201
|
Nasti R, Rossi D, Amadio M, Pascale A, Unver MY, Hirsch AKH, Collina S. Compounds Interfering with Embryonic Lethal Abnormal Vision (ELAV) Protein–RNA Complexes: An Avenue for Discovering New Drugs. J Med Chem 2017; 60:8257-8267. [DOI: 10.1021/acs.jmedchem.6b01871] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Rita Nasti
- Department of Drug
Sciences, Medicinal Chemistry and Technology Section, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Daniela Rossi
- Department of Drug
Sciences, Medicinal Chemistry and Technology Section, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Marialaura Amadio
- Department of Drug
Sciences, Pharmacology Section, University of Pavia, Via Taramelli
14, 27100 Pavia, Italy
| | - Alessia Pascale
- Department of Drug
Sciences, Pharmacology Section, University of Pavia, Via Taramelli
14, 27100 Pavia, Italy
| | - M. Yagiz Unver
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, NL-9747
AG Groningen, The Netherlands
| | - Anna K. H. Hirsch
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, NL-9747
AG Groningen, The Netherlands
| | - Simona Collina
- Department of Drug
Sciences, Medicinal Chemistry and Technology Section, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
202
|
Li X, Liu CX, Xue W, Zhang Y, Jiang S, Yin QF, Wei J, Yao RW, Yang L, Chen LL. Coordinated circRNA Biogenesis and Function with NF90/NF110 in Viral Infection. Mol Cell 2017. [PMID: 28625552 DOI: 10.1016/j.molcel.2017.05.023] [Citation(s) in RCA: 448] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Circular RNAs (circRNAs) generated via back-splicing are enhanced by flanking complementary sequences. Expression levels of circRNAs vary under different conditions, suggesting participation of protein factors in their biogenesis. Using genome-wide siRNA screening that targets all human unique genes and an efficient circRNA expression reporter, we identify double-stranded RNA-binding domain containing immune factors NF90/NF110 as key regulators in circRNA biogenesis. NF90/NF110 promote circRNA production in the nucleus by associating with intronic RNA pairs juxtaposing the circRNA-forming exon(s); they also interact with mature circRNAs in the cytoplasm. Upon viral infection, circRNA expression is decreased, in part owing to the nuclear export of NF90/NF110 to the cytoplasm. Meanwhile, NF90/NF110 released from circRNP complexes bind to viral mRNAs as part of their functions in antiviral immune response. Our results therefore implicate a coordinated regulation of circRNA biogenesis and function by NF90/NF110 in viral infection.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory of Molecular Biology and Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Chu-Xiao Liu
- State Key Laboratory of Molecular Biology and Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Wei Xue
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Yang Zhang
- State Key Laboratory of Molecular Biology and Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Shan Jiang
- State Key Laboratory of Molecular Biology and Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Qing-Fei Yin
- State Key Laboratory of Molecular Biology and Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Jia Wei
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Run-Wen Yao
- State Key Laboratory of Molecular Biology and Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Li Yang
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China.
| | - Ling-Ling Chen
- State Key Laboratory of Molecular Biology and Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China.
| |
Collapse
|
203
|
Zhang Y, Tang C, Yu T, Zhang R, Zheng H, Yan W. MicroRNAs control mRNA fate by compartmentalization based on 3' UTR length in male germ cells. Genome Biol 2017; 18:105. [PMID: 28615029 PMCID: PMC5471846 DOI: 10.1186/s13059-017-1243-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 05/23/2017] [Indexed: 12/18/2022] Open
Abstract
Background Post-transcriptional regulation of gene expression can be achieved through the control of mRNA stability, cytoplasmic compartmentalization, 3′ UTR length and translational efficacy. Spermiogenesis, a process through which haploid male germ cells differentiate into spermatozoa, represents an ideal model for studying post-transcriptional regulation in vivo because it involves a large number of transcripts that are physically sequestered in ribonucleoprotein particles (RNPs) and thus subjected to delayed translation. To explore how small RNAs regulate mRNA fate, we conducted RNA-Seq analyses to determine not only the levels of both mRNAs and small noncoding RNAs, but also their cytoplasmic compartmentalization during spermiogenesis. Result Among all small noncoding RNAs studied, miRNAs displayed the most dynamic changes in both abundance and subcytoplasmic localization. mRNAs with shorter 3′ UTRs became increasingly enriched in RNPs from pachytene spermatocytes to round spermatids, and the enrichment of shorter 3′ UTR mRNAs in RNPs coincided with newly synthesized miRNAs that target these mRNAs at sites closer to the stop codon. In contrast, the translocation of longer 3′ UTR mRNAs from RNPs to polysomes correlated with the production of new miRNAs that target these mRNAs at sites distal to the stop codon. Conclusions miRNAs appear to control cytoplasmic compartmentalization of mRNAs based on 3′ UTR length. Our data suggest that transcripts with longer 3′ UTRs tend to contain distal miRNA binding sites and are thus targeted to polysomes for translation followed by degradation. In contrast, those with shorter 3′ UTRs only possess proximal miRNA binding sites, which, therefore, are targeted into RNPs for enrichment and delayed translation. Electronic supplementary material The online version of this article (doi:10.1186/s13059-017-1243-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Center for Molecular Medicine, Room 207B, 1664 North Virginia Street, MS/0575, Reno, NV, 89557, USA
| | - Chong Tang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Center for Molecular Medicine, Room 207B, 1664 North Virginia Street, MS/0575, Reno, NV, 89557, USA
| | - Tian Yu
- Department of Biology, University of Nevada, Reno, 1664 North Virginia Street, MS575, Reno, NV, 89557, USA
| | - Ruirui Zhang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Center for Molecular Medicine, Room 207B, 1664 North Virginia Street, MS/0575, Reno, NV, 89557, USA
| | - Huili Zheng
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Center for Molecular Medicine, Room 207B, 1664 North Virginia Street, MS/0575, Reno, NV, 89557, USA
| | - Wei Yan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Center for Molecular Medicine, Room 207B, 1664 North Virginia Street, MS/0575, Reno, NV, 89557, USA. .,Department of Biology, University of Nevada, Reno, 1664 North Virginia Street, MS575, Reno, NV, 89557, USA.
| |
Collapse
|
204
|
Neuronal activity-regulated alternative mRNA splicing. Int J Biochem Cell Biol 2017; 91:184-193. [PMID: 28591617 DOI: 10.1016/j.biocel.2017.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/24/2017] [Accepted: 06/01/2017] [Indexed: 11/20/2022]
Abstract
Activity-regulated gene transcription underlies plasticity-dependent changes in the molecular composition and structure of neurons. Numerous genes whose expression is induced by different neuronal plasticity inducing pathways have been identified, but the alteration of gene expression levels represents only part of the complexity of the activity-regulated transcriptional program. Alternative splicing of precursor mRNA is an additional mechanism that modulates the activity-dependent transcriptional signature. Recently developed splicing sensitive transcriptome wide analyses improve our understanding of the underlying mechanisms and demonstrate to what extend the activity regulated transcriptome is alternatively spliced. So far, only for a small group of differentially spliced mRNAs of synaptic proteins, the functional implications have been studied in detail. These include examples in which differential exon usage can result in the expression of alternative proteins which interfere with or alter the function of preexisting proteins and cause a dominant negative functional block of constitutively expressed variants. Such altered proteins contribute to the structural and functional reorganization of pre- and postsynaptic terminals and to the maintenance and formation of synapses. In addition, activity-induced alternative splicing can affect the untranslated regions (UTRs) and generates mRNAs harboring different cis-regulatory elements. Such differential UTRs can influence mRNA stability, translation, and can change the targeting of mRNAs to subcellular compartments. Here, we summarize different categories of alternative splicing which are thought to contribute to synaptic remodeling, give an overview of activity-regulated alternatively spliced mRNAs of synaptic proteins that impact synaptic functions, and discuss splicing factors and epigenetic modifications as regulatory determinants.
