201
|
Tn5045, a novel integron-containing antibiotic and chromate resistance transposon isolated from a permafrost bacterium. Res Microbiol 2011; 162:337-45. [PMID: 21262357 DOI: 10.1016/j.resmic.2011.01.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 12/21/2010] [Indexed: 11/21/2022]
Abstract
A novel antibiotic and chromate resistance transposon, Tn5045, was isolated from a permafrost strain of Pseudomonas sp. Tn5045 is a compound transposon composed of three distinct genetic elements. The backbone element is a Tn1013-like Tn3 family transposon, termed Tn1013∗, that contains the tnpA and the tnpR genes, encoding the transposase and resolvase, respectively, the res-site and four genes (orfA, B, C, D) related to different house-keeping genes. The second element is class 1 integron, termed InC∗, which is inserted into the Tn1013∗ res-region and contains 5'-CS-located integrase, 3'-CS-located qacE∆1 and sulfonamide resistance sulI genes, and a single cassette encoding the streptomycin resistance aadA2-gene. The third element is a TnOtChr-like Tn3 family transposon termed TnOtChr∗, which is inserted into the transposition module of the integron and contains genes of chromate resistance (chrB, A, C, F). Tn5045 is the first example of an ancient integron-containing mobile element and also the first characterized compound transposon coding for both antibiotic and chromate, resistance. Our data demonstrate that antibiotic and chromate resistance genes were distributed in environmental bacteria independently of human activities and provide important insights into the origin and evolution of antibiotic resistance integrons.
Collapse
|
202
|
Cummings DE, Archer KF, Arriola DJ, Baker PA, Faucett KG, Laroya JB, Pfeil KL, Ryan CR, Ryan KRU, Zuill DE. Broad dissemination of plasmid-mediated quinolone resistance genes in sediments of two urban coastal wetlands. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:447-454. [PMID: 21141884 DOI: 10.1021/es1029206] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Contamination of soil and water with antibiotic-resistant bacteria may create reservoirs of antibiotic resistance genes that have the potential to negatively impact future public health through horizontal gene transfer. The plasmid-mediated quinolone resistance genes qnrA, qnrB, qnrS, qepA, and aac(6')-Ib-cr were detected by PCR amplification of metagenomic DNA from surface sediments of the Tijuana River Estuary, a sewage-impacted coastal wetland along the U.S.-Mexico border; sediments of Famosa Slough, a nearby urban wetland that is largely unaffected by sewage, contained only qnrB, qnrS, and qepA. The number of PCR-positive sites and replicates increased in both wetlands after rainfall. Real-time quantitative PCR revealed a significant increase (p < 0.0005) in qnrA abundance (copies per gram sediment or per 16S rDNA copy) in Tijuana River Estuary sediments immediately following rainfall, but no significant change was measured at Famosa Slough (p > 0.1). Nucleotide sequences of cloned qnrA amplicons were all affiliated with qnrA genes found on plasmids of clinical isolates with one exception that was most similar to the chromosomal qnrA gene found in Shewanella algae. Our results suggest that urban wetlands may become reservoirs of antibiotic resistance genes, particularly where wastewater is improperly managed.
Collapse
Affiliation(s)
- David E Cummings
- Department of Biology, Point Loma Nazarene University, San Diego, California 92106, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Abstract
We describe how wide host-range cloning vectors can lead to more flexible and effective procedures to isolate novel genes by screening metagenomic libraries in a range of bacterial hosts, not just the conventionally used Escherichia coli. We give examples of various wide host-range plasmid, cosmid, and BAC cloning vectors and the types of genes and activities that have been successfully obtained to date. We present a detailed protocol that involves the construction and screening of a metagenomic library comprising fragments of bacterial DNA, obtained from a wastewater treatment plant and cloned in a wide host-range cosmid. We also consider future prospects and how techniques and tools can be improved.
Collapse
Affiliation(s)
- Margaret Wexler
- School of Biological Sciences, University of East Anglia, Norwich, Norfolk, UK
| | | |
Collapse
|
204
|
Abstract
This chapter provides methods and insights into the use of broad-host-range plasmid vectors useful for expression of genes in a variety of bacteria. The main focus is on IncQ, IncW, IncP, and pBBR1-based plasmids which have all been used for such applications. The specific design of each vector is adapted to its use, and here we describe, as an example, a protocol for construction (in Escherichia coli) of large insert DNA libraries in an IncP type vector and transfer of the library to the desired host. The genes of interest will in this case have to be expressed from their own promoters and the libraries will be screened by a method that best fits the functions of the gene or gene clusters searched for.
Collapse
|
205
|
Manaia CM, Vaz-Moreira I, Nunes OC. Antibiotic Resistance in Waste Water and Surface Water and Human Health Implications. THE HANDBOOK OF ENVIRONMENTAL CHEMISTRY 2011. [DOI: 10.1007/698_2011_118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
206
|
Yang H, Byelashov OA, Geornaras I, Goodridge LD, Nightingale KK, Belk KE, Smith GC, Sofos JN. Characterization and Transferability of Class 1 Integrons in Commensal Bacteria Isolated from Farm and Nonfarm Environments. Foodborne Pathog Dis 2010; 7:1441-51. [DOI: 10.1089/fpd.2010.0555] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Hua Yang
- Food Safety Cluster, Department of Animal Sciences, Center for Meat Safety & Quality, Colorado State University, Fort Collins, Colorado
| | - Oleksandr A. Byelashov
- Food Safety Cluster, Department of Animal Sciences, Center for Meat Safety & Quality, Colorado State University, Fort Collins, Colorado
| | - Ifigenia Geornaras
- Food Safety Cluster, Department of Animal Sciences, Center for Meat Safety & Quality, Colorado State University, Fort Collins, Colorado
| | - Lawrence D. Goodridge
- Food Safety Cluster, Department of Animal Sciences, Center for Meat Safety & Quality, Colorado State University, Fort Collins, Colorado
| | - Kendra K. Nightingale
- Food Safety Cluster, Department of Animal Sciences, Center for Meat Safety & Quality, Colorado State University, Fort Collins, Colorado
| | - Keith E. Belk
- Food Safety Cluster, Department of Animal Sciences, Center for Meat Safety & Quality, Colorado State University, Fort Collins, Colorado
| | - Gary C. Smith
- Food Safety Cluster, Department of Animal Sciences, Center for Meat Safety & Quality, Colorado State University, Fort Collins, Colorado
| | - John N. Sofos
- Food Safety Cluster, Department of Animal Sciences, Center for Meat Safety & Quality, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
207
|
Diehl DL, LaPara TM. Effect of temperature on the fate of genes encoding tetracycline resistance and the integrase of class 1 integrons within anaerobic and aerobic digesters treating municipal wastewater solids. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:9128-33. [PMID: 21058743 DOI: 10.1021/es102765a] [Citation(s) in RCA: 208] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The objective of this research was to investigate the ability of anaerobic and aerobic digesters to reduce the quantity of antibiotic resistant bacteria in wastewater solids. Lab-scale digesters were operated at different temperatures (22 °C, 37 °C, 46 °C, and 55 °C) under both anaerobic and aerobic conditions and fed wastewater solids collected from a full-scale treatment facility. Quantitative PCR was used to track five genes encoding tetracycline resistance (tet(A), tet(L), tet(O), tet(W), and tet(X)) and the gene encoding the integrase (intI1) of class 1 integrons. Statistically significant reductions in the quantities of these genes occurred in the anaerobic reactors at 37 °C, 46 °C, and 55 °C, with the removal rates and removal efficiencies increasing as a function of temperature. The aerobic digesters, in contrast, were generally incapable of significantly decreasing gene quantities, although these digesters were operated at much shorter mean hydraulic residence times. This research suggests that high temperature anaerobic digestion of wastewater solids would be a suitable technology for eliminating various antibiotic resistance genes, an emerging pollutant of concern.
