201
|
Han MJ, Xu HE, Xiong XM, Zhang HH. Evolutionary dynamics of transposable elements during silkworm domestication. Genes Genomics 2018; 40:1041-1051. [DOI: 10.1007/s13258-018-0713-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 05/31/2018] [Indexed: 11/24/2022]
|
202
|
Chen B, Du K, Sun C, Vimalanathan A, Liang X, Li Y, Wang B, Lu X, Li L, Shao Y. Gut bacterial and fungal communities of the domesticated silkworm (Bombyx mori) and wild mulberry-feeding relatives. ISME JOURNAL 2018; 12:2252-2262. [PMID: 29895989 PMCID: PMC6092317 DOI: 10.1038/s41396-018-0174-1] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 02/02/2018] [Accepted: 03/20/2018] [Indexed: 12/14/2022]
Abstract
Bombyx mori, the domesticated silkworm, is of great importance as a silk producer and as a powerful experimental model for the basic and applied research. Similar to other animals, abundant microorganisms live inside the silkworm gut; however, surprisingly, the microbiota of this model insect has not been well characterized to date. Here, we comprehensively characterized the gut microbiota of the domesticated silkworm and its wild relatives. Comparative analyses with the mulberry-feeding moths Acronicta major and Diaphania pyloalis revealed a highly diverse but distinctive silkworm gut microbiota despite thousands of years of domestication, and stage-specific signatures in both total (DNA-based) and active (RNA-based) bacterial populations, dominated by the phyla Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes. Most fungal sequences were assigned to the phyla Ascomycota and Basidiomycota. Environmental factors, including diet and human manipulation (egg production), likely influence the silkworm gut composition. Despite a lack of spatial variation along the gut, microbial community shifts were apparent between early instars and late instars, in concert with host developmental changes. Our results demonstrate that the gut microbiota of silkworms assembles into increasingly identical community throughout development, which differs greatly from those of other mulberry-feeding lepidopterans from the same niche, highlighting host-specific effects on microbial associations and the potential roles these communities play in host biology.
Collapse
Affiliation(s)
- Bosheng Chen
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Kaiqian Du
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Chao Sun
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Arunprasanna Vimalanathan
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xili Liang
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yong Li
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Baohong Wang
- National Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xingmeng Lu
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Lanjuan Li
- National Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongqi Shao
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China. .,Key Laboratory for Molecular Animal Nutrition, Ministry of Education, Beijing, China.
| |
Collapse
|
203
|
Itonori S, Hashimoto K, Nakagawa M, Harada M, Suzuki T, Kojima H, Ito M, Sugita M. Structural analysis of neutral glycosphingolipids from the silkworm Bombyx mori and the difference in ceramide composition between larvae and pupae. J Biochem 2018; 163:201-214. [PMID: 29069405 DOI: 10.1093/jb/mvx072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 09/08/2017] [Indexed: 01/06/2023] Open
Abstract
Glycosphingolipids (GSLs) from the silkworm Bombyx mori were identified and GSL expression patterns between larvae and pupae were compared. The structural analysis of neutral GSLs from dried pupae revealed the following predominant species: Glcβ1Cer, Manβ4Glcβ1Cer, GlcNAcβ3Manβ4Glcβ1Cer, Galβ3Manβ4Glcβ1Cer, GalNAcα4Galβ3Manβ4Glcβ1Cer, GlcNAcβ3Galβ3Manβ4Glcβ1Cer, Galα4Galβ3Manβ4Glcβ1Cer and (GalNAcα4)1-4 GalNAcα4Galβ3Manβ4Glcβ1Cer. Lin-ear elongation of α4-GalNAc was observed at the non-reducing end of Galβ3Manβ4Glcβ1Cer with up to five GalNAc repeats. The arthro-series GSL GlcNAcβ3Manβ4Glcβ1Cer, a characteristic GSL-glycan sequence of other Arthropoda, was detected in silkworms. The main ceramide species in each purified GSL fraction were h20:0-d14:1 and h22:0-d14:1. GSL expression patterns in larvae and pupae were compared using thin-layer chromatography, which demonstrated differences among acidic, polar and neutral GSL fractions, while the zwitterionic fraction showed no difference. Neutral GSLs such as ceramides di-, tri- and tetrasaccharides in larvae showed less abundant than those in pupae. MALDI-TOF MS analysis revealed that larval GSLs contained four types of ceramide species, whereas pupal GSLs contained only two types. The structural analysis of neutral GSLs from silkworms revealed a novel series of GSLs. The comparison of GSL expression patterns between larvae and pupae demonstrated differences in several fractions. Alterations in GSL ceramide composition between larvae and pupae were observed by MALDI-TOF MS analysis.
Collapse
Affiliation(s)
- Saki Itonori
- Department of Chemistry, Faculty of Liberal Arts and Education, Shiga University, 2-5-1, Hiratsu, Otsu, Shiga 520-0862, Japan
| | - Kyouhei Hashimoto
- Department of Chemistry, Faculty of Liberal Arts and Education, Shiga University, 2-5-1, Hiratsu, Otsu, Shiga 520-0862, Japan
| | - Mika Nakagawa
- Department of Chemistry, Faculty of Liberal Arts and Education, Shiga University, 2-5-1, Hiratsu, Otsu, Shiga 520-0862, Japan
| | - Masashi Harada
- Department of Chemistry, Faculty of Liberal Arts and Education, Shiga University, 2-5-1, Hiratsu, Otsu, Shiga 520-0862, Japan
| | - Takae Suzuki
- Department of Chemistry, Faculty of Liberal Arts and Education, Shiga University, 2-5-1, Hiratsu, Otsu, Shiga 520-0862, Japan
| | - Hisao Kojima
- Department of Bioinformatics, Institute of Science and Engineering, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Masahiro Ito
- Department of Bioinformatics, Institute of Science and Engineering, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Mutsumi Sugita
- Department of Chemistry, Faculty of Liberal Arts and Education, Shiga University, 2-5-1, Hiratsu, Otsu, Shiga 520-0862, Japan
| |
Collapse
|
204
|
Wang RX, Tong XL, Gai TT, Li CL, Qiao L, Hu H, Han MJ, Xiang ZH, Lu C, Dai FY. A serine protease homologue Bombyx mori scarface induces a short and fat body shape in silkworm. INSECT MOLECULAR BIOLOGY 2018; 27:319-332. [PMID: 29441628 DOI: 10.1111/imb.12373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Body shape is one of the most prominent and basic characteristics of any organism. In insects, abundant variations in body shape can be observed both within and amongst species. However, the molecular mechanism underlying body shape fine-tuning is very complex and has been largely unknown until now. In the silkworm Bombyx mori, the tubby (tub) mutant has an abnormal short fat body shape and the abdomen of tub larvae expands to form a fusiform body shape. Morphological investigation revealed that the body length was shorter and the body width was wider than that of the Dazao strain. Thus, this mutant is a good model for studying the molecular mechanisms of body shape fine-tuning. Using positional cloning, we identified a gene encoding the serine protease homologue, B. mori scarface (Bmscarface), which is associated with the tub phenotype. Sequence analysis revealed a specific 312-bp deletion from an exon of Bmscarface in the tub strain. In addition, recombination was not observed between the tub and Bmscarface loci. Moreover, RNA interference of Bmscarface resulted in the tub-like phenotype. These results indicate that Bmscarface is responsible for the tub mutant phenotype. This is the first study to report that mutation of a serine protease homologue can induce an abnormal body shape in insects.
Collapse
Affiliation(s)
- R-X Wang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - X-L Tong
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - T-T Gai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - C-L Li
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - L Qiao
- Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - H Hu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - M-J Han
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Z-H Xiang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - C Lu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - F-Y Dai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| |
Collapse
|
205
|
Xia X, You M, Rao XJ, Yu XQ. Insect C-type lectins in innate immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 83:70-79. [PMID: 29198776 DOI: 10.1016/j.dci.2017.11.020] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 11/29/2017] [Accepted: 11/29/2017] [Indexed: 05/21/2023]
Abstract
C-type lectins (CTLs) are a family of proteins that contain characteristic modules of carbohydrate-recognition domains (CRDs) and they possess the binding activity to ligands in a calcium-dependent manner. CTLs play important roles in animal immune responses, and in insects, they are involved in opsonization, nodule formation, agglutination, encapsulation, melanization, and prophenoloxidase activation, as well as in maintaining gut microbiome homeostasis. In this review, we will summarize insect CTLs, compare the properties of insect CTLs with vertebrate CTLs, and focus mainly on the domain organization and functions of insect CTLs in innate immunity.
Collapse
Affiliation(s)
- Xiaofeng Xia
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China; Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China; Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Minsheng You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China; Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China; Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiang-Jun Rao
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Xiao-Qiang Yu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China; Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China; School of Biological Sciences, University of Missouri - Kansas City, Kansas City, MO 64110-2499, USA.
| |
Collapse
|
206
|
Chen K, Lu Z. Immune responses to bacterial and fungal infections in the silkworm, Bombyx mori. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 83:3-11. [PMID: 29289612 DOI: 10.1016/j.dci.2017.12.024] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/17/2017] [Accepted: 12/25/2017] [Indexed: 06/07/2023]
Abstract
The silkworm Bombyx mori, an economically important insect that is usually reared indoors, is susceptible to various pathogens, including bacteria, fungi, viruses, and microsporidia. As with other insects, the silkworm lacks an adaptive immune system and relies solely on innate immunity to defend itself against infection. Compared to other intensively studied insects, such as the fruit fly and tobacco hornworm, the principal immune pathways in the silkworm remain unclear. In this article, we review the literature concerning silkworm immune responses to bacteria and fungi and present our perspectives on future research into silkworm immunity.