Collapse
|
205
|
Huang Y, Fang C, Shi JW, Wen Y, Liu D. Identification of hMex-3A and its effect on human bladder cancer cell proliferation. Oncotarget 2017; 8:61215-61225. [PMID: 28977858 PMCID: PMC5617418 DOI: 10.18632/oncotarget.18050] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/25/2017] [Indexed: 11/25/2022] Open
Abstract
In this study, hMex-3A was selected from TCGA database as a research object to observe the effects of small interfering RNA (siRNA) targeting hMex-3A on the biological activities of human bladder cancer and explore its mechanism for the first time. In this study, there were 2 groups including negative control group and hMex-3A-siRNA-transfected cells group for 5637 and T24 cell lines, respectively. After bladder cancer cells were transfected with the interference RNA sequence, proliferation of transfected cells were assessed by Celigo Cell Counting, and apoptosis were detected by flow cytometry. The knockdown rate of hMex-3A was 74% in 5637 cells and 68% in T24 cells after RNA interference. In addition, Celigo Cell Counting indicated that cell viability was significantly lower in hMex-3A-siRNA-transfected cells group (2196/well) than in negative control group (6777/well) (P < 0.05), but T24 cells did not show statistical significance between hMex-3A-siRNA-transfected cells group (5799/well) and negative control group (7899/well) (P >0.05). Flow cytometer showed that apoptosis was the highest and cells were significantly blocked after cells were transfected in hMex-3A-siRNA-transfected cells group in 5 days later (P < 0.05). Mex-3A protein was detected in bladder carcinoma sections with a mean staining intensity of 7.06±2.60. Mex-3A protein expression was significantly higher in cancerous tissue than in para-cancerous tissue (P <0.05). Our study suggested that siRNA targeting hMex-3A could markedly inhibit cell proliferation and promote apoptosis in 5637 cells. These might have significant implications to bladder carcinogenesis and serve as a potential target for the treatment of bladder cancer.
Collapse
Affiliation(s)
- Ying Huang
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Chao Fang
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jing-Wen Shi
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yu Wen
- Department of Histoembryology, China Medical University, Shenyang 110000, China
| | - Da Liu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
206
|
Xin Y, Li Z, Zheng H, Ho J, Chan MTV, Wu WKK. Neuro-oncological ventral antigen 1 (NOVA1): Implications in neurological diseases and cancers. Cell Prolif 2017; 50. [PMID: 28394091 DOI: 10.1111/cpr.12348] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 02/27/2017] [Indexed: 12/25/2022] Open
Abstract
Neuro-oncological ventral antigen 1 (NOVA1) is a RNA-binding protein that interacts with RNA containing repeats of the YCAY sequence. This protein is a brain-specific splicing factor regulating neuronal alternative splicing. It has been increasingly recognized as an important contributor to neurological disorders and carcinogenesis. In this review, we summarize the biological functions and pathological roles of NOVA1. The clinical implications of NOVA1 will also be discussed.
Collapse
Affiliation(s)
- Yu Xin
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100042, China
| | - Zheng Li
- Department of Orthopedics Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100042, China
| | - Heyi Zheng
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100042, China
| | - Jeffery Ho
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong
| | - William K K Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong.,State Key Laboratory of Digestive Disease and LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
207
|
Shi R, Yu X, Wang Y, Sun J, Sun Q, Xia W, Dong G, Wang A, Gao Z, Jiang F, Xu L. Expression profile, clinical significance, and biological function of insulin-like growth factor 2 messenger RNA-binding proteins in non–small cell lung cancer. Tumour Biol 2017; 39:1010428317695928. [PMID: 28381175 DOI: 10.1177/1010428317695928] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Insulin-like growth factor 2 messenger RNA-binding proteins have been described to associate with malignant process in many cancers. However, the role of insulin-like growth factor 2 messenger RNA-binding protein family has not been thoroughly elucidated in non–small cell lung cancer. This study was to investigate the expression profile, clinical significance, and biological function of insulin-like growth factor 2 messenger RNA-binding proteins family in non–small cell lung cancer. The expression levels of IGF2BP1–IGF2BP3 in tumor and adjacent normal tissues were determined, and association with clinicopathological features and overall survival was investigated by analyzing The Cancer Genome Atlas lung cancer database. Proliferation, migration, invasion assays, and flow-cytometry analysis were used to investigate the biological function in vitro. Insulin-like growth factor 2 messenger RNA-binding protein expression levels were significantly increased in non–small cell lung cancer compared to adjacent normal lung tissues. Chi-square test indicated that IGF2BP1 and IGF2BP3 expressions correlated with some meaningful clinical characteristics in non–small cell lung cancer. Kaplan–Meier analysis showed that high-level expression of IGF2BP1 or IGF2BP3 predicted poor overall survival in lung adenocarcinoma patients. Multivariate regression analysis showed that high level of IGF2BP3 was an independent risk factor for poor prognosis in lung adenocarcinoma patients (hazard ratio = 1.616, p = 0.017). In vitro, knockdown of IGF2BP3 inhibited lung adenocarcinoma cell proliferation by inducing cell cycle arrest and apoptosis, and undermined abilities of migration and invasion, and overexpression of IGF2BP3 could promote malignant phenotypes in lung adenocarcinoma cells. Our study revealed that expression of insulin-like growth factor 2 messenger RNA-binding proteins was widely upregulated and correlated with some certain clinicopathological features in non–small cell lung cancer. Especially, in insulin-like growth factor 2 messenger RNA-binding protein family, IGF2BP3 might play the most important role in tumor aggressiveness and prognosis in lung adenocarcinoma, and IGF2BP3 might serve as a potential therapeutic target and a novel prognostic biomarker in lung adenocarcinoma patients.
Collapse
Affiliation(s)
- Run Shi
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Xinnian Yu
- Department of Medical Oncology, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Yajing Wang
- The First Clinical College of Nanjing Medical University, Nanjing, China
| | - Jing Sun
- The First Clinical College of Nanjing Medical University, Nanjing, China
| | - Qi Sun
- Department of Cardiothoracic Surgery, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Wenjie Xia
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Gaochao Dong
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
| | - Anpeng Wang
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Zhaojia Gao
- The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Feng Jiang
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Lin Xu
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| |
Collapse
|
208
|
Kalam H, Fontana MF, Kumar D. Alternate splicing of transcripts shape macrophage response to Mycobacterium tuberculosis infection. PLoS Pathog 2017; 13:e1006236. [PMID: 28257432 PMCID: PMC5352146 DOI: 10.1371/journal.ppat.1006236] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 03/15/2017] [Accepted: 02/13/2017] [Indexed: 12/29/2022] Open
Abstract
Transcriptional reprogramming of macrophages upon Mycobacterium tuberculosis (Mtb) infection is widely studied; however, the significance of alternate splicing (AS) in shaping cellular responses to mycobacterial infections is not yet appreciated. Alternate splicing can influence transcript stability or structure, function and localization of corresponding proteins thereby altering protein stoichiometry and physiological consequences. Using comprehensive analysis of a time-series RNA-seq data obtained from human macrophages infected with virulent or avirulent strains of Mtb, we show extensive remodeling of alternate splicing in macrophage transcriptome. The global nature of this regulation was evident since genes belonging to functional classes like trafficking, immune response, autophagy, redox and metabolism showed marked departure in the pattern of splicing in the infected macrophages. The systemic perturbation of splicing machinery in the infected macrophages was apparent as genes involved at different stages of spliceosome assembly were also regulated at the splicing level. Curiously there was a considerable increase in the expression of truncated/non-translatable variants of several genes, specifically upon virulent infections. Increased expression of truncated transcripts correlated with a decline in the corresponding protein levels. We verified the physiological relevance for one such candidate gene RAB8B; whose truncated variant gets enriched in H37Rv infected cells. Upon tweaking relative abundance of longer or shorter variants of RAB8B transcripts by specialized transduction, mycobacterial targeting to lysosomes could be promoted or blocked respectively, which also resulted in corresponding changes in the bacterial survival. Our results show RAB8B recruitment to the mycobacterial phagosomes is required for phagosome maturation. Thus the abundance of truncated RAB8B variant helps virulent Mtb survival by limiting the RAB8B levels in the cells, a mechanism which we subsequently verified in human primary macrophages. Taken together we demonstrate alternate splicing as a new locus of intervention by Mtb and provide attractive alternative to exploit for novel drug targets against Mtb.