Collapse
Affiliation(s)
- David L Diehl
- Department of Civil Engineering, University of Minnesota, 500 Pillsbury Drive SE, Minneapolis, Minnesota 55455-0116, United States
| | | |
Collapse
|
208
|
Akiyama T, Savin MC. Populations of antibiotic-resistant coliform bacteria change rapidly in a wastewater effluent dominated stream. THE SCIENCE OF THE TOTAL ENVIRONMENT 2010; 408:6192-6201. [PMID: 20888028 DOI: 10.1016/j.scitotenv.2010.08.055] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 08/20/2010] [Accepted: 08/30/2010] [Indexed: 05/29/2023]
Abstract
Incomplete elimination of bacteria and pharmaceutical drugs during wastewater treatment results in the entry of antibiotics and antibiotic-resistant bacteria into receiving streams with effluent inputs. In Mud Creek in Fayetteville, AR, ofloxacin, trimethoprim, and sulfamethoxazole have been detected in water and sediment, and tetracycline has been detected in sediment downstream of treated effluent input. These antibiotics have been measured repeatedly, but at low concentrations (<1μg/L) in the stream. To determine if effluent input results in detectable and stable changes in antibiotic resistances downstream of effluent input, antibiotic resistance in Escherichia coli and total coliform bacteria in Mud Creek stream water and sediment were determined using a culture-based method. Isolated E. coli colonies were characterized for multiple antibiotic resistance (MAR) patterns on solid media and to evaluate E. coli isolate richness by amplification of a partial uidA gene followed by denaturant gradient gel electrophoresis (DGGE). Despite temporal variability, proportions of antibiotic-resistant E. coli were generally high in effluent and 640m downstream. The MAR pattern ampicillin-trimethoprim-sulfamethoxazole was associated with a DGGE profile that was detected in effluent and downstream E. coli isolates, but not upstream. Percent resistance among coliform bacteria to trimethoprim and sulfamethoxazole was higher 640m downstream compared to upstream sediment and water (with one exception). Resistance to ofloxacin was too low to analyze statistically and tetracycline resistance was fairly constant across sites. Resistances changed from 640m to 2000m downstream, although dissolved nutrient concentrations within that stream stretch resembled effluent. Antibiotic resistant bacteria are entering the stream, but resistances change within a short distance of effluent inputs, more quickly than indicated based on chemical water properties. Results illustrate the difficulty in tracking the input and fate of antibiotic resistance and in relating the presence of low antibiotic concentrations to selection or persistence of antibiotic resistances.
Collapse
Affiliation(s)
- Tatsuya Akiyama
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, 115 Plant Science Bldg., Fayetteville, AR 72701, United States
| | | |
Collapse
|
209
|
Hegstad K, Langsrud S, Lunestad BT, Scheie AA, Sunde M, Yazdankhah SP. Does the wide use of quaternary ammonium compounds enhance the selection and spread of antimicrobial resistance and thus threaten our health? Microb Drug Resist 2010; 16:91-104. [PMID: 20370507 DOI: 10.1089/mdr.2009.0120] [Citation(s) in RCA: 234] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Quaternary ammonium compounds (QACs) are widely used biocides that possess antimicrobial effect against a broad range of microorganisms. These compounds are used for numerous industrial purposes, water treatment, antifungal treatment in horticulture, as well as in pharmaceutical and everyday consumer products as preserving agents, foam boosters, and detergents. Resistance toward QACs is widespread among a diverse range of microorganisms and is facilitated by several mechanisms such as modifications in the membrane composition, expression of stress response and repair systems, or expression of efflux pump genes. Development of resistance in both pathogenic and nonpathogenic bacteria has been related to application in human medicine and the food industry. QACs in cosmetic products will inevitably come into intimate contact with the skin or mucosal linings in the mouth and thus are likely to add to the selection pressure toward more QAC-resistant microorganisms among the skin or mouth flora. There is increasing evidence of coresistance and cross-resistance between QACs and a range of other clinically important antibiotics and disinfectants. Use of QACs may have driven the fixation and spread of certain resistance cassette collectors (class 1 integrons), currently responsible for a major part of antimicrobial resistance in gram-negative bacteria. More indiscriminate use of QACs such as in cosmetic products may drive the selection of further new genetic elements that will aid in the persistence and spread of antimicrobial resistance and thus in limiting our treatment options for microbial infections.
Collapse
Affiliation(s)
- Kristin Hegstad
- Department of Microbiology and Infection Control, Reference Centre for Detection of Antimicrobial Resistance, University Hospital of North Norway, Tromsø, Norway.
| | | | | | | | | | | |
Collapse
|
210
|
Łuczkiewicz A, Jankowska K, Fudala-Książek S, Olańczuk-Neyman K. Antimicrobial resistance of fecal indicators in municipal wastewater treatment plant. WATER RESEARCH 2010; 44:5089-5097. [PMID: 20810144 DOI: 10.1016/j.watres.2010.08.007] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 07/22/2010] [Accepted: 08/08/2010] [Indexed: 05/29/2023]
Abstract
Antimicrobial resistance of fecal coliforms (n = 153) and enterococci (n = 199) isolates was investigated in municipal wastewater treatment plant (WWTP) based on activated sludge system. The number of fecal indicators (in influent and effluent as well as in the aeration chamber and in return activated sludge mixture) was determined using selective media. Susceptibility of selected strains was tested against 19 (aminoglycosides, aztreonam, carbapenems, cephalosporins, β-lactam/β-lactamase inhibitors, fluoroquinolones, penicillines, tetracycline and trimethoprim/sulfamethoxazole) and 17 (high-level aminoglycosides, ampicillin, chloramphenicol, erythromycin, fluoroquinolones, glycopeptides, linezolid, lincosamides, nitrofuration, streptogramins, tetracycline) antimicrobial agents respectively. Among enterococci the predominant species were Enterococcus faecium (60.8%) and Enterococcus faecalis (22.1%), while remaining isolates belonged to Enterococcus hirae (12.1%), Enterococcus casseliflavus/gallinarum (4.5%), and Enterococcus durans (0.5%). Resistance to nitrofuration and erythromycin was common among enterococci (53% and 44%, respectively), and followed by resistance to ciprofloxacin (29%) and tetracycline (20%). The resistance phenotypes related to glycopeptides (up to 3.2%) and high-level aminoglycosides (up to 5.4%) were also observed. Most frequently, among Escherichia coli isolates the resistance patterns were found for ampicillin (34%), piperacillin (24%) and tetracycline (23%). Extended-spectrum β-lactamase producing E. coli was detected once, in the aeration chamber. In the study the applied wastewater treatment processes considerably reduced the number of fecal indicators. Nevertheless their number in the WWTP effluent was higher than 10(4) CFU per 100 ml and periodically contained 90% of bacteria with antimicrobial resistance patterns. The positive selection of isolates with antimicrobial resistance patterns was observed during the treatment processes. Substantial concern should be paid to the isolates resistant to 3 or more chemical classes of antimicrobials (MAR). In treated wastewater MAR E. coli and MAR enterococci constituted respectively 9% and 29% of tested isolates.
Collapse
Affiliation(s)
- A Łuczkiewicz
- Department of Water and Wastewater Technology, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | | | | | | |
Collapse
|
211
|
Gomes NC, Flocco CG, Costa R, Junca H, Vilchez R, Pieper DH, Krögerrecklenfort E, Paranhos R, Mendonça-Hagler LC, Smalla K. Mangrove microniches determine the structural and functional diversity of enriched petroleum hydrocarbon-degrading consortia. FEMS Microbiol Ecol 2010. [DOI: 10.1111/j.1574-6941.2010.00962.x 276-290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
212
|
Gomes NCM, Flocco CG, Costa R, Junca H, Vilchez R, Pieper DH, Krögerrecklenfort E, Paranhos R, Mendonça-Hagler LCS, Smalla K. Mangrove microniches determine the structural and functional diversity of enriched petroleum hydrocarbon-degrading consortia. FEMS Microbiol Ecol 2010; 74:276-90. [PMID: 20812953 DOI: 10.1111/j.1574-6941.2010.00962.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
In this study, the combination of culture enrichments and molecular tools was used to identify bacterial guilds, plasmids and functional genes potentially important in the process of petroleum hydrocarbon (PH) decontamination in mangrove microniches (rhizospheres and bulk sediment). In addition, we aimed to recover PH-degrading consortia (PHDC) for future use in remediation strategies. The PHDC were enriched with petroleum from rhizosphere and bulk sediment samples taken from a mangrove chronically polluted with oil hydrocarbons. Southern blot hybridization (SBH) assays of PCR amplicons from environmental DNA before enrichments resulted in weak positive signals for the functional gene types targeted, suggesting that PH-degrading genotypes and plasmids were in low abundance in the rhizosphere and bulk sediments. However, after enrichment, these genes were detected and strong microniche-dependent differences in the abundance and composition of hydrocarbonoclastic bacterial populations, plasmids (IncP-1α, IncP-1β, IncP-7 and IncP-9) and functional genes (naphthalene, extradiol and intradiol dioxygenases) were revealed by in-depth molecular analyses [PCR-denaturing gradient gel electrophoresis and hybridization (SBH and microarray)]. Our results suggest that, despite the low abundance of PH-degrading genes and plasmids in the environmental samples, the original bacterial composition of the mangrove microniches determined the structural and functional diversity of the PHDC enriched.
