent (EtOH) mice. TBOA also further increased drinking in EtOH mice. In contrast, reducing glutamatergic transmission in the NAc via bilateral injections of the metabotropic glutamate receptor-2/3 agonist LY379268 reduced drinking in dependent (EtOH) mice to nondependent (CTL) levels, whereas having a more modest effect in decreasing ethanol consumption in CTL mice. Taken together, these data support an important role of glutamatergic transmission in the NAc in regulating ethanol drinking. Additionally, these results indicate that ethanol dependence produces adaptations that favor elevated glutamate activity in the NAc which, in turn, promote excessive levels of ethanol consumption associated with dependence.
Collapse
|
245
|
Dreumont SE, Cunningham CL. Effects of acute withdrawal on ethanol-induced conditioned place preference in DBA/2J mice. Psychopharmacology (Berl) 2014; 231:777-85. [PMID: 24096534 PMCID: PMC3910420 DOI: 10.1007/s00213-013-3291-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 09/12/2013] [Indexed: 11/26/2022]
Abstract
RATIONALE Reexposure to ethanol during acute withdrawal might facilitate the transition to alcoholism by enhancing the rewarding effect of ethanol. OBJECTIVE The conditioned place preference (CPP) procedure was used to test whether ethanol reward is enhanced during acute withdrawal. METHODS DBA/2J mice were exposed to an unbiased one-compartment CPP procedure. Ethanol (0.75, 1.0, or 1.5 g/kg IP) was paired with a distinctive floor cue (CS+), whereas saline was paired with a different floor cue (CS-). The withdrawal (W) group received CS+ trials during acute withdrawal produced by a large dose of ethanol (4 g/kg) given 8 h before each trial. The no-withdrawal (NW) group did not experience acute withdrawal during conditioning trials but was matched for acute withdrawal experience. Floor preference was tested in the absence of ethanol or acute withdrawal. RESULTS All groups eventually showed a dose-dependent preference for the ethanol-paired cue, but development of CPP was generally more rapid and stable in the W groups than in the NW groups. Acute withdrawal suppressed the normal activating effect of ethanol during CS+ trials, but there were no group differences in test activity. CONCLUSIONS Acute withdrawal enhanced ethanol's rewarding effect as indexed by CPP. Since this effect depended on ethanol exposure during acute withdrawal, the enhancement of ethanol reward was likely mediated by the alleviation of acute withdrawal, i.e., negative reinforcement. Enhancement of ethanol reward during acute withdrawal may be a key component in the shift from episodic to chronic ethanol consumption that characterizes alcoholism.
Collapse
Affiliation(s)
- Sarah E Dreumont
- Department of Behavioral Neuroscience and Portland Alcohol Research Center, Oregon Health & Science University, Portland, OR, 97239-3098, USA
| | | |
Collapse
|
246
|
Abstract
Alcohol dependence encompasses a serious medical and societal problem that constitutes a major public health concern. A serious consequence of dependence is the emergence of symptoms associated with the alcohol withdrawal syndrome when drinking is abruptly terminated or substantially reduced. Clinical features of alcohol withdrawal include signs of central nervous system hyperexcitability, heightened autonomic nervous system activation, and a constellation of symptoms contributing to psychologic discomfort and negative affect. The development of alcohol dependence is a complex and dynamic process that ultimately reflects a maladaptive neurophysiologic state. Perturbations in a wide range of neurochemical systems, including glutamate, γ-aminobutyric acid, monoamines, a host of neuropeptide systems, and various ion channels produced by the chronic presence of alcohol ultimately compromise the functional integrity of the brain. These neuroadaptations not only underlie the emergence and expression of many alcohol withdrawal symptoms, but also contribute to enhanced relapse vulnerability as well as perpetuation of uncontrolled excessive drinking. This chapter highlights the hallmark features of the alcohol withdrawal syndrome, and describes neuroadaptations in a wide array of neurotransmitter and neuromodulator systems (amino acid and monoamine neurotransmitter, neuropeptide systems, and various ion channels) as they relate to the expression of various signs and symptoms of alcohol withdrawal, as well as their relationship to the significant clinical problem of relapse and uncontrolled dangerous drinking.
Collapse
|
247
|
Pani PP, Trogu E, Vigna-Taglianti F, Mathis F, Diecidue R, Kirchmayer U, Amato L, Davoli M, Ghibaudi J, Camposeragna A, Saponaro A, Faggiano F, Maremmani AGI, Maremmani I. Psychopathological symptoms of patients with heroin addiction entering opioid agonist or therapeutic community treatment. Ann Gen Psychiatry 2014; 13:35. [PMID: 25435897 PMCID: PMC4247563 DOI: 10.1186/s12991-014-0035-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 10/26/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The relationship between substance use disorders and psychiatric pathology is still an open question. The main aim of the present study was to verify whether the five psychopathological dimensions identified through the SCL-90 tool in a previous study carried out on patients with heroin addiction entering an outpatient opioid agonist treatment (OAT) were also observable in those entering a residential treatment community (TC). Further aims were to look at differences in the psychopathological profiles of patients entering a TC versus an OAT treatment and at the correlation between gender and the observed psychopathology. METHODS A confirmatory factor analysis was performed on the results of SCL-90 filled by 1,195 patients with heroin dependence entering TC treatment. It replicates the extraction method previously used on 1,055 OAT patients with heroin addiction by using a principal component factor analysis (PCA). The association between the kind of treatment received (TC or OAT), gender, and the psychopathological dimensions was assessed through logistic regression and general linear model (GLM) analysis. RESULTS The PCA carried out on the SCL-90 results of patients entering a TC yielded a five-factor solution, confirming the same dimensions observed in patients entering an OAT: 'worthlessness and being trapped', 'somatization', 'sensitivity-psychoticism', 'panic anxiety', and 'violence-suicide'. The logistic regression analysis showed a statistically significant association between 'somatization' and 'violence-suicide' severity score and OAT. GLM analysis showed that psychopathological factorial scores for 'worthlessness-being trapped', 'somatic symptoms', and 'panic anxiety' dimensions were more severe in OAT vs TC male patients and in TC vs OAT female ones. 'Violence suicide' followed the same severity pattern for males, but did not differ in TC vs OAT females, while 'sensitivity-psychoticism' did not differ in OAT vs TC patients. The five dimensions did not differ in OAT males vs females. CONCLUSIONS Our research appears to confirm the existence of a specific aggregation of psychological/psychiatric features within the category of individuals with heroin addiction. It also shows a correlation between the dominant psychopathological subgroup and the assignment to TC versus OAT. Further research is needed to clarify the differences between the five psychopathological subgroups and their determinants.
Collapse
Affiliation(s)
- Pier Paolo Pani
- Social and Health Services, Cagliari Health Public Trust (ASL Cagliari), Cagliari, Italy
| | - Emanuela Trogu
- Department of Psychiatry, Cagliari Health Public Trust (ASL Cagliari), Cagliari, Italy
| | - Federica Vigna-Taglianti
- Piedmont Centre for Drug Addiction Epidemiology, ASLTO3 Grugliasco, Turin, Italy ; Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Federica Mathis
- Piedmont Centre for Drug Addiction Epidemiology, ASLTO3 Grugliasco, Turin, Italy
| | - Roberto Diecidue
- Piedmont Centre for Drug Addiction Epidemiology, ASLTO3 Grugliasco, Turin, Italy
| | - Ursula Kirchmayer
- Department of Epidemiology, Lazio Regional Health Service, Rome, Italy
| | - Laura Amato
- Department of Epidemiology, Lazio Regional Health Service, Rome, Italy
| | - Marina Davoli
- Department of Epidemiology, Lazio Regional Health Service, Rome, Italy
| | - Joli Ghibaudi
- National Coordination Hospitality Communities (CNCA), Rome, Italy
| | | | - Alessio Saponaro
- Regional Epidemiologic Observatory, Emilia Romagna Regional Health Service, Bologna, Italy
| | - Fabrizio Faggiano
- Department of Translational Medicine, Avogadro University, Novara, Italy
| | - Angelo Giovanni Icro Maremmani
- Department of Neurosciences, Vincent P. Dole Dual Diagnosis Unit, Santa Chiara University Hospital, University of Pisa, Pisa, Italy ; Association for the Application of Neuroscientific Knowledge to Social Aims (AU-CNS), Pietrasanta, Lucca, Italy
| | - Icro Maremmani
- Department of Neurosciences, Vincent P. Dole Dual Diagnosis Unit, Santa Chiara University Hospital, University of Pisa, Pisa, Italy ; Association for the Application of Neuroscientific Knowledge to Social Aims (AU-CNS), Pietrasanta, Lucca, Italy ; G. De Lisio Institute of Behavioural Sciences, Pisa, Italy
| |
Collapse
|
248
|
Perspectives on the neuroscience of alcohol from the National Institute on Alcohol Abuse and Alcoholism. HANDBOOK OF CLINICAL NEUROLOGY 2014; 125:15-29. [PMID: 25307566 DOI: 10.1016/b978-0-444-62619-6.00002-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mounting evidence over the last 40 years clearly indicates that alcoholism (alcohol dependence) is a disorder of the brain. The National Institute on Alcohol Abuse and Alcoholism (NIAAA) has taken significant steps to advance research into the neuroscience of alcohol. The Division of Neuroscience and Behavior (DNB) was formed within NIAAA in 2002 to oversee, fund, and direct all research areas that examine the effects of alcohol on the brain, the genetic underpinnings of alcohol dependence, the neuroadaptations resulting from excessive alcohol consumption, advanced behavioral models of the various stages of the addiction cycle, and preclinical medications development. This research portfolio has produced important discoveries in the etiology, treatment, and prevention of alcohol abuse and dependence. Several of these salient discoveries are highlighted and future areas of neuroscience research on alcohol are presented.
Collapse
|
249
|
Plescia F, Brancato A, Marino RAM, Vita C, Navarra M, Cannizzaro C. Effect of Acetaldehyde Intoxication and Withdrawal on NPY Expression: Focus on Endocannabinoidergic System Involvement. Front Psychiatry 2014; 5:138. [PMID: 25324788 PMCID: PMC4181239 DOI: 10.3389/fpsyt.2014.00138] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 09/18/2014] [Indexed: 01/17/2023] Open
Abstract
Acetaldehyde (ACD), the first alcohol metabolite, plays a pivotal role in the rewarding, motivational, and addictive properties of the parental compound. Many studies have investigated the role of ACD in mediating neurochemical and behavioral effects induced by alcohol administration, but very little is known about the modulation of neuropeptide systems following ACD intoxication and withdrawal. Indeed, the neuropeptide Y (NPY) system is altered during alcohol withdrawal in key regions for cerebrocortical excitability and neuroplasticity. The primary goal of this research was to investigate the effects of ACD intoxication and withdrawal by recording rat behavior and by measuring NPY immunoreactivity in hippocampus and NAcc, two brain regions mainly involved in processes which encompass neuroplasticity in alcohol dependence. Furthermore, on the basis of the involvement of endocannabinoidergic system in alcohol and ACD reinforcing effects, the role of the selective CB1 receptor antagonist AM281 in modulating NPY expression during withdrawal was assessed. Our results indicate that (i) ACD intoxication induced a reduction in NPY expression in hippocampus and NAcc; (ii) symptoms of physical dependence, similar to alcohol's, were scored at 12 h from the last administration of ACD; and (iii) NPY levels increased in early and prolonged acute withdrawal in both brain regions examined. The administration of AM281 was able to blunt signs of ACD-induced physical dependence, to modulate NPY levels, and to further increase NPY expression during ACD withdrawal both in hippocampus and NAcc. In conclusion, the present study shows that complex plastic changes take place in NPY system during ACD intoxication and subsequent withdrawal in rat hippocampal formation and NAcc. The pharmacological inhibition of CB1 signaling could counteract the neurochemical imbalance associated with ACD, and alcohol withdrawal, likely boosting the setting up of homeostatic functional recovery.
Collapse
Affiliation(s)
- Fulvio Plescia
- Department of Sciences for Health Promotion and Mother and Child Care "Giuseppe D'Alessandro", University of Palermo , Palermo , Italy
| | - Anna Brancato
- Department of Sciences for Health Promotion and Mother and Child Care "Giuseppe D'Alessandro", University of Palermo , Palermo , Italy
| | - Rosa Anna Maria Marino
- Department of Sciences for Health Promotion and Mother and Child Care "Giuseppe D'Alessandro", University of Palermo , Palermo , Italy
| | - Carlotta Vita
- Department of Sciences for Health Promotion and Mother and Child Care "Giuseppe D'Alessandro", University of Palermo , Palermo , Italy
| | - Michele Navarra
- Department of Drug Sciences and Products for Health, University of Messina , Messina , Italy
| | - Carla Cannizzaro
- Department of Sciences for Health Promotion and Mother and Child Care "Giuseppe D'Alessandro", University of Palermo , Palermo , Italy
| |
Collapse
|
250
|
Spanagel R, Durstewitz D, Hansson A, Heinz A, Kiefer F, Köhr G, Matthäus F, Nöthen MM, Noori HR, Obermayer K, Rietschel M, Schloss P, Scholz H, Schumann G, Smolka M, Sommer W, Vengeliene V, Walter H, Wurst W, Zimmermann US, Stringer S, Smits Y, Derks EM. A systems medicine research approach for studying alcohol addiction. Addict Biol 2013; 18:883-96. [PMID: 24283978 DOI: 10.1111/adb.12109] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
According to the World Health Organization, about 2 billion people drink alcohol. Excessive alcohol consumption can result in alcohol addiction, which is one of the most prevalent neuropsychiatric diseases afflicting our society today. Prevention and intervention of alcohol binging in adolescents and treatment of alcoholism are major unmet challenges affecting our health-care system and society alike. Our newly formed German SysMedAlcoholism consortium is using a new systems medicine approach and intends (1) to define individual neurobehavioral risk profiles in adolescents that are predictive of alcohol use disorders later in life and (2) to identify new pharmacological targets and molecules for the treatment of alcoholism. To achieve these goals, we will use omics-information from epigenomics, genetics transcriptomics, neurodynamics, global neurochemical connectomes and neuroimaging (IMAGEN; Schumann et al. ) to feed mathematical prediction modules provided by two Bernstein Centers for Computational Neurosciences (Berlin and Heidelberg/Mannheim), the results of which will subsequently be functionally validated in independent clinical samples and appropriate animal models. This approach will lead to new early intervention strategies and identify innovative molecules for relapse prevention that will be tested in experimental human studies. This research program will ultimately help in consolidating addiction research clusters in Germany that can effectively conduct large clinical trials, implement early intervention strategies and impact political and healthcare decision makers.
Collapse
Affiliation(s)
- Rainer Spanagel
- Insitute of Psychopharmacology; Central Institute of Mental Health; Medical Faculty Mannheim; University of Heidelberg; Germany
| | - Daniel Durstewitz
- Bernstein Center for Computational Neuroscience; Central Institute of Mental Health; Germany
| | - Anita Hansson
- Insitute of Psychopharmacology; Central Institute of Mental Health; Medical Faculty Mannheim; University of Heidelberg; Germany
| | - Andreas Heinz
- Department of Addictive Behaviour and Addiction Medicine; Central Institute of Mental Health; Germany
| | - Falk Kiefer
- Department of Genetic Epidemiology in Psychiatry; Central Institute of Mental Health; Germany
| | - Georg Köhr
- Insitute of Psychopharmacology; Central Institute of Mental Health; Medical Faculty Mannheim; University of Heidelberg; Germany
| | | | - Markus M. Nöthen
- Department of Psychiatry; Charité University Medical Center; Germany
| | - Hamid R. Noori
- Insitute of Psychopharmacology; Central Institute of Mental Health; Medical Faculty Mannheim; University of Heidelberg; Germany
| | - Klaus Obermayer
- Institute of Applied Mathematics; University of Heidelberg; Germany
| | - Marcella Rietschel
- Department of Genomics, Life & Brain Centre; University of Bonn; Germany
| | - Patrick Schloss
- Neural Information Processing Group; Technical University of Berlin; Germany
| | - Henrike Scholz
- Behavioral Neurogenetics' Zoological Institute; University of Cologne; Germany
| | - Gunter Schumann
- MRC-SGDP Centre; Institute of Psychiatry; King's College; UK
| | - Michael Smolka
- Department of Psychiatry and Psychotherapy; Technical University Dresden; Germany
| | - Wolfgang Sommer
- Insitute of Psychopharmacology; Central Institute of Mental Health; Medical Faculty Mannheim; University of Heidelberg; Germany
| | - Valentina Vengeliene
- Insitute of Psychopharmacology; Central Institute of Mental Health; Medical Faculty Mannheim; University of Heidelberg; Germany
| | - Henrik Walter
- Department of Addictive Behaviour and Addiction Medicine; Central Institute of Mental Health; Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics; Helmholtz Center Munich; Germany
| | - Uli S. Zimmermann
- Department of Psychiatry and Psychotherapy; Technical University Dresden; Germany
| | - Sven Stringer
- Psychiatry Department; Academic Medical Center; The Netherlands
- Brain Center Rudolf Magnus; University Medical Center; The Netherlands
| | - Yannick Smits
- Psychiatry Department; Academic Medical Center; The Netherlands
| | - Eske M. Derks
- Psychiatry Department; Academic Medical Center; The Netherlands
| | | |
Collapse
|