Collapse
Affiliation(s)
- Haroon Kalam
- Cellular Immunology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Mary F. Fontana
- Cellular Immunology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Dhiraj Kumar
- Cellular Immunology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
- * E-mail:
| |
Collapse
|
209
|
Chatterjee N, Rana S, Espinosa-Diez C, Anand S. MicroRNAs in Cancer: challenges and opportunities in early detection, disease monitoring, and therapeutic agents. CURRENT PATHOBIOLOGY REPORTS 2017; 5:35-42. [PMID: 28966883 PMCID: PMC5613763 DOI: 10.1007/s40139-017-0123-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW The goals of this review are to examine the usefulness of miRNAs as diagnostic and prognostic biomarkers for cancer and to evaluate the applicability of miRNAs as cancer therapeutics. RECENT FINDINGS Examination of miRNA milieu from body fluids offers a new alternative for quick, affordable and easy analysis of disease status in patients. Blood-based exosomal miRNAs have increased stability and are an excellent choice for clinical cancer diagnostics and prognostics. Currently, there are many miRNA signatures associated with cancer and progression but there is no consensus among multiple sera and tumor sample studies. Off-target and immunological effects remains an obstacle for use of miRNAs as novel chemotherapeutics in the clinic. Recent developments in nanotechnology and drug delivery systems which target the tumor microenvironment may provide an alternative therapeutic approach with decreased toxicity. SUMMARY This review critically evaluates the literature investigating the use of miRNAs as biomarkers and their future as potential therapeutics.
Collapse
Affiliation(s)
- Namita Chatterjee
- Department of Cell, Development and Cancer Biology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239
| | - Shushan Rana
- Department of Radiation Medicine, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239
| | - Cristina Espinosa-Diez
- Department of Cell, Development and Cancer Biology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239
| | - Sudarshan Anand
- Department of Cell, Development and Cancer Biology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239
- Department of Radiation Medicine, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239
| |
Collapse
|
210
|
Tamburino AM, Kaymak E, Shrestha S, Holdorf AD, Ryder SP, Walhout AJM. PRIMA: a gene-centered, RNA-to-protein method for mapping RNA-protein interactions. ACTA ACUST UNITED AC 2017; 5:e1295130. [PMID: 28702278 DOI: 10.1080/21690731.2017.1295130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/23/2017] [Accepted: 02/09/2017] [Indexed: 12/20/2022]
Abstract
Interactions between RNA binding proteins (RBPs) and mRNAs are critical to post-transcriptional gene regulation. Eukaryotic genomes encode thousands of mRNAs and hundreds of RBPs. However, in contrast to interactions between transcription factors (TFs) and DNA, the interactome between RBPs and RNA has been explored for only a small number of proteins and RNAs. This is largely because the focus has been on using 'protein-centered' (RBP-to-RNA) interaction mapping methods that identify the RNAs with which an individual RBP interacts. While powerful, these methods cannot as of yet be applied to the entire RBPome. Moreover, it may be desirable for a researcher to identify the repertoire of RBPs that can interact with an mRNA of interest-in a 'gene-centered' manner-yet few such techniques are available. Here, we present Protein-RNA Interaction Mapping Assay (PRIMA) with which an RNA 'bait' can be tested versus multiple RBP 'preys' in a single experiment. PRIMA is a translation-based assay that examines interactions in the yeast cytoplasm, the cellular location of mRNA translation. We show that PRIMA can be used with small RNA elements, as well as with full-length Caenorhabditis elegans 3' UTRs. PRIMA faithfully recapitulated numerous well-characterized RNA-RBP interactions and also identified novel interactions, some of which were confirmed in vivo. We envision that PRIMA will provide a complementary tool to expand the depth and scale with which the RNA-RBP interactome can be explored.
Collapse
Affiliation(s)
- Alex M Tamburino
- Program in Systems Biology and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ebru Kaymak
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Shaleen Shrestha
- Program in Systems Biology and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Amy D Holdorf
- Program in Systems Biology and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Sean P Ryder
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Albertha J M Walhout
- Program in Systems Biology and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
211
|
Kachaev ZM, Gilmutdinov RA, Kopytova DV, Zheludkevich AA, Shidlovskii YV, Kurbidaeva AS. RNA immunoprecipitation technique for Drosophila melanogaster S2 cells. Mol Biol 2017. [DOI: 10.1134/s002689331606008x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
212
|
Singh G, Fritz SM, Ranji A, Singh D, Boris-Lawrie K. Isolation of Cognate RNA-protein Complexes from Cells Using Oligonucleotide-directed Elution. J Vis Exp 2017. [PMID: 28117770 DOI: 10.3791/54391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ribonucleoprotein particles direct the biogenesis and post-transcriptional regulation of all mRNAs through distinct combinations of RNA binding proteins. They are composed of position-dependent, cis-acting RNA elements and unique combinations of RNA binding proteins. Defining the composition of a specific RNP is essential to achieving a fundamental understanding of gene regulation. The isolation of a select RNP is akin to finding a needle in a haystack. Here, we demonstrate an approach to isolate RNPs associated at the 5' untranslated region of a select mRNA in asynchronous, transfected cells. This cognate RNP has been demonstrated to be necessary for the translation of select viruses and cellular stress-response genes. The demonstrated RNA-protein co-precipitation protocol is suitable for the downstream analysis of protein components through proteomic analyses, immunoblots, or suitable biochemical identification assays. This experimental protocol demonstrates that DHX9/RNA helicase A is enriched at the 5' terminus of cognate retroviral RNA and provides preliminary information for the identification of its association with cell stress-associated huR and junD cognate mRNAs.