Collapse
Affiliation(s)
- Newton C M Gomes
- CESAM and Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Pignato S, Coniglio MA, Faro G, Lefevre M, Weill FX, Giammanco G. Molecular Epidemiology of Ampicillin Resistance inSalmonellaspp. andEscherichia colifrom Wastewater and Clinical Specimens. Foodborne Pathog Dis 2010; 7:945-51. [DOI: 10.1089/fpd.2009.0504] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Sarina Pignato
- GF Ingrassia—Igiene e Sanità Pubblica, University of Catania, Catania, Italy
| | - Maria Anna Coniglio
- GF Ingrassia—Igiene e Sanità Pubblica, University of Catania, Catania, Italy
| | - Giuseppina Faro
- GF Ingrassia—Igiene e Sanità Pubblica, University of Catania, Catania, Italy
| | - Martine Lefevre
- Laboratoire des Bactéries Pathogènes Entériques, Centre National de Référence des Salmonella, Institut Pasteur, Paris, France
| | - François-Xavier Weill
- Laboratoire des Bactéries Pathogènes Entériques, Centre National de Référence des Salmonella, Institut Pasteur, Paris, France
| | - Giuseppe Giammanco
- GF Ingrassia—Igiene e Sanità Pubblica, University of Catania, Catania, Italy
| |
Collapse
|
214
|
Ramsden SJ, Ghosh S, Bohl LJ, Lapara TM. Phenotypic and genotypic analysis of bacteria isolated from three municipal wastewater treatment plants on tetracycline-amended and ciprofloxacin-amended growth media. J Appl Microbiol 2010; 109:1609-18. [PMID: 20629799 DOI: 10.1111/j.1365-2672.2010.04787.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS The goal of this study was to determine the antimicrobial susceptibility of bacteria isolated from three municipal wastewater treatment plants. METHODS AND RESULTS Numerous bacterial strains were isolated from three municipal wastewater treatment facilities on tetracycline- (n=164) and ciprofloxacin-amended (n=65) growth media. These bacteria were then characterized with respect to their resistance to as many as 10 different antimicrobials, the presence of 14 common genes that encode resistance to tetracycline, the presence of integrons and/or the ability to transfer resistance via conjugation. All of the characterized strains exhibited some degree of multiple antimicrobial resistance, with nearly 50% demonstrating resistance to every antimicrobial that was tested. Genes encoding resistance to tetracycline were commonly detected among these strains, although intriguingly the frequency of detection was slightly higher for the bacteria isolated on ciprofloxacin-amended growth media (62%) compared to the bacteria isolated on tetracycline-amended growth media (53%). Class 1 integrons were also detected in 100% of the queried tetracycline-resistant bacteria and almost half of the ciprofloxacin-resistant strains. Conjugation experiments demonstrated that at least one of the tetracycline-resistant bacteria was capable of lateral gene transfer. CONCLUSIONS Our results demonstrate that multiple antimicrobial resistance is a common trait among tetracycline-resistant and ciprofloxacin-resistant bacteria in municipal wastewater. SIGNIFICANCE AND IMPACT OF THE STUDY These organisms are potentially important in the proliferation of antimicrobial resistance because they appear to have acquired multiple genetic determinants that confer resistance and because they have the potential to laterally transfer these genetic determinants to strains of clinical importance.
Collapse
Affiliation(s)
- S J Ramsden
- Department of Civil Engineering, University of Minnesota, Minneapolis, MN 55455-0116, USA
| | | | | | | |
Collapse
|
215
|
Shifts in the host range of a promiscuous plasmid through parallel evolution of its replication initiation protein. ISME JOURNAL 2010; 4:1568-80. [PMID: 20520653 DOI: 10.1038/ismej.2010.72] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The ability of bacterial plasmids to adapt to novel hosts and thereby shift their host range is key to their long-term persistence in bacterial communities. Promiscuous plasmids of the incompatibility group P (IncP)-1 can colonize a wide range of hosts, but it is not known if and how they can contract, shift or further expand their host range. To understand the evolutionary mechanisms of host range shifts of IncP-1 plasmids, an IncP-1β mini-replicon was experimentally evolved in four hosts in which it was initially unstable. After 1000 generations in serial batch cultures under antibiotic selection for plasmid maintenance (kanamycin resistance), the stability of the mini-plasmid dramatically improved in all coevolved hosts. However, only plasmids evolved in Shewanella oneidensis showed improved stability in the ancestor, indicating that adaptive mutations had occurred in the plasmid itself. Complete genome sequence analysis of nine independently evolved plasmids showed seven unique plasmid genotypes that had various kinds of single mutations at one locus, namely, the N-terminal region of the replication initiation protein TrfA. Such parallel evolution indicates that this region was under strong selection. In five of the seven evolved plasmids, these trfA mutations resulted in a significantly higher plasmid copy number. Evolved plasmids were found to be stable in four other naive hosts, but could no longer replicate in Pseudomonas aeruginosa. This study shows that plasmids can specialize to a novel host through trade-offs between improved stability in the new host and the ability to replicate in a previously permissive host.
Collapse
|
216
|
Petrovski S, Stanisich VA. Tn502 and Tn512 are res site hunters that provide evidence of resolvase-independent transposition to random sites. J Bacteriol 2010; 192:1865-74. [PMID: 20118251 PMCID: PMC2838034 DOI: 10.1128/jb.01322-09] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 01/21/2010] [Indexed: 11/20/2022] Open
Abstract
In this study, we report on the transposition behavior of the mercury(II) resistance transposons Tn502 and Tn512, which are members of the Tn5053 family. These transposons exhibit targeted and oriented insertion in the par region of plasmid RP1, since par-encoded components, namely, the ParA resolvase and its cognate res region, are essential for such transposition. Tn502 and, under some circumstances, Tn512 can transpose when par is absent, providing evidence for an alternative, par-independent pathway of transposition. We show that the alternative pathway proceeds by a two-step replicative process involving random target selection and orientation of insertion, leading to the formation of cointegrates as the predominant product of the first stage of transposition. Cointegrates remain unresolved because the transposon-encoded (TniR) recombination system is relatively inefficient, as is the host-encoded (RecA) system. In the presence of the res-ParA recombination system, TniR-mediated (and RecA-mediated) cointegrate resolution is highly efficient, enabling resolution both of cointegrates involving functional transposons (Tn502 and Tn512) and of defective elements (In0 and In2). These findings implicate the target-encoded accessory functions in the second stage of transposition as well as in the first. We also show that the par-independent pathway enables the formation of deletions in the target molecule.
Collapse
Affiliation(s)
- Steve Petrovski
- Department of Microbiology, La Trobe University, Victoria 3086, Australia
| | - Vilma A. Stanisich
- Department of Microbiology, La Trobe University, Victoria 3086, Australia
| |
Collapse
|
217
|
Heuer H, Ebers J, Weinert N, Smalla K. Variation in permissiveness for broad-host-range plasmids among genetically indistinguishable isolates of Dickeya sp. from a small field plot. FEMS Microbiol Ecol 2010; 73:190-6. [PMID: 20455941 DOI: 10.1111/j.1574-6941.2010.00880.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Phytopathogenic populations need genetic flexibility to adapt to continually improving plant defences. The gene pool transferred by broad-host-range plasmids provides genetic variation for the population. However, a population has to balance this benefit with the risk of acquiring deleterious foreign DNA. This could be achieved by modulating the ratio of individuals with high or low permissiveness to broad-host-range plasmids. We investigated whether plasmid uptake varied among genetically indistinguishable isolates of Dickeya sp. from a 400 m(2) field plot. The transfer frequencies of broad-host-range IncP-1 plasmids from Escherichia coli to Dickeya differed significantly among isolates. The transfer frequencies for plasmids pTH10 and pB10 of the divergent alpha- and beta-subgroups of IncP-1, respectively, correlated well. Strains that differed in permissiveness for these plasmids by orders of magnitude were not distinguishable by other phenotypic traits analysed, by genomic fingerprints or hrpN gene sequences. Such strains were isolated in close vicinity and from different plots of the field, indicating a reasonably fast genetic mechanism of switching between low and high permissiveness.
Collapse
Affiliation(s)
- Holger Heuer
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, Braunschweig, Germany.
| | | | | | | |
Collapse
|
218
|
Jung CM, Heinze TM, Strakosha R, Elkins CA, Sutherland JB. Acetylation of fluoroquinolone antimicrobial agents by an Escherichia coli strain isolated from a municipal wastewater treatment plant. J Appl Microbiol 2010; 106:564-71. [PMID: 19200322 DOI: 10.1111/j.1365-2672.2008.04026.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS To isolate environmental bacteria capable of transforming fluoroquinolones to inactive molecules. METHODS AND RESULTS Bacteria were isolated from the aerobic liquor of a wastewater treatment plant on a medium containing norfloxacin (100 mg l(-1)). Twenty-two isolates were highly resistant (minimal inhibitory concentration: 6.25-200 microg ml(-1)) to five fluoroquinolones and six of them were positive by PCR amplification for the aminoglycoside resistance gene aac(6')-Ib. Of these, only Escherichia coli strain LR09 had the ciprofloxacin-acetylating variant gene aac(6')-Ib-cr; HPLC and mass spectrometry showed that this strain transformed both ciprofloxacin and norfloxacin by N-acetylation. This bacterium also had mutations in the quinolone-resistance determining regions of the gyrA and parC genes. CONCLUSIONS An E. coli isolate from wastewater, which possessed at least two distinct fluoroquinolone resistance mechanisms, inactivated ciprofloxacin and norfloxacin by N-acetylation. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first report of N-acetylation of fluoroquinolones by an aac(6')-Ib-cr-containing bacterium from an environmental source.
Collapse
Affiliation(s)
- C M Jung
- Division of Microbiology, National Centre for Toxicological Research, US FDA, Jefferson, AR, USA
| | | | | | | | | |
Collapse
|
219
|
Arsène-Ploetze F, Koechler S, Marchal M, Coppée JY, Chandler M, Bonnefoy V, Brochier-Armanet C, Barakat M, Barbe V, Battaglia-Brunet F, Bruneel O, Bryan CG, Cleiss-Arnold J, Cruveiller S, Erhardt M, Heinrich-Salmeron A, Hommais F, Joulian C, Krin E, Lieutaud A, Lièvremont D, Michel C, Muller D, Ortet P, Proux C, Siguier P, Roche D, Rouy Z, Salvignol G, Slyemi D, Talla E, Weiss S, Weissenbach J, Médigue C, Bertin PN. Structure, function, and evolution of the Thiomonas spp. genome. PLoS Genet 2010; 6:e1000859. [PMID: 20195515 PMCID: PMC2829063 DOI: 10.1371/journal.pgen.1000859] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 01/25/2010] [Indexed: 11/19/2022] Open
Abstract
Bacteria of the Thiomonas genus are ubiquitous in extreme environments, such as arsenic-rich acid mine drainage (AMD). The genome of one of these strains, Thiomonas sp. 3As, was sequenced, annotated, and examined, revealing specific adaptations allowing this bacterium to survive and grow in its highly toxic environment. In order to explore genomic diversity as well as genetic evolution in Thiomonas spp., a comparative genomic hybridization (CGH) approach was used on eight different strains of the Thiomonas genus, including five strains of the same species. Our results suggest that the Thiomonas genome has evolved through the gain or loss of genomic islands and that this evolution is influenced by the specific environmental conditions in which the strains live.
Collapse
Affiliation(s)
- Florence Arsène-Ploetze
- Génétique Moléculaire, Génomique et Microbiologie, UMR7156 CNRS and Université de Strasbourg, Strasbourg, France
| | - Sandrine Koechler
- Génétique Moléculaire, Génomique et Microbiologie, UMR7156 CNRS and Université de Strasbourg, Strasbourg, France
| | - Marie Marchal
- Génétique Moléculaire, Génomique et Microbiologie, UMR7156 CNRS and Université de Strasbourg, Strasbourg, France
| | - Jean-Yves Coppée
- Genopole, Plate-forme puces à ADN, Institut Pasteur, Paris, France
| | - Michael Chandler
- Laboratoire de Microbiologie et Génétique Moléculaire, UMR5100, Toulouse, France
| | - Violaine Bonnefoy
- Laboratoire de Chimie Bactérienne, UPR9043 CNRS, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Céline Brochier-Armanet
- Laboratoire de Chimie Bactérienne, UPR9043 CNRS, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Mohamed Barakat
- Institut de Biologie Environnementale et de Biotechnologie, CEA-CNRS-Université Aix-Marseille II, Saint-Paul-lez-Durance, France
| | - Valérie Barbe
- Institut de Génomique, CEA-DSV, Génoscope, Evry, France
| | | | - Odile Bruneel
- Laboratoire Hydrosciences Montpellier, UMR 5569 CNRS, IRD and Universités Montpellier I and II, Montpellier, France
| | - Christopher G. Bryan
- Génétique Moléculaire, Génomique et Microbiologie, UMR7156 CNRS and Université de Strasbourg, Strasbourg, France
| | - Jessica Cleiss-Arnold
- Génétique Moléculaire, Génomique et Microbiologie, UMR7156 CNRS and Université de Strasbourg, Strasbourg, France
| | - Stéphane Cruveiller
- Institut de Génomique, CEA-DSV, Génoscope, Evry, France
- Génomique Métabolique, Laboratoire de Génomique Comparative, CNRS UMR8030, Evry, France
| | - Mathieu Erhardt
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Audrey Heinrich-Salmeron
- Génétique Moléculaire, Génomique et Microbiologie, UMR7156 CNRS and Université de Strasbourg, Strasbourg, France
| | - Florence Hommais
- Unité Microbiologie, Adaptation, Pathogénie, CNRS-INSA-UCB UMR 5240, Université Lyon 1, Villeurbanne, France
| | | | - Evelyne Krin
- Génétique des Génomes Bactériens, URA2171, Institut Pasteur, Paris, France
| | - Aurélie Lieutaud
- Laboratoire de Chimie Bactérienne, UPR9043 CNRS, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Didier Lièvremont
- Génétique Moléculaire, Génomique et Microbiologie, UMR7156 CNRS and Université de Strasbourg, Strasbourg, France
| | - Caroline Michel
- Environnement et Procédés, Ecotechnologie, BRGM, Orléans, France
| | - Daniel Muller
- Génétique Moléculaire, Génomique et Microbiologie, UMR7156 CNRS and Université de Strasbourg, Strasbourg, France
| | - Philippe Ortet
- Institut de Biologie Environnementale et de Biotechnologie, CEA-CNRS-Université Aix-Marseille II, Saint-Paul-lez-Durance, France
| | - Caroline Proux
- Genopole, Plate-forme puces à ADN, Institut Pasteur, Paris, France
| | - Patricia Siguier
- Laboratoire de Microbiologie et Génétique Moléculaire, UMR5100, Toulouse, France
| | - David Roche
- Institut de Génomique, CEA-DSV, Génoscope, Evry, France
- Génomique Métabolique, Laboratoire de Génomique Comparative, CNRS UMR8030, Evry, France
| | - Zoé Rouy
- Institut de Génomique, CEA-DSV, Génoscope, Evry, France
| | - Grégory Salvignol
- Génomique Métabolique, Laboratoire de Génomique Comparative, CNRS UMR8030, Evry, France
| | - Djamila Slyemi
- Laboratoire de Chimie Bactérienne, UPR9043 CNRS, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Emmanuel Talla
- Laboratoire de Chimie Bactérienne, UPR9043 CNRS, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Stéphanie Weiss
- Génétique Moléculaire, Génomique et Microbiologie, UMR7156 CNRS and Université de Strasbourg, Strasbourg, France
| | - Jean Weissenbach
- Institut de Génomique, CEA-DSV, Génoscope, Evry, France
- Génomique Métabolique, Laboratoire de Génomique Comparative, CNRS UMR8030, Evry, France
| | - Claudine Médigue
- Institut de Génomique, CEA-DSV, Génoscope, Evry, France
- Génomique Métabolique, Laboratoire de Génomique Comparative, CNRS UMR8030, Evry, France
| | - Philippe N. Bertin
- Génétique Moléculaire, Génomique et Microbiologie, UMR7156 CNRS and Université de Strasbourg, Strasbourg, France
- * E-mail:
| |
Collapse
|
220
|
Nazir R, Warmink JA, Boersma H, van Elsas JD. Mechanisms that promote bacterial fitness in fungal-affected soil microhabitats. FEMS Microbiol Ecol 2010; 71:169-85. [DOI: 10.1111/j.1574-6941.2009.00807.x] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
221
|
Moura A, Henriques I, Smalla K, Correia A. Wastewater bacterial communities bring together broad-host range plasmids, integrons and a wide diversity of uncharacterized gene cassettes. Res Microbiol 2009; 161:58-66. [PMID: 20004718 DOI: 10.1016/j.resmic.2009.11.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 11/14/2009] [Indexed: 10/20/2022]
Abstract
To investigate the mobile gene pool present in wastewater environments, total community DNA was obtained from two distinct raw effluents: urban and slaughterhouse wastewaters. Bacterial community structure was evaluated by DGGE analysis of 16S rRNA gene fragments. Detection of broad-host-range plasmid sequences and integrase encoding genes was carried out through PCR and Southern hybridization. Gene cassette libraries were obtained using primers targeting consensus sequences that flank gene cassettes. Analysis of DGGE profiles revealed a complex and distinct bacterial community among effluents (similarity<25%). Despite that, All plasmid-specific sequences searched (rep for IncN, trfA for IncP-1 and oriV for IncQ and IncW) and integrase genes were present in both effluents. Gene cassettes recovered from clone libraries showed low homology with genes encoding putative enzymes involved in the metabolism of amino sugars, cell wall synthesis, motility, gene regulation, intercellular signalling and secretion pathways and in the synthesis of cellulose, folic acid and antibiotics. Additionally, in the majority of clones, no identifiable open reading frames homologues were found in the databases. According to our results, wastewater environments promote the development of bacterial communities that support and bring together different types of molecular elements that, in association, play a major role in bacterial adaptation and evolution.
Collapse
Affiliation(s)
- Alexandra Moura
- CESAM & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
| | | | | | | |
Collapse
|
222
|
Sen D, Yano H, Suzuki H, Król JE, Rogers L, Brown CJ, Top EM. Comparative genomics of pAKD4, the prototype IncP-1delta plasmid with a complete backbone. Plasmid 2009; 63:98-107. [PMID: 20018208 DOI: 10.1016/j.plasmid.2009.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 11/24/2009] [Accepted: 11/30/2009] [Indexed: 10/20/2022]
Abstract
Plasmids of the incompatibility group IncP-1 are important agents of horizontal gene transfer and contribute to the spread of antibiotic resistance and xenobiotic degradation within bacterial communities. Even though some prototype plasmids have been studied in much detail, the diversity of this plasmid group was still greatly underestimated until recently, as only two of the five currently known divergent sub-groups had been described. To further improve our insight into the diversity and evolutionary history of this family of broad-host-range plasmids, we compared the complete nucleotide sequence of a new IncP-1delta plasmid pAKD4 to the genomes of other IncP-1 plasmids. Plasmid pAKD4 was previously isolated by exogenous plasmid isolation from an agricultural soil in Norway. Its 56,803bp nucleotide sequence shows high similarity in gene sequence and gene order to both plasmids pEST4011 and pIJB1, the only other IncP-1delta plasmids sequenced so far. While all three plasmids have a typical IncP-1 backbone comprising replication, transfer, and stable inheritance/control genes, the low sequence similarity in some regions and presence/absence of some backbone genes compared to other IncP-1 plasmids cluster them in a divergent sub-group. Therefore this study validates the presence of a real IncP-1delta clade with multiple plasmids. Moreover, since both pEST4011 and pIJB1 are missing a portion of their transfer genes, pAKD4 represents the first completely sequenced self-transferable plasmid with a complete IncP-1delta backbone. We therefore propose it to be the prototype IncP-1delta plasmid.
Collapse
Affiliation(s)
- Diya Sen
- Department of Biological Sciences, Initiative for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID 83844-3051, USA
| | | | | | | | | | | | | |
Collapse
|
223
|
Accounting for mating pair formation in plasmid population dynamics. J Theor Biol 2009; 262:711-9. [PMID: 19835890 DOI: 10.1016/j.jtbi.2009.10.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 09/29/2009] [Accepted: 10/08/2009] [Indexed: 11/23/2022]
Abstract
Plasmids are important vehicles for horizontal gene transfer and rapid adaptation in bacteria, including the spread of antibiotic resistance genes. Conjugative transfer of a plasmid from a plasmid-bearing to a plasmid-free bacterial cell requires contact and attachment of the cells followed by plasmid DNA transfer prior to detachment. We introduce a system of differential equations for plasmid transfer in well-mixed populations that accounts for attachment, DNA transfer, and detachment dynamics. These equations offer advantages over classical mass-action models that combine these three processes into a single "bulk" conjugation rate. By decomposing the process of plasmid transfer into its constituent parts, this new model provides a framework that facilitates meaningful comparisons of plasmid transfer rates in surface and liquid environments. The model also allows one to account for experimental and environmental effects such as mixing intensity. To test the adequacy of the model and further explore the effects of mixing on plasmid transfer, we performed batch culture experiments using three different plasmids and a range of different mixing intensities. The results show that plasmid transfer is optimized at low to moderate shaking speeds and that vigorous shaking negatively affects plasmid transfer. Using reasonable assumptions on attachment and detachment rates, the mathematical model predicts the same behavior.
Collapse
|
224
|
Ragan MA, Beiko RG. Lateral genetic transfer: open issues. Philos Trans R Soc Lond B Biol Sci 2009; 364:2241-51. [PMID: 19571244 DOI: 10.1098/rstb.2009.0031] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Lateral genetic transfer (LGT) is an important adaptive force in evolution, contributing to metabolic, physiological and ecological innovation in most prokaryotes and some eukaryotes. Genomic sequences and other data have begun to illuminate the processes, mechanisms, quantitative extent and impact of LGT in diverse organisms, populations, taxa and environments; deep questions are being posed, and the provisional answers sometimes challenge existing paradigms. At the same time, there is an enhanced appreciation of the imperfections, biases and blind spots in the data and in analytical approaches. Here we identify and consider significant open questions concerning the role of LGT in genome evolution.
Collapse
Affiliation(s)
- Mark A Ragan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.
| | | |
Collapse
|
225
|
Bahl MI, Burmølle M, Meisner A, Hansen LH, Sørensen SJ. All IncP-1 plasmid subgroups, including the novel ε subgroup, are prevalent in the influent of a Danish wastewater treatment plant. Plasmid 2009; 62:134-9. [DOI: 10.1016/j.plasmid.2009.05.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 05/27/2009] [Accepted: 05/29/2009] [Indexed: 11/26/2022]
|
226
|
Ghosh S, Ramsden SJ, LaPara TM. The role of anaerobic digestion in controlling the release of tetracycline resistance genes and class 1 integrons from municipal wastewater treatment plants. Appl Microbiol Biotechnol 2009; 84:791-6. [PMID: 19597810 DOI: 10.1007/s00253-009-2125-2] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 06/29/2009] [Accepted: 06/30/2009] [Indexed: 11/28/2022]
Abstract
In this study, the abilities of two anaerobic digestion processes used for sewage sludge stabilization were compared for their ability to reduce the quantities of three genes that encode resistance to tetracycline (tet(A), tet(O), and tet(X)) and one gene involved with integrons (intI1). A two-stage, thermophilic/mesophilic digestion process always resulted in significant decreases in the quantities of tet(X) and intI1, less frequently in decreases of tet(O), and no net decrease in tet(A). The thermophilic stage was primarily responsible for reducing the quantities of these genes, while the subsequent mesophilic stage sometimes caused a rebound in their quantities. In contrast, a conventional anaerobic digestion process rarely caused a significant decrease in the quantities of any of these genes, with significant increases occurring more frequently. Our results demonstrate that anaerobic thermophilic treatment was more efficient in reducing quantities of genes associated with the spread of antibiotic resistance compared to mesophilic digestion.
Collapse
Affiliation(s)
- Sudeshna Ghosh
- Department of Civil Engineering, University of Minnesota, 500 Pillsbury Drive SE, Minneapolis, MN 55455-0116, USA
| | | | | |
Collapse
|
227
|
Kümmerer K. The presence of pharmaceuticals in the environment due to human use--present knowledge and future challenges. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2009; 90:2354-66. [PMID: 19261375 DOI: 10.1016/j.jenvman.2009.01.023] [Citation(s) in RCA: 586] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 01/07/2009] [Accepted: 01/21/2009] [Indexed: 05/18/2023]
Abstract
Intensive research on pharmaceuticals in the environment started about 15 years ago. Since then a vast amount of literature has been published. The input and presence of active pharmaceutical ingredients (APIs) and their fate in the environment were and is still of high interest. As it has been extensively demonstrated that the active compounds are present in the environment some of the research interest has moved from analysis of the compounds, which is still undertaken, to effect studies in the lab and in field trials. It has been found that environmental concentrations can cause effects in wildlife if proper tools are applied for effect assessment. The question of mixture toxicity has gained more and more attention. It has been learned that classical tests may underestimate effects and risks. Work has been done in the field of risk assessment and risk management. As for risk management strategies to eliminate pharmaceuticals from wastewater or from the effluent of sewage treatment plants have been proposed and investigated. A tremendous amount of literature can now be found describing technical management measures such as oxidative or photolytic effluent treatment, filtering techniques, and application of charcoal. It has been learned however, that each of these approaches has its specific shortcomings. Therefore, additional approaches such as including people handling and using the compounds, and focusing on the properties of the compounds ("green pharmacy") came into focus. Accordingly, this review gives an overview of the present state of knowledge presenting typical results and lines of discussion. This review makes no claim to give a complete overview including the full detailed body of knowledge of pharmaceuticals in the environment. Rather, it addresses important and typical topics to stimulate discussion.
Collapse
Affiliation(s)
- Klaus Kümmerer
- Department of Environmental Health Sciences, University Medical Centre Freiburg, Freiburg, Germany.
| |
Collapse
|
228
|
Zhang Y, Marrs CF, Simon C, Xi C. Wastewater treatment contributes to selective increase of antibiotic resistance among Acinetobacter spp. THE SCIENCE OF THE TOTAL ENVIRONMENT 2009; 407:3702-6. [PMID: 19321192 DOI: 10.1016/j.scitotenv.2009.02.013] [Citation(s) in RCA: 211] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 01/15/2009] [Accepted: 02/09/2009] [Indexed: 05/17/2023]
Abstract
The occurrence and spread of multi-drug resistant bacteria is a pressing public health problem. The emergence of bacterial resistance to antibiotics is common in areas where antibiotics are heavily used, and antibiotic-resistant bacteria also increasingly occur in aquatic environments. The purpose of the present study was to evaluate the impact of the wastewater treatment process on the prevalence of antibiotic resistance in Acinetobacter spp. in the wastewater and its receiving water. During two different events (high-temperature, high-flow, 31 degrees C; and low-temperature, low-flow, 8 degrees C), 366 strains of Acinetobacter spp. were isolated from five different sites, three in a wastewater treatment plant (raw influent, second effluent, and final effluent) and two in the receiving body (upstream and downstream of the treated wastewater discharge point). The antibiotic susceptibility phenotypes were determined by the disc-diffusion method for 8 antibiotics, amoxicillin/clavulanic acid (AMC), chloramphenicol (CHL), ciprofloxacin (CIP), colistin (CL), gentamicin (GM), rifampin (RA), sulfisoxazole (SU), and trimethoprim (TMP). The prevalence of antibiotic resistance in Acinetobacter isolates to AMC, CHL, RA, and multi-drug (three antibiotics or more) significantly increased (p<0.01) from the raw influent samples (AMC, 8.7%; CHL, 25.2%; RA, 63.1%; multi-drug, 33.0%) to the final effluent samples (AMC, 37.9%; CHL, 69.0%; RA, 84.5%; multi-drug, 72.4%), and was significantly higher (p<0.05) in the downstream samples (AMC, 25.8%; CHL, 48.4%; RA, 85.5%; multi-drug, 56.5%) than in the upstream samples (AMC, 9.5%; CHL, 27.0%; RA, 65.1%; multi-drug, 28.6%). These results suggest that wastewater treatment process contributes to the selective increase of antibiotic resistant bacteria and the occurrence of multi-drug resistant bacteria in aquatic environments.
Collapse
Affiliation(s)
- Yongli Zhang
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, USA
| | | | | | | |
Collapse
|
229
|
Gillings MR, Holley MP, Stokes HW. Evidence for dynamic exchange of qac gene cassettes between class 1 integrons and other integrons in freshwater biofilms. FEMS Microbiol Lett 2009; 296:282-8. [PMID: 19459951 DOI: 10.1111/j.1574-6968.2009.01646.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Class 1 integrons carried by pathogens have acquired over 100 different gene cassettes encoding resistance to antimicrobial compounds, helping to generate a crisis in the management of infectious disease. It is presumed that these cassettes originated from environmental bacteria, but exchange of gene cassettes has surprisingly never been demonstrated outside laboratory or clinical contexts. We aimed to identify a natural environment where such exchanges might occur, and determine the phylogenetic range of participating integrons. Here we examine freshwater biofilms and show that families of cassettes conferring resistance to quaternary ammonium compounds (qac) are found on class 1 integrons identical to those from clinical contexts, on sequence variants of class 1 integrons only known from natural environments, and on other diverse classes of integrons only known from the chromosomes of soil and freshwater Proteobacteria. We conclude that gene cassettes might be readily shared between different integron classes found in environmental, commensal and pathogenic bacteria. This suggests that class 1 integrons in pathogens have access to a vast pool of gene cassettes, any of which could confer a phenotype of clinical relevance. Exploration of this resource might allow identification of resistance or virulence genes before they become part of multi-drug-resistant human pathogens.
Collapse
Affiliation(s)
- Michael R Gillings
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia.
| | | | | |
Collapse
|
230
|
Laroche E, Pawlak B, Berthe T, Skurnik D, Petit F. Occurrence of antibiotic resistance and class 1, 2 and 3 integrons in Escherichia coli isolated from a densely populated estuary (Seine, France). FEMS Microbiol Ecol 2009; 68:118-30. [DOI: 10.1111/j.1574-6941.2009.00655.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
231
|
Abstract
New concepts have emerged in the past few years that help us to better understand the emergence and spread of antimicrobial resistance (AMR). These include, among others, the discovery of the mutator state and the concept of mutant selection window for resistances emerging primarily through mutations in existing genes. Our understanding of horizontal gene transfer has also evolved significantly in the past few years, and important new mechanisms of AMR transfer have been discovered, including, among others, integrative conjugative elements and ISCR (insertion sequences with common regions) elements. Simultaneously, large-scale studies have helped us to start comprehending the immense and yet untapped reservoir of both AMR genes and mobile genetic elements present in the environment. Finally, new PCR- and DNA sequencing-based techniques are being developed that will allow us to better understand the epidemiology of classical vectors of AMR genes, such as plasmids, and to monitor them in a more global and systematic way.
Collapse
|
232
|
Van der Auwera GA, Król JE, Suzuki H, Foster B, Van Houdt R, Brown CJ, Mergeay M, Top EM. Plasmids captured in C. metallidurans CH34: defining the PromA family of broad-host-range plasmids. Antonie van Leeuwenhoek 2009; 96:193-204. [PMID: 19259779 DOI: 10.1007/s10482-009-9316-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Accepted: 02/08/2009] [Indexed: 11/29/2022]
Abstract
The self-transmissible, broad-host-range (BHR) plasmid pMOL98 was previously isolated from polluted soil using a triparental plasmid capture approach and shown to possess a replicon similar to that of the BHR plasmids pSB102 and pIPO2. Here, complete sequence analysis and comparative genomics reveal that the 55.5 kb nucleotide sequence of pMOL98 shows extensive sequence similarity and synteny with the BHR plasmid family that now includes pIPO2, pSB102, pTER331, and pMRAD02. They share a plasmid backbone comprising replication, partitioning and conjugative transfer functions. Comparison of the variable accessory regions of these plasmids shows that the majority of natural transposons, as well as the mini-transposon used to mark the plasmids, are inserted in the parA locus. The transposon unique to pMOL98 appears to have inserted from the chromosome of the recipient strain used in the plasmid capture procedure. This demonstrates the necessity for careful screening of plasmids and host chromosomes to avoid mis-interpretation of plasmid genome content. The presence of very similar BHR plasmids with different accessory genes in geographically distinct locations suggests an important role in horizontal gene exchange and bacterial adaptation for this recently defined plasmid group, which we propose to name "PromA".
Collapse
|
233
|
Li D, Yang M, Hu J, Zhang J, Liu R, Gu X, Zhang Y, Wang Z. Antibiotic-resistance profile in environmental bacteria isolated from penicillin production wastewater treatment plant and the receiving river. Environ Microbiol 2009; 11:1506-17. [PMID: 19226301 DOI: 10.1111/j.1462-2920.2009.01878.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The antibiotic-resistance characteristics of bacterial strains in antibiotic production wastewater treatment plants (WWTP) that contain high concentrations of antibiotics are unknown, as are the environmental effects of the discharge of wastewater from such facilities. In this study, 417 strains were individually isolated from the effluent of a WWTP that treated penicillin G production wastewater, as well as from downstream and upstream areas of the receiving river. The minimum inhibition concentrations (MICs) of 18 antibiotics representing seven classes were then determined for each of these strains. Relatively high similarity in the bacterial composition existed between the wastewater and downstream river samples when compared with the upstream sample. High resistance ratios and MIC values were observed for almost all antibiotics in wastewater isolates, followed by strains from downstream river, of which the resistance ratios and levels were still significantly higher than those of upstream strains. The resistance ratios and levels also significantly differed among strains belonged to different species in the penicillin production wastewater effluent and downstream river. In both samples, the resistances to beta-lactam antibiotics were more frequent, with much higher levels, than the other class antibiotics. Then five clinically important resistant genes mainly coding for extended-spectrum beta-lactamases (ESBLs) were determined for all strains, only bla(TEM-1) which did not belong to ESBL was detected in 17.3% and 11.0% of strains isolated from wastewater and downstream river respectively. Class I integrons were detected in 14% of wastewater isolates and 9.1% of downstream isolates, and primarily contained gene cassettes conferring resistance to aminoglycoside antibiotics. The unexpectedly high levels of multiple antibiotic resistance in strains from wastewater and downstream river were speculated to be mainly due to multidrug efflux systems.
Collapse
Affiliation(s)
- Dong Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Beijing 100085, China
| | | | | | | | | | | | | | | |
Collapse
|
234
|
Zhang XX, Zhang T, Fang HHP. Antibiotic resistance genes in water environment. Appl Microbiol Biotechnol 2009; 82:397-414. [PMID: 19130050 DOI: 10.1007/s00253-008-1829-z] [Citation(s) in RCA: 572] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2008] [Revised: 12/11/2008] [Accepted: 12/13/2008] [Indexed: 12/30/2022]
Abstract
The use of antibiotics may accelerate the development of antibiotic resistance genes (ARGs) and bacteria which shade health risks to humans and animals. The emerging of ARGs in the water environment is becoming an increasing worldwide concern. Hundreds of various ARGs encoding resistance to a broad range of antibiotics have been found in microorganisms distributed not only in hospital wastewaters and animal production wastewaters, but also in sewage, wastewater treatment plants, surface water, groundwater, and even in drinking water. This review summarizes recently published information on the types, distributions, and horizontal transfer of ARGs in various aquatic environments, as well as the molecular methods used to detect environmental ARGs, including specific and multiplex PCR (polymerase chain reaction), real-time PCR, DNA sequencing, and hybridization based techniques.
Collapse
Affiliation(s)
- Xu-Xiang Zhang
- Environmental Biotechnology Lab,Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, China
| | | | | |
Collapse
|
235
|
Doublet B, Praud K, Weill FX, Cloeckaert A. Association of IS26-composite transposons and complex In4-type integrons generates novel multidrug resistance loci in Salmonella genomic island 1. J Antimicrob Chemother 2008; 63:282-9. [DOI: 10.1093/jac/dkn500] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
236
|
Juhas M, van der Meer JR, Gaillard M, Harding RM, Hood DW, Crook DW. Genomic islands: tools of bacterial horizontal gene transfer and evolution. FEMS Microbiol Rev 2008; 33:376-93. [PMID: 19178566 PMCID: PMC2704930 DOI: 10.1111/j.1574-6976.2008.00136.x] [Citation(s) in RCA: 595] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Bacterial genomes evolve through mutations, rearrangements or horizontal gene transfer. Besides the core genes encoding essential metabolic functions, bacterial genomes also harbour a number of accessory genes acquired by horizontal gene transfer that might be beneficial under certain environmental conditions. The horizontal gene transfer contributes to the diversification and adaptation of microorganisms, thus having an impact on the genome plasticity. A significant part of the horizontal gene transfer is or has been facilitated by genomic islands (GEIs). GEIs are discrete DNA segments, some of which are mobile and others which are not, or are no longer mobile, which differ among closely related strains. A number of GEIs are capable of integration into the chromosome of the host, excision, and transfer to a new host by transformation, conjugation or transduction. GEIs play a crucial role in the evolution of a broad spectrum of bacteria as they are involved in the dissemination of variable genes, including antibiotic resistance and virulence genes leading to generation of hospital ‘superbugs’, as well as catabolic genes leading to formation of new metabolic pathways. Depending on the composition of gene modules, the same type of GEIs can promote survival of pathogenic as well as environmental bacteria.
Collapse
Affiliation(s)
- Mario Juhas
- Clinical Microbiology and Infectious Diseases, Nuffield Department of Clinical Laboratory Sciences, University of Oxford, Oxford, UK.
| | | | | | | | | | | |
Collapse
|
237
|
Suzuki H, Sota M, Brown CJ, Top EM. Using Mahalanobis distance to compare genomic signatures between bacterial plasmids and chromosomes. Nucleic Acids Res 2008; 36:e147. [PMID: 18953039 PMCID: PMC2602791 DOI: 10.1093/nar/gkn753] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Plasmids are ubiquitous mobile elements that serve as a pool of many host beneficial traits such as antibiotic resistance in bacterial communities. To understand the importance of plasmids in horizontal gene transfer, we need to gain insight into the ‘evolutionary history’ of these plasmids, i.e. the range of hosts in which they have evolved. Since extensive data support the proposal that foreign DNA acquires the host's nucleotide composition during long-term residence, comparison of nucleotide composition of plasmids and chromosomes could shed light on a plasmid's evolutionary history. The average absolute dinucleotide relative abundance difference, termed δ-distance, has been commonly used to measure differences in dinucleotide composition, or ‘genomic signature’, between bacterial chromosomes and plasmids. Here, we introduce the Mahalanobis distance, which takes into account the variance–covariance structure of the chromosome signatures. We demonstrate that the Mahalanobis distance is better than the δ-distance at measuring genomic signature differences between plasmids and chromosomes of potential hosts. We illustrate the usefulness of this metric for proposing candidate long-term hosts for plasmids, focusing on the virulence plasmids pXO1 from Bacillus anthracis, and pO157 from Escherichia coli O157:H7, as well as the broad host range multi-drug resistance plasmid pB10 from an unknown host.
Collapse
Affiliation(s)
- Haruo Suzuki
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | | | | | | |
Collapse
|
238
|
Transformation of
N
-Phenylpiperazine by Mixed Cultures from a Municipal Wastewater Treatment Plant. Appl Environ Microbiol 2008; 74:6147-50. [DOI: 10.1128/aem.00516-08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ABSTRACT
Samples from a wastewater treatment plant were used as inocula for mixed cultures dosed with
N
-phenylpiperazine (NPP), a model compound containing the piperazine ring found in many fluoroquinolones. Chemical analyses showed that NPP (50 mg liter
−1
) disappeared in 12 days, with the appearance of a transient metabolite and two nitrosated compounds.
Collapse
|
239
|
Novel insertion sequence- and transposon-mediated genetic rearrangements in genomic island SGI1 of Salmonella enterica serovar Kentucky. Antimicrob Agents Chemother 2008; 52:3745-54. [PMID: 18676889 DOI: 10.1128/aac.00525-08] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella genomic island 1 (SGI1) is an integrative mobilizable element that harbors a multidrug resistance (MDR) gene cluster. Since its identification in epidemic Salmonella enterica serovar Typhimurium DT104 strains, variant SGI1 MDR gene clusters conferring different MDR phenotypes have been identified in several S. enterica serovars and classified as SGI1-A to -O. A study was undertaken to characterize SGI1 from serovar Kentucky strains isolated from travelers returning from Africa. Several strains tested were found to contain the partially characterized variant SGI1-K, recently described in a serovar Kentucky strain isolated in Australia. This variant contained only one cassette array, aac(3)-Id-aadA7, and an adjacent mercury resistance module. Here, the uncharacterized part of SGI1-K was sequenced. Downstream of the mer module similar to that found in Tn21, a mosaic genetic structure was found, comprising (i) part of Tn1721 containing the tetracycline resistance genes tetR and tet(A); (ii) part of Tn5393 containing the streptomycin resistance genes strAB, IS1133, and a truncated tnpR gene; and (iii) a Tn3-like region containing the tnpR gene and the beta-lactamase bla(TEM-1) gene flanked by two IS26 elements in opposite orientations. The rightmost IS26 element was shown to be inserted into the S044 open reading frame of the SGI1 backbone. This variant MDR region was named SGI1-K1 according to the previously described variant SGI1-K. Other SGI1-K MDR regions due to different IS26 locations, inversion, and partial deletions were characterized and named SGI1-K2 to -K5. Two new SGI1 variants named SGI1-P1 and -P2 contained only the Tn3-like region comprising the beta-lactamase bla(TEM-1) gene flanked by the two IS26 elements inserted into the SGI1 backbone. Three other new variants harbored only one IS26 element inserted in place of the MDR region of SGI1 and were named SGI1-Q1 to -Q3. Thus, in serovar Kentucky, the SGI1 MDR region undergoes recombinational and insertional events of transposon and insertion sequences, resulting in a higher diversity of MDR gene clusters than previously reported and consequently a higher diversity of MDR phenotypes.
Collapse
|
240
|
Szczepanowski R, Bekel T, Goesmann A, Krause L, Krömeke H, Kaiser O, Eichler W, Pühler A, Schlüter A. Insight into the plasmid metagenome of wastewater treatment plant bacteria showing reduced susceptibility to antimicrobial drugs analysed by the 454-pyrosequencing technology. J Biotechnol 2008; 136:54-64. [DOI: 10.1016/j.jbiotec.2008.03.020] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 03/20/2008] [Accepted: 03/31/2008] [Indexed: 11/28/2022]
|
241
|
Labbate M, Roy Chowdhury P, Stokes HW. A class 1 integron present in a human commensal has a hybrid transposition module compared to Tn402: evidence of interaction with mobile DNA from natural environments. J Bacteriol 2008; 190:5318-27. [PMID: 18502858 PMCID: PMC2493286 DOI: 10.1128/jb.00199-08] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Accepted: 05/15/2008] [Indexed: 11/20/2022] Open
Abstract
In a survey of class 1 integrons from human stools, an unusual class 1 integron from a strain of Enterobacter cloacae was isolated and characterized in detail. Sequence analysis of a fosmid containing the class 1 integron revealed a complex set of transposons which included two Tn402-like transposons. One of these transposons, Tn6007, included a class 1 integron with two non-antibiotic-resistance-type gene cassettes and a complete transposition module. This tni module is a hybrid with a boundary within the res site compared to Tn402, implying that a site-specific recombination event generated either Tn6007 or Tn402. The second Tn402-like transposon, Tn6008, possesses neither a mer operon nor an integron, and most of its tni module has been deleted. Tn6007, Tn6008, and the 2,478 bases between them, collectively designated Tn6006, have transposed into a Tn5036/Tn3926-like transposon as a single unit. Tn6006, Tn6007, and Tn6008 could all transpose as discrete entities. Database analysis also revealed that a version of Tn6008 was present in the genome of Xanthomonas campestris pv. vesicatoria. Overall, the E. cloacae isolate further demonstrated that functional class 1 integrons/transposons are probably common in bacterial communities and have the potential to add substantially to the problem of multidrug-resistant nosocomial infections.
Collapse
Affiliation(s)
- M Labbate
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | | | | |
Collapse
|
242
|
Binh CTT, Heuer H, Kaupenjohann M, Smalla K. Piggery manure used for soil fertilization is a reservoir for transferable antibiotic resistance plasmids. FEMS Microbiol Ecol 2008; 66:25-37. [PMID: 18557938 DOI: 10.1111/j.1574-6941.2008.00526.x] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
In this study, the prevalence and types of transferable antibiotic resistance plasmids in piggery manure were investigated. Samples from manure storage tanks of 15 farms in Germany were analysed, representing diverse sizes of herds, meat or piglet production. Antibiotic resistance plasmids from manure bacteria were captured in gfp-tagged rifampicin-resistant Escherichia coli and characterized. The occurrence of plasmid types was also detected in total community DNA by PCR and hybridization. A total of 228 transconjugants were captured from 15 manures using selective media supplemented with amoxicillin, sulfadiazine or tetracycline. The restriction patterns of 81 plasmids representing different antibiotic resistance patterns or different samples clustered into seven groups. Replicon probing revealed that 28 of the plasmids belonged to IncN, one to IncW, 13 to IncP-1 and 19 to the recently discovered pHHV216-like plasmids. The amoxicillin resistance gene bla-TEM was detected on 44 plasmids, and sulphonamide resistance genes sul1, sul2 and/or sul3 on 68 plasmids. Hybridization of replicon-specific sequences amplified from community DNA revealed that IncP-1 and pHHV216-like plasmids were detected in all manures, while IncN and IncW ones were less frequent. This study showed that 'field-scale' piggery manure is a reservoir of broad-host range plasmids conferring multiple antibiotic resistance genes.
Collapse
Affiliation(s)
- Chu Thi Thanh Binh
- Julius Kühn-Institute, Federal Research Centre for Cultivated Crops, Braunschweig, Germany
| | | | | | | |
Collapse
|
243
|
Adaptive plasmid evolution results in host-range expansion of a broad-host-range plasmid. Genetics 2008; 178:2179-90. [PMID: 18430943 DOI: 10.1534/genetics.107.084475] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Little is known about the range of hosts in which broad-host-range (BHR) plasmids can persist in the absence of selection for plasmid-encoded traits, and whether this "long-term host range" can evolve over time. Previously, the BHR multidrug resistance plasmid pB10 was shown to be highly unstable in Stenotrophomonas maltophilia P21 and Pseudomonas putida H2. To investigate whether this plasmid can adapt to such unfavorable hosts, we performed evolution experiments wherein pB10 was maintained in strain P21, strain H2, and alternatingly in P21 and H2. Plasmids that evolved in P21 and in both hosts showed increased stability and decreased cost in ancestral host P21. However, the latter group showed higher variability in stability patterns, suggesting that regular switching between distinct hosts hampered adaptive plasmid evolution. The plasmids evolved in P21 were also equally or more stable in other hosts compared to pB10, which suggested true host-range expansion. The complete genome sequences of four evolved plasmids with improved stability showed only one or two genetic changes. The stability of plasmids evolved in H2 improved only in their coevolved hosts, not in the ancestral host. Thus a BHR plasmid can adapt to an unfavorable host and thereby expand its long-term host range.
Collapse
|
244
|
Fox RE, Zhong X, Krone SM, Top EM. Spatial structure and nutrients promote invasion of IncP-1 plasmids in bacterial populations. ISME JOURNAL 2008; 2:1024-39. [PMID: 18528415 DOI: 10.1038/ismej.2008.53] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In spite of the importance of plasmids in bacterial adaptation, we have a poor understanding of their dynamics. It is not known if or how plasmids persist in and spread through (invade) a bacterial population when there is no selection for plasmid-encoded traits. Moreover, the differences in dynamics between spatially structured and mixed populations are poorly understood. Through a joint experimental/theoretical approach, we tested the hypothesis that self-transmissible IncP-1 plasmids can invade a bacterial population in the absence of selection when initially very rare, but only in spatially structured habitats and when nutrients are regularly replenished. Using protocols that differed in the degree of spatial structure and nutrient levels, the invasiveness of plasmid pB10 in Escherichia coli was monitored during at least 15 days, with an initial fraction of plasmid-bearing (p(+)) cells as low as 10(-7). To further explore the mechanisms underlying plasmid dynamics, we developed a spatially explicit mathematical model. When cells were grown on filters and transferred to fresh medium daily, the p(+) fraction increased to 13%, whereas almost complete invasion occurred when the population structure was disturbed daily. The plasmid was unable to invade in liquid. When carbon source levels were lower or not replenished, plasmid invasion was hampered. Simulations of the mathematical model closely matched the experimental results and produced estimates of the effects of alternative experimental parameters. This allowed us to isolate the likely mechanisms most responsible for the observations. In conclusion, spatial structure and nutrient availability can be key determinants in the invasiveness of plasmids.
Collapse
Affiliation(s)
- Randal E Fox
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844-3051, USA
| | | | | | | |
Collapse
|
245
|
Oral presentations. Clin Microbiol Infect 2008; 14 Suppl 7:S1-815. [PMID: 18399911 PMCID: PMC7129943 DOI: 10.1111/j.1469-0691.2008.02006.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
246
|
Schlüter A, Krause L, Szczepanowski R, Goesmann A, Pühler A. Genetic diversity and composition of a plasmid metagenome from a wastewater treatment plant. J Biotechnol 2008; 136:65-76. [PMID: 18603322 DOI: 10.1016/j.jbiotec.2008.03.017] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 03/14/2008] [Accepted: 03/31/2008] [Indexed: 11/24/2022]
Abstract
Plasmid metagenome nucleotide sequence data were recently obtained from wastewater treatment plant (WWTP) bacteria with reduced susceptibility to selected antimicrobial drugs by applying the ultrafast 454-sequencing technology. The sequence dataset comprising 36,071,493 bases (346,427 reads with an average read length of 104 bases) was analysed for genetic diversity and composition by using a newly developed bioinformatic pipeline based on assignment of environmental gene tags (EGTs) to protein families stored in the Pfam database. Short amino acid sequences deduced from the plasmid metagenome sequence reads were compared to profile hidden Markov models underlying Pfam. Obtained matches evidenced that many reads represent genes having predicted functions in plasmid replication, stability and plasmid mobility which indicates that WWTP bacteria harbour genetically stabilised and mobile plasmids. Moreover, the data confirm a high diversity of plasmids residing in WWTP bacteria. The mobile organic peroxide resistance plasmid pMAC from Acinetobacter baumannii was identified as reference plasmid for the most abundant replication module type in the sequenced sample. Accessory plasmid modules encode different transposons, insertion sequences, integrons, resistance and virulence determinants. Most of the matches to Transposase protein families were identified for transposases similar to the one of the chromate resistance transposon Tn5719. Noticeable are hits to beta-lactamase protein families which suggests that plasmids from WWTP bacteria encode different enzymes possessing beta-lactam-hydrolysing activity. Some of the sequence reads correspond to antibiotic resistance genes that were only recently identified in clinical isolates of human pathogens. EGT analysis thus proofed to be a very valuable method to explore genetic diversity and composition of the present plasmid metagenome dataset.
Collapse
Affiliation(s)
- Andreas Schlüter
- Department of Genetics, Bielefeld University, Postfach 100131, D-33501 Bielefeld, Germany.
| | | | | | | | | |
Collapse
|
247
|
Sota M, Top EM. Host-specific factors determine the persistence of IncP-1 plasmids. World J Microbiol Biotechnol 2008. [DOI: 10.1007/s11274-008-9653-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
248
|
Schlüter A, Krahn I, Kollin F, Bönemann G, Stiens M, Szczepanowski R, Schneiker S, Pühler A. IncP-1-beta plasmid pGNB1 isolated from a bacterial community from a wastewater treatment plant mediates decolorization of triphenylmethane dyes. Appl Environ Microbiol 2007; 73:6345-50. [PMID: 17675426 PMCID: PMC2075058 DOI: 10.1128/aem.01177-07] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasmid pGNB1 was isolated from bacteria residing in the activated sludge compartment of a wastewater treatment plant by using a transformation-based approach. This 60-kb plasmid confers resistance to the triphenylmethane dye crystal violet and enables its host bacterium to decolorize crystal violet. Partial sequencing of pGNB1 revealed that its backbone is very similar to that of previously sequenced IncP-1beta plasmids. The two accessory regions of the plasmid, one located downstream of the replication initiation gene trfA and the other located between the conjugative transfer modules Tra and Trb, were completely sequenced. Accessory region L1 contains a transposon related to Tn5501 and a gene encoding a Cupin 2 conserved barrel protein with an unknown function. The triphenylmethane reductase gene tmr and a truncated dihydrolipoamide dehydrogenase gene that is flanked by IS1071 and another putative insertion element were identified in accessory region L2. Subcloning of the pGNB1 tmr gene demonstrated that this gene is responsible for the observed crystal violet resistance phenotype and mediates decolorization of the triphenylmethane dyes crystal violet, malachite green, and basic fuchsin. Plasmid pGNB1 and the associated phenotype are transferable to the alpha-proteobacterium Sinorhizobium meliloti and the gamma-proteobacterium Escherichia coli. This is the first report of a promiscuous IncP-1beta plasmid isolated from the bacterial community from a wastewater treatment plant that harbors a triphenylmethane reductase gene. The pGNB1-encoded enzyme activity is discussed with respect to bioremediation of sewage polluted with triphenylmethane dyes.
Collapse
Affiliation(s)
- Andreas Schlüter
- Fakultät für Biologie, Lehrstuhl für Genetik, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany.
| | | | | | | | | | | | | | | |
Collapse
|