201
|
Mihara T, Koyano H, Hingamp P, Grimsley N, Goto S, Ogata H. Taxon Richness of "Megaviridae" Exceeds those of Bacteria and Archaea in the Ocean. Microbes Environ 2018; 33:162-171. [PMID: 29806626 PMCID: PMC6031395 DOI: 10.1264/jsme2.me17203] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Since the discovery of the giant mimivirus, evolutionarily related viruses have been isolated or identified from various environments. Phylogenetic analyses of this group of viruses, tentatively referred to as the family “Megaviridae”, suggest that it has an ancient origin that may predate the emergence of major eukaryotic lineages. Environmental genomics has since revealed that Megaviridae represents one of the most abundant and diverse groups of viruses in the ocean. In the present study, we compared the taxon richness and phylogenetic diversity of Megaviridae, Bacteria, and Archaea using DNA-dependent RNA polymerase as a common marker gene. By leveraging existing microbial metagenomic data, we found higher richness and phylogenetic diversity in this single viral family than in the two prokaryotic domains. We also obtained results showing that the evolutionary rate alone cannot account for the observed high diversity of Megaviridae lineages. These results suggest that the Megaviridae family has a deep co-evolutionary history with diverse marine protists since the early “Big-Bang” radiation of the eukaryotic tree of life.
Collapse
Affiliation(s)
- Tomoko Mihara
- Bioinformatics Center, Institute for Chemical Research, Kyoto University
| | - Hitoshi Koyano
- School of Life Science and Technology, Laboratory of Genome Informatics, Tokyo Institute of Technology
| | | | - Nigel Grimsley
- Integrative Marine Biology Laboratory (BIOM), CNRS UMR7232, Sorbonne Universities
| | - Susumu Goto
- Database Center for Life Science, Joint-Support Center for Data Science Research, Research Organization of Information and Systems
| | - Hiroyuki Ogata
- Bioinformatics Center, Institute for Chemical Research, Kyoto University
| |
Collapse
|
202
|
Experimental Analysis of Mimivirus Translation Initiation Factor 4a Reveals Its Importance in Viral Protein Translation during Infection of Acanthamoeba polyphaga. J Virol 2018. [PMID: 29514904 DOI: 10.1128/jvi.00337-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The Acanthamoeba polyphaga mimivirus is the first giant virus ever described, with a 1.2-Mb genome which encodes 979 proteins, including central components of the translation apparatus. One of these proteins, R458, was predicted to initiate translation, although its specific role remains unknown. We silenced the R458 gene using small interfering RNA (siRNA) and compared levels of viral fitness and protein expression in silenced versus wild-type mimivirus. Silencing decreased the growth rate, but viral particle production at the end of the viral cycle was unaffected. A comparative proteomic approach using two-dimensional difference-in-gel electrophoresis (2D-DIGE) revealed deregulation of the expression of 32 proteins in silenced mimivirus, which were defined as up- or downregulated. Besides revealing proteins with unknown functions, silencing R458 also revealed deregulation in proteins associated with viral particle structures, transcriptional machinery, oxidative pathways, modification of proteins/lipids, and DNA topology/repair. Most of these proteins belong to genes transcribed at the end of the viral cycle. Overall, our data suggest that the R458 protein regulates the expression of mimivirus proteins and, thus, that mimivirus translational proteins may not be strictly redundant in relation to those from the amoeba host. As is the case for eukaryotic initiation factor 4a (eIF4a), the R458 protein is the prototypical member of the ATP-dependent DEAD box RNA helicase mechanism. We suggest that the R458 protein is required to unwind the secondary structures at the 5' ends of mRNAs and to bind the mRNA to the ribosome, making it possible to scan for the start codon. These data are the first experimental evidence of mimivirus translation-related genes, predicted to initiate protein biosynthesis.IMPORTANCE The presence in the genome of a mimivirus of genes coding for many translational processes, with the exception of ribosome constituents, has been the subject of debate since its discovery in 2003. In this work, we focused on the R458 mimivirus gene, predicted to initiate protein biosynthesis. After silencing was performed, we observed that it has no major effect on mimivirus multiplication but that it affects protein expression and fitness. This suggests that it is effectively used by mimivirus during its developmental cycle. Until large-scale genetic manipulation of giant viruses becomes possible, the silencing strategy used here on mimivirus translation-related factors will open the way to understanding the functions of these translational genes.
Collapse
|
203
|
Forterre P. Viruses in the 21st Century: From the Curiosity-Driven Discovery of Giant Viruses to New Concepts and Definition of Life. Clin Infect Dis 2018; 65:S74-S79. [PMID: 28859344 DOI: 10.1093/cid/cix349] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The curiosity-driven discovery of giant DNA viruses infecting amoebas has triggered an intense debate about the origin, nature, and definition of viruses. This discovery was delayed by the current paradigm confusing viruses with small virions. Several new definitions and concepts have been proposed either to reconcile the unique features of giant viruses with previous paradigms or to propose a completely new vision of the living world. I briefly review here how several other lines of research in virology converged during the last 2 decades with the discovery of giant viruses to change our traditional perception of the viral world. This story emphasizes the power of multidisciplinary curiosity-driven research, from the hospital to the field and the laboratory. Notably, some philosophers have now also joined biologists in their quest to make sense of the abundance and diversity of viruses and related capsidless mobile elements in the biosphere.
Collapse
Affiliation(s)
- Patrick Forterre
- Institut Pasteur, Département de Microbiologie, Paris; and Institut Intégré de Biologie Cellulaire, Département de Microbiologie, Centre National de la Recherche Scientifique, Université Paris-Saclay, France
| |
Collapse
|
204
|
Moniruzzaman M, Gann ER, Wilhelm SW. Infection by a Giant Virus (AaV) Induces Widespread Physiological Reprogramming in Aureococcus anophagefferens CCMP1984 - A Harmful Bloom Algae. Front Microbiol 2018; 9:752. [PMID: 29725322 PMCID: PMC5917014 DOI: 10.3389/fmicb.2018.00752] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/03/2018] [Indexed: 01/05/2023] Open
Abstract
While viruses with distinct phylogenetic origins and different nucleic acid types can infect and lyse eukaryotic phytoplankton, “giant” dsDNA viruses have been found to be associated with important ecological processes, including the collapse of algal blooms. However, the molecular aspects of giant virus–host interactions remain largely unknown. Aureococcus anophagefferens virus (AaV), a giant virus in the Mimiviridae clade, is known to play a critical role in regulating the fate of brown tide blooms caused by the pelagophyte Aureococcus anophagefferens. To understand the physiological response of A. anophagefferens CCMP1984 upon AaV infection, we studied the transcriptomic landscape of this host–virus pair over an entire infection cycle using a RNA-sequencing approach. A massive transcriptional response of the host was evident as early as 5 min post-infection, with modulation of specific processes likely related to both host defense mechanism(s) and viral takeover of the cell. Infected Aureococcus showed a relative suppression of host-cell transcripts associated with photosynthesis, cytoskeleton formation, fatty acid, and carbohydrate biosynthesis. In contrast, host cell processes related to protein synthesis, polyamine biosynthesis, cellular respiration, transcription, and RNA processing were overrepresented compared to the healthy cultures at different stages of the infection cycle. A large number of redox active host-selenoproteins were overexpressed, which suggested that viral replication and assembly progresses in a highly oxidative environment. The majority (99.2%) of annotated AaV genes were expressed at some point during the infection cycle and demonstrated a clear temporal–expression pattern and an increasing relative expression for the majority of the genes through the time course. We detected a putative early promoter motif for AaV, which was highly similar to the early promoter elements of two other Mimiviridae members, indicating some degree of evolutionary conservation of gene regulation within this clade. This large-scale transcriptome study provides insights into the Aureococcus cells infected by a giant virus and establishes a foundation to test hypotheses regarding metabolic and regulatory processes critical for AaV and other Mimiviridae members.
Collapse
Affiliation(s)
- Mohammad Moniruzzaman
- Department of Microbiology, The University of Tennessee, Knoxville, Knoxville, TN, United States.,Monterey Bay Aquarium Research Institute (MBARI), Moss Landing, CA, United States
| | - Eric R Gann
- Department of Microbiology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Steven W Wilhelm
- Department of Microbiology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|
205
|
Schvarcz CR, Steward GF. A giant virus infecting green algae encodes key fermentation genes. Virology 2018; 518:423-433. [PMID: 29649682 DOI: 10.1016/j.virol.2018.03.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/08/2018] [Accepted: 03/11/2018] [Indexed: 11/29/2022]
Abstract
The family Mimiviridae contains uncommonly large viruses, many of which were isolated using a free-living amoeba as a host. Although the genomes of these and other mimivirids that infect marine heterokont and haptophyte protists have now been sequenced, there has yet to be a genomic investigation of a mimivirid that infects a member of the Viridiplantae lineage (green algae and land plants). Here we characterize the 668-kilobase complete genome of TetV-1, a mimivirid that infects the cosmopolitan green alga Tetraselmis (Chlorodendrophyceae). The analysis revealed genes not previously seen in viruses, such as the mannitol metabolism enzyme mannitol 1-phosphate dehydrogenase, the saccharide degradation enzyme alpha-galactosidase, and the key fermentation genes pyruvate formate-lyase and pyruvate formate-lyase activating enzyme. The TetV genome is the largest sequenced to date for a virus that infects a photosynthetic organism, and its genes reveal unprecedented mechanisms by which viruses manipulate their host's metabolism.
Collapse
Affiliation(s)
- Christopher R Schvarcz
- Department of Oceanography, Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai'i at Mānoa, 1950 East-West Road, Honolulu, HI 96822, United States
| | - Grieg F Steward
- Department of Oceanography, Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai'i at Mānoa, 1950 East-West Road, Honolulu, HI 96822, United States.
| |
Collapse
|
206
|
Abrahão J, Silva L, Oliveira D, Almeida G. Lack of evidence of mimivirus replication in human PBMCs. Microbes Infect 2018; 20:281-283. [PMID: 29604428 DOI: 10.1016/j.micinf.2018.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/20/2018] [Accepted: 03/17/2018] [Indexed: 10/17/2022]
Abstract
The Acanthamoeba polyphaga mimivirus (APMV) was first isolated during a pneumonia outbreak in Bradford, England, and since its discovery many research groups devoted efforts to understand whether this virus could be associated to human diseases, in particular clinical signs and symptoms of pneumonia. In 2013, we observed cytopathic effect in amoebas (rounding and lysis) inoculated with APMV inoculated PBMCs (peripheral blood mononuclear cell) extracts, and at that point we interpreted those results as mimivirus replication in human PBMCs. Based on these results we decided to further investigate APMV replication in human PBMCs, by transmission electron microscopy (TEM) and qPCR. No viral factory was observed in APMV inoculated PBMCs, at any analyzed time and M.O.I.s (multiplicity of infection), by checking 550 cells per condition tested. We also measured the variation of viral DNA by qPCR targeting helicase gene during the course of the TEM experiment in PBMCs, but the DNA levels stayed the same as the first time-point post infection. In summary, our newest qPCR and TEM results do not support previous statements (including ours) that mimivirus is able to replicate in humans PBMCs.
Collapse
Affiliation(s)
- Jônatas Abrahão
- Universidade Federal de Minas Gerais, Laboratório de Vírus, Belo Horizonte, Brazil.
| | - Lorena Silva
- Universidade Federal de Minas Gerais, Laboratório de Vírus, Belo Horizonte, Brazil.
| | - Danilo Oliveira
- Universidade Federal dos Vales do Jequitinhonha e do Mucuri, Diamantina, Brazil.
| | - Gabriel Almeida
- Department of Biological and Environmental Science, University of Jyvaskyla, FI-40014 Jyvaskyla, Finland.
| |
Collapse
|
207
|
Deeg CM, Chow CET, Suttle CA. The kinetoplastid-infecting Bodo saltans virus (BsV), a window into the most abundant giant viruses in the sea. eLife 2018; 7:33014. [PMID: 29582753 PMCID: PMC5871332 DOI: 10.7554/elife.33014] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 02/22/2018] [Indexed: 01/24/2023] Open
Abstract
Giant viruses are ecologically important players in aquatic ecosystems that have challenged concepts of what constitutes a virus. Herein, we present the giant Bodo saltans virus (BsV), the first characterized representative of the most abundant group of giant viruses in ocean metagenomes, and the first isolate of a klosneuvirus, a subgroup of the Mimiviridae proposed from metagenomic data. BsV infects an ecologically important microzooplankton, the kinetoplastid Bodo saltans. Its 1.39 Mb genome encodes 1227 predicted ORFs, including a complex replication machinery. Yet, much of its translational apparatus has been lost, including all tRNAs. Essential genes are invaded by homing endonuclease-encoding self-splicing introns that may defend against competing viruses. Putative anti-host factors show extensive gene duplication via a genomic accordion indicating an ongoing evolutionary arms race and highlighting the rapid evolution and genomic plasticity that has led to genome gigantism and the enigma that is giant viruses.
Collapse
Affiliation(s)
- Christoph M Deeg
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Cheryl-Emiliane T Chow
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, Canada
| | - Curtis A Suttle
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada.,Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, Canada.,Department of Botany, University of British Columbia, Vancouver, Canada.,Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, Canada
| |
Collapse
|
208
|
Abstract
Xanthomonas virus (phage) XacN1 is a novel jumbo myovirus infecting Xanthomonas citri, the causative agent of Asian citrus canker. Its linear 384,670 bp double-stranded DNA genome encodes 592 proteins and presents the longest (66 kbp) direct terminal repeats (DTRs) among sequenced viral genomes. The DTRs harbor 56 tRNA genes, which correspond to all 20 amino acids and represent the largest number of tRNA genes reported in a viral genome. Codon usage analysis revealed a propensity for the phage encoded tRNAs to target codons that are highly used by the phage but less frequently by its host. The existence of these tRNA genes and seven additional translation-related genes as well as a chaperonin gene found in the XacN1 genome suggests a relative independence of phage replication on host molecular machinery, leading to a prediction of a wide host range for this jumbo phage. We confirmed the prediction by showing a wider host range of XacN1 than other X. citri phages in an infection test against a panel of host strains. Phylogenetic analyses revealed a clade of phages composed of XacN1 and ten other jumbo phages, indicating an evolutionary stable large genome size for this group of phages.
Collapse
|
209
|
Wang Z, Wu M. Comparative Genomic Analysis of Acanthamoeba Endosymbionts Highlights the Role of Amoebae as a "Melting Pot" Shaping the Rickettsiales Evolution. Genome Biol Evol 2018; 9:3214-3224. [PMID: 29177480 PMCID: PMC5751055 DOI: 10.1093/gbe/evx246] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2017] [Indexed: 11/12/2022] Open
Abstract
Amoebae have been considered as a genetic "melting pot" for its symbionts, facilitating genetic exchanges of the bacteria that co-inhabit the same host. To test the "melting pot" hypothesis, we analyzed six genomes of amoeba endosymbionts within Rickettsiales, four of which belong to Holosporaceae family and two to Candidatus Midichloriaceae. For the first time, we identified plasmids in obligate amoeba endosymbionts, which suggests conjugation as a potential mechanism for lateral gene transfers (LGTs) that underpin the "melting pot" hypothesis. We found strong evidence of recent LGTs between the Rickettsiales amoeba endosymbionts, suggesting that the LGTs are continuous and ongoing. In addition, comparative genomic and phylogenomic analyses revealed pervasive and recurrent LGTs between Rickettsiales and distantly related amoeba-associated bacteria throughout the Rickettsiales evolution. Many of these exchanged genes are important for amoeba-symbiont interactions, including genes in transport system, antibiotic resistance, stress response, and bacterial virulence, suggesting that LGTs have played important roles in the adaptation of endosymbionts to their intracellular habitats. Surprisingly, we found little evidence of LGTs between amoebae and their bacterial endosymbionts. Our study strongly supports the "melting pot" hypothesis and highlights the role of amoebae in shaping the Rickettsiales evolution.
Collapse
Affiliation(s)
- Zhang Wang
- Department of Biology, University of Virginia
| | - Martin Wu
- Department of Biology, University of Virginia
| |
Collapse
|
210
|
Classification of Complete Proteomes of Different Organisms and Protein Sets Based on Their Protein Distributions in Terms of Some Key Attributes of Proteins. Int J Genomics 2018; 2018:9784161. [PMID: 29686995 PMCID: PMC5857298 DOI: 10.1155/2018/9784161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/12/2017] [Accepted: 11/20/2017] [Indexed: 01/01/2023] Open
Abstract
The existence of complete genome sequences makes it important to develop different approaches for classification of large-scale data sets and to make extraction of biological insights easier. Here, we propose an approach for classification of complete proteomes/protein sets based on protein distributions on some basic attributes. We demonstrate the usefulness of this approach by determining protein distributions in terms of two attributes: protein lengths and protein intrinsic disorder contents (ID). The protein distributions based on L and ID are surveyed for representative proteome organisms and protein sets from the three domains of life. The two-dimensional maps (designated as fingerprints here) from the protein distribution densities in the LD space defined by ln(L) and ID are then constructed. The fingerprints for different organisms and protein sets are found to be distinct with each other, and they can therefore be used for comparative studies. As a test case, phylogenetic trees have been constructed based on the protein distribution densities in the fingerprints of proteomes of organisms without performing any protein sequence comparison and alignments. The phylogenetic trees generated are biologically meaningful, demonstrating that the protein distributions in the LD space may serve as unique phylogenetic signals of the organisms at the proteome level.
Collapse
|
211
|
Martínez-Fernández V, Navarro F. Rpb5, a subunit shared by eukaryotic RNA polymerases, cooperates with prefoldin-like Bud27/URI. AIMS GENETICS 2018; 5:63-74. [PMID: 31435513 PMCID: PMC6690254 DOI: 10.3934/genet.2018.1.74] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 02/05/2018] [Indexed: 12/28/2022]
Abstract
Rpb5 is one of the five common subunits to all eukaryotic RNA polymerases, which is conserved in archaea, but not in bacteria. Among these common subunits, it is the only one that is not interchangeable between yeasts and humans, and accounts for the functional incompatibility of yeast and human subunits. Rpb5 has been proposed to contribute to the gene-specific activation of RNA pol II, notably during the infectious cycle of the hepatitis B virus, and also to participate in general transcription mediated by all eukaryotic RNA pol. The structural analysis of Rpb5 and its interaction with different transcription factors, regulators and DNA, accounts for Rpb5 being necessary to maintain the correct conformation of the shelf module of RNA pol II, which favors the proper organization of the transcription bubble and the clamp closure of the enzyme. In this work we provide details about subunit Rpb5's structure, conservation and the role it plays in transcription regulation by analyzing the different interactions with several factors, as well as its participation in the assembly of the three RNA pols, in cooperation with prefoldin-like Bud27/URI.
Collapse
Affiliation(s)
- Verónica Martínez-Fernández
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Paraje de las Lagunillas, s/n, 23071, Jaén, Spain
| | - Francisco Navarro
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Paraje de las Lagunillas, s/n, 23071, Jaén, Spain
| |
Collapse
|
212
|
Abrahão J, Silva L, Silva LS, Khalil JYB, Rodrigues R, Arantes T, Assis F, Boratto P, Andrade M, Kroon EG, Ribeiro B, Bergier I, Seligmann H, Ghigo E, Colson P, Levasseur A, Kroemer G, Raoult D, La Scola B. Tailed giant Tupanvirus possesses the most complete translational apparatus of the known virosphere. Nat Commun 2018; 9:749. [PMID: 29487281 PMCID: PMC5829246 DOI: 10.1038/s41467-018-03168-1] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/23/2018] [Indexed: 02/07/2023] Open
Abstract
Here we report the discovery of two Tupanvirus strains, the longest tailed Mimiviridae members isolated in amoebae. Their genomes are 1.44–1.51 Mb linear double-strand DNA coding for 1276–1425 predicted proteins. Tupanviruses share the same ancestors with mimivirus lineages and these giant viruses present the largest translational apparatus within the known virosphere, with up to 70 tRNA, 20 aaRS, 11 factors for all translation steps, and factors related to tRNA/mRNA maturation and ribosome protein modification. Moreover, two sequences with significant similarity to intronic regions of 18 S rRNA genes are encoded by the tupanviruses and highly expressed. In this translation-associated gene set, only the ribosome is lacking. At high multiplicity of infections, tupanvirus is also cytotoxic and causes a severe shutdown of ribosomal RNA and a progressive degradation of the nucleus in host and non-host cells. The analysis of tupanviruses constitutes a new step toward understanding the evolution of giant viruses. Giant viruses are the largest viruses of the known virosphere and their genetic analysis can provide insights into virus evolution. Here, the authors discover Tupanvirus, a unique giant virus that has an unusually long tail and contains the largest translational apparatus of the known virosphere.
Collapse
Affiliation(s)
- Jônatas Abrahão
- MEPHI, APHM, IRD 198, Aix Marseille Univ, IHU-Méditerranee Infection, 19-21 Bd Jean Moulin, 13005, Marseille, France.,Laboratório de Vírus, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Lorena Silva
- MEPHI, APHM, IRD 198, Aix Marseille Univ, IHU-Méditerranee Infection, 19-21 Bd Jean Moulin, 13005, Marseille, France.,Laboratório de Vírus, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Ludmila Santos Silva
- MEPHI, APHM, IRD 198, Aix Marseille Univ, IHU-Méditerranee Infection, 19-21 Bd Jean Moulin, 13005, Marseille, France.,Laboratório de Vírus, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | | | - Rodrigo Rodrigues
- Laboratório de Vírus, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Thalita Arantes
- Laboratório de Vírus, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Felipe Assis
- Laboratório de Vírus, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Paulo Boratto
- Laboratório de Vírus, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Miguel Andrade
- Laboratório de Microscopia Eletrônica e Virologia, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Asa Norte, Brasília, 70910-900, Brazil
| | - Erna Geessien Kroon
- Laboratório de Vírus, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Bergmann Ribeiro
- Laboratório de Microscopia Eletrônica e Virologia, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Asa Norte, Brasília, 70910-900, Brazil
| | - Ivan Bergier
- Lab. Biomass Conversion, Embrapa Pantanal, R. 21 de Setembro 1880, 79320-900, Corumbá/MS, Brazil
| | - Herve Seligmann
- MEPHI, APHM, IRD 198, Aix Marseille Univ, IHU-Méditerranee Infection, 19-21 Bd Jean Moulin, 13005, Marseille, France
| | - Eric Ghigo
- MEPHI, APHM, IRD 198, Aix Marseille Univ, IHU-Méditerranee Infection, 19-21 Bd Jean Moulin, 13005, Marseille, France
| | - Philippe Colson
- MEPHI, APHM, IRD 198, Aix Marseille Univ, IHU-Méditerranee Infection, 19-21 Bd Jean Moulin, 13005, Marseille, France
| | - Anthony Levasseur
- MEPHI, APHM, IRD 198, Aix Marseille Univ, IHU-Méditerranee Infection, 19-21 Bd Jean Moulin, 13005, Marseille, France
| | - Guido Kroemer
- Cell Biology and Metabolomics Platforms, Gustave Roussy Cancer Campus, Villejuif, 94805, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, 75006, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, 75654, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, 75015, France.,Université Pierre et Marie Curie, Paris, 75005, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, 75015, France.,Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, SE-171 76, Sweden
| | - Didier Raoult
- MEPHI, APHM, IRD 198, Aix Marseille Univ, IHU-Méditerranee Infection, 19-21 Bd Jean Moulin, 13005, Marseille, France.
| | - Bernard La Scola
- MEPHI, APHM, IRD 198, Aix Marseille Univ, IHU-Méditerranee Infection, 19-21 Bd Jean Moulin, 13005, Marseille, France.
| |
Collapse
|
213
|
Abstract
Pithovirus sibericum is a giant (610 Kpb) double-stranded DNA virus discovered in a purportedly 30,000-year-old permafrost sample. A closely related virus, Pithovirus massiliensis, was recently isolated from a sewer in southern France. An initial comparison of these two virus genomes assumed that P. sibericum was directly ancestral to P. massiliensis and gave a maximum evolutionary rate of 2.60 × 10-5 nucleotide substitutions per site per year (subs/site/year). If correct, this would make pithoviruses among the fastest-evolving DNA viruses, with rates close to those seen in some RNA viruses. To help determine whether this unusually high rate is accurate we utilized the well-known negative association between evolutionary rate and genome size in DNA microbes. This revealed that a more plausible rate estimate for Pithovirus evolution is ∼2.23 × 10-6 subs/site/year, with even lower estimates obtained if evolutionary rates are assumed to be time-dependent. Hence, we estimate that Pithovirus has evolved at least an order of magnitude more slowly than previously suggested. We then used our new rate estimates to infer a time-scale for Pithovirus evolution. Strikingly, this suggests that these viruses could have diverged at least hundreds of thousands of years ago, and hence have evolved over longer time-scales than previously suggested. We propose that the evolutionary rate and time-scale of pithovirus evolution should be reconsidered in the light of these observations and that future estimates of the rate of giant virus evolution should be carefully examined in the context of their biological plausibility.
Collapse
Affiliation(s)
- Sebastián Duchêne
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3020, Australia
| | - Edward C Holmes
- Marie Bashir Institute of Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
214
|
Chen X, Yu X, Song X, Liu L, Yi Y, Yao W, Gao X. Selection, purification, and characterization of a HER2-targeting soluble designed ankyrin repeat protein by E. coli surface display using HER2-positive melanoma cells. Prep Biochem Biotechnol 2018; 48:144-150. [PMID: 29313422 DOI: 10.1080/10826068.2017.1407944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Human epidermal growth factor receptor 2 (HER2) is a powerful target for cancer immune therapy. The development of anti-HER2 monoclonal antibodies targeting different domains of HER2 is quite effective. However, the selection and production of multivalent antibodies are complicated. In this study, a mimivirus-based designed ankyrin repeat protein (DARPin) targeting HER2 was selected from an artificial library by bacteria surface display. The selection was performed on HER2-positive B16BL6/E2 melanoma cells and HER2-nagative cells. DARPin selected from the library could be expressed in soluble form with a yield of 70 mg/L. After purified by two continuous and easy steps, the purity of DARPin was 90% as established by SDS-PAGE and RP-HPLC. Selected DARPin showed significant HER2-targeting ability with an affinity of 1.05 ± 0.47 µM. MTT assay demonstrated that at the concentration of 640 nM, the selected DARPin dimer could inhibit the SK-BR-3 growth at a rate of 36.63 and 46.34% in 48 and 72 hr incubation separately, which was similar to trastuzumab (43.12 and 49.14% separately). These findings suggested that it was an effective method to select antibody mimetic DARPin by bacteria surface display combined with live cells sorting and provided a drug candidate for cancer therapy.
Collapse
Affiliation(s)
- Xiaofei Chen
- a Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines , School of Life Science and Technology, China Pharmaceutical University , Nanjing , PR China
| | - Xiaoxiao Yu
- a Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines , School of Life Science and Technology, China Pharmaceutical University , Nanjing , PR China
| | - Xiaoda Song
- a Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines , School of Life Science and Technology, China Pharmaceutical University , Nanjing , PR China
| | - Li Liu
- a Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines , School of Life Science and Technology, China Pharmaceutical University , Nanjing , PR China
| | - Yuting Yi
- a Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines , School of Life Science and Technology, China Pharmaceutical University , Nanjing , PR China
| | - Wenbing Yao
- a Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines , School of Life Science and Technology, China Pharmaceutical University , Nanjing , PR China
| | - Xiangdong Gao
- a Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines , School of Life Science and Technology, China Pharmaceutical University , Nanjing , PR China
| |
Collapse
|
215
|
Pro-metastatic collagen lysyl hydroxylase dimer assemblies stabilized by Fe 2+-binding. Nat Commun 2018; 9:512. [PMID: 29410444 PMCID: PMC5802723 DOI: 10.1038/s41467-018-02859-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/04/2018] [Indexed: 11/30/2022] Open
Abstract
Collagen lysyl hydroxylases (LH1-3) are Fe2+- and 2-oxoglutarate (2-OG)-dependent oxygenases that maintain extracellular matrix homeostasis. High LH2 levels cause stable collagen cross-link accumulations that promote fibrosis and cancer progression. However, developing LH antagonists will require structural insights. Here, we report a 2 Å crystal structure and X-ray scattering on dimer assemblies for the LH domain of L230 in Acanthamoeba polyphaga mimivirus. Loop residues in the double-stranded β-helix core generate a tail-to-tail dimer. A stabilizing hydrophobic leucine locks into an aromatic tyrosine-pocket on the opposite subunit. An active site triad coordinates Fe2+. The two active sites flank a deep surface cleft that suggest dimerization creates a collagen-binding site. Loss of Fe2+-binding disrupts the dimer. Dimer disruption and charge reversal in the cleft increase Km and reduce LH activity. Ectopic L230 expression in tumors promotes collagen cross-linking and metastasis. These insights suggest inhibitor targets for fibrosis and cancer. Collagen lysyl hydroxylases promote cancer progression. Here the authors present the crystal structure of the lysyl hydroxylase domain of L230 from Acanthamoeba polyphagamimivirus, which is of interest for LH inhibitor development, and show that ectopic expression of L230 in tumors promotes collagen cross-linking and metastasis.
Collapse
|
216
|
Seligmann H, Raoult D. Stem-Loop RNA Hairpins in Giant Viruses: Invading rRNA-Like Repeats and a Template Free RNA. Front Microbiol 2018; 9:101. [PMID: 29449833 PMCID: PMC5799277 DOI: 10.3389/fmicb.2018.00101] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 01/16/2018] [Indexed: 12/31/2022] Open
Abstract
We examine the hypothesis that de novo template-free RNAs still form spontaneously, as they did at the origins of life, invade modern genomes, contribute new genetic material. Previously, analyses of RNA secondary structures suggested that some RNAs resembling ancestral (t)RNAs formed recently de novo, other parasitic sequences cluster with rRNAs. Here positive control analyses of additional RNA secondary structures confirm ancestral and de novo statuses of RNA grouped according to secondary structure. Viroids with branched stems resemble de novo RNAs, rod-shaped viroids resemble rRNA secondary structures, independently of GC contents. 5' UTR leading regions of West Nile and Dengue flavivirid viruses resemble de novo and rRNA structures, respectively. An RNA homologous with Megavirus, Dengue and West Nile genomes, copperhead snake microsatellites and levant cotton repeats, not templated by Mimivirus' genome, persists throughout Mimivirus' infection. Its secondary structure clusters with candidate de novo RNAs. The saltatory phyletic distribution and secondary structure of Mimivirus' peculiar RNA suggest occasional template-free polymerization of this sequence, rather than noncanonical transcriptions (swinger polymerization, posttranscriptional editing).
Collapse
Affiliation(s)
- Hervé Seligmann
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UMR MEPHI, Aix-Marseille Université, IRD, Assistance Publique-Hôpitaux de Marseille, Institut Hospitalo-Universitaire Méditerranée-Infection, Marseille, France
| | - Didier Raoult
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UMR MEPHI, Aix-Marseille Université, IRD, Assistance Publique-Hôpitaux de Marseille, Institut Hospitalo-Universitaire Méditerranée-Infection, Marseille, France
| |
Collapse
|
217
|
|
218
|
Berliner AJ, Mochizuki T, Stedman KM. Astrovirology: Viruses at Large in the Universe. ASTROBIOLOGY 2018; 18:207-223. [PMID: 29319335 DOI: 10.1089/ast.2017.1649] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Viruses are the most abundant biological entities on modern Earth. They are highly diverse both in structure and genomic sequence, play critical roles in evolution, strongly influence terran biogeochemistry, and are believed to have played important roles in the origin and evolution of life. However, there is yet very little focus on viruses in astrobiology. Viruses arguably have coexisted with cellular life-forms since the earliest stages of life, may have been directly involved therein, and have profoundly influenced cellular evolution. Viruses are the only entities on modern Earth to use either RNA or DNA in both single- and double-stranded forms for their genetic material and thus may provide a model for the putative RNA-protein world. With this review, we hope to inspire integration of virus research into astrobiology and also point out pressing unanswered questions in astrovirology, particularly regarding the detection of virus biosignatures and whether viruses could be spread extraterrestrially. We present basic virology principles, an inclusive definition of viruses, review current virology research pertinent to astrobiology, and propose ideas for future astrovirology research foci. Key Words: Astrobiology-Virology-Biosignatures-Origin of life-Roadmap. Astrobiology 18, 207-223.
Collapse
Affiliation(s)
| | | | - Kenneth M Stedman
- 3 Center for Life in Extreme Environments and Biology Department, Portland State University , Oregon, USA
| |
Collapse
|
219
|
Andrade ACDSP, Arantes TS, Rodrigues RAL, Machado TB, Dornas FP, Landell MF, Furst C, Borges LGA, Dutra LAL, Almeida G, Trindade GDS, Bergier I, Abrahão W, Borges IA, Cortines JR, de Oliveira DB, Kroon EG, Abrahão JS. Ubiquitous giants: a plethora of giant viruses found in Brazil and Antarctica. Virol J 2018; 15:22. [PMID: 29368617 PMCID: PMC5784613 DOI: 10.1186/s12985-018-0930-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 01/12/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Since the discovery of giant viruses infecting amoebae in 2003, many dogmas of virology have been revised and the search for these viruses has been intensified. Over the last few years, several new groups of these viruses have been discovered in various types of samples and environments.In this work, we describe the isolation of 68 giant viruses of amoeba obtained from environmental samples from Brazil and Antarctica. METHODS Isolated viruses were identified by hemacolor staining, PCR assays and electron microscopy (scanning and/or transmission). RESULTS A total of 64 viruses belonging to the Mimiviridae family were isolated (26 from lineage A, 13 from lineage B, 2 from lineage C and 23 from unidentified lineages) from different types of samples, including marine water from Antarctica, thus being the first mimiviruses isolated in this extreme environment to date. Furthermore, a marseillevirus was isolated from sewage samples along with two pandoraviruses and a cedratvirus (the third to be isolated in the world so far). CONCLUSIONS Considering the different type of samples, we found a higher number of viral groups in sewage samples. Our results reinforce the importance of prospective studies in different environmental samples, therefore improving our comprehension about the circulation anddiversity of these viruses in nature.
Collapse
Affiliation(s)
- Ana Cláudia Dos S P Andrade
- Laboratorio de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thalita S Arantes
- Laboratorio de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo A L Rodrigues
- Laboratorio de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Talita B Machado
- Laboratorio de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fábio P Dornas
- Laboratorio de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Melissa F Landell
- Laboratório de Diversidade Molecular, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Brazil
| | - Cinthia Furst
- Departamento de Patologia, Universidade Federal do Espírito Santo, Maruípe, Brazil
| | - Luiz G A Borges
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Instituto do Petróleo e dos Recursos Naturais (IPR), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lara A L Dutra
- Department of Biological and Environmental Sciences, University of Jyvaskyla, Jyvaskyla, Finland
| | - Gabriel Almeida
- Department of Biological and Environmental Sciences, University of Jyvaskyla, Jyvaskyla, Finland
| | - Giliane de S Trindade
- Laboratorio de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Iara A Borges
- Laboratorio de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Juliana R Cortines
- Departamento de Virologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Danilo B de Oliveira
- Faculdade de Medicina, Universidade Federal do dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Erna G Kroon
- Laboratorio de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jônatas S Abrahão
- Laboratorio de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
220
|
Diesend J, Kruse J, Hagedorn M, Hammann C. Amoebae, Giant Viruses, and Virophages Make Up a Complex, Multilayered Threesome. Front Cell Infect Microbiol 2018; 7:527. [PMID: 29376032 PMCID: PMC5768912 DOI: 10.3389/fcimb.2017.00527] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 12/13/2017] [Indexed: 01/28/2023] Open
Abstract
Viral infection had not been observed for amoebae, until the Acanthamoeba polyphaga mimivirus (APMV) was discovered in 2003. APMV belongs to the nucleocytoplasmatic large DNA virus (NCLDV) family and infects not only A. polyphaga, but also other professional phagocytes. Here, we review the Megavirales to give an overview of the current members of the Mimi- and Marseilleviridae families and their structural features during amoebal infection. We summarize the different steps of their infection cycle in A. polyphaga and Acanthamoeba castellani. Furthermore, we dive into the emerging field of virophages, which parasitize upon viral factories of the Megavirales family. The discovery of virophages in 2008 and research in recent years revealed an increasingly complex network of interactions between cell, giant virus, and virophage. Virophages seem to be highly abundant in the environment and occupy the same niches as the Mimiviridae and their hosts. Establishment of metagenomic and co-culture approaches rapidly increased the number of detected virophages over the recent years. Genetic interaction of cell and virophage might constitute a potent defense machinery against giant viruses and seems to be important for survival of the infected cell during mimivirus infections. Nonetheless, the molecular events during co-infection and the interactions of cell, giant virus, and virophage have not been elucidated, yet. However, the genetic interactions of these three, suggest an intricate, multilayered network during amoebal (co-)infections. Understanding these interactions could elucidate molecular events essential for proper viral factory activity and could implicate new ways of treating viruses that form viral factories.
Collapse
Affiliation(s)
- Jan Diesend
- Ribogenetics Biochemistry Lab, Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Janis Kruse
- Ribogenetics Biochemistry Lab, Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Monica Hagedorn
- Ribogenetics Biochemistry Lab, Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Christian Hammann
- Ribogenetics Biochemistry Lab, Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| |
Collapse
|
221
|
Shukla A, Chatterjee A, Kondabagil K. The number of genes encoding repeat domain-containing proteins positively correlates with genome size in amoebal giant viruses. Virus Evol 2018; 4:vex039. [PMID: 29308275 PMCID: PMC5753266 DOI: 10.1093/ve/vex039] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Curiously, in viruses, the virion volume appears to be predominantly driven by genome length rather than the number of proteins it encodes or geometric constraints. With their large genome and giant particle size, amoebal viruses (AVs) are ideally suited to study the relationship between genome and virion size and explore the role of genome plasticity in their evolutionary success. Different genomic regions of AVs exhibit distinct genealogies. Although the vertically transferred core genes and their functions are universally conserved across the nucleocytoplasmic large DNA virus (NCLDV) families and are essential for their replication, the horizontally acquired genes are variable across families and are lineage-specific. When compared with other giant virus families, we observed a near–linear increase in the number of genes encoding repeat domain-containing proteins (RDCPs) with the increase in the genome size of AVs. From what is known about the functions of RDCPs in bacteria and eukaryotes and their prevalence in the AV genomes, we envisage important roles for RDCPs in the life cycle of AVs, their genome expansion, and plasticity. This observation also supports the evolution of AVs from a smaller viral ancestor by the acquisition of diverse gene families from the environment including RDCPs that might have helped in host adaption.
Collapse
Affiliation(s)
- Avi Shukla
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| | - Anirvan Chatterjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| | - Kiran Kondabagil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| |
Collapse
|
222
|
De Castro C, Duncan GA, Garozzo D, Molinaro A, Sturiale L, Tonetti M, Van Etten JL. Biophysical Approaches to Solve the Structures of the Complex Glycan Shield of Chloroviruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1104:237-257. [PMID: 30484252 DOI: 10.1007/978-981-13-2158-0_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The capsid of Paramecium bursaria chlorella virus (PBCV-1) contains a heavily glycosylated major capsid protein, Vp54. The capsid protein contains four glycans, each N-linked to Asn. The glycan structures are unusual in many aspects: (1) they are attached by a β-glucose linkage, which is rare in nature; (2) they are highly branched and consist of 8-10 neutral monosaccharides; (3) all four glycoforms contain a dimethylated rhamnose as the capping residue of the main chain, a hyper-branched fucose residue and two rhamnose residues ''with opposite absolute configurations; (4) the four glycoforms differ by the nonstoichiometric presence of two monosaccharides, L-arabinose and D-mannose ; (5) the N-glycans from all of the chloroviruses have a strictly conserved core structure; and (6) these glycans do not resemble any structures previously reported in the three domains of life.The structures of these N-glycoforms remained elusive for years because initial attempts to solve their structures used tools developed for eukaryotic-like systems, which we now know are not suitable for this noncanonical glycosylation pattern. This chapter summarizes the methods used to solve the chlorovirus complex glycan structures with the hope that these methodologies can be used by scientists facing similar problems.
Collapse
Affiliation(s)
- Cristina De Castro
- Department of Agricultural Sciences, University of Napoli, Portici, NA, Italy.
| | - Garry A Duncan
- Department of Biology, Nebraska Wesleyan University, Lincoln, NE, USA
| | - Domenico Garozzo
- CNR, Institute for Polymers, Composites and Biomaterials, Catania, Italy
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Napoli, Napoli, Italy
| | - Luisa Sturiale
- CNR, Institute for Polymers, Composites and Biomaterials, Catania, Italy
| | - Michela Tonetti
- Department of Experimental Medicine and Center of Excellence for Biomedical Research, University of Genova, Genova, Italy
| | - James L Van Etten
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska, Lincoln, NE, USA
| |
Collapse
|
223
|
Assis FL, Franco-Luiz APM, Dos Santos RN, Campos FS, Dornas FP, Borato PVM, Franco AC, Abrahao JS, Colson P, Scola BL. Genome Characterization of the First Mimiviruses of Lineage C Isolated in Brazil. Front Microbiol 2017; 8:2562. [PMID: 29312242 PMCID: PMC5743647 DOI: 10.3389/fmicb.2017.02562] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/11/2017] [Indexed: 01/01/2023] Open
Abstract
The family Mimiviridae, comprised by giant DNA viruses, has been increasingly studied since the isolation of the Acanthamoeba polyphaga mimivirus (APMV), in 2003. In this work, we describe the genome analysis of two new mimiviruses, each isolated from a distinct Brazilian environment. Furthermore, for the first time, we are reporting the genomic characterization of mimiviruses of group C in Brazil (Br-mimiC), where a predominance of mimiviruses from group A has been previously reported. The genomes of the Br-mimiC isolates Mimivirus gilmour (MVGM) and Mimivirus golden (MVGD) are composed of double-stranded DNA molecules of ∼1.2 Mb, each encoding more than 1,100 open reading frames. Genome functional annotations highlighted the presence of mimivirus group C hallmark genes, such as the set of seven aminoacyl-tRNA synthetases. However, the set of tRNA encoded by the Br-mimiC was distinct from those of other group C mimiviruses. Differences could also be observed in a genome synteny analysis, which demonstrated the presence of inversions and loci translocations at both extremities of Br-mimiC genomes. Both phylogenetic and phyletic analyses corroborate previous results, undoubtedly grouping the new Brazilian isolates into mimivirus group C. Finally, an updated pan-genome analysis of genus Mimivirus was performed including all new genomes available until the present moment. This last analysis showed a slight increase in the number of clusters of orthologous groups of proteins among mimiviruses of group A, with a larger increase after addition of sequences from mimiviruses of groups B and C, as well as a plateau tendency after the inclusion of the last four mimiviruses of group C, including the Br-mimiC isolates. Future prospective studies will help us to understand the genetic diversity among mimiviruses.
Collapse
Affiliation(s)
- Felipe L Assis
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana P M Franco-Luiz
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Raíssa N Dos Santos
- Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fabrício S Campos
- College of Veterinary Medicine and Agronomy, University of Brasília, Brasília, Brazil
| | - Fábio P Dornas
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Paulo V M Borato
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana C Franco
- Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jônatas S Abrahao
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Philippe Colson
- CNRS 7278, IRD 198, INSERM 1095, UM63, IHU - Méditerranée Infection, AP-HM, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, Aix-Marseille Université, Marseille, France
| | - Bernard La Scola
- CNRS 7278, IRD 198, INSERM 1095, UM63, IHU - Méditerranée Infection, AP-HM, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, Aix-Marseille Université, Marseille, France
| |
Collapse
|
224
|
Schulz F, Yutin N, Ivanova NN, Ortega DR, Lee TK, Vierheilig J, Daims H, Horn M, Wagner M, Jensen GJ, Kyrpides NC, Koonin EV, Woyke T. Giant viruses with an expanded complement of translation system components. Science 2017; 356:82-85. [PMID: 28386012 DOI: 10.1126/science.aal4657] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/18/2017] [Accepted: 03/15/2017] [Indexed: 12/24/2022]
Abstract
The discovery of giant viruses blurred the sharp division between viruses and cellular life. Giant virus genomes encode proteins considered as signatures of cellular organisms, particularly translation system components, prompting hypotheses that these viruses derived from a fourth domain of cellular life. Here we report the discovery of a group of giant viruses (Klosneuviruses) in metagenomic data. Compared with other giant viruses, the Klosneuviruses encode an expanded translation machinery, including aminoacyl transfer RNA synthetases with specificities for all 20 amino acids. Notwithstanding the prevalence of translation system components, comprehensive phylogenomic analysis of these genes indicates that Klosneuviruses did not evolve from a cellular ancestor but rather are derived from a much smaller virus through extensive gain of host genes.
Collapse
Affiliation(s)
- Frederik Schulz
- Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA.
| | - Natalya Yutin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Natalia N Ivanova
- Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Davi R Ortega
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Tae Kwon Lee
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, "Chemistry Meets Microbiology" Research Network, University of Vienna, 1090 Vienna, Austria
| | - Julia Vierheilig
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, "Chemistry Meets Microbiology" Research Network, University of Vienna, 1090 Vienna, Austria
| | - Holger Daims
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, "Chemistry Meets Microbiology" Research Network, University of Vienna, 1090 Vienna, Austria
| | - Matthias Horn
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, "Chemistry Meets Microbiology" Research Network, University of Vienna, 1090 Vienna, Austria
| | - Michael Wagner
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, "Chemistry Meets Microbiology" Research Network, University of Vienna, 1090 Vienna, Austria
| | - Grant J Jensen
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA.,Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Nikos C Kyrpides
- Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | - Tanja Woyke
- Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA.
| |
Collapse
|
225
|
Gupta A, Patil S, Vijayakumar R, Kondabagil K. The Polyphyletic Origins of Primase-Helicase Bifunctional Proteins. J Mol Evol 2017; 85:188-204. [PMID: 29143083 DOI: 10.1007/s00239-017-9816-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 10/28/2017] [Indexed: 11/28/2022]
Abstract
We studied the evolutionary relationships of different primase-helicase bifunctional proteins, found mostly in viruses, virophages, plasmids, and organellar genomes, by phylogeny and correlation analysis. Our study suggests independent origins of primase-helicase bifunctional proteins resulting from multiple fusion events between genes encoding primase and helicase domains of different families. The correlation analysis further indicated strong functional dependencies of domains in the bifunctional proteins that are part of smaller genomes and plasmids. Bifunctional proteins found in some bacterial genomes exhibited weak coevolution probably suggesting that these are the non-functional remnants of the proteins acquired via horizontal transfer. We have put forward possible scenarios for the origin of primase-helicase bifunctional proteins in large eukaryotic DNA viruses and virophages.
Collapse
Affiliation(s)
- Ankita Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Supriya Patil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Ramya Vijayakumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Kiran Kondabagil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|
226
|
Mueller L, Bertelli C, Pillonel T, Salamin N, Greub G. One Year Genome Evolution of Lausannevirus in Allopatric versus Sympatric Conditions. Genome Biol Evol 2017; 9:1432-1449. [PMID: 28525571 PMCID: PMC5513546 DOI: 10.1093/gbe/evx074] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2017] [Indexed: 02/07/2023] Open
Abstract
Amoeba-resisting microorganisms raised a great interest during the last decade. Among them, some large DNA viruses present huge genomes up to 2.5 Mb long, exceeding the size of small bacterial genomes. The rate of genome evolution in terms of mutation, deletion, and gene acquisition in these genomes is yet unknown. Given the suspected high plasticity of viral genomes, the microevolution of the 346 kb genome of Lausannevirus, a member of Megavirales, was studied. Hence, Lausannevirus was co-cultured within the amoeba Acanthamoeba castellanii over one year. Despite a low number of mutations, the virus showed a genome reduction of 3.7% after 12 months. Lausannevirus genome evolution in sympatric conditions was investigated by its co-culture with Estrella lausannensis, an obligate intracellular bacterium, in the amoeba A. castellanii during one year. Cultures were split every 3 months. Genome sequencing revealed that in these conditions both, Lausannevirus and E. lausannensis, show stable genome, presenting no major rearrangement. In fact, after one year they acquired from 2 to 7 and from 4 to 10 mutations per culture for Lausannevirus and E. lausannensis, respectively. Interestingly, different mutations in the endonuclease encoding genes of Lausannevirus were observed in different subcultures, highlighting the importance of this gene product in the replication of Lausannevirus. Conversely, mutations in E. lausannensis were mainly located in a gene encoding for a phosphoenolpyruvate–protein phosphotransferase (PtsI), implicated in sugar metabolism. Moreover, in our conditions and with our analyses we detected no horizontal gene transfer during one year of co-culture.
Collapse
Affiliation(s)
- Linda Mueller
- Center for Research on Intracellular Bacteria (CRIB), Institute of Microbiology, Lausanne University Hospital, and University of Lausanne, Switzerland
| | - Claire Bertelli
- Center for Research on Intracellular Bacteria (CRIB), Institute of Microbiology, Lausanne University Hospital, and University of Lausanne, Switzerland.,SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Trestan Pillonel
- Center for Research on Intracellular Bacteria (CRIB), Institute of Microbiology, Lausanne University Hospital, and University of Lausanne, Switzerland
| | - Nicolas Salamin
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Department of Ecology and Evolution, Biophore, University of Lausanne, Switzerland
| | - Gilbert Greub
- Center for Research on Intracellular Bacteria (CRIB), Institute of Microbiology, Lausanne University Hospital, and University of Lausanne, Switzerland
| |
Collapse
|
227
|
Filling Knowledge Gaps for Mimivirus Entry, Uncoating, and Morphogenesis. J Virol 2017; 91:JVI.01335-17. [PMID: 28878069 DOI: 10.1128/jvi.01335-17] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 08/23/2017] [Indexed: 12/31/2022] Open
Abstract
Since the discovery of mimivirus, its unusual structural and genomic features have raised great interest in the study of its biology; however, many aspects concerning its replication cycle remain uncertain. In this study, extensive analyses of electron microscope images, as well as biological assay results, shed light on unclear points concerning the mimivirus replication cycle. We found that treatment with cytochalasin, a phagocytosis inhibitor, negatively impacted the incorporation of mimivirus particles by Acanthamoeba castellanii, causing a negative effect on viral growth in amoeba monolayers. Treatment of amoebas with bafilomicin significantly impacted mimivirus uncoating and replication. In conjunction with microscopic analyses, these data suggest that mimiviruses indeed depend on phagocytosis for entry into amoebas, and particle uncoating (and stargate opening) appears to be dependent on phagosome acidification. In-depth analyses of particle morphogenesis suggest that the mimivirus capsids are assembled from growing lamellar structures. Despite proposals from previous studies that genome acquisition occurs before the acquisition of fibrils, our results clearly demonstrate that the genome and fibrils can be acquired simultaneously. Our data suggest the existence of a specific area surrounding the core of the viral factory where particles acquire the surface fibrils. Furthermore, we reinforce the concept that defective particles can be formed even in the absence of virophages. Our work provides new information about unexplored steps in the life cycle of mimivirus.IMPORTANCE Investigating the viral life cycle is essential to a better understanding of virus biology. The combination of biological assays and microscopic images allows a clear view of the biological features of viruses. Since the discovery of mimivirus, many studies have been conducted to characterize its replication cycle, but many knowledge gaps remain to be filled. In this study, we conducted a new examination of the replication cycle of mimivirus and provide new evidence concerning some stages of the cycle which were previously unclear, mainly entry, uncoating, and morphogenesis. Furthermore, we demonstrate that atypical virion morphologies can occur even in the absence of virophages. Our results, along with previous data, allow us to present an ultimate model for the mimivirus replication cycle.
Collapse
|
228
|
Okamoto K, Miyazaki N, Song C, Maia FRNC, Reddy HKN, Abergel C, Claverie JM, Hajdu J, Svenda M, Murata K. Structural variability and complexity of the giant Pithovirus sibericum particle revealed by high-voltage electron cryo-tomography and energy-filtered electron cryo-microscopy. Sci Rep 2017; 7:13291. [PMID: 29038566 PMCID: PMC5643343 DOI: 10.1038/s41598-017-13390-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 09/22/2017] [Indexed: 12/23/2022] Open
Abstract
The Pithoviridae giant virus family exhibits the largest viral particle known so far, a prolate spheroid up to 2.5 μm in length and 0.9 μm in diameter. These particles show significant variations in size. Little is known about the structure of the intact virion due to technical limitations with conventional electron cryo-microscopy (cryo-EM) when imaging thick specimens. Here we present the intact structure of the giant Pithovirus sibericum particle at near native conditions using high-voltage electron cryo-tomography (cryo-ET) and energy-filtered cryo-EM. We detected a previously undescribed low-density outer layer covering the tegument and a periodical structuring of the fibres in the striated apical cork. Energy-filtered Zernike phase-contrast cryo-EM images show distinct substructures inside the particles, implicating an internal compartmentalisation. The density of the interior volume of Pithovirus particles is three quarters lower than that of the Mimivirus. However, it is remarkably high given that the 600 kbp Pithovirus genome is only half the size of the Mimivirus genome and is packaged in a volume up to 100 times larger. These observations suggest that the interior is densely packed with macromolecules in addition to the genomic nucleic acid.
Collapse
Affiliation(s)
- Kenta Okamoto
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124, Uppsala, Sweden.
| | - Naoyuki Miyazaki
- National Institute for Physiological Sciences (NIPS), Okazaki, Aichi, 444-8585, Japan
| | - Chihong Song
- National Institute for Physiological Sciences (NIPS), Okazaki, Aichi, 444-8585, Japan
| | - Filipe R N C Maia
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124, Uppsala, Sweden
| | - Hemanth K N Reddy
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124, Uppsala, Sweden
| | - Chantal Abergel
- Structural and Genomic Information Laboratory, UMR 7256 (IMM FR 3479) Centre National de la Recherche Scientifique & Aix-Marseille University, Marseille, 13288, France
| | - Jean-Michel Claverie
- Structural and Genomic Information Laboratory, UMR 7256 (IMM FR 3479) Centre National de la Recherche Scientifique & Aix-Marseille University, Marseille, 13288, France.,Assistance Publique des Hôpitaux de Marseille. La Timone, 13005, Marseille, France
| | - Janos Hajdu
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124, Uppsala, Sweden.,Institute of Physics AS CR, v.v.i., Na Slovance 2, 18221, Prague 8, Czech Republic
| | - Martin Svenda
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124, Uppsala, Sweden
| | - Kazuyoshi Murata
- National Institute for Physiological Sciences (NIPS), Okazaki, Aichi, 444-8585, Japan.
| |
Collapse
|
229
|
A Next-Generation Sequencing Approach Uncovers Viral Transcripts Incorporated in Poxvirus Virions. Viruses 2017; 9:v9100296. [PMID: 29027916 PMCID: PMC5691647 DOI: 10.3390/v9100296] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 12/04/2022] Open
Abstract
Transcripts are known to be incorporated in particles of DNA viruses belonging to the families of Herpesviridae and Mimiviridae, but the presence of transcripts in other DNA viruses, such as poxviruses, has not been analyzed yet. Therefore, we first established a next-generation-sequencing (NGS)-based protocol, enabling the unbiased identification of transcripts in virus particles. Subsequently, we applied our protocol to analyze RNA in an emerging zoonotic member of the Poxviridae family, namely Cowpox virus. Our results revealed the incorporation of 19 viral transcripts, while host identifications were restricted to ribosomal and mitochondrial RNA. Most viral transcripts had an unknown and immunomodulatory function, suggesting that transcript incorporation may be beneficial for poxvirus immune evasion. Notably, the most abundant transcript originated from the D5L/I1R gene that encodes a viral inhibitor of the host cytoplasmic DNA sensing machinery.
Collapse
|
230
|
van der Gulik PTS, Hoff WD, Speijer D. In defence of the three-domains of life paradigm. BMC Evol Biol 2017; 17:218. [PMID: 28927381 PMCID: PMC5604501 DOI: 10.1186/s12862-017-1059-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 09/01/2017] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Recently, important discoveries regarding the archaeon that functioned as the "host" in the merger with a bacterium that led to the eukaryotes, its "complex" nature, and its phylogenetic relationship to eukaryotes, have been reported. Based on these new insights proposals have been put forward to get rid of the three-domain Model of life, and replace it with a two-domain model. RESULTS We present arguments (both regarding timing, complexity, and chemical nature of specific evolutionary processes, as well as regarding genetic structure) to resist such proposals. The three-domain Model represents an accurate description of the differences at the most fundamental level of living organisms, as the eukaryotic lineage that arose from this unique merging event is distinct from both Archaea and Bacteria in a myriad of crucial ways. CONCLUSIONS We maintain that "a natural system of organisms", as proposed when the three-domain Model of life was introduced, should not be revised when considering the recent discoveries, however exciting they may be.
Collapse
Affiliation(s)
- P T S van der Gulik
- Centrum Wiskunde & Informatica, P.O. Box 94079, 1090 GB Amsterdam, Amsterdam, The Netherlands.
| | - W D Hoff
- Department of Microbiology and Molecular Genetics and Department of Chemistry, Oklahoma State University, Stillwater, OK, 74078, USA
| | - D Speijer
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
231
|
Bertelli C, Mueller L, Thomas V, Pillonel T, Jacquier N, Greub G. Cedratvirus lausannensis - digging into Pithoviridae diversity. Environ Microbiol 2017; 19:4022-4034. [PMID: 28618143 DOI: 10.1111/1462-2920.13813] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/24/2017] [Accepted: 05/30/2017] [Indexed: 12/13/2022]
Abstract
Amoeba-infecting viruses have raised scientists' interest due to their novel particle morphologies, their large genome size and their genomic content challenging previously established dogma. We report here the discovery and the characterization of Cedratvirus lausannensis, a novel member of the Megavirales, with a 0.75-1 µm long amphora-shaped particle closed by two striped plugs. Among numerous host cell types tested, the virus replicates only in Acanthamoeba castellanii leading to host cell lysis within 24 h. C. lausannensis was resistant to ethanol, hydrogen peroxide and heating treatments. Like 30 000-year-old Pithovirus sibericum, C. lausannensis enters by phagocytosis, releases its genetic content by fusion of the internal membrane with the inclusion membrane and replicates in intracytoplasmic viral factories. The genome encodes 643 proteins that confirmed the grouping of C. lausannensis with Cedratvirus A11 as phylogenetically distant members of the family Pithoviridae. The 575,161 bp AT-rich genome is essentially devoid of the numerous repeats harbored by Pithovirus, suggesting that these non-coding repetitions might be due to a selfish element rather than particular characteristics of the Pithoviridae family. The discovery of C. lausannensis confirms the contemporary worldwide distribution of Pithoviridae members and the characterization of its genome paves the way to better understand their evolution.
Collapse
Affiliation(s)
- Claire Bertelli
- Institute of Microbiology, University Hospital Center and University of Lausanne, 1011 Lausanne, Switzerland.,SIB Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| | - Linda Mueller
- Institute of Microbiology, University Hospital Center and University of Lausanne, 1011 Lausanne, Switzerland
| | - Vincent Thomas
- Technology Research Institute Bioaster, 28, Rue du Docteur Roux, Paris, 75015, France
| | - Trestan Pillonel
- Institute of Microbiology, University Hospital Center and University of Lausanne, 1011 Lausanne, Switzerland
| | - Nicolas Jacquier
- Institute of Microbiology, University Hospital Center and University of Lausanne, 1011 Lausanne, Switzerland
| | - Gilbert Greub
- Institute of Microbiology, University Hospital Center and University of Lausanne, 1011 Lausanne, Switzerland
| |
Collapse
|
232
|
Disentangling the origins of virophages and polintons. Curr Opin Virol 2017; 25:59-65. [PMID: 28802203 DOI: 10.1016/j.coviro.2017.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/10/2017] [Accepted: 07/14/2017] [Indexed: 01/04/2023]
Abstract
Virophages and polintons are part of a complex system that also involves eukaryotes, giant viruses, as well as other viruses and transposable elements. Virophages are cosmopolitan, being found in environments ranging from the Amazon River to Antarctic hypersaline lakes, while polintons are found in many single celled and multicellular eukaryotes. Virophages and polintons have a shared ancestry, but their exact origins are unknown and obscured by antiquity and extensive horizontal gene transfer (HGT). Paleovirology can help disentangle the complicated gene flow between these two, as well as their giant viral and eukaryotic hosts. We outline the evidence and theoretical support for polintons being descended from viruses and not vice versa. In order to disentangle the natural history of polintons and virophages, we suggest that there is much to be gained by embracing rigorous metagenomics and evolutionary analyses. Methods from paleovirology will play a pivotal role in unravelling ancient relationships, HGT and patterns of cross-species transmission.
Collapse
|
233
|
Kwon E, Pathak D, Chang HW, Kim DY. Crystal structure of mimivirus uracil-DNA glycosylase. PLoS One 2017; 12:e0182382. [PMID: 28763516 PMCID: PMC5538708 DOI: 10.1371/journal.pone.0182382] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/17/2017] [Indexed: 01/28/2023] Open
Abstract
Cytosine deamination induced by stresses or enzymatic catalysis converts deoxycytidine into deoxyuridine, thereby introducing a G to A mutation after DNA replication. Base-excision repair to correct uracil to cytosine is initiated by uracil-DNA glycosylase (UDG), which recognizes and eliminates uracil from DNA. Mimivirus, one of the largest known viruses, also encodes a distinctive UDG gene containing a long N-terminal domain (N-domain; residues 1–130) and a motif-I (residues 327–343), in addition to the canonical catalytic domain of family I UDGs (also called UNGs). To understand the structural and functional features of the additional segments, we have determined the crystal structure of UNG from Acanthamoeba polyphaga mimivirus (mvUNG). In the crystal structure of mvUNG, residues 95–130 in the N-domain bind to a hydrophobic groove in the catalytic domain, and motif-I forms a short β-sheet with a positively charged surface near the active site. Circular dichroism spectra showed that residues 1–94 are in a random coil conformation. Deletion of the three additional fragments reduced the activity and thermal stability, compared to full-length mvUNG. The results suggested that the mvUNG N-domain and motif-I are required for its structural and functional integrity.
Collapse
Affiliation(s)
- Eunju Kwon
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, South Korea
| | - Deepak Pathak
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, South Korea
| | - Hyeun Wook Chang
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, South Korea
| | - Dong Young Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, South Korea
- * E-mail:
| |
Collapse
|
234
|
Colson P, La Scola B, Raoult D. Giant Viruses of Amoebae: A Journey Through Innovative Research and Paradigm Changes. Annu Rev Virol 2017; 4:61-85. [PMID: 28759330 DOI: 10.1146/annurev-virology-101416-041816] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Giant viruses of amoebae were discovered serendipitously in 2003; they are visible via optical microscopy, making them bona fide microbes. Their lifestyle, structure, and genomes break the mold of classical viruses. Giant viruses of amoebae are complex microorganisms. Their genomes harbor between 444 and 2,544 genes, including many that are unique to viruses, and encode translation components; their virions contain >100 proteins as well as mRNAs. Mimiviruses have a specific mobilome, including virophages, provirophages, and transpovirons, and can resist virophages through a system known as MIMIVIRE (mimivirus virophage resistance element). Giant viruses of amoebae bring upheaval to the definition of viruses and tend to separate the current virosphere into two categories: very simple viruses and viruses with complexity similar to that of other microbes. This new paradigm is propitious for enhanced detection and characterization of giant viruses of amoebae, and a particular focus on their role in humans is warranted.
Collapse
Affiliation(s)
- Philippe Colson
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), Aix Marseille Université, UM63, CNRS 7278, IRD 198, INSERM 1095, Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille (AP-HM), 13005 Marseille, France;
| | - Bernard La Scola
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), Aix Marseille Université, UM63, CNRS 7278, IRD 198, INSERM 1095, Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille (AP-HM), 13005 Marseille, France;
| | - Didier Raoult
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), Aix Marseille Université, UM63, CNRS 7278, IRD 198, INSERM 1095, Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille (AP-HM), 13005 Marseille, France;
| |
Collapse
|
235
|
Cryo-EM reconstruction of the Cafeteria roenbergensis virus capsid suggests novel assembly pathway for giant viruses. Sci Rep 2017; 7:5484. [PMID: 28710447 PMCID: PMC5511168 DOI: 10.1038/s41598-017-05824-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 06/02/2017] [Indexed: 11/09/2022] Open
Abstract
Whereas the protein composition and overall shape of several giant virus capsids have been described, the mechanism by which these large capsids assemble remains enigmatic. Here, we present a reconstruction of the capsid of Cafeteria roenbergensis virus (CroV), one of the largest viruses analyzed by cryo-electron microscopy (cryo-EM) to date. The CroV capsid has a diameter of 3,000 Å and a Triangulation number of 499. Unlike related mimiviruses, the CroV capsid is not decorated with glycosylated surface fibers, but features 30 Å-long surface protrusions that are formed by loops of the major capsid protein. Based on the orientation of capsomers in the cryo-EM reconstruction, we propose that the capsids of CroV and related giant viruses are assembled by a newly conceived assembly pathway that initiates at a five-fold vertex and continuously proceeds outwards in a spiraling fashion.
Collapse
|
236
|
Chatterjee A, Kondabagil K. Complete genome sequence of Kurlavirus, a novel member of the family Marseilleviridae isolated in Mumbai, India. Arch Virol 2017; 162:3243-3245. [PMID: 28685284 DOI: 10.1007/s00705-017-3469-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/20/2017] [Indexed: 11/24/2022]
Abstract
The complete genome sequence of Kurlavirus, a new member of the family Marseilleviridae is reported. The Kurlavirus genome was found to encode a remarkable complement of genes homologous to those of other members of the family Marseilleviridae. Interestingly, the Kurlavirus genome contains 71 fewer ORFs than that of Marseillevirus, even though their genome sizes are comparable.
Collapse
Affiliation(s)
- Anirvan Chatterjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, 400076, India
| | - Kiran Kondabagil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, 400076, India.
| |
Collapse
|
237
|
Abstract
Viruses are incapable of autonomous energy production. Although many experimental studies make it clear that viruses are parasitic entities that hijack the molecular resources of the host, a detailed estimate for the energetic cost of viral synthesis is largely lacking. To quantify the energetic cost of viruses to their hosts, we enumerated the costs associated with two very distinct but representative DNA and RNA viruses, namely, T4 and influenza. We found that, for these viruses, translation of viral proteins is the most energetically expensive process. Interestingly, the costs of building a T4 phage and a single influenza virus are nearly the same. Due to influenza's higher burst size, however, the overall cost of a T4 phage infection is only 2-3% of the cost of an influenza infection. The costs of these infections relative to their host's estimated energy budget during the infection reveal that a T4 infection consumes about a third of its host's energy budget, whereas an influenza infection consumes only ≈ 1%. Building on our estimates for T4, we show how the energetic costs of double-stranded DNA phages scale with the capsid size, revealing that the dominant cost of building a virus can switch from translation to genome replication above a critical size. Last, using our predictions for the energetic cost of viruses, we provide estimates for the strengths of selection and genetic drift acting on newly incorporated genetic elements in viral genomes, under conditions of energy limitation.
Collapse
Affiliation(s)
- Gita Mahmoudabadi
- Department of Bioengineering, California Institute of Technology, Pasadena, CA 91125
| | - Ron Milo
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Rob Phillips
- Department of Bioengineering, California Institute of Technology, Pasadena, CA 91125;
- Department of Applied Physics, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
238
|
Deciphering Heteroresistance to Colistin in a Klebsiella pneumoniae Isolate from Marseille, France. Antimicrob Agents Chemother 2017; 61:AAC.00356-17. [PMID: 28416544 DOI: 10.1128/aac.00356-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/06/2017] [Indexed: 11/20/2022] Open
Abstract
Here, we report the description of a colistin-heteroresistant Klebsiella pneumoniae isolate fortuitously isolated from the stool sample of a patient with suspicion of tuberculosis in a public hospital of Marseille, France. In the colistin-resistant subpopulation, a mutation in the mgrB gene leading to a premature stop codon was found, and the hypermucoviscous phenotype was lost. Susceptibility to other antibiotics remained unchanged. To our knowledge, this is the first identification of such a colistin-heteroresistant Klebsiella pneumoniae isolate in France.
Collapse
|
239
|
Abstract
We see the last universal common ancestor of all living organisms, or LUCA, at the evolutionary separation of the Archaea from the Eubacteria, and before the symbiotic event believed to have led to the Eukarya. LUCA is often implicitly taken to be close to the origin of life, and sometimes this is even stated explicitly. However, LUCA already had the capacity to code for many proteins, and had some of the same bioenergetic capacities as modern organisms. An organism at the origin of life must have been vastly simpler, and this invites the question of how to define a living organism. Even if acceptance of the giant viruses as living organisms forces the definition of LUCA to be revised, it will not alter the essential point that LUCA should be regarded as a recent player in the evolution of life.
Collapse
|
240
|
|
241
|
Jain S, Panda A, Colson P, Raoult D, Pontarotti P. MimiLook: A Phylogenetic Workflow for Detection of Gene Acquisition in Major Orthologous Groups of Megavirales. Viruses 2017; 9:v9040072. [PMID: 28387730 PMCID: PMC5408678 DOI: 10.3390/v9040072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/03/2017] [Accepted: 04/03/2017] [Indexed: 12/20/2022] Open
Abstract
With the inclusion of new members, understanding about evolutionary mechanisms and processes by which members of the proposed order, Megavirales, have evolved has become a key area of interest. The central role of gene acquisition has been shown in previous studies. However, the major drawback in gene acquisition studies is the focus on few MV families or putative families with large variation in their genetic structure. Thus, here we have tried to develop a methodology by which we can detect horizontal gene transfers (HGTs), taking into consideration orthologous groups of distantly related Megavirale families. Here, we report an automated workflow MimiLook, prepared as a Perl command line program, that deduces orthologous groups (OGs) from ORFomes of Megavirales and constructs phylogenetic trees by performing alignment generation, alignment editing and protein-protein BLAST (BLASTP) searching across the National Center for Biotechnology Information (NCBI) non-redundant (nr) protein sequence database. Finally, this tool detects statistically validated events of gene acquisitions with the help of the T-REX algorithm by comparing individual gene tree with NCBI species tree. In between the steps, the workflow decides about handling paralogs, filtering outputs, identifying Megavirale specific OGs, detection of HGTs, along with retrieval of information about those OGs that are monophyletic with organisms from cellular domains of life. By implementing MimiLook, we noticed that nine percent of Megavirale gene families (i.e., OGs) have been acquired by HGT, 80% OGs were Megaviralespecific and eight percent were found to be sharing common ancestry with members of cellular domains (Eukaryote, Bacteria, Archaea, Phages or other viruses) and three percent were ambivalent. The results are briefly discussed to emphasize methodology. Also, MimiLook is relevant for detecting evolutionary scenarios in other targeted phyla with user defined modifications. It can be accessed at following link 10.6084/m9.figshare.4653622.
Collapse
Affiliation(s)
- Sourabh Jain
- Aix-Marseille Université, Ecole Centrale de Marseille, I2M UMR 7373, CNRS équipe Evolution Biologique et Modélisation, 13284 Marseille, France.
- Aix-Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63 CNRS 7278 INSERM U1095IRD 198, Faculté de Médecine, 13284 Marseille, France.
| | - Arup Panda
- Aix-Marseille Université, Ecole Centrale de Marseille, I2M UMR 7373, CNRS équipe Evolution Biologique et Modélisation, 13284 Marseille, France.
- Aix-Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63 CNRS 7278 INSERM U1095IRD 198, Faculté de Médecine, 13284 Marseille, France.
| | - Philippe Colson
- Aix-Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63 CNRS 7278 INSERM U1095IRD 198, Faculté de Médecine, 13284 Marseille, France.
- IHU Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalo-universitaire Timone, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, 13385 Marseille, France.
| | - Didier Raoult
- Aix-Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63 CNRS 7278 INSERM U1095IRD 198, Faculté de Médecine, 13284 Marseille, France.
- IHU Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalo-universitaire Timone, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, 13385 Marseille, France.
| | - Pierre Pontarotti
- Aix-Marseille Université, Ecole Centrale de Marseille, I2M UMR 7373, CNRS équipe Evolution Biologique et Modélisation, 13284 Marseille, France.
| |
Collapse
|
242
|
Wilhelm SW, Bird JT, Bonifer KS, Calfee BC, Chen T, Coy SR, Gainer PJ, Gann ER, Heatherly HT, Lee J, Liang X, Liu J, Armes AC, Moniruzzaman M, Rice JH, Stough JMA, Tams RN, Williams EP, LeCleir GR. A Student's Guide to Giant Viruses Infecting Small Eukaryotes: From Acanthamoeba to Zooxanthellae. Viruses 2017; 9:E46. [PMID: 28304329 PMCID: PMC5371801 DOI: 10.3390/v9030046] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/07/2017] [Accepted: 03/09/2017] [Indexed: 12/15/2022] Open
Abstract
The discovery of infectious particles that challenge conventional thoughts concerning "what is a virus" has led to the evolution a new field of study in the past decade. Here, we review knowledge and information concerning "giant viruses", with a focus not only on some of the best studied systems, but also provide an effort to illuminate systems yet to be better resolved. We conclude by demonstrating that there is an abundance of new host-virus systems that fall into this "giant" category, demonstrating that this field of inquiry presents great opportunities for future research.
Collapse
Affiliation(s)
- Steven W Wilhelm
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| | - Jordan T Bird
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| | - Kyle S Bonifer
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| | - Benjamin C Calfee
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| | - Tian Chen
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| | - Samantha R Coy
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| | - P Jackson Gainer
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| | - Eric R Gann
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| | - Huston T Heatherly
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| | - Jasper Lee
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| | - Xiaolong Liang
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| | - Jiang Liu
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| | - April C Armes
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| | - Mohammad Moniruzzaman
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| | - J Hunter Rice
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| | - Joshua M A Stough
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| | - Robert N Tams
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| | - Evan P Williams
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| | - Gary R LeCleir
- The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
243
|
Piacente F, De Castro C, Jeudy S, Gaglianone M, Laugieri ME, Notaro A, Salis A, Damonte G, Abergel C, Tonetti MG. The rare sugar N-acetylated viosamine is a major component of Mimivirus fibers. J Biol Chem 2017; 292:7385-7394. [PMID: 28314774 DOI: 10.1074/jbc.m117.783217] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/16/2017] [Indexed: 12/13/2022] Open
Abstract
The giant virus Mimivirus encodes an autonomous glycosylation system that is thought to be responsible for the formation of complex and unusual glycans composing the fibers surrounding its icosahedral capsid, including the dideoxyhexose viosamine. Previous studies have identified a gene cluster in the virus genome, encoding enzymes involved in nucleotide-sugar production and glycan formation, but the functional characterization of these enzymes and the full identification of the glycans found in viral fibers remain incomplete. Because viosamine is typically found in acylated forms, we suspected that one of the genes might encode an acyltransferase, providing directions to our functional annotations. Bioinformatic analyses indicated that the L142 protein contains an N-terminal acyltransferase domain and a predicted C-terminal glycosyltransferase. Sequence analysis of the structural model of the L142 N-terminal domain indicated significant homology with some characterized sugar acetyltransferases that modify the C-4 amino group in the bacillosamine or perosamine biosynthetic pathways. Using mass spectrometry and NMR analyses, we confirmed that the L142 N-terminal domain is a sugar acetyltransferase, catalyzing the transfer of an acetyl moiety from acetyl-CoA to the C-4 amino group of UDP-d-viosamine. The presence of acetylated viosamine in vivo has also been confirmed on the glycosylated viral fibers, using GC-MS and NMR. This study represents the first report of a virally encoded sugar acetyltransferase.
Collapse
Affiliation(s)
- Francesco Piacente
- From the Department of Experimental Medicine and Center of Excellence for Biomedical Research, University of Genova, 16126 Genova, Italy
| | | | - Sandra Jeudy
- the Aix-Marseille Université, Centre National de la Recherche Scientifique, Information Génomique et Structurale, UMR 7256, IMM FR3479, 13288 Marseille Cedex 9, France
| | - Matteo Gaglianone
- From the Department of Experimental Medicine and Center of Excellence for Biomedical Research, University of Genova, 16126 Genova, Italy
| | - Maria Elena Laugieri
- From the Department of Experimental Medicine and Center of Excellence for Biomedical Research, University of Genova, 16126 Genova, Italy
| | - Anna Notaro
- the Aix-Marseille Université, Centre National de la Recherche Scientifique, Information Génomique et Structurale, UMR 7256, IMM FR3479, 13288 Marseille Cedex 9, France.,Chemical Sciences, University of Napoli, 80138 Napoli, Italy, and
| | - Annalisa Salis
- From the Department of Experimental Medicine and Center of Excellence for Biomedical Research, University of Genova, 16126 Genova, Italy
| | - Gianluca Damonte
- From the Department of Experimental Medicine and Center of Excellence for Biomedical Research, University of Genova, 16126 Genova, Italy
| | - Chantal Abergel
- the Aix-Marseille Université, Centre National de la Recherche Scientifique, Information Génomique et Structurale, UMR 7256, IMM FR3479, 13288 Marseille Cedex 9, France
| | - Michela G Tonetti
- From the Department of Experimental Medicine and Center of Excellence for Biomedical Research, University of Genova, 16126 Genova, Italy,
| |
Collapse
|
244
|
Weynberg KD, Allen MJ, Wilson WH. Marine Prasinoviruses and Their Tiny Plankton Hosts: A Review. Viruses 2017; 9:E43. [PMID: 28294997 PMCID: PMC5371798 DOI: 10.3390/v9030043] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/04/2017] [Accepted: 03/08/2017] [Indexed: 12/29/2022] Open
Abstract
Viruses play a crucial role in the marine environment, promoting nutrient recycling and biogeochemical cycling and driving evolutionary processes. Tiny marine phytoplankton called prasinophytes are ubiquitous and significant contributors to global primary production and biomass. A number of viruses (known as prasinoviruses) that infect these important primary producers have been isolated and characterised over the past decade. Here we review the current body of knowledge about prasinoviruses and their interactions with their algal hosts. Several genes, including those encoding for glycosyltransferases, methyltransferases and amino acid synthesis enzymes, which have never been identified in viruses of eukaryotes previously, have been detected in prasinovirus genomes. The host organisms are also intriguing; most recently, an immunity chromosome used by a prasinophyte in response to viral infection was discovered. In light of such recent, novel discoveries, we discuss why the cellular simplicity of prasinophytes makes for appealing model host organism-virus systems to facilitate focused and detailed investigations into the dynamics of marine viruses and their intimate associations with host species. We encourage the adoption of the prasinophyte Ostreococcus and its associated viruses as a model host-virus system for examination of cellular and molecular processes in the marine environment.
Collapse
Affiliation(s)
- Karen D Weynberg
- Australian Institute of Marine Science, PMB 3, Townsville, Queensland 4810, Australia.
| | - Michael J Allen
- Plymouth Marine Laboratory, Prospect Place, Plymouth PL1 3DH, UK.
| | - William H Wilson
- Sir Alister Hardy Foundation for Ocean Science, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK.
| |
Collapse
|
245
|
López-García P, Eme L, Moreira D. Symbiosis in eukaryotic evolution. J Theor Biol 2017; 434:20-33. [PMID: 28254477 DOI: 10.1016/j.jtbi.2017.02.031] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 02/19/2017] [Accepted: 02/25/2017] [Indexed: 01/27/2023]
Abstract
Fifty years ago, Lynn Margulis, inspiring in early twentieth-century ideas that put forward a symbiotic origin for some eukaryotic organelles, proposed a unified theory for the origin of the eukaryotic cell based on symbiosis as evolutionary mechanism. Margulis was profoundly aware of the importance of symbiosis in the natural microbial world and anticipated the evolutionary significance that integrated cooperative interactions might have as mechanism to increase cellular complexity. Today, we have started fully appreciating the vast extent of microbial diversity and the importance of syntrophic metabolic cooperation in natural ecosystems, especially in sediments and microbial mats. Also, not only the symbiogenetic origin of mitochondria and chloroplasts has been clearly demonstrated, but improvement in phylogenomic methods combined with recent discoveries of archaeal lineages more closely related to eukaryotes further support the symbiogenetic origin of the eukaryotic cell. Margulis left us in legacy the idea of 'eukaryogenesis by symbiogenesis'. Although this has been largely verified, when, where, and specifically how eukaryotic cells evolved are yet unclear. Here, we shortly review current knowledge about symbiotic interactions in the microbial world and their evolutionary impact, the status of eukaryogenetic models and the current challenges and perspectives ahead to reconstruct the evolutionary path to eukaryotes.
Collapse
Affiliation(s)
- Purificación López-García
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, 91400 Orsay, France.
| | - Laura Eme
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada NS B3H 4R2
| | - David Moreira
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, 91400 Orsay, France
| |
Collapse
|
246
|
The "Giant Virus Finder" discovers an abundance of giant viruses in the Antarctic dry valleys. Arch Virol 2017; 162:1671-1676. [PMID: 28247094 DOI: 10.1007/s00705-017-3286-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/02/2016] [Indexed: 12/20/2022]
Abstract
Mimivirus was identified in 2003 from a biofilm of an industrial water-cooling tower in England. Later, numerous new giant viruses were found in oceans and freshwater habitats, some of them having 2,500 genes. We have demonstrated their likely presence in four soil samples taken from the Kutch Desert (Gujarat, India). Here we describe a bioinformatics work-flow, called the "Giant Virus Finder" that is capable of discovering the likely presence of the genomes of giant viruses in metagenomic shotgun-sequenced datasets. The new workflow is applied to numerous hot and cold desert soil samples as well as some tundra- and forest soils. We show that most of these samples contain giant viruses, especially in the Antarctic dry valleys. The results imply that giant viruses could be frequent not only in aqueous habitats, but in a wide spectrum of soils on our planet.
Collapse
|
247
|
Colson P, La Scola B, Levasseur A, Caetano-Anollés G, Raoult D. Mimivirus: leading the way in the discovery of giant viruses of amoebae. Nat Rev Microbiol 2017; 15:243-254. [PMID: 28239153 PMCID: PMC7096837 DOI: 10.1038/nrmicro.2016.197] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Acanthamoeba polyphaga mimivirus (APMV) and subsequently discovered giant viruses of amoebae challenge the previous definition of viruses and their classification. The replication cycle, structure, genomic make-up and plasticity of giant viruses differ from those of traditional viruses. They extend the definition of viruses into a broader range of biological entities, some of which are very simple and others of which have a complexity that is comparable to that of other microorganisms. Giant viruses of amoebae have virus particles as large as some microorganisms that are visible by light microscopy and that have a stunning level of complexity. Their genomes are mosaics and contain large repertoires of genes, some of which are hallmarks of cellular organisms, although the majority of which have unknown functions. Mimiviruses are associated with a specific mobilome and are parasitized by viruses that they can defend against. Several hypotheses on the ancient origin and evolutionary relationship between cellular organisms and giant viruses of amoebae have been proposed, and these topics continue to be debated. The detection of giant viruses of amoebae in humans and the study of their potential pathogenicity are emerging fields.
The discovery of the giant amoebal virus mimivirus, in 2003, opened up a new area of virology. Extended studies, including those of mimiviruses, have since revealed that these viruses have genetic, proteomic and structural features that are more complex than those of conventional viruses. The accidental discovery of the giant virus of amoeba — Acanthamoeba polyphaga mimivirus (APMV; more commonly known as mimivirus) — in 2003 changed the field of virology. Viruses were previously defined by their submicroscopic size, which probably prevented the search for giant viruses, which are visible by light microscopy. Extended studies of giant viruses of amoebae revealed that they have genetic, proteomic and structural complexities that were not thought to exist among viruses and that are comparable to those of bacteria, archaea and small eukaryotes. The giant virus particles contain mRNA and more than 100 proteins, they have gene repertoires that are broader than those of other viruses and, notably, some encode translation components. The infection cycles of giant viruses of amoebae involve virus entry by amoebal phagocytosis and replication in viral factories. In addition, mimiviruses are infected by virophages, defend against them through the mimivirus virophage resistance element (MIMIVIRE) system and have a unique mobilome. Overall, giant viruses of amoebae, including mimiviruses, marseilleviruses, pandoraviruses, pithoviruses, faustoviruses and molliviruses, challenge the definition and classification of viruses, and have increasingly been detected in humans.
Collapse
Affiliation(s)
- Philippe Colson
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), Aix-Marseille University, UM63, CNRS 7278, IRD 198, INSERM 1095, Institut Hospitalo-Universitaire (IHU) - Méditerranée Infection, AP-HM, 19-21 Boulevard Jean Moulin, 13385 Marseille, France
| | - Bernard La Scola
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), Aix-Marseille University, UM63, CNRS 7278, IRD 198, INSERM 1095, Institut Hospitalo-Universitaire (IHU) - Méditerranée Infection, AP-HM, 19-21 Boulevard Jean Moulin, 13385 Marseille, France
| | - Anthony Levasseur
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), Aix-Marseille University, UM63, CNRS 7278, IRD 198, INSERM 1095, Institut Hospitalo-Universitaire (IHU) - Méditerranée Infection, AP-HM, 19-21 Boulevard Jean Moulin, 13385 Marseille, France
| | - Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois, 332 National Soybean Research Center, 1101 West Peabody Drive, Urbana, Illinois 61801, USA
| | - Didier Raoult
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), Aix-Marseille University, UM63, CNRS 7278, IRD 198, INSERM 1095, Institut Hospitalo-Universitaire (IHU) - Méditerranée Infection, AP-HM, 19-21 Boulevard Jean Moulin, 13385 Marseille, France
| |
Collapse
|
248
|
Abrahão JS, Araújo R, Colson P, La Scola B. The analysis of translation-related gene set boosts debates around origin and evolution of mimiviruses. PLoS Genet 2017; 13:e1006532. [PMID: 28207761 PMCID: PMC5313130 DOI: 10.1371/journal.pgen.1006532] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The giant mimiviruses challenged the well-established concept of viruses, blurring the roots of the tree of life, mainly due to their genetic content. Along with other nucleo-cytoplasmic large DNA viruses, they compose a new proposed order-named Megavirales-whose origin and evolution generate heated debate in the scientific community. The presence of an arsenal of genes not widespread in the virosphere related to important steps of the translational process, including transfer RNAs, aminoacyl-tRNA synthetases, and translation factors for peptide synthesis, constitutes an important element of this debate. In this review, we highlight the main findings to date about the translational machinery of the mimiviruses and compare their distribution along the distinct members of the family Mimiviridae. Furthermore, we discuss how the presence and/or absence of the translation-related genes among mimiviruses raises important insights to boost the debate on their origin and evolutionary history.
Collapse
Affiliation(s)
- Jônatas Santos Abrahão
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE) UM63 CNRS 7278 IRD 198 INSERM U1095, Aix-Marseille Univ., 27 boulevard Jean Moulin, Faculté de Médecine, Marseille, France.,Instituto de Ciências Biológicas, Departamento de Microbiologia, Laboratório de Vírus, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo Araújo
- Instituto de Ciências Biológicas, Departamento de Microbiologia, Laboratório de Vírus, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Philippe Colson
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE) UM63 CNRS 7278 IRD 198 INSERM U1095, Aix-Marseille Univ., 27 boulevard Jean Moulin, Faculté de Médecine, Marseille, France
| | - Bernard La Scola
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE) UM63 CNRS 7278 IRD 198 INSERM U1095, Aix-Marseille Univ., 27 boulevard Jean Moulin, Faculté de Médecine, Marseille, France
| |
Collapse
|
249
|
Schrad JR, Young EJ, Abrahão JS, Cortines JR, Parent KN. Microscopic Characterization of the Brazilian Giant Samba Virus. Viruses 2017; 9:v9020030. [PMID: 28216551 PMCID: PMC5332949 DOI: 10.3390/v9020030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/25/2017] [Accepted: 02/02/2017] [Indexed: 12/13/2022] Open
Abstract
Prior to the discovery of the mimivirus in 2003, viruses were thought to be physically small and genetically simple. Mimivirus, with its ~750-nm particle size and its ~1.2-Mbp genome, shattered these notions and changed what it meant to be a virus. Since this discovery, the isolation and characterization of giant viruses has exploded. One of the more recently discovered giant viruses, Samba virus, is a Mimivirus that was isolated from the Rio Negro in the Brazilian Amazon. Initial characterization of Samba has revealed some structural information, although the preparation techniques used are prone to the generation of structural artifacts. To generate more native-like structural information for Samba, we analyzed the virus through cryo-electron microscopy, cryo-electron tomography, scanning electron microscopy, and fluorescence microscopy. These microscopy techniques demonstrated that Samba particles have a capsid diameter of ~527 nm and a fiber length of ~155 nm, making Samba the largest Mimivirus yet characterized. We also compared Samba to a fiberless mimivirus variant. Samba particles, unlike those of mimivirus, do not appear to be rigid, and quasi-icosahedral, although the two viruses share many common features, including a multi-layered capsid and an asymmetric nucleocapsid, which may be common amongst the Mimiviruses.
Collapse
Affiliation(s)
- Jason R Schrad
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, 48824 MI, USA.
| | - Eric J Young
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, 48824 MI, USA.
| | - Jônatas S Abrahão
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901 Minas Gerais, Brazil.
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE) UM63 CNRS 7278 IRD 198 INSERM U1095, Aix-Marseille University, 13385 Marseille Cedex 05, France.
| | - Juliana R Cortines
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil.
| | - Kristin N Parent
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, 48824 MI, USA.
| |
Collapse
|
250
|
Oliveira GP, Andrade ACDSP, Rodrigues RAL, Arantes TS, Boratto PVM, Silva LKDS, Dornas FP, Trindade GDS, Drumond BP, La Scola B, Kroon EG, Abrahão JS. Promoter Motifs in NCLDVs: An Evolutionary Perspective. Viruses 2017; 9:v9010016. [PMID: 28117683 PMCID: PMC5294985 DOI: 10.3390/v9010016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/30/2016] [Accepted: 01/05/2017] [Indexed: 01/18/2023] Open
Abstract
For many years, gene expression in the three cellular domains has been studied in an attempt to discover sequences associated with the regulation of the transcription process. Some specific transcriptional features were described in viruses, although few studies have been devoted to understanding the evolutionary aspects related to the spread of promoter motifs through related viral families. The discovery of giant viruses and the proposition of the new viral order Megavirales that comprise a monophyletic group, named nucleo-cytoplasmic large DNA viruses (NCLDV), raised new questions in the field. Some putative promoter sequences have already been described for some NCLDV members, bringing new insights into the evolutionary history of these complex microorganisms. In this review, we summarize the main aspects of the transcription regulation process in the three domains of life, followed by a systematic description of what is currently known about promoter regions in several NCLDVs. We also discuss how the analysis of the promoter sequences could bring new ideas about the giant viruses’ evolution. Finally, considering a possible common ancestor for the NCLDV group, we discussed possible promoters’ evolutionary scenarios and propose the term “MEGA-box” to designate an ancestor promoter motif (‘TATATAAAATTGA’) that could be evolved gradually by nucleotides’ gain and loss and point mutations.
Collapse
Affiliation(s)
- Graziele Pereira Oliveira
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil.
| | - Ana Cláudia Dos Santos Pereira Andrade
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil.
| | - Rodrigo Araújo Lima Rodrigues
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil.
| | - Thalita Souza Arantes
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil.
| | - Paulo Victor Miranda Boratto
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil.
| | - Ludmila Karen Dos Santos Silva
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil.
| | - Fábio Pio Dornas
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil.
| | - Giliane de Souza Trindade
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil.
| | - Betânia Paiva Drumond
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil.
| | - Bernard La Scola
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE) UM63 CNRS 7278 IRD 198 INSERM U1095, Aix-Marseille Université., 27 Boulevard Jean Moulin, Faculté de Médecine, 13385 Marseille Cedex 05, France.
| | - Erna Geessien Kroon
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil.
| | - Jônatas Santos Abrahão
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil.
| |
Collapse
|