Collapse
Affiliation(s)
- Gatikrushna Singh
- Department of Veterinary & Biomedical Sciences, University of Minnesota
| | - Sarah M Fritz
- Department of Veterinary Biosciences, Ohio State University
| | - Arnaz Ranji
- Department of Veterinary Biosciences, Ohio State University
| | | | - Kathleen Boris-Lawrie
- Department of Veterinary & Biomedical Sciences, University of Minnesota; Department of Veterinary Biosciences, Ohio State University;
| |
Collapse
|
213
|
Walczak S, Nowicka A, Kubacka D, Fac K, Wanat P, Mroczek S, Kowalska J, Jemielity J. A novel route for preparing 5' cap mimics and capped RNAs: phosphate-modified cap analogues obtained via click chemistry. Chem Sci 2017; 8:260-267. [PMID: 28451173 PMCID: PMC5355871 DOI: 10.1039/c6sc02437h] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/10/2016] [Indexed: 01/29/2023] Open
Abstract
The significant biological role of the mRNA 5' cap in translation initiation makes it an interesting subject for chemical modifications aimed at producing useful tools for the selective modulation of intercellular processes and development of novel therapeutic interventions. However, traditional approaches to the chemical synthesis of cap analogues are time-consuming and labour-intensive, which impedes the development of novel compounds and their applications. Here, we explore a different approach for synthesizing 5' cap mimics, making use of click chemistry (CuAAC) to combine two mononucleotide units and yield a novel class of dinucleotide cap analogues containing a triazole ring within the oligophosphate chain. As a result, we synthesized a library of 36 mRNA cap analogues differing in the location of the triazole ring, the polyphosphate chain length, and the type of linkers joining the phosphate and the triazole moieties. After biochemical evaluation, we identified two analogues that, when incorporated into mRNA, produced transcripts translated with efficiency similar to compounds unmodified in the oligophosphate bridge obtained by traditional synthesis. Moreover, we demonstrated that the triazole-modified cap structures can be generated at the RNA 5' end using two alternative capping strategies: either the typical co-transcriptional approach, or a new post-transcriptional approach based on CuAAC. Our findings open new possibilities for developing chemically modified mRNAs for research and therapeutic applications, including RNA-based vaccinations.
Collapse
Affiliation(s)
- Sylwia Walczak
- Centre of New Technologies , University of Warsaw , Banacha 2c , 02-097 , Warsaw , Poland .
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences , University of Warsaw , Banacha 2c , 02-097 , Warsaw , Poland
| | - Anna Nowicka
- Centre of New Technologies , University of Warsaw , Banacha 2c , 02-097 , Warsaw , Poland .
- Division of Biophysics , Institute of Experimental Physics , Faculty of Physics , University of Warsaw , Zwirki i Wigury 93 , 02-089 , Warsaw , Poland
| | - Dorota Kubacka
- Division of Biophysics , Institute of Experimental Physics , Faculty of Physics , University of Warsaw , Zwirki i Wigury 93 , 02-089 , Warsaw , Poland
| | - Kaja Fac
- Centre of New Technologies , University of Warsaw , Banacha 2c , 02-097 , Warsaw , Poland .
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences , University of Warsaw , Banacha 2c , 02-097 , Warsaw , Poland
| | - Przemyslaw Wanat
- Division of Biophysics , Institute of Experimental Physics , Faculty of Physics , University of Warsaw , Zwirki i Wigury 93 , 02-089 , Warsaw , Poland
| | - Seweryn Mroczek
- Department of Genetics and Biotechnology , Faculty of Biology , University of Warsaw , 02-106 Warsaw , Poland
- Institute of Biochemistry and Biophysics , Polish Academy of Sciences , 02-106 Warsaw , Poland
| | - Joanna Kowalska
- Division of Biophysics , Institute of Experimental Physics , Faculty of Physics , University of Warsaw , Zwirki i Wigury 93 , 02-089 , Warsaw , Poland
| | - Jacek Jemielity
- Centre of New Technologies , University of Warsaw , Banacha 2c , 02-097 , Warsaw , Poland .
| |
Collapse
|
214
|
|
215
|
Xie J, Yang X, Song Y, Du Q, Li Y, Chen J, Zhang D. Adaptive evolution and functional innovation of Populus-specific recently evolved microRNAs. THE NEW PHYTOLOGIST 2017; 213:206-219. [PMID: 27277139 DOI: 10.1111/nph.14046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/03/2016] [Indexed: 05/23/2023]
Abstract
Lineage-specific microRNAs (miRNAs) undergo rapid turnover during evolution; however, their origin and functional importance have remained controversial. Here, we examine the origin, evolution, and potential roles in local adaptation of Populus-specific miRNAs, which originated after the recent salicoid-specific, whole-genome duplication. RNA sequencing was used to generate extensive, comparable miRNA and gene expression data for six tissues. A natural population of Populus trichocarpa and closely related species were used to study the divergence rates, evolution, and adaptive variation of miRNAs. MiRNAs that originated in 5' untranslated regions had higher expression levels and their expression showed high correlation with their host genes. Compared with conserved miRNAs, a significantly higher proportion of Populus-specific miRNAs appear to target genes that were duplicated in salicoids. Examination of single nucleotide polymorphisms in Populus-specific miRNA precursors showed high amounts of population differentiation. We also characterized the newly emerged MIR6445 family, which could trigger the production of phased small interfering RNAs from NAC mRNAs, which encode a transcription factor with primary roles in a variety of plant developmental processes. Together, these observations provide evolutionary insights into the birth and potential roles of Populus-specific miRNAs in genome maintenance, local adaptation, and functional innovation.
Collapse
Affiliation(s)
- Jianbo Xie
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Xiaohui Yang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Yuepeng Song
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Qingzhang Du
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Ying Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Jinhui Chen
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| |
Collapse
|
216
|
Hamasaki-Katagiri N, Lin BC, Simon J, Hunt RC, Schiller T, Russek-Cohen E, Komar AA, Bar H, Kimchi-Sarfaty C. The importance of mRNA structure in determining the pathogenicity of synonymous and non-synonymous mutations in haemophilia. Haemophilia 2017; 23:e8-e17. [PMID: 27933712 PMCID: PMC5226872 DOI: 10.1111/hae.13107] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2016] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Mutational analysis is commonly used to support the diagnosis and management of haemophilia. This has allowed for the generation of large mutation databases which provide unparalleled insight into genotype-phenotype relationships. Haemophilia is associated with inversions, deletions, insertions, nonsense and missense mutations. Both synonymous and non-synonymous mutations influence the base pairing of messenger RNA (mRNA), which can alter mRNA structure, cellular half-life and ribosome processivity/elongation. However, the role of mRNA structure in determining the pathogenicity of point mutations in haemophilia has not been evaluated. AIM To evaluate mRNA thermodynamic stability and associated RNA prediction software as a means to distinguish between neutral and disease-associated mutations in haemophilia. METHODS Five mRNA structure prediction software programs were used to assess the thermodynamic stability of mRNA fragments carrying neutral vs. disease-associated and synonymous vs. non-synonymous point mutations in F8, F9 and a third X-linked gene, DMD (dystrophin). RESULTS In F8 and DMD, disease-associated mutations tend to occur in more structurally stable mRNA regions, represented by lower MFE (minimum free energy) levels. In comparing multiple software packages for mRNA structure prediction, a 101-151 nucleotide fragment length appears to be a feasible range for structuring future studies. CONCLUSION mRNA thermodynamic stability is one predictive characteristic, which when combined with other RNA and protein features, may offer significant insight when screening sequencing data for novel disease-associated mutations. Our results also suggest potential utility in evaluating the mRNA thermodynamic stability profile of a gene when determining the viability of interchanging codons for biological and therapeutic applications.