Collapse
Affiliation(s)
- Kangkang Chen
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Zhiqiang Lu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
207
|
Liu Y, Liu Y, Jiang X, Wang G. Cloning and functional characterization of three new pheromone receptors from the diamondback moth, Plutella xylostella. JOURNAL OF INSECT PHYSIOLOGY 2018; 107:14-22. [PMID: 29438663 DOI: 10.1016/j.jinsphys.2018.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 01/26/2018] [Accepted: 02/08/2018] [Indexed: 06/08/2023]
Abstract
The highly specialized olfactory receptor neurons (ORNs) on the antennae of male moths can recognize blends of several pheromone components. In previous studies, a total of six candidate pheromone receptor (PR) genes were cloned and functionally characterized in the diamondback moth, Plutella xylostella. In the present work, we report on three novel candidate pheromone receptor genes: PxylOR8, PxylOR41, and PxylOR45 in the same species. Gene expression analysis revealed that PxylOR8 is specifically expressed in female adult antennae, while PxylOR41 and PxylOR45 are expressed in antennae in both sexes, but with a male bias. In situ hybridization revealed that PxylOR8, PxylOR41 and PxylOR45 are localized in long trichoid sensilla. Functional analyses on the three pheromone receptor genes were then performed using the heterologous expression system of Xenopus oocytes. PxylOR41 was tuned to two minor pheromone components Z9-14:Ac, Z9-14:OH, and their analog Z9-14:Ald. PxylOR8 and PxylOR45 did not respond to any tested pheromone components and analogs. These results may contribute to clarifying how pheromone detection works in P. xylostella.
Collapse
Affiliation(s)
- Yipeng Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Life Science, Hunan Normal University, Changsha 410006, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xingchuan Jiang
- College of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
208
|
Gan Q, Zhang X, Zhang D, Shi L, Zhou Y, Sun T, Jiang S, Gao J, Meng Y. BmSUC1 is essential for glycometabolism modulation in the silkworm, Bombyx mori. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:543-553. [PMID: 29660529 DOI: 10.1016/j.bbagrm.2018.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/10/2018] [Accepted: 04/10/2018] [Indexed: 01/07/2023]
Abstract
Sucrose is the most commonly transported sugar in plants and is easily assimilated by insects to fulfill the requirement of physiological metabolism. BmSuc1 is a novel animal β-fructofuranosidase (β-FFase, EC 3.2.1.26)-encoding gene that was firstly cloned and identified in silkworm, Bombyx mori. BmSUC1 was presumed to play an important role in the silkworm-mulberry enzymatic adaptation system by effectively hydrolyzing sucrose absorbed from mulberry leaves. However, this has not been proved with direct evidence thus far. In this study, we investigated sucrose hydrolysis activity in the larval midgut of B. mori by inhibition tests and found that sucrase activity mainly stemmed from β-FFase, not α-glucosidase. Next, we performed shRNA-mediated transgenic RNAi to analyze the growth characteristics of silkworm larvae and variations in glycometabolism in vivo in transgenic silkworms. The results showed that in the RNAi-BmSuc1 transgenic line, larval development was delayed, and their body size was markedly reduced. Finally, the activity of several disaccharidases alone in the midgut and the sugar distribution, total sugar and glycogen in the midgut, hemolymph and fat body were then determined and compared. Our results demonstrated that silencing BmSuc1 significantly reduced glucose and apparently activated maltase and trehalase in the midgut. Together with a clear decrease in both glycogen and trehalose in the fat body, we conclude that BmSUC1 acts as an essential sucrase by directly modulating the degree of sucrose hydrolysis in the silkworm larval midgut, and insufficient sugar storage in the fat body may be responsible for larval malnutrition and abnormal petite phenotypes.
Collapse
Affiliation(s)
- Quan Gan
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China; Anhui International Joint Research and Development Center of Sericulture Resources Utilization, Hefei 230036, Anhui, China
| | - Xinwei Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China; Anhui International Joint Research and Development Center of Sericulture Resources Utilization, Hefei 230036, Anhui, China
| | - Daobo Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Liang Shi
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Yue Zhou
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Tongtong Sun
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Song Jiang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Junshan Gao
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China; Anhui International Joint Research and Development Center of Sericulture Resources Utilization, Hefei 230036, Anhui, China.
| | - Yan Meng
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China; Anhui International Joint Research and Development Center of Sericulture Resources Utilization, Hefei 230036, Anhui, China.
| |
Collapse
|
209
|
Liu L, Qu M, Yang J, Yang Q. The physiological differentiation along the midgut of Bombyx mori - inspirations from proteomics and gene expression patterns of the secreted proteins in the ectoperitrophic space. INSECT MOLECULAR BIOLOGY 2018; 27:247-259. [PMID: 29251378 DOI: 10.1111/imb.12368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The ectoperitrophic space (EcPS) between the insect midgut epithelial cells and the peritrophic matrix is an unexplored, clean resource for concentrated proteins secreted by the midgut epithelial cells, which offers an ideal opportunity to uncover the midgut functions. In this study, we used Bombyx mori as a model organism and performed comparative proteomic analyses of the secreted proteins in the EcPS at the feeding and wandering stages. A total of 372 proteins were identified from both stages and 70 proteins were predicted to be secreted. Amongst these proteins, 17 secreted digestive proteins were identified and their temporal and spatial transcriptional expression patterns demonstrated that all these proteins were up-regulated at the feeding stage and differentially expressed in different parts of the midgut. Proteins with nutrient reservoir activity and defence activity were found to be up-regulated at the wandering stage. This work is the first to show the presence of digestive enzymes in the EcPS of the insect midgut using a proteomic approach, which provides evidence that suggests a physiological functional differentiation of the insect midgut. It is very clear that the EcPS undergoes dynamic changes in its composition of proteins in response to the changing needs of the insect at different developmental stages.
Collapse
Affiliation(s)
- L Liu
- State Key Laboratory of Fine Chemical Engineering and School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - M Qu
- State Key Laboratory of Fine Chemical Engineering and School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - J Yang
- State Key Laboratory of Fine Chemical Engineering and School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Q Yang
- State Key Laboratory of Fine Chemical Engineering and School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
210
|
Zhang K, Li C, Weng X, Su J, Shen L, Pan G, Long D, Zhao A, Cui H. Transgenic characterization of two silkworm tissue-specific promoters in the haemocyte plasmatocyte cells. INSECT MOLECULAR BIOLOGY 2018; 27:133-142. [PMID: 29131435 DOI: 10.1111/imb.12360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Haemocytes play crucial roles in insect metabolism, metamorphosis, and innate immunity. As a model of lepidopteran insects, the silkworm is a useful model to study the functions of both haematopoiesis and haemocytes. Tissue-specific promoters are excellent tools for genetic manipulation and are widely used in fundamental biological research. Herein, two haemocyte-specific genes, Integrin β2 and Integrin β3, were confirmed. Promoter activities of Integrin β2 and Integrin β3 were evaluated by genetic manipulation. Quantitative real-time PCR and western blotting suggested that both promoters can drive enhanced green fluorescent protein (EGFP) specifically expressed in haemocytes. Further evidence clearly demonstrated that the transgenic silkworm exhibited a high level of EGFP signal in plasmatocytes, but not in other detected haemocyte types. Moreover, EGFP fluorescence signals were observed in the haematopoietic organ of both transgenic strains. Thus, two promoters that enable plasmatocytes to express genes of interest were confirmed in our study. It is expected that the results of this study will facilitate advances in our understanding of insect haematopoiesis and immunity in the silkworm, Bombyx mori.
Collapse
Affiliation(s)
- K Zhang
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - C Li
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - X Weng
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
- College of Biotechnology, Southwest University, Chongqing, China
| | - J Su
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - L Shen
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - G Pan
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - D Long
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - A Zhao
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - H Cui
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| |
Collapse
|
211
|
Disruption of PTPS Gene Causing Pale Body Color and Lethal Phenotype in the Silkworm, Bombyx mori. Int J Mol Sci 2018; 19:ijms19041024. [PMID: 29596327 PMCID: PMC5979516 DOI: 10.3390/ijms19041024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/27/2018] [Accepted: 03/27/2018] [Indexed: 11/17/2022] Open
Abstract
Phenylketonuria (PKU) is an inborn error of metabolism caused by mutations in the phenylalanine hydroxylase (PAH) gene or by defects in the tetrahydrobiopterin (BH4) synthesis pathway. Here, by positional cloning, we report that the 6-pyruvoyl-tetrahydropterin synthase (PTPS) gene, encoding a key enzyme of BH4 biosynthesis, is responsible for the alc (albino C) mutation that displays pale body color, head shaking, and eventually lethality after the first molting in silkworm. Compared to wild type, the alc mutant produced more substrates (phenylalanine (Phe) and tyrosine (Tyr)) and generated less DOPA and dopamine. Application of 2,4-diamino-6-hydroxypyrimidine (DAHP) to block BH4 synthesis in the wild type effectively produced the alc-like phenotype, while BH4 supplementation rescued the defective body color and lethal phenotype in both alc and DAHP-treated individuals. The detection of gene expressions and metabolic substances after drugs treatments in alc and normal individuals imply that silkworms and humans have a high similarity in the drugs metabolic features and the gene pathway related to BH4 and the dopamine biosynthesis. We propose that the alc mutant could be used as an animal model for drug evaluation for BH4-deficient PKU.
Collapse
|
212
|
Li Z, Wang Y, Wang L, Zhou Z. Molecular and biochemical responses in the midgut of the silkworm, Bombyx mori, infected with Nosema bombycis. Parasit Vectors 2018; 11:147. [PMID: 29510742 PMCID: PMC5840838 DOI: 10.1186/s13071-018-2755-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/26/2018] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Microsporidia are a group of eukaryotic intracellular parasites that infect almost all vertebrates and invertebrates. However, there is little information available of how microsporidia obtain nutrients and energy from host cells. The purpose of this study was to investigate the energy and material requirements of Nosema bombycis for the invasion procedure through analyzing the global variation of the gene expression, protein abundance, fatty acids level and ATP flux induced by the microsporidia N. bombycis infection in the midgut of the silkworm Bombyx mori. METHODS A suppression subtractive hybridization (SSH) and quantitative real-time PCR (qPCR) analysis were performed to identify the genes upregulated in the midgut of B. mori 48 h following N. bombycis infection. Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were used to annotate and summarize the differentially expressed genes, according to the categories 'molecular function', 'cellular component' and 'biological process'. To evaluate the nutrition material and energy costs in B.mori infected by N. bombycis, biochemical analysis was performed to determine the variation of protein abundance, fatty acid levels and ATP flux with or without the microsporidia N. bombycis infection in the midgut of the silkworm B. mori. RESULTS A total of 744 clones were obtained, 288 clones were randomly selected for sequencing, and 110 unigenes were generated. Amongst these, 49.21%, 30.16% and 14.29% genes were involved in 19 molecular functions, 19 biological processes and nine cellular components, respectively. A total of 11 oxidative phosphorylation- and eight proton-coupled ATP synthesis-related genes were upregulated. Seven protein degradation-, three fat degradation-related genes were upregulated, and no genes related to the de novo synthesis of amino acids and fatty acids were significantly upregulated. The data from the biochemical analysis showed the contents of total protein and ATP of B. mori midgut tissues decreased significantly, whereas the fatty acid content did not significantly change after four days of N. bombycis infection. Microsporidia N. bombycis infection upregulated the expression level of genes involved in host ATP synthesis, protein and fat degradation, which eventually causes the obvious decline of protein content and ATP synthesis in the host midgut, whereas the fatty acids content did not change significantly. CONCLUSIONS This study suggested to some extent that N. bombycis invasion can activate the host protein degradation and accelerate the production of host ATP. Microsporidia of N. bombycis show preference for proteins rather than fatty acids from the host to ensure the material preparation required by their parasitic life-cycle. Requirements of N. bombycis for energy were also mainly dependent on the host ATP production. This study provides a new data that may help our understanding of the molecular mechanisms of obtaining energy and nutrients from the host by the microsporidium N. bombycis.
Collapse
Affiliation(s)
- Zhi Li
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331 China
| | - Yu Wang
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331 China
| | - Linling Wang
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331 China
| | - Zeyang Zhou
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331 China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716 China
| |
Collapse
|
213
|
Song J, Tang D, Li Z, Tong X, Zhang J, Han M, Hu H, Lu C, Dai F. Variation of lifespan in multiple strains, and effects of dietary restriction and BmFoxO on lifespan in silkworm, Bombyx mori. Oncotarget 2018; 8:7294-7300. [PMID: 28038468 PMCID: PMC5352321 DOI: 10.18632/oncotarget.14235] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/20/2016] [Indexed: 12/14/2022] Open
Abstract
Established animal models have accelerated our understanding of the mechanisms involved in lifespan determination. However, more experimental animals are required to clarify the complex mechanisms behind the phenomena of aging and lifespan. In this study, we reported the variation of lifespan in nine distinct silkworm strains. Lifespan correlated significantly with BmFoxO gene expression in the representative silkworm strains tested (Xiafang, Dazao-N, and N4). In general, the female silkworm was longer lived than the male of the same strain. Dietary restriction extended the silkworm lifespan compared with that of silkworms fed ad libitum. The expression of BmFoxO was significantly elevated in the dietary restriction group on day 3 of the 4th instar and day 3 of the 5th instar, suggesting that BmFoxO contributes to dietary restriction-mediated lifespan extension. The RNA interference and overexpression of the BmFoxO gene significantly shortened and extended the silkworm adulthood, respectively. In conclusion, our findings suggest that the silkworm might serve as a promising experimental animal to explore the complex biological mechanisms of lifespan determination.
Collapse
Affiliation(s)
- Jiangbo Song
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, China.,Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing, China
| | - Dongmei Tang
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, China.,Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing, China
| | - Zhiquan Li
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, China.,Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing, China
| | - Xiaoling Tong
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, China.,Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing, China
| | - Jianfei Zhang
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, China.,Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing, China
| | - Minjin Han
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, China.,Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing, China
| | - Hai Hu
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, China.,Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, China.,Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing, China
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, China.,Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing, China
| |
Collapse
|
214
|
Feng M, Kong X, Zhang J, Xu W, Wu X. Identification of a novel host protein SINAL10 interacting with GP64 and its role in Bombyx mori nucleopolyhedrovirus infection. Virus Res 2018; 247:102-110. [DOI: 10.1016/j.virusres.2018.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 12/16/2022]
|
215
|
Breinholt JW, Earl C, Lemmon AR, Lemmon EM, Xiao L, Kawahara AY. Resolving Relationships among the Megadiverse Butterflies and Moths with a Novel Pipeline for Anchored Phylogenomics. Syst Biol 2018; 67:78-93. [PMID: 28472519 DOI: 10.1093/sysbio/syx048] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 04/28/2017] [Indexed: 11/12/2022] Open
Abstract
The advent of next-generation sequencing technology has allowed for thecollection of large portions of the genome for phylogenetic analysis. Hybrid enrichment and transcriptomics are two techniques that leverage next-generation sequencing and have shown much promise. However, methods for processing hybrid enrichment data are still limited. We developed a pipeline for anchored hybrid enrichment (AHE) read assembly, orthology determination, contamination screening, and data processing for sequences flanking the target "probe" region. We apply this approach to study the phylogeny of butterflies and moths (Lepidoptera), a megadiverse group of more than 157,000 described species with poorly understood deep-level phylogenetic relationships. We introduce a new, 855 locus AHE kit for Lepidoptera phylogenetics and compare resulting trees to those from transcriptomes. The enrichment kit was designed from existing genomes, transcriptomes, and expressed sequence tags and was used to capture sequence data from 54 species from 23 lepidopteran families. Phylogenies estimated from AHE data were largely congruent with trees generated from transcriptomes, with strong support for relationships at all but the deepest taxonomic levels. We combine AHE and transcriptomic data to generate a new Lepidoptera phylogeny, representing 76 exemplar species in 42 families. The tree provides robust support for many relationships, including those among the seven butterfly families. The addition of AHE data to an existing transcriptomic dataset lowers node support along the Lepidoptera backbone, but firmly places taxa with AHE data on the phylogeny. Combining taxa sequenced for AHE with existing transcriptomes and genomes resulted in a tree with strong support for (Calliduloidea $+$ Gelechioidea $+$ Thyridoidea) $+$ (Papilionoidea $+$ Pyraloidea $+$ Macroheterocera). To examine the efficacy of AHE at a shallow taxonomic level, phylogenetic analyses were also conducted on a sister group representing a more recent divergence, the Saturniidae and Sphingidae. These analyses utilized sequences from the probe region and data flanking it, nearly doubled the size of the dataset; resulting trees supported new phylogenetics relationships, especially within the Saturniidae and Sphingidae (e.g., Hemarina derived in the latter). We hope that our data processing pipeline, hybrid enrichment gene set, and approach of combining AHE data with transcriptomes will be useful for the broader systematics community.
Collapse
Affiliation(s)
- Jesse W Breinholt
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA.,RAPiD Genomics, Gainesville, FL 32601, USA
| | - Chandra Earl
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | | | - Emily Moriarty Lemmon
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Lei Xiao
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Akito Y Kawahara
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
216
|
Discovery of anti-viral molecules and their vital functions in Bombyx mori. J Invertebr Pathol 2018; 154:12-18. [PMID: 29453967 DOI: 10.1016/j.jip.2018.02.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 01/03/2018] [Accepted: 02/13/2018] [Indexed: 12/17/2022]
Abstract
The silkworm Bombyx mori (B. mori), a lepidopteran model organism, has become an important model for molecular biology researches with its genome completely sequenced. Silkworms confront different types of virus diseases, mainly including those caused by Bombyx mori nucleopolyhedrovirus (BmNPV), Bombyx mori densovirus type 1 (BmDNV-1), Bombyx mori bidesovirus (BmBDV) which was termed as Bombyx mori densovirus type 2 (BmDNV-2) or Bombyx mori parvo-like virus (BmPLV) before in sericulture. B. mori offers excellent models to study the molecular mechanisms of insect innate immune responses to viruses. A variety of molecules and pathways have been identified to be involved in the immune responses in the silkworm to viruses, such as the antimicrobial peptides, prophenoloxidase-activating system, apoptosis, ROS, small RNA and related molecules. Here in this review, we summarize the current research advances in molecules involved in silkworm anti-virus pathways. Moreover, taking BmNPV as an example, we proposed a schematic model of molecules and pathways involved in silkworm immune responses against virus infection. We hope this review can facilitate further study of antiviral mechanisms in silkworm, and provide a reference for virus diseases in other organisms.
Collapse
|
217
|
Xie LQ, Wang PL, Jiang SH, Zhang Z, Zhang HH. Genome-wide identification and evolution of TC1/Mariner in the silkworm (Bombyx mori) genome. Genes Genomics 2018; 40:485-495. [PMID: 29892960 DOI: 10.1007/s13258-018-0648-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/03/2018] [Indexed: 10/18/2022]
Abstract
TC1/Mariner transposons belong to class II transposable elements (TEs) that use DNA-mediated "cut and paste" mechanism to transpose, and they have been identified in almost all organisms. Although silkworm (Bombyx mori) has a large amount of TC1/Mariner elements, the genome wide information of this superfamily in the silkworm is unknown. In this study, we have identified 2670 TC1/Mariner (Bmmar) elements in the silkworm genome. All the TEs were classified into 22 families by means of fgclust, a tool of repetitive sequence classification, seven of which was first reported in this study. Phylogenetic and structure analyses based on the catalytic domain (DDxD/E) of transposase sequences indicated that all members of TC1/Mariner were grouped into five subgroups: Mariner, Tc1, maT, DD40D and DD41D/E. Of these five subgroups, maT rather than Mariner possessed most members of TC1/Mariner (51.23%) in the silkworm genome. In particular, phylogenetic analysis and structure analysis revealed that Bmmar15 (DD40D) formed a new basal subgroup of TC1/Mariner element in insects, which was referred to as bmori. Furthermore, we concluded that DD40D appeared to intermediate between mariner and Tc1. Finally, we estimated the insertion time for each copy of TC1/Mariner in the silkworm and found that most of members were dramatically amplified during a period from 0 to 1 mya. Moreover, the detailed functional data analysis showed that Bmmar1, Bmmar6 and Bmmar9 had EST evidence and intact transposases. These implied that TC1/Mariner might have potential transpositional activity. In conclusion, this study provides some new insights into the landscape, origin and evolution of TC1/Mariner in the insect genomes.
Collapse
Affiliation(s)
- Li-Qin Xie
- College of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Ping-Lan Wang
- College of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Shen-Hua Jiang
- College of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Ze Zhang
- School of Life Sciences, Chongqing University, Chongqing, 400044, China.
| | - Hua-Hao Zhang
- College of Pharmacy and Life Science, Jiujiang University, Jiujiang, China.
| |
Collapse
|
218
|
Smith CR, Morandin C, Noureddine M, Pant S. Conserved roles of Osiris genes in insect development, polymorphism and protection. J Evol Biol 2018; 31:516-529. [PMID: 29322640 DOI: 10.1111/jeb.13238] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 12/22/2022]
Abstract
Much of the variation among insects is derived from the different ways that chitin has been moulded to form rigid structures, both internal and external. In this study, we identify a highly conserved expression pattern in an insect-only gene family, the Osiris genes, that is essential for development, but also plays a significant role in phenotypic plasticity and in immunity/toxicity responses. The majority of Osiris genes exist in a highly syntenic cluster, and the cluster itself appears to have arisen very early in the evolution of insects. We used developmental gene expression in the fruit fly, Drosophila melanogaster, the bumble bee, Bombus terrestris, the harvester ant, Pogonomyrmex barbatus, and the wood ant, Formica exsecta, to compare patterns of Osiris gene expression both during development and between alternate caste phenotypes in the polymorphic social insects. Developmental gene expression of Osiris genes is highly conserved across species and correlated with gene location and evolutionary history. The social insect castes are highly divergent in pupal Osiris gene expression. Sets of co-expressed genes that include Osiris genes are enriched in gene ontology terms related to chitin/cuticle and peptidase activity. Osiris genes are essential for cuticle formation in both embryos and pupae, and genes co-expressed with Osiris genes affect wing development. Additionally, Osiris genes and those co-expressed seem to play a conserved role in insect toxicology defences and digestion. Given their role in development, plasticity, and protection, we propose that the Osiris genes play a central role in insect adaptive evolution.
Collapse
Affiliation(s)
- C R Smith
- Department of Biology, Earlham College, Richmond, IN, USA
| | - C Morandin
- Centre of Excellence in Biological Interactions, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - M Noureddine
- Department of Biology, Earlham College, Richmond, IN, USA
| | - S Pant
- Department of Biology, Earlham College, Richmond, IN, USA
| |
Collapse
|
219
|
Park YR, Sultan MT, Park HJ, Lee JM, Ju HW, Lee OJ, Lee DJ, Kaplan DL, Park CH. NF-κB signaling is key in the wound healing processes of silk fibroin. Acta Biomater 2018; 67:183-195. [PMID: 29242162 DOI: 10.1016/j.actbio.2017.12.006] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/27/2017] [Accepted: 12/04/2017] [Indexed: 11/16/2022]
Abstract
Silk fibroin (SF) is a well-studied biomaterial for tissue engineering applications including wound healing. However, the signaling mechanisms underlying the impact of SF on this phenomenon have not been determined. In this study, through microarray analysis, regulatory genes of NF-ĸB signaling were activated in SF-treated NIH3T3 cells along with other genes. Immunoblot analysis confirmed the activation of the NF-ĸB signaling pathway as SF induced protein expression levels of IKKα, IKKβ, p65, and the degradation of IκBα. The treatment of NIH3T3 cells with SF also increased the expression of cyclin D1, vimentin, fibronectin, and vascular endothelial growth factor (VEGF). The expression of these factors by SF treatment was abrogated when NF-ĸB was inhibited by a pharmacological inhibitor Bay 11-7082. Knockdown of NF-ĸB using siRNA of IKKα and IKKβ also inhibited the SF-induced wound healing response of the NIH3T3 cells in a wound scratch assay. Collectively, these results indicated that SF-induced wound healing through the canonical NF-κB signaling pathway via regulation of the expression of cyclin D1, vimentin, fibronectin, and VEGF by NIH3T3 cells. Using an in vivo study with a partial-thickness excision wound in rats we demonstrated that SF-induced wound healing via NF-κB regulated proteins including cyclin D1, fibronectin, and VEGF. The in vitro and in vivo data suggested that SF induced wound healing via modulation of NF-ĸB signaling regulated proteins. STATEMENT OF SIGNIFICANCE Silk fibroin has been effectively used as a dressing for wound treatment for more than a century. However, mechanistic insight into the basis for wound healing via silk fibroin has not been elucidated. Here we report a key mechanism involved in silk fibroin induced wound healing both in vitro and in vivo. Using genetic- and protein-level analyses, NF-κB signaling was found to regulate silk fibroin-induced wound healing by modulating target proteins. Thus, the NF-κB signaling pathway may be utilized as a therapeutic target during the formulation of silk fibroin-based biomaterials for wound healing and tissue engineering.
Collapse
Affiliation(s)
- Ye Ri Park
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 200-702, South Korea
| | - Md Tipu Sultan
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 200-702, South Korea
| | - Hyun Jung Park
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 200-702, South Korea
| | - Jung Min Lee
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 200-702, South Korea
| | - Hyung Woo Ju
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 200-702, South Korea
| | - Ok Joo Lee
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 200-702, South Korea
| | - Dong Jin Lee
- Department of Otolaryngology-Head and Neck Surgery, Ilsong Memorial Institute of Head and Neck Cancer, Hallym University College of Medicine, 150 Seongan-ro, Gangdong-gu, Seoul, South Korea
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Chan Hum Park
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 200-702, South Korea; Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, School of Medicine, Hallym University, Chuncheon 200-702, South Korea.
| |
Collapse
|
220
|
Triant DA, Cinel SD, Kawahara AY. Lepidoptera genomes: current knowledge, gaps and future directions. CURRENT OPINION IN INSECT SCIENCE 2018; 25:99-105. [PMID: 29602369 DOI: 10.1016/j.cois.2017.12.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/18/2017] [Accepted: 12/19/2017] [Indexed: 06/08/2023]
Abstract
Butterflies and moths (Lepidoptera) are one of the most ecologically diverse and speciose insect orders. With recent advances in genomics, new Lepidoptera genomes are regularly being sequenced, and many of them are playing principal roles in genomics studies, particularly in the fields of phylo-genomics and functional genomics. Thus far, assembled genomes are only available for <10 of the 43 Lepidoptera superfamilies. Nearly all are model species, found in the speciose clade Ditrysia. Community support for Lepidoptera genomics is growing with successful management and dissemination of data and analytical tools in centralized databases. With genomic studies quickly becoming integrated with ecological and evolutionary research, the Lepidoptera community will unquestionably benefit from new high-quality reference genomes that are more evenly distributed throughout the order.
Collapse
Affiliation(s)
- Deborah A Triant
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA.
| | - Scott D Cinel
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA; Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Akito Y Kawahara
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
221
|
Chang JC, Ramasamy S. Transcriptome analysis in the beet webworm, Spoladea recurvalis (Lepidoptera: Crambidae). INSECT SCIENCE 2018; 25:33-44. [PMID: 27433928 DOI: 10.1111/1744-7917.12375] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/07/2016] [Indexed: 06/06/2023]
Abstract
The beet webworm, Spoladea recurvalis Fabricius, is a destructive pest on vegetable crops in tropics and subtropics; its main host plant is amaranth. It has become imperative to develop non-chemical methods to control S. recurvalis on amaranth. However, the lack of molecular information about this species has hindered the development of novel pest management strategies. In this study, high-throughput RNA sequencing covering de novo sequence assemblies, functional annotation of transcripts, gene function classification and enrichment was performed on S. recurvalis. Illumina sequencing generated a total of 120 435 transcript contigs ranging from 201 to 22 729 bases with a mean length of 688 bases. The assembled transcripts were subjected to Basic Local Alignment Search Tool-X (BLASTX) to obtain the annotations against non-redundant, Swiss-Prot, Clusters of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) protein databases. A subset of 58 225 transcript sequences returned hits from known proteins in the National Center for Biotechnology Information database, and the majority of the transcript sequences had the highest number of hits for Danaus plexippus (50.43%). A total of 1217 Gene Ontology-level 3 annotations were assigned to 51 805 transcripts, while 39 650 transcripts were predicted as functional protein-coding genes in the COG database and 20 037 transcripts were enriched to KEGG pathways. We identified 40 putative genes related to pheromone production and reception in S. recurvalis, with the expression of one gene between 0.29 and 1141.79 fragments per kilo base per million (FPKM) reads. The transcriptome sequence of S. recurvalis is a first step toward offering a comprehensive genomic resource which would enable better understanding of molecular mechanisms to enable development of effective pest management practices for this species.
Collapse
Affiliation(s)
- Jian-Cheng Chang
- AVRDC - The World Vegetable Center, Shanhua, Tainan, Taiwan, China
| | | |
Collapse
|
222
|
Liu HW, Wang LL, Tang X, Dong ZM, Guo PC, Zhao DC, Xia QY, Zhao P. Proteomic analysis of Bombyx mori molting fluid: Insights into the molting process. J Proteomics 2018; 173:115-125. [DOI: 10.1016/j.jprot.2017.11.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/13/2017] [Accepted: 11/28/2017] [Indexed: 01/04/2023]
|
223
|
Comprehensive Profiling of Lysine Acetylome in Baculovirus Infected Silkworm (Bombyx mori) Cells. Proteomics 2018; 18. [DOI: 10.1002/pmic.201700133] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 11/01/2017] [Indexed: 12/12/2022]
|
224
|
Zhan MY, Yang PJ, Rao XJ. Molecular cloning and analysis of PGRP-L1 and IMD from silkworm Bombyx mori. Comp Biochem Physiol B Biochem Mol Biol 2018; 215:19-30. [DOI: 10.1016/j.cbpb.2017.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 11/28/2022]
|
225
|
Sultan MT, Lee OJ, Kim SH, Ju HW, Park CH. Silk Fibroin in Wound Healing Process. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1077:115-126. [DOI: 10.1007/978-981-13-0947-2_7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
226
|
Haynes KF. Editorial overview: Insect pheromones: making sense of a rapidly diversifying field of study. CURRENT OPINION IN INSECT SCIENCE 2017; 24:vii-ix. [PMID: 29208232 DOI: 10.1016/j.cois.2017.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Affiliation(s)
- Kenneth F Haynes
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA.
| |
Collapse
|
227
|
Madurga R, Guinea GV, Elices M, Pérez-Rigueiro J, Gañán-Calvo AM. Straining flow spinning: Simplified model of a bioinspired process to mass produce regenerated silk fibers controllably. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.09.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
228
|
Zhang K, Tan J, Su J, Liang H, Shen L, Li C, Pan G, Yang L, Cui H. Integrin β3 plays a novel role in innate immunity in silkworm, Bombyx mori. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 77:307-317. [PMID: 28826989 DOI: 10.1016/j.dci.2017.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 08/16/2017] [Accepted: 08/17/2017] [Indexed: 06/07/2023]
Abstract
Integrins are transmembrane receptors that play essential roles in many physiological and pathological processes through cell-to-cell and cell-to-extracellular matrix (ECM) interactions. In the current study, a 2653-bp full-length cDNA of a novel integrin β subunit (designated Bmintegrin β3) was obtained from silkworm hemocytes. Bmintegrin β3 has the typical conserved structure of the integrin β family. The qRT-PCR results showed that Bmintegrin β3 was specifically expressed in the hematological system and that its expression was significantly increased after challenge with different types of PAMPs and bacteria. The recombinant Bmintegrin β3 protein displayed increased aggregation with S. aureus, suggesting that Bmintegrin β3 might directly bind to PAMPs. Interestingly, Bmintegrin β3 knockdown promoted PPO1, PPO2, BAEE, SPH78, SPH125, and SPH127 expression and accelerated the melanization process. Unexpectedly, the expression of genes related to phagocytosis, the Toll pathway, and the IMD pathway was also up-regulated after Bmintegrin β3 knockdown. Thus, Bmintegrin β3 might be a pattern recognition protein (PRP) for PAMPs and might directly bind to bacteria and enhance the phagocytosis activity of hemocytes. Moreover, Bmintegrin β3 and its ligand might negatively regulate the expression of immune-related genes through an unknown mechanism. In summary, our studies provide new insights into the immune functions of Bmintegrin β3 from the silkworm, Bombyx mori.
Collapse
Affiliation(s)
- Kui Zhang
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Juan Tan
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Jingjing Su
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Hanghua Liang
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Li Shen
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Chongyang Li
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Guangzhao Pan
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Liqun Yang
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China.
| |
Collapse
|
229
|
Arikawa K, Iwanaga T, Wakakuwa M, Kinoshita M. Unique Temporal Expression of Triplicated Long-Wavelength Opsins in Developing Butterfly Eyes. Front Neural Circuits 2017; 11:96. [PMID: 29238294 PMCID: PMC5712540 DOI: 10.3389/fncir.2017.00096] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 11/15/2017] [Indexed: 11/13/2022] Open
Abstract
Following gene duplication events, the expression patterns of the resulting gene copies can often diverge both spatially and temporally. Here we report on gene duplicates that are expressed in distinct but overlapping patterns, and which exhibit temporally divergent expression. Butterflies have sophisticated color vision and spectrally complex eyes, typically with three types of heterogeneous ommatidia. The eyes of the butterfly Papilio xuthus express two green- and one red-absorbing visual pigment, which came about via gene duplication events, in addition to one ultraviolet (UV)- and one blue-absorbing visual pigment. We localized mRNAs encoding opsins of these visual pigments in developing eye disks throughout the pupal stage. The mRNAs of the UV and blue opsin are expressed early in pupal development (pd), specifying the type of the ommatidium in which they appear. Red sensitive photoreceptors first express a green opsin mRNA, which is replaced later by the red opsin mRNA. Broadband photoreceptors (that coexpress the green and red opsins) first express the green opsin mRNA, later change to red opsin mRNA and finally re-express the green opsin mRNA in addition to the red mRNA. Such a unique temporal and spatial expression pattern of opsin mRNAs may reflect the evolution of visual pigments and provide clues toward understanding how the spectrally complex eyes of butterflies evolved.
Collapse
Affiliation(s)
- Kentaro Arikawa
- Laboratory of Neuroethology, Department of Evolutionary Studies of Biosystems, Graduate University for Advanced Studies (SOKENDAI), Hayama, Japan
| | - Tomoyuki Iwanaga
- Graduate School of Integrated Science, Yokohama City University, Yokohama, Japan
| | - Motohiro Wakakuwa
- Laboratory of Neuroethology, Department of Evolutionary Studies of Biosystems, Graduate University for Advanced Studies (SOKENDAI), Hayama, Japan
| | - Michiyo Kinoshita
- Laboratory of Neuroethology, Department of Evolutionary Studies of Biosystems, Graduate University for Advanced Studies (SOKENDAI), Hayama, Japan
| |
Collapse
|
230
|
Wang X, Li Y, Liu Q, Xia Q, Zhao P. Proteome profile of spinneret from the silkworm, Bombyx mori. Proteomics 2017; 17. [PMID: 28467696 DOI: 10.1002/pmic.201600301] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 04/19/2017] [Accepted: 04/27/2017] [Indexed: 12/28/2022]
Abstract
The silkworm spinneret is an important tissue for silk fibrillogenesis and spinning. All biochemical processes during silk fibrillogenesis are correlated with silk properties. Understanding the role of spinneret in silk fibrillogenesis may help to reveal the mechanism of silk fibrillogenesis as well as improve silk quality for commercial purposes. Thus, we profiled the proteome of silkworm spinneret. A total of 1572 proteins and 232 differential abundance proteins were identified. Silk fibrillogenesis-related proteins, such as cuticle proteins, ion-transporting proteins, muscular proteins, and energy metabolic proteins, were abundant in spinneret. Metabolic pathway and GO enrichment analyses revealed that the identified proteins were involved in energy metabolism, chitin binding, and cuticle construction. Active energy metabolism may provide abundant energy for the muscle contraction as well as ion and water exchange. The chitin binding and cuticle construction process may provide sufficient shear forces for silk formation. Our data suggest that silkworm spinneret provides a suitable physiological and biochemical environment for silk fibrillogenesis. These proteins are potential targets for improving silk quality in the silk industry. Data are available via ProteomeXchange with identifier PXD004455.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, P. R. China.,Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, P. R. China
| | - Yi Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, P. R. China
| | - Qingsong Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, P. R. China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, P. R. China.,Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, P. R. China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, P. R. China.,Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, P. R. China
| |
Collapse
|
231
|
The morphology of antennal lobe projection neurons is controlled by a POU-domain transcription factor Bmacj6 in the silkmoth Bombyx mori. Sci Rep 2017; 7:14050. [PMID: 29070905 PMCID: PMC5656611 DOI: 10.1038/s41598-017-14578-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/12/2017] [Indexed: 11/08/2022] Open
Abstract
How to wire a neural circuit is crucial for the functioning of the nervous system. Here, we describe the neuroanatomy of the olfactory neurons in the spli mutant strain of silkmoth (Bombyx mori) to investigate the function of a transcription factor involved in neuronal wiring in the central olfactory circuit. The genomic structure of the gene Bmacj6, which encodes a class IV POU domain transcription factor, is disrupted in the spli mutant. We report the neuroanatomical abnormality in the morphology of the antennal lobe projection neurons (PNs) that process the sex pheromone. In addition to the mis-targeting of dendrites and axons, we found axonal bifurcation within the PNs. These results indicate that the morphology of neurons in the pheromone processing pathway is modified by Bmacj6.
Collapse
|
232
|
Li Z, Pan G, Ma Z, Han B, Sun B, Ni Q, Chen J, Li T, Liu T, Long M, Li C, Zhou Z. Comparative proteomic analysis of differentially expressed proteins in the Bombyx mori fat body during the microsporidia Nosema bombycis infection. J Invertebr Pathol 2017; 149:36-43. [DOI: 10.1016/j.jip.2017.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 06/23/2017] [Accepted: 06/26/2017] [Indexed: 02/02/2023]
|
233
|
Yang S, Cao D, Wang G, Liu Y. Identification of Genes Involved in Chemoreception in Plutella xyllostella by Antennal Transcriptome Analysis. Sci Rep 2017; 7:11941. [PMID: 28931846 PMCID: PMC5607341 DOI: 10.1038/s41598-017-11646-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/29/2017] [Indexed: 12/20/2022] Open
Abstract
Perception of environmental and habitat cues is of significance for insect survival and reproduction. Odor detection in insects is mediated by a number of proteins in antennae such as odorant receptors (ORs), ionotropic receptors (IRs), odorant binding proteins (OBPs), chemosensory proteins (CSPs), sensory neuron membrane proteins (SNMPs) and odorant degrading enzymes. In this study, we sequenced and assembled the adult male and female antennal transcriptomes of a destructive agricultural pest, the diamondback moth Plutella xyllostella. In these transcriptomes, we identified transcripts belonging to 6 chemoreception gene families related to ordor detection, including 54 ORs, 16 IRs, 7 gustatory receptors (GRs), 15 CSPs, 24 OBPs and 2 SNMPs. Semi-quantitative reverse transcription PCR analysis of expression patterns indicated that some of these ORs and IRs have clear sex-biased and tissue-specific expression patterns. Our results lay the foundation for future characterization of the functions of these P. xyllostella chemosensory receptors at the molecular level and development of novel semiochemicals for integrated control of this agricultural pest.
Collapse
Affiliation(s)
- Shiyong Yang
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Depan Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
234
|
Sun D, Guo Z, Liu Y, Zhang Y. Progress and Prospects of CRISPR/Cas Systems in Insects and Other Arthropods. Front Physiol 2017; 8:608. [PMID: 28932198 PMCID: PMC5592444 DOI: 10.3389/fphys.2017.00608] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/07/2017] [Indexed: 01/03/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and the CRISPR-associated gene Cas9 represent an invaluable system for the precise editing of genes in diverse species. The CRISPR/Cas9 system is an adaptive mechanism that enables bacteria and archaeal species to resist invading viruses and phages or plasmids. Compared with zinc finger nucleases and transcription activator-like effector nucleases, the CRISPR/Cas9 system has the advantage of requiring less time and effort. This efficient technology has been used in many species, including diverse arthropods that are relevant to agriculture, forestry, fisheries, and public health; however, there is no review that systematically summarizes its successful application in the editing of both insect and non-insect arthropod genomes. Thus, this paper seeks to provide a comprehensive and impartial overview of the progress of the CRISPR/Cas9 system in different arthropods, reviewing not only fundamental studies related to gene function exploration and experimental optimization but also applied studies in areas such as insect modification and pest control. In addition, we also describe the latest research advances regarding two novel CRISPR/Cas systems (CRISPR/Cpf1 and CRISPR/C2c2) and discuss their future prospects for becoming crucial technologies in arthropods.
Collapse
Affiliation(s)
- Dan Sun
- Longping Branch, Graduate School of Hunan UniversityChangsha, China.,Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Zhaojiang Guo
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Yong Liu
- Longping Branch, Graduate School of Hunan UniversityChangsha, China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| |
Collapse
|
235
|
Abstract
As an important economic insect, silkworm Bombyx mori (L.) (Lepidoptera: Bombycidae) has numerous advantages in life science, such as low breeding cost, large progeny size, short generation time, and clear genetic background. Additionally, there are rich genetic resources associated with silkworms. The completion of the silkworm genome has further accelerated it to be a modern model organism in life science. Genomic studies showed that some silkworm genes are highly homologous to certain genes related to human hereditary disease and, therefore, are a candidate model for studying human disease. In this article, we provided a review of silkworm as an important model in various research areas, including human disease, screening of antimicrobial agents, environmental safety monitoring, and antitumor studies. In addition, the application potentiality of silkworm model in life sciences was discussed.
Collapse
Affiliation(s)
- Xu Meng
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Feifei Zhu
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Keping Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| |
Collapse
|
236
|
Bm-muted , orthologous to mouse muted and encoding a subunit of the BLOC-1 complex, is responsible for the otm translucent mutation of the silkworm Bombyx mori. Gene 2017; 629:92-100. [DOI: 10.1016/j.gene.2017.07.071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 07/08/2017] [Accepted: 07/27/2017] [Indexed: 11/18/2022]
|
237
|
Shen Z, Chen Y, Hong L, Cui Z, Yang H, He X, Shi Y, Shi L, Han F, Zhou N. BNGR-A25L and -A27 are two functional G protein-coupled receptors for CAPA periviscerokinin neuropeptides in the silkworm Bombyx mori. J Biol Chem 2017; 292:16554-16570. [PMID: 28842502 DOI: 10.1074/jbc.m117.803445] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/11/2017] [Indexed: 01/14/2023] Open
Abstract
CAPA peptides, such as periviscerokinin (PVK), are insect neuropeptides involved in many signaling pathways controlling, for example, metabolism, behavior, and reproduction. They are present in a large number of insects and, together with their cognate receptors, are important for research into approaches for improving insect control. However, the CAPA receptors in the silkworm (Bombyx mori) insect model are unknown. Here, we cloned cDNAs of two putative CAPA peptide receptor genes, BNGR-A27 and -A25, from the brain of B. mori larvae. We found that the predicted BNGR-A27 ORF encodes 450 amino acids and that one BNGR-A25 splice variant encodes a full-length isoform (BNGR-A25L) of 418 amino acid residues and another a short isoform (BNGR-A25S) of 341 amino acids with a truncated C-terminal tail. Functional assays indicated that both BNGR-A25L and -A27 are activated by the PVK neuropeptides Bom-CAPA-PVK-1 and -PVK-2, leading to a significant increase in cAMP-response element-controlled luciferase activity and Ca2+ mobilization in a Gq inhibitor-sensitive manner. In contrast, BNGR-A25S was not significantly activated in response to the PVK peptides. Moreover, Bom-CAPA-PVK-1 directly bound to BNGR-A25L and -A27, but not BNGR-A25S. Of note, CAPA-PVK-mediated ERK1/2 phosphorylation and receptor internalization confirmed that BNGR-A25L and -A27 are two canonical receptors for Bombyx CAPA-PVKs. However, BNGR-A25S alone is a nonfunctional receptor but serves as a dominant-negative protein for BNGR-A25L. These results provide evidence that BNGR-A25L and -A27 are two functional Gq-coupled receptors for Bombyx CAPA-PVKs, enabling the further elucidation of the endocrinological roles of Bom-CAPA-PVKs and their receptors in insect biology.
Collapse
Affiliation(s)
- Zhangfei Shen
- the Department of Economic Zoology, College of Animal Sciences, and
| | - Yu Chen
- From the Institute of Biochemistry, College of Life Sciences
| | - Lingjuan Hong
- the Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zijingang Campus, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Zhenteng Cui
- the Department of Economic Zoology, College of Animal Sciences, and
| | - Huipeng Yang
- From the Institute of Biochemistry, College of Life Sciences
| | - Xiaobai He
- From the Institute of Biochemistry, College of Life Sciences
| | - Ying Shi
- From the Institute of Biochemistry, College of Life Sciences
| | - Liangen Shi
- the Department of Economic Zoology, College of Animal Sciences, and
| | - Feng Han
- the Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zijingang Campus, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Naiming Zhou
- From the Institute of Biochemistry, College of Life Sciences,
| |
Collapse
|
238
|
Qu M, Ren Y, Liu Y, Yang Q. Studies on the chitin/chitosan binding properties of six cuticular proteins analogous to peritrophin 3 from Bombyx mori. INSECT MOLECULAR BIOLOGY 2017; 26:432-439. [PMID: 28432772 DOI: 10.1111/imb.12308] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Chitin deacetylation is required to make the cuticle rigid and compact through chitin chain crosslinking. Thus it is presumed that specialized proteins are required to bind deacetylated chitin chains together. However, deacetylated-chitin binding proteins have not ever been reported. In a previous work, six cuticular proteins analogous to peritrophin 3 (CPAP3s) were found to be abundant in the moulting fluid of Bombyx mori. In this study, these BmCPAP3s (BmCPAP3-A1, BmCPAP3-A2, BmCPAP3-B, BmCPAP3-C, BmCPAP3-D1 and BmCPAP3-D2) were cloned and expressed in Escherichia coli and purified using metal-chelating affinity chromatography. Their binding activities demonstrated that although all of the BmCPAP3s showed similar binding abilities toward crystalline chitin and colloidal chitin, they differed in their affinities toward partially and fully deacetylated chitin. Amongst them, BmCPAP3-D1 exhibited the highest binding activity toward deacetylated chitin. The gene expression pattern of BmCPAP3-D1 was similar to BmCPAP3-A1 and BmCPAP3-C at most stages except that it was dramatically upregulated at the beginning of the pupa to adult transition stage. This work is the first report of a chitin-binding protein, BmCPAP3-D1, which exhibits high binding affinity to deacetylated chitin.
Collapse
Affiliation(s)
- M Qu
- State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Y Ren
- State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Y Liu
- State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Q Yang
- State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
239
|
Zhang K, Pan G, Zhao Y, Hao X, Li C, Shen L, Zhang R, Su J, Cui H. A novel immune-related gene HDD1 of silkworm Bombyx mori is involved in bacterial response. Mol Immunol 2017. [DOI: 10.1016/j.molimm.2017.06.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
240
|
Dong WT, Xiao LF, Hu JJ, Zhao XX, Liu JX, Zhang Y. iTRAQ proteomic analysis of the interactions between Bombyx mori nuclear polyhedrosis virus and silkworm. J Proteomics 2017; 166:138-145. [PMID: 28755911 DOI: 10.1016/j.jprot.2017.07.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 07/10/2017] [Accepted: 07/21/2017] [Indexed: 12/31/2022]
Abstract
The silkworm hemolymph is an important defense system against bacteria and viruses. In this study, silkworms were infected with Bombyx mori nuclear polyhedrosis virus to investigate the subsequent immune response at the protein level. Proteomes were analyzed before and after infection using isobaric tags for relative and absolute quantitation and LC-MS. A total of 456 differentially expressed proteins were identified, of which 179 were upregulated and 193 were downregulated. Changes in expression were validated by western blot for several proteins. Eleven of the differentially expressed proteins were involved in immunity. For example, modular serine protease and cecropin, which were downregulated, facilitate Toll and Imd signaling, while autophagy-related protein 3, which was upregulated, protects cells against oxidative damage. Collectively, the data highlight the unique interactions of baculovirus with the silkworm immune system. BIOLOGICAL SIGNIFICANCE This is the first time isobaric tags for relative and absolute quantitation were used to analyze B. mori proteins mobilized against B. mori nuclear polyhedrosis virus, and to investigate the immunity-associated proteome in B. mori. The results are a significant step towards a deeper understanding of immunoregulation in B. mori. SIGNIFICANCE This is the first time isobaric tags for relative and absolute quantitation were used to analyze B. mori proteins mobilized against B. mori nuclear polyhedrosis virus, and to investigate the immunity-associated proteome in B. mori. The results are a significant step towards a deeper understanding of immunoregulation in B. mori.
Collapse
Affiliation(s)
- Wei-Tao Dong
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Long-Fei Xiao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Jun-Jie Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Xin-Xu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Ji-Xing Liu
- Product R & D, Lanzhou Weitesen Biological Technology Co. Ltd., Lanzhou 730030, China.
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
241
|
Pita S, Panzera F, Mora P, Vela J, Cuadrado Á, Sánchez A, Palomeque T, Lorite P. Comparative repeatome analysis on Triatoma infestans Andean and Non-Andean lineages, main vector of Chagas disease. PLoS One 2017; 12:e0181635. [PMID: 28723933 PMCID: PMC5517068 DOI: 10.1371/journal.pone.0181635] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 07/04/2017] [Indexed: 12/13/2022] Open
Abstract
Triatoma infestans is the most important Chagas disease vector in South America. Two main evolutionary lineages, named Andean and non-Andean, have been recognized by geographical distribution, phenetic and genetic characteristics. One of the main differences is the genomic size, varying over 30% in their haploid DNA content. Here we realize a genome wide analysis to compare the repetitive genome fraction (repeatome) between both lineages in order to identify the main repetitive DNA changes occurred during T. infestans differentiation process. RepeatExplorer analysis using Illumina reads showed that both lineages exhibit the same amount of non-repeat sequences, and that satellite DNA is by far the major component of repetitive DNA and the main responsible for the genome size differentiation between both lineages. We characterize 42 satellite DNA families, which are virtually all present in both lineages but with different amount in each lineage. Furthermore, chromosomal location of satellite DNA by fluorescence in situ hybridization showed that genomic variations in T. infestans are mainly due to satellite DNA families located on the heterochromatic regions. The results also show that many satDNA families are located on the euchromatic regions of the chromosomes.
Collapse
Affiliation(s)
- Sebastián Pita
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Francisco Panzera
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Pablo Mora
- Departamento de Biología Experimental, Área de Genética, Universidad de Jaén, Jaén, Spain
| | - Jesús Vela
- Departamento de Biología Experimental, Área de Genética, Universidad de Jaén, Jaén, Spain
| | - Ángeles Cuadrado
- Department of Cell Biology and Genetics, University of Alcalá de Henares, Alcalá de Henares, Madrid, Spain
| | - Antonio Sánchez
- Departamento de Biología Experimental, Área de Genética, Universidad de Jaén, Jaén, Spain
| | - Teresa Palomeque
- Departamento de Biología Experimental, Área de Genética, Universidad de Jaén, Jaén, Spain
| | - Pedro Lorite
- Departamento de Biología Experimental, Área de Genética, Universidad de Jaén, Jaén, Spain
| |
Collapse
|
242
|
Toll ligand Spätzle3 controls melanization in the stripe pattern formation in caterpillars. Proc Natl Acad Sci U S A 2017; 114:8336-8341. [PMID: 28716921 DOI: 10.1073/pnas.1707896114] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A stripe pattern is an aposematic or camouflage coloration often observed among various caterpillars. However, how this ecologically important pattern is formed is largely unknown. The silkworm dominant mutant Zebra (Ze) has a black stripe in the anterior margin of each dorsal segment. Here, fine linkage mapping of 3,135 larvae revealed a 63-kbp region responsible for the Ze locus, which contained three candidate genes, including the Toll ligand gene spätzle3 (spz-3). Both electroporation-mediated ectopic expression and RNAi analyses showed that, among candidate genes, only processed spz-3 induced melanin pigmentation and that Toll-8 was the candidate receptor gene of spz-3 This Toll ligand/receptor set is also involved in melanization of other mutant Striped (pS ), which has broader stripes. Additional knockdown of 5 other spz family and 10 Toll-related genes caused no drastic change in the pigmentation of either mutant, suggesting that only spz-3/Toll-8 is mainly involved in the melanization process rather than pattern formation. The downstream pigmentation gene yellow was specifically up-regulated in the striped region of the Ze mutant, but spz-3 showed no such region-specific expression. Toll signaling pathways are known to be involved in innate immunity, dorsoventral axis formation, and neurotrophic functions. This study provides direct evidence that a Toll signaling pathway is co-opted to control the melanization process and adaptive striped pattern formation in caterpillars.
Collapse
|
243
|
Shobahah J, Xue S, Hu D, Zhao C, Wei M, Quan Y, Yu W. Quantitative phosphoproteome on the silkworm (Bombyx mori) cells infected with baculovirus. Virol J 2017. [PMID: 28629377 PMCID: PMC5477107 DOI: 10.1186/s12985-017-0783-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background Bombyx mori has become an important model organism for many fundamental studies. Bombyx mori nucleopolyhedrovirus (BmNPV) is a significant pathogen to Bombyx mori, yet also an efficient vector for recombinant protein production. A previous study indicated that acetylation plays many vital roles in several cellular processes of Bombyx mori while global phosphorylation pattern upon BmNPV infection remains elusive. Method Employing tandem mass tag (TMT) labeling and phosphorylation affinity enrichment followed by high-resolution LC-MS/MS analysis and intensive bioinformatics analysis, the quantitative phosphoproteome in Bombyx mori cells infected by BmNPV at 24 hpi with an MOI of 10 was extensively examined. Results Totally, 6480 phosphorylation sites in 2112 protein groups were identified, among which 4764 sites in 1717 proteins were quantified. Among the quantified proteins, 81 up-regulated and 25 down-regulated sites were identified with significant criteria (the quantitative ratio above 1.3 was considered as up-regulation and below 0.77 was considered as down-regulation) and with significant p-value (p < 0.05). Some proteins of BmNPV were also hyperphosphorylated during infection, such as P6.9, 39 K, LEF-6, Ac58-like protein, Ac82-like protein and BRO-D. Conclusion The phosphorylated proteins were primary involved in several specific functions, out of which, we focused on the binding activity, protein synthesis, viral replication and apoptosis through kinase activity.
Collapse
Affiliation(s)
- Jauharotus Shobahah
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Xiasha High-Tech Zone No.2 Road, Zhejiang Province, Hangzhou, 310018, People's Republic of China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Province, Hangzhou, 310018, People's Republic of China
| | - Shengjie Xue
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Xiasha High-Tech Zone No.2 Road, Zhejiang Province, Hangzhou, 310018, People's Republic of China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Province, Hangzhou, 310018, People's Republic of China
| | - Dongbing Hu
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Xiasha High-Tech Zone No.2 Road, Zhejiang Province, Hangzhou, 310018, People's Republic of China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Province, Hangzhou, 310018, People's Republic of China
| | - Cui Zhao
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Xiasha High-Tech Zone No.2 Road, Zhejiang Province, Hangzhou, 310018, People's Republic of China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Province, Hangzhou, 310018, People's Republic of China
| | - Ming Wei
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Xiasha High-Tech Zone No.2 Road, Zhejiang Province, Hangzhou, 310018, People's Republic of China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Province, Hangzhou, 310018, People's Republic of China
| | - Yanping Quan
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Xiasha High-Tech Zone No.2 Road, Zhejiang Province, Hangzhou, 310018, People's Republic of China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Province, Hangzhou, 310018, People's Republic of China
| | - Wei Yu
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Xiasha High-Tech Zone No.2 Road, Zhejiang Province, Hangzhou, 310018, People's Republic of China. .,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Province, Hangzhou, 310018, People's Republic of China.
| |
Collapse
|
244
|
iTRAQ-based quantitative proteomics analysis of molecular mechanisms associated with Bombyx mori (Lepidoptera) larval midgut response to BmNPV in susceptible and near-isogenic strains. J Proteomics 2017. [PMID: 28624519 DOI: 10.1016/j.jprot.2017.06.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) has been identified as a major pathogen responsible for severe economic loss. Most silkworm strains are susceptible to BmNPV, with only a few highly resistant strains thus far identified. Here we investigated the molecular basis of silkworm resistance to BmNPV using susceptible (the recurrent parent P50) and resistant (near-isogenic line BC9) strains and a combination of iTRAQ-based quantitative proteomics, reverse-transcription quantitative PCR and Western blotting. By comparing the proteomes of infected and non-infected P50 and BC9 silkworms, we identified 793 differentially expressed proteins (DEPs). By gene ontology and KEGG enrichment analyses, we found that these DEPs are preferentially involved in metabolism, catalytic activity, amino sugar and nucleotide sugar metabolism and carbon metabolism. 114 (14.38%) DEPs were associated with the cytoskeleton, immune response, apoptosis, ubiquitination, translation, ion transport, endocytosis and endopeptidase activity. After removing the genetic background and individual immune stress response proteins, we identified 84 DEPs were found that are potentially involved in resistance to BmNPV. Further studies showed that a serine protease was down-regulated in P50 and up-regulated in BC9 after BmNPV infection. Taken together, these results provide insights into the molecular mechanism of silkworm response to BmNPV. BIOLOGICAL SIGNIFICANCE Bombyx mori nucleopolyhedrovirus (BmNPV) is highly pathogenic, causing serious losses in sericulture every year. However, the molecular mechanisms of BmNPV infection and host defence remain unclear. Here we combined quantitative proteomic, bioinformatics, RT-qPCR and Western blotting analyses and found that BmNPV invasion causes complex protein alterations in the larval midgut, and that these changes are related to cytoskeleton, immune response, apoptosis, ubiquitination, translation, ion transport, endocytosis and endopeptidase activity. Five important differentially expression proteins were validation by independent approaches. These finding will help address the molecular mechanisms of silkworm resistance to BmNPV and provide a molecular target for resisting BmNPV.
Collapse
|
245
|
Zhang J, Blessing D, Wu C, Liu N, Li J, Qin S, Li M. Comparative transcriptomes analysis of the wing disc between two silkworm strains with different size of wings. PLoS One 2017; 12:e0179560. [PMID: 28617839 PMCID: PMC5472328 DOI: 10.1371/journal.pone.0179560] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/30/2017] [Indexed: 12/19/2022] Open
Abstract
Wings of Bombyx mori (B. mori) develop from the primordium, and different B. mori strains have different wing types. In order to identify the key factors influencing B. mori wing development, we chose strains P50 and U11, which are typical for normal wing and minute wing phenotypes, respectively. We dissected the wing disc on the 1st-day of wandering stage (P50D1 and U11D1), 2nd-day of wandering stage (P50D2 and U11D2), and 3rd-day of wandering stage (P50D3 and U11D3). Subsequently, RNA-sequencing (RNA-Seq) was performed on both strains in order to construct their gene expression profiles. P50 exhibited 628 genes differentially expressed to U11, 324 up-regulated genes, and 304 down-regulated genes. Five enriched gene ontology (GO) terms were identified by GO enrichment analysis based on these differentially expressed genes (DEGs). KEGG enrichment analysis results showed that the DEGs were enriched in five pathways; of these, we identified three pathways related to the development of wings. The three pathways include amino sugar and nucleotide sugar metabolism pathway, proteasome signaling pathway, and the Hippo signaling pathway. The representative genes in the enrichment pathways were further verified by quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). The RNA-Seq and qRT-PCR results were largely consistent with each other. Our results also revealed that the significantly different genes obtained in our study might be involved in the development of the size of B. mori wings. In addition, several KEGG enriched pathways might be involved in the regulation of the pathways of wing formation. These results provide a basis for further research of wing development in B. mori.
Collapse
Affiliation(s)
- Jing Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Danso Blessing
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Chenyu Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Na Liu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Juan Li
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Sheng Qin
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu, China
- * E-mail: (ML); (SQ)
| | - Muwang Li
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu, China
- * E-mail: (ML); (SQ)
| |
Collapse
|
246
|
Xu G, Wu SF, Teng ZW, Yao HW, Fang Q, Huang J, Ye GY. Molecular characterization and expression profiles of nicotinic acetylcholine receptors in the rice striped stem borer, Chilo suppressalis (Lepidoptera: Crambidae). INSECT SCIENCE 2017; 24:371-384. [PMID: 26847606 DOI: 10.1111/1744-7917.12324] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/13/2016] [Indexed: 06/05/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are members of the cys-loop ligand-gated ion channel (cysLGIC) superfamily, mediating fast synaptic cholinergic transmission in the central nervous system in insects. Insect nAChRs are the molecular targets of economically important insecticides, such as neonicotinoids and spinosad. Identification and characterization of the nAChR gene family in the rice striped stem borer, Chilo suppressalis, could provide beneficial information about this important receptor gene family and contribute to the investigation of the molecular modes of insecticide action and resistance for current and future chemical control strategies. We searched our C. suppressalis transcriptome database using Bombyx mori nAChR sequences in local BLAST searches and obtained the putative nAChR subunit complementary DNAs (cDNAs) via reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends methods. Similar to B. mori, C. suppressalis possesses 12 nAChR subunits, including nine α-type and three β-type subunits. Quantitative RT-PCR analysis revealed the expression profiles of the nAChR subunits in various tissues, including the brain, subesophageal ganglion, thoracic ganglion, abdominal ganglion, hemocytes, fat body, foregut, midgut, hindgut and Malpighian tubules. Developmental expression analyses showed clear differential expression of nAChR subunits throughout the C. suppressalis life cycle. The identification of nAChR subunits in this study will provide a foundation for investigating the diverse roles played by nAChRs in C. suppressalis and for exploring specific target sites for chemicals that control agricultural pests while sparing beneficial species.
Collapse
Affiliation(s)
- Gang Xu
- State Key Laboratory of Rice Biology & Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Shun-Fan Wu
- State Key Laboratory of Rice Biology & Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zi-Wen Teng
- State Key Laboratory of Rice Biology & Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Hong-Wei Yao
- State Key Laboratory of Rice Biology & Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qi Fang
- State Key Laboratory of Rice Biology & Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Jia Huang
- State Key Laboratory of Rice Biology & Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Gong-Yin Ye
- State Key Laboratory of Rice Biology & Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
247
|
Sikkink KL, Kobiela ME, Snell-Rood EC. Genomic adaptation to agricultural environments: cabbage white butterflies (Pieris rapae) as a case study. BMC Genomics 2017; 18:412. [PMID: 28549454 PMCID: PMC5446745 DOI: 10.1186/s12864-017-3787-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/11/2017] [Indexed: 12/30/2022] Open
Abstract
Background Agricultural environments have long presented an opportunity to study evolution in action, and genomic approaches are opening doors for testing hypotheses about adaptation to crops, pesticides, and fertilizers. Here, we begin to develop the cabbage white butterfly (Pieris rapae) as a system to test questions about adaptation to novel, agricultural environments. We focus on a population in the north central United States as a unique case study: here, canola, a host plant, has been grown during the entire flight period of the butterfly over the last three decades. Results First, we show that the agricultural population has diverged phenotypically relative to a nonagricultural population: when reared on a host plant distantly related to canola, the agricultural population is smaller and more likely to go into diapause than the nonagricultural population. Second, drawing from deep sequencing runs from six individuals from the agricultural population, we assembled the gut transcriptome of this population. Then, we sequenced RNA transcripts from the midguts of 96 individuals from this canola agricultural population and the nonagricultural population in order to describe patterns of genomic divergence between the two. While population divergence is low, 235 genes show evidence of significant differentiation between populations. These genes are significantly enriched for cofactor and small molecule metabolic processes, and many genes also have transporter or catalytic activity. Analyses of population structure suggest the agricultural population contains a subset of the genetic variation in the nonagricultural population. Conclusions Taken together, our results suggest that adaptation of cabbage whites to an agricultural environment occurred at least in part through selection on standing genetic variation. Both the phenotypic and genetic data are consistent with the idea that this pest has adapted to an abundant and predictable agricultural resource through a narrowing of niche breadth and loss of genetic variants rather than de novo gain of adaptive alleles. The present research develops genomic resources to pave the way for future studies using cabbage whites as a model contributing to our understanding of adaptation to agricultural environments. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3787-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kristin L Sikkink
- Department of Ecology, Evolution, and Behavior, University of Minnesota, 1479 Gortner Ave, 140 Gortner Lab, Saint Paul, MN, 55108, USA.
| | - Megan E Kobiela
- Department of Ecology, Evolution, and Behavior, University of Minnesota, 1479 Gortner Ave, 140 Gortner Lab, Saint Paul, MN, 55108, USA
| | - Emilie C Snell-Rood
- Department of Ecology, Evolution, and Behavior, University of Minnesota, 1479 Gortner Ave, 140 Gortner Lab, Saint Paul, MN, 55108, USA
| |
Collapse
|
248
|
Xiao W, Chen P, Xiao J, Wang L, Liu T, Wu Y, Dong F, Jiang Y, Pan M, Zhang Y, Lu C. Comparative transcriptome profiling of a thermal resistant vs. sensitive silkworm strain in response to high temperature under stressful humidity condition. PLoS One 2017; 12:e0177641. [PMID: 28542312 PMCID: PMC5436693 DOI: 10.1371/journal.pone.0177641] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 05/01/2017] [Indexed: 11/25/2022] Open
Abstract
Thermotolerance is important particularly for poikilotherms such as insects. Understanding the mechanisms by which insects respond to high temperatures can provide insights into their adaptation to the environment. Therefore, in this study, we performed a transcriptome analysis of two silkworm strains with significantly different resistance to heat as well as humidity; the thermo-resistant strain 7532 and the thermos-sensitive strain Knobbed. We identified in total 4,944 differentially expressed genes (DEGs) using RNA-Seq. Among these, 4,390 were annotated and 554 were novel. Gene Ontology (GO) analysis of 747 DEGs identified between RT_48h (Resistant strain with high-temperature Treatment for 48 hours) and ST_48h (Sensitive strain with high-temperature Treatment for 48 hours) showed significant enrichment of 12 GO terms including metabolic process, extracellular region and serine-type peptidase activity. Moreover, we discovered 12 DEGs that may contribute to the heat-humidity stress response in the silkworm. Our data clearly showed that 48h post-exposure may be a critical time point for silkworm to respond to high temperature and humidity. These results provide insights into the genes and biological processes involved in high temperature and humidity tolerance in the silkworm, and advance our understanding of thermal tolerance in insects.
Collapse
Affiliation(s)
- Wenfu Xiao
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
- Sericultural Research Institute Sichuan Academy of Agricultural Sciences, Sichuan Nanchong, China
| | - Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Jinshu Xiao
- Sericultural Research Institute Sichuan Academy of Agricultural Sciences, Sichuan Nanchong, China
| | - La Wang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Taihang Liu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Yunfei Wu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Feifan Dong
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Yaming Jiang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Minhui Pan
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Youhong Zhang
- Sericultural Research Institute Sichuan Academy of Agricultural Sciences, Sichuan Nanchong, China
- * E-mail: (CL); (YZ)
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
- * E-mail: (CL); (YZ)
| |
Collapse
|
249
|
Bombyx mori Serpin6 regulates prophenoloxidase activity and the expression of antimicrobial proteins. Gene 2017; 610:64-70. [DOI: 10.1016/j.gene.2017.02.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 01/08/2017] [Accepted: 02/06/2017] [Indexed: 11/17/2022]
|
250
|
Ahola V, Wahlberg N, Frilander MJ. Butterfly Genomics: Insights from the Genome ofMelitaea cinxia. ANN ZOOL FENN 2017. [DOI: 10.5735/086.054.0123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Virpi Ahola
- Department of Biosciences, P.O. Box 65, FI-00014 University of Helsinki, Finland
| | - Niklas Wahlberg
- Department of Biology, Lund University, Sölvegatan 37, SE-223 62 Lund, Sweden
| | - Mikko J. Frilander
- Institute of Biotechnology, P.O. Box 56, FI-00014 University of Helsinki, Finland
| |
Collapse
|