Collapse
Affiliation(s)
- Nobuko Hamasaki-Katagiri
- Laboratory of Hemostasis, Division of Hematology Research and Review, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Brian C. Lin
- Laboratory of Hemostasis, Division of Hematology Research and Review, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Jonathan Simon
- Laboratory of Hemostasis, Division of Hematology Research and Review, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Ryan C. Hunt
- Laboratory of Hemostasis, Division of Hematology Research and Review, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Tal Schiller
- Laboratory of Hemostasis, Division of Hematology Research and Review, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Estelle Russek-Cohen
- Division of Biostatistics, Center for Biologics Evaluation & Research, United States Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Anton A. Komar
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological & Environmental Sciences, Cleveland State University, Cleveland, Ohio, United States of America
| | - Haim Bar
- Department of Statistics, College of Liberal Arts and Sciences, University of Connecticut, Storrs, Connecticut, United States of America
| | - Chava Kimchi-Sarfaty
- Laboratory of Hemostasis, Division of Hematology Research and Review, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland, United States of America
| |
Collapse
|
217
|
De S, Gorospe M. Bioinformatic tools for analysis of CLIP ribonucleoprotein data. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 28008714 DOI: 10.1002/wrna.1404] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/26/2016] [Accepted: 10/07/2016] [Indexed: 12/15/2022]
Abstract
Investigating the interactions of RNA-binding proteins (RBPs) with RNAs is a complex task for molecular and computational biologists. The molecular biology techniques and the computational approaches to understand RBP-RNA (or ribonucleoprotein, RNP) interactions have advanced considerably over the past few years and numerous and diverse software tools have been developed to analyze these data. Accordingly, laboratories interested in RNP biology face the challenge of choosing adequately among the available software tools those that best address the biological problem they are studying. Here, we focus on state-of-the-art molecular biology techniques that employ crosslinking and immunoprecipitation (CLIP) of an RBP to study and map RNP interactions. We review the different software tools and databases available to analyze the most widely used CLIP methods, HITS-CLIP, PAR-CLIP, and iCLIP. WIREs RNA 2017, 8:e1404. doi: 10.1002/wrna.1404 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
218
|
Abstract
Ribonucleoprotein (RNP) complexes play essential roles in gene expression. Their assembly and disassembly control the fate of mRNA molecules. Here, we describe a method that examines the remodeling and disassembly of RNPs. One unique aspect of this method is that the RNA-binding proteins (RBPs) of interest are produced in HeLa cells with or without the desired modification and the RNP is assembled in cellular extracts with synthetic RNA oligonucleotides. We use this method to investigate how ubiquitination of an RBP affects its ability to bind its RNA target.
Collapse
|
219
|
Teng L, Hong L, Liu R, Chen R, Li X, Yu M. Cellular Localization and Regulation of Expression of the PLET1 Gene in Porcine Placenta. Int J Mol Sci 2016; 17:ijms17122048. [PMID: 27941613 PMCID: PMC5187848 DOI: 10.3390/ijms17122048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 12/24/2022] Open
Abstract
The placenta expressed transcript 1 (PLET1) gene, which is expressed in placentas of pigs and mice, has been found to have a potential role in trophoblast cell fate decision in mice. Results of this study showed that the porcine PLET1 mRNA and protein were expressed exclusively in trophoblast cells on Days 15, 26, 50, and 95 of gestation (gestation length in the pig is 114 days), indicating that the PLET1 could be a useful marker for porcine trophoblast cells. Additionally, PLET1 protein was found to be redistributed from cytoplasm to the apical side of trophoblast cells as gestation progresses, which suggests a role of PLET1 in the establishment of a stable trophoblast and endometrial epithelial layers. In addition, two transcripts that differ in the 3′ UTR length but encode identical protein were identified to be generated by the alternative cleavage and polyadenylation (APA), and the expression of PLET1-L transcript was significantly upregulated in porcine placentas as gestation progresses. Furthermore, we demonstrated the interaction between the miR-365-3p and PLET1 gene using luciferase assay system. Our findings imply an important role of PLET1 in the placental development in pigs.
Collapse
Affiliation(s)
- Liu Teng
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and the Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Linjun Hong
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and the Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Ruize Liu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and the Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Ran Chen
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and the Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Xinyun Li
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and the Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Mei Yu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and the Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| |
Collapse
|
220
|
Kosik KS. Life at Low Copy Number: How Dendrites Manage with So Few mRNAs. Neuron 2016; 92:1168-1180. [DOI: 10.1016/j.neuron.2016.11.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 10/27/2016] [Accepted: 11/02/2016] [Indexed: 01/09/2023]
|
221
|
The properties of the RNA-binding protein NF90 are considerably modulated by complex formation with NF45. Biochem J 2016; 474:259-280. [PMID: 28062840 DOI: 10.1042/bcj20160790] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 11/07/2016] [Accepted: 11/11/2016] [Indexed: 12/31/2022]
Abstract
Nuclear factor 90 (NF90) is an RNA-binding protein (RBP) that regulates post-transcriptionally the expression of various mRNAs. NF90 was recently shown to be capable of discriminating between different RNA substrates. This is mediated by an adaptive and co-operative interplay between three RNA-binding motifs (RBMs) in the protein's C-terminus. In many cell types, NF90 exists predominantly in a complex with NF45. Here, we compared the RNA-binding properties of the purified NF90 monomer and the NF90-NF45 heterodimer by biophysical and biochemical means, and demonstrate that the interaction with NF45 considerably affects the characteristics of NF90. Along with a thermodynamic stabilization, complex formation substantially improves the RNA-binding capacity of NF90 by modulating its binding mode and by enhancing its affinity for single- and double-stranded RNA substrates. Our data suggest that features of both the N- and C-termini of NF90 participate in the heterodimerization with NF45 and that the formation of NF90-NF45 changes the conformation of NF90's RBMs to a status in which the co-operative interplay of the RBMs is optimal. NF45 is considered to act as a conformational scaffold for NF90's RBMs, which alters the RNA-binding specificity of NF90. Accordingly, the monomeric NF90 and the NF90-NF45 heterodimer may exert different functions in the cell.
Collapse
|
222
|
Abstract
RNA-binding proteins play a variety of roles in cellular physiology. Some regulate mRNA processing, mRNA abundance, and translation efficiency. Some fight off invader RNA through small RNA-driven silencing pathways. Others sense foreign sequences in the form of double-stranded RNA and activate the innate immune response. Yet others, for example cytoplasmic aconitase, act as bi-functional proteins, processing metabolites in one conformation and regulating metabolic gene expression in another. Not all are involved in gene regulation. Some play structural roles, for example, connecting the translational machinery to the endoplasmic reticulum outer membrane. Despite their pervasive role and relative importance, it has remained difficult to identify new RNA-binding proteins in a systematic, unbiased way. A recent body of literature from several independent labs has defined robust, easily adaptable protocols for mRNA interactome discovery. In this review, I summarize the methods and review some of the intriguing findings from their application to a wide variety of biological systems.
Collapse
Affiliation(s)
- Sean P Ryder
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| |
Collapse
|
223
|
Structural basis of mRNA-cap recognition by Dcp1-Dcp2. Nat Struct Mol Biol 2016; 23:987-994. [PMID: 27694842 PMCID: PMC5113729 DOI: 10.1038/nsmb.3301] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/01/2016] [Indexed: 11/21/2022]
Abstract
Removal of the 5′ cap on mRNA by the decapping enzyme Dcp2 is a critical step in 5′-to-3′ mRNA decay. Understanding the structural basis of Dcp2 activity has been a significant challenge because Dcp2 is dynamic, with weak affinity for cap substrate. Here we present a 2.6-Å-resolution crystal structure of a heterotrimer of fission yeast Dcp2, its essential activator Dcp1, and the human NMD cofactor PNRC2, in complex with a tight-binding cap analog. Cap binding is accompanied by a conformational change of Dcp2 to form a composite nucleotide binding site using conserved residues on the catalytic and regulatory domains. Kinetic analysis of PNRC2 reveals a conserved short linear motif enhances both substrate affinity and the catalytic step of decapping. These findings explain why Dcp2 requires a conformational change for efficient catalysis and reveals that coactivators can promote RNA binding and the catalytic step of decapping, possibly through different conformational states.
Collapse
|
224
|
Tak H, Eun JW, Kim J, Park SJ, Kim C, Ji E, Lee H, Kang H, Cho DH, Lee K, Kim W, Nam SW, Lee EK. T-cell-restricted intracellular antigen 1 facilitates mitochondrial fragmentation by enhancing the expression of mitochondrial fission factor. Cell Death Differ 2016; 24:49-58. [PMID: 27612012 DOI: 10.1038/cdd.2016.90] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 07/06/2016] [Accepted: 07/25/2016] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial morphology is dynamically regulated by the formation of small fragmented units or interconnected mitochondrial networks, and this dynamic morphological change is a pivotal process in normal mitochondrial function. In the present study, we identified a novel regulator responsible for the regulation of mitochondrial dynamics. An assay using CHANG liver cells stably expressing mitochondrial-targeted yellow fluorescent protein (mtYFP) and a group of siRNAs revealed that T-cell intracellular antigen protein-1 (TIA-1) affects mitochondrial morphology by enhancing mitochondrial fission. The function of TIA-1 in mitochondrial dynamics was investigated through various biological approaches and expression analysis in human specimen. Downregulation of TIA-1-enhanced mitochondrial elongation, whereas ectopic expression of TIA-1 resulted in mitochondria fragmentation. In addition, TIA-1 increased mitochondrial activity, including the rate of ATP synthesis and oxygen consumption. Further, we identified mitochondrial fission factor (MFF) as a direct target of TIA-1, and showed that TIA-1 promotes mitochondrial fragmentation by enhancing MFF translation. TIA-1 null cells had a decreased level of MFF and less mitochondrial Drp1, a critical factor for mitochondrial fragmentation, thereby enhancing mitochondrial elongation. Taken together, our results indicate that TIA-1 is a novel factor that facilitates mitochondrial dynamics by enhancing MFF expression and contributes to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Hyosun Tak
- Department of Biochemistry, The Catholic University of Korea College of Medicine, Seoul, South Korea
| | - Jung Woo Eun
- Department of Pathology, The Catholic University of Korea College of Medicine, Seoul, South Korea
| | - Jihye Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - So Jung Park
- Department of East-West Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin, South Korea
| | - Chongtae Kim
- Department of Biochemistry, The Catholic University of Korea College of Medicine, Seoul, South Korea
| | - Eunbyul Ji
- Department of Biochemistry, The Catholic University of Korea College of Medicine, Seoul, South Korea
| | - Heejin Lee
- Department of Biochemistry, The Catholic University of Korea College of Medicine, Seoul, South Korea
| | - Hoin Kang
- Department of Biochemistry, The Catholic University of Korea College of Medicine, Seoul, South Korea
| | - Dong-Hyung Cho
- Department of East-West Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin, South Korea
| | - Kyungbun Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea
| | - Wook Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Suk Woo Nam
- Department of Pathology, The Catholic University of Korea College of Medicine, Seoul, South Korea.,Cancer Evolution Research Center, The Catholic University of Korea College of Medicine, Seoul, South Korea
| | - Eun Kyung Lee
- Department of Biochemistry, The Catholic University of Korea College of Medicine, Seoul, South Korea.,Cancer Evolution Research Center, The Catholic University of Korea College of Medicine, Seoul, South Korea.,Institute for Aging and Metabolic Disease, The Catholic University of Korea College of Medicine, Seoul, South Korea
| |
Collapse
|
225
|
Oncogenic p95HER2 regulates Na+-HCO3- cotransporter NBCn1 mRNA stability in breast cancer cells via 3'UTR-dependent processes. Biochem J 2016; 473:4027-4044. [PMID: 27609814 DOI: 10.1042/bcj20160054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 09/08/2016] [Indexed: 02/08/2023]
Abstract
The Na+-HCO3- cotransporter NBCn1 (SLC4A7) is up-regulated in breast cancer, important for tumor growth, and a single nucleotide polymorphism (SNP), rs4973768, in its 3' untranslated region (3'UTR) correlates with increased breast cancer risk. We previously demonstrated that NBCn1 expression and promoter activity are strongly increased in breast cancer cells expressing a constitutively active oncogenic human epidermal growth factor receptor 2 (HER2) (p95HER2). Here, we address the roles of p95HER2 in regulating NBCn1 expression via post-transcriptional mechanisms. p95HER2 expression in MCF-7 cells reduced the rate of NBCn1 mRNA degradation. The NBCn1 3'UTR down-regulated luciferase reporter expression in control cells, and this was reversed by p95HER2, suggesting that p95HER2 counteracts 3'UTR-mediated suppression of NBCn1 expression. Truncation analyses identified three NBCn1 3'UTR regions of regulatory importance. Mutation of putative miRNA-binding sites (miR-374a/b, miR-200b/c, miR-29a/b/c, miR-488) in these regions did not have significant impact on 3'UTR activity. The NBCn1 3'UTR interacted directly with the RNA-binding protein human antigen R (HuR), and HuR knockdown reduced NBCn1 expression. Conversely, ablation of a distal AU-rich element increased 3'UTR-driven reporter activity, suggesting complex regulatory roles of these sites. The cancer-associated SNP variant decreased reporter expression in T-47D breast cancer cells, yet not in MCF-7, MDA-MB-231 and SK-BR-3 cells, arguing against a general role in regulating NBCn1 expression. Finally, p95HER2 expression increased total and plasma membrane NBCn1 protein levels and decreased the rate of NBCn1 protein degradation. Collectively, this is the first work to demonstrate 3'UTR-mediated NBCn1 regulation, shows that p95HER2 regulates NBCn1 expression at multiple levels, and substantiates the central position of p95HER2-NBCn1 signaling in breast cancer.
Collapse
|
226
|
Kaymak E, Farley BM, Hay SA, Li C, Ho S, Hartman DJ, Ryder SP. Efficient generation of transgenic reporter strains and analysis of expression patterns in Caenorhabditis elegans using library MosSCI. Dev Dyn 2016; 245:925-36. [PMID: 27294288 PMCID: PMC4981527 DOI: 10.1002/dvdy.24426] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 05/09/2016] [Accepted: 06/03/2016] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND In C. elegans, germline development and early embryogenesis rely on posttranscriptional regulation of maternally transcribed mRNAs. In many cases, the 3' untranslated region (UTR) is sufficient to govern the expression patterns of these transcripts. Several RNA-binding proteins are required to regulate maternal mRNAs through the 3'UTR. Despite intensive efforts to map RNA-binding protein-mRNA interactions in vivo, the biological impact of most binding events remains unknown. Reporter studies using single copy integrated transgenes are essential to evaluate the functional consequences of interactions between RNA-binding proteins and their associated mRNAs. RESULTS In this report, we present an efficient method of generating reporter strains with improved throughput by using a library variant of MosSCI transgenesis. Furthermore, using RNA interference, we identify the suite of RNA-binding proteins that control the expression pattern of five different maternal mRNAs. CONCLUSIONS The results provide a generalizable and efficient strategy to assess the functional relevance of protein-RNA interactions in vivo, and reveal new regulatory connections between key RNA-binding proteins and their maternal mRNA targets. Developmental Dynamics 245:925-936, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ebru Kaymak
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Brian M. Farley
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| | - Samantha A. Hay
- Virginia Commonwealth University School of Medicine, VA, USA
| | - Chihua Li
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Samantha Ho
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | | | - Sean P. Ryder
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| |
Collapse
|
227
|
Lastres-Becker I, Nonis D, Eich F, Klinkenberg M, Gorospe M, Kötter P, Klein FAC, Kedersha N, Auburger G. Mammalian ataxin-2 modulates translation control at the pre-initiation complex via PI3K/mTOR and is induced by starvation. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1862:1558-69. [PMID: 27240544 PMCID: PMC4967000 DOI: 10.1016/j.bbadis.2016.05.017] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 04/11/2016] [Accepted: 05/26/2016] [Indexed: 12/13/2022]
Abstract
Ataxin-2 is a cytoplasmic protein, product of the ATXN2 gene, whose deficiency leads to obesity, while its gain-of-function leads to neural atrophy. Ataxin-2 affects RNA homeostasis, but its effects are unclear. Here, immunofluorescence analysis suggested that ataxin-2 associates with 48S pre-initiation components at stress granules in neurons and mouse embryonic fibroblasts, but is not essential for stress granule formation. Coimmunoprecipitation analysis showed associations of ataxin-2 with initiation factors, which were concentrated at monosome fractions of polysome gradients like ataxin-2, unlike its known interactor PABP. Mouse embryonic fibroblasts lacking ataxin-2 showed increased phosphorylation of translation modulators 4E-BP1 and ribosomal protein S6 through the PI3K-mTOR pathways. Indeed, human neuroblastoma cells after trophic deprivation showed a strong induction of ATXN2 transcript via mTOR inhibition. Our results support the notion that ataxin-2 is a nutritional stress-inducible modulator of mRNA translation at the pre-initiation complex.
Collapse
Affiliation(s)
- Isabel Lastres-Becker
- Section of Molecular Neurogenetics, Dept. of Neurology, Building 89, 3rd floor, Goethe University Medical School, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany.
| | - David Nonis
- Section of Molecular Neurogenetics, Dept. of Neurology, Building 89, 3rd floor, Goethe University Medical School, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Florian Eich
- Section of Molecular Neurogenetics, Dept. of Neurology, Building 89, 3rd floor, Goethe University Medical School, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Michael Klinkenberg
- Section of Molecular Neurogenetics, Dept. of Neurology, Building 89, 3rd floor, Goethe University Medical School, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Myriam Gorospe
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Peter Kötter
- Center of Excellence Macromolecular Complexes, Institute of Molecular Biosciences, Goethe-University, 60590 Frankfurt am Main, Germany
| | - Fabrice A C Klein
- Translational Medicine and Neurogenetics Department, Institut de Génétique et Biologie Moléculaire et Cellulaire, UMR7104-CNRS/U964-INSERM/UDS, BP10142, 67404 Illkirch Cédex, France
| | - Nancy Kedersha
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Harvard Medical School, One Jimmy Fund Way, Boston, MA 02115, USA
| | - Georg Auburger
- Section of Molecular Neurogenetics, Dept. of Neurology, Building 89, 3rd floor, Goethe University Medical School, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
228
|
Yu L, Rege M, Peterson CL, Volkert MR. RNA polymerase II depletion promotes transcription of alternative mRNA species. BMC Mol Biol 2016; 17:20. [PMID: 27578267 PMCID: PMC5004267 DOI: 10.1186/s12867-016-0074-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 08/18/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Cells respond to numerous internal and external stresses, such as heat, cold, oxidative stress, DNA damage, and osmotic pressure changes. In most cases, the primary response to stress is transcriptional induction of genes that assist the cells in tolerating the stress and facilitate the repair of the cellular damage. However, when the transcription machinery itself is stressed, responding by such standard mechanisms may not be possible. RESULTS In this study, we demonstrate that depletion or inactivation of RNA polymerase II (RNAPII) changes the preferred polyadenylation site usage for several transcripts, and leads to increased transcription of a specific subset of genes. Surprisingly, depletion of RNA polymerase I (RNAPI) also promotes altered polyadenylation site usage, while depletion of RNA polymerase III (RNAPIII) does not appear to have an impact. CONCLUSIONS Our results demonstrate that stressing the transcription machinery by depleting either RNAPI or RNAPII leads to a novel transcriptional response that results in induction of specific mRNAs and altered polyadenylation of many of the induced transcripts.
Collapse
Affiliation(s)
- Lijian Yu
- Microbiological and Physiological Systems, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA, 01655, USA
| | - Mayuri Rege
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA, 01605, USA
| | - Craig L Peterson
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA, 01605, USA.
| | - Michael R Volkert
- Microbiological and Physiological Systems, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA, 01655, USA.
| |
Collapse
|
229
|
Wigington CP, Morris KJ, Newman LE, Corbett AH. The Polyadenosine RNA-binding Protein, Zinc Finger Cys3His Protein 14 (ZC3H14), Regulates the Pre-mRNA Processing of a Key ATP Synthase Subunit mRNA. J Biol Chem 2016; 291:22442-22459. [PMID: 27563065 DOI: 10.1074/jbc.m116.754069] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 08/25/2016] [Indexed: 12/23/2022] Open
Abstract
Polyadenosine RNA-binding proteins (Pabs) regulate multiple steps in gene expression. This protein family includes the well studied Pabs, PABPN1 and PABPC1, as well as the newly characterized Pab, zinc finger CCCH-type containing protein 14 (ZC3H14). Mutations in ZC3H14 are linked to a form of intellectual disability. To probe the function of ZC3H14, we performed a transcriptome-wide analysis of cells depleted of either ZC3H14 or the control Pab, PABPN1. Depletion of PABPN1 affected ∼17% of expressed transcripts, whereas ZC3H14 affected only ∼1% of expressed transcripts. To assess the function of ZC3H14 in modulating target mRNAs, we selected the gene encoding the ATP synthase F0 subunit C (ATP5G1) transcript. Knockdown of ZC3H14 significantly reduced ATP5G1 steady-state mRNA levels. Consistent with results suggesting that ATP5G1 turnover increases upon depletion of ZC3H14, double knockdown of ZC3H14 and the nonsense-mediated decay factor, UPF1, rescues ATP5G1 transcript levels. Furthermore, fractionation reveals an increase in the amount of ATP5G1 pre-mRNA that reaches the cytoplasm when ZC3H14 is depleted and that ZC3H14 binds to ATP5G1 pre-mRNA in the nucleus. These data support a role for ZC3H14 in ensuring proper nuclear processing and retention of ATP5G1 pre-mRNA. Consistent with the observation that ATP5G1 is a rate-limiting component for ATP synthase activity, knockdown of ZC3H14 decreases cellular ATP levels and causes mitochondrial fragmentation. These data suggest that ZC3H14 modulates pre-mRNA processing of select mRNA transcripts and plays a critical role in regulating cellular energy levels, observations that have broad implications for proper neuronal function.
Collapse
Affiliation(s)
- Callie P Wigington
- From the Department of Biochemistry and.,the Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, Georgia 30322
| | - Kevin J Morris
- From the Department of Biochemistry and.,the Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, Georgia 30322
| | - Laura E Newman
- From the Department of Biochemistry and.,the Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, Georgia 30322
| | - Anita H Corbett
- From the Department of Biochemistry and .,the Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, Georgia 30322
| |
Collapse
|
230
|
The Evolutionarily-conserved Polyadenosine RNA Binding Protein, Nab2, Cooperates with Splicing Machinery to Regulate the Fate of pre-mRNA. Mol Cell Biol 2016; 36:2697-2714. [PMID: 27528618 PMCID: PMC5064217 DOI: 10.1128/mcb.00402-16] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Numerous RNA binding proteins are deposited onto an mRNA transcript to modulate post-transcriptional processing events ensuring proper mRNA maturation. Defining the interplay between RNA binding proteins that couple mRNA biogenesis events is crucial for understanding how gene expression is regulated. To explore how RNA binding proteins control mRNA processing, we investigated a role for the evolutionarily conserved polyadenosine RNA binding protein, Nab2, in mRNA maturation within the nucleus. This work reveals that nab2 mutant cells accumulate intron-containing pre-mRNA in vivo We extend this analysis to identify genetic interactions between mutant alleles of nab2 and genes encoding the splicing factor, MUD2, and the RNA exosome, RRP6, with in vivo consequences of altered pre-mRNA splicing and poly(A) tail length control. As further evidence linking Nab2 proteins to splicing, an unbiased proteomic analysis of vertebrate Nab2, ZC3H14, identifies physical interactions with numerous components of the spliceosome. We validated the interaction between ZC3H14 and U2AF2/U2AF65 Taking all the findings into consideration, we present a model where Nab2/ZC3H14 interacts with spliceosome components to allow proper coupling of splicing with subsequent mRNA processing steps contributing to a kinetic proofreading step that allows properly processed mRNA to exit the nucleus and escape Rrp6-dependent degradation.
Collapse
|
231
|
Kinetic and thermodynamic framework for P4-P6 RNA reveals tertiary motif modularity and modulation of the folding preferred pathway. Proc Natl Acad Sci U S A 2016; 113:E4956-65. [PMID: 27493222 DOI: 10.1073/pnas.1525082113] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The past decade has seen a wealth of 3D structural information about complex structured RNAs and identification of functional intermediates. Nevertheless, developing a complete and predictive understanding of the folding and function of these RNAs in biology will require connection of individual rate and equilibrium constants to structural changes that occur in individual folding steps and further relating these steps to the properties and behavior of isolated, simplified systems. To accomplish these goals we used the considerable structural knowledge of the folded, unfolded, and intermediate states of P4-P6 RNA. We enumerated structural states and possible folding transitions and determined rate and equilibrium constants for the transitions between these states using single-molecule FRET with a series of mutant P4-P6 variants. Comparisons with simplified constructs containing an isolated tertiary contact suggest that a given tertiary interaction has a stereotyped rate for breaking that may help identify structural transitions within complex RNAs and simplify the prediction of folding kinetics and thermodynamics for structured RNAs from their parts. The preferred folding pathway involves initial formation of the proximal tertiary contact. However, this preference was only ∼10 fold and could be reversed by a single point mutation, indicating that a model akin to a protein-folding contact order model will not suffice to describe RNA folding. Instead, our results suggest a strong analogy with a modified RNA diffusion-collision model in which tertiary elements within preformed secondary structures collide, with the success of these collisions dependent on whether the tertiary elements are in their rare binding-competent conformations.
Collapse
|
232
|
Derr A, Yang C, Zilionis R, Sergushichev A, Blodgett DM, Redick S, Bortell R, Luban J, Harlan DM, Kadener S, Greiner DL, Klein A, Artyomov MN, Garber M. End Sequence Analysis Toolkit (ESAT) expands the extractable information from single-cell RNA-seq data. Genome Res 2016; 26:1397-1410. [PMID: 27470110 PMCID: PMC5052061 DOI: 10.1101/gr.207902.116] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/27/2016] [Indexed: 12/27/2022]
Abstract
RNA-seq protocols that focus on transcript termini are well suited for applications in which template quantity is limiting. Here we show that, when applied to end-sequencing data, analytical methods designed for global RNA-seq produce computational artifacts. To remedy this, we created the End Sequence Analysis Toolkit (ESAT). As a test, we first compared end-sequencing and bulk RNA-seq using RNA from dendritic cells stimulated with lipopolysaccharide (LPS). As predicted by the telescripting model for transcriptional bursts, ESAT detected an LPS-stimulated shift to shorter 3′-isoforms that was not evident by conventional computational methods. Then, droplet-based microfluidics was used to generate 1000 cDNA libraries, each from an individual pancreatic islet cell. ESAT identified nine distinct cell types, three distinct β-cell types, and a complex interplay between hormone secretion and vascularization. ESAT, then, offers a much-needed and generally applicable computational pipeline for either bulk or single-cell RNA end-sequencing.
Collapse
Affiliation(s)
- Alan Derr
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | - Chaoxing Yang
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | - Rapolas Zilionis
- Department of System Biology, Harvard Medical School, Boston, Massachusetts 02115, USA; Institute of Biotechnology, Vilnius University, LT 02241 Vilnius, Lithuania
| | - Alexey Sergushichev
- Computer Technologies Department, ITMO University, Saint Petersburg, 197101, Russia; Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri 63110, USA
| | - David M Blodgett
- Department of Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | - Sambra Redick
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | - Rita Bortell
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | - Jeremy Luban
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | - David M Harlan
- Department of Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | - Sebastian Kadener
- Biological Chemistry Department, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Dale L Greiner
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | - Allon Klein
- Department of System Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri 63110, USA
| | - Manuel Garber
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| |
Collapse
|
233
|
Abstract
Eukaryotic gene expression is extensively controlled at the level of mRNA stability and the mechanisms underlying this regulation are markedly different from their archaeal and bacterial counterparts. We propose that two such mechanisms, nonsense‐mediated decay (NMD) and motif‐specific transcript destabilization by CCCH‐type zinc finger RNA‐binding proteins, originated as a part of cellular defense against RNA pathogens. These branches of the mRNA turnover pathway might have been used by primeval eukaryotes alongside RNA interference to distinguish their own messages from those of RNA viruses and retrotransposable elements. We further hypothesize that the subsequent advent of “professional” innate and adaptive immunity systems allowed NMD and the motif‐triggered mechanisms to be efficiently repurposed for regulation of endogenous cellular transcripts. This scenario explains the rapid emergence of archetypical mRNA destabilization pathways in eukaryotes and argues that other aspects of post‐transcriptional gene regulation in this lineage might have been derived through a similar exaptation route.
Collapse
Affiliation(s)
- Fursham M Hamid
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Eugene V Makeyev
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,Centre for Developmental Neurobiology, King's College London, London, UK
| |
Collapse
|
234
|
Guo C, Xue Y, Yang G, Yin S, Shi W, Cheng Y, Yan X, Fan S, Zhang H, Zeng F. Nanog RNA-binding proteins YBX1 and ILF3 affect pluripotency of embryonic stem cells. Cell Biol Int 2016; 40:847-60. [PMID: 26289635 DOI: 10.1002/cbin.10539] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 08/15/2015] [Indexed: 02/05/2023]
Abstract
Nanog is a well-known transcription factor that plays a fundamental role in stem cell self-renewal and the maintenance of their pluripotent cell identity. There remains a large data gap with respect to the spectrum of the key pluripotency transcription factors' interaction partners. Limited information is available concerning Nanog-associated RNA-binding proteins (RBPs), and the intrinsic protein-RNA interactions characteristic of the regulatory activities of Nanog. Herein, we used an improved affinity protocol to purify Nanog-interacting RBPs from mouse embryonic stem cells (ESCs), and 49 RBPs of Nanog were identified. Among them, the interaction of YBX1 and ILF3 with Nanog mRNA was further confirmed by in vitro assays, such as Western blot, RNA immunoprecipitation (RIP), and ex vivo methods, such as immunofluorescence staining and fluorescent in situ hybridization (FISH), MS2 in vivo biotin-tagged RNA affinity purification (MS2-BioTRAP). Interestingly, RNAi studies revealed that YBX1 and ILF3 positively affected the expression of Nanog and other pluripotency-related genes. Particularly, downregulation of YBX1 or ILF3 resulted in high expression of mesoderm markers. Thus, a reduction in the expression of YBX1 and ILF3 controls the expression of pluripotency-related genes in ESCs, suggesting their roles in further regulation of the pluripotent state of ESCs.
Collapse
Affiliation(s)
- Chuanliang Guo
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Institute of Medical Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Embryo Molecular Biology, Ministry of Health of China and Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China
| | - Yan Xue
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Institute of Medical Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Embryo Molecular Biology, Ministry of Health of China and Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China
| | - Guanheng Yang
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Embryo Molecular Biology, Ministry of Health of China and Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China
| | - Shang Yin
- Institute of Medical Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wansheng Shi
- Institute of Medical Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Cheng
- Institute of Medical Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoshuang Yan
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Institute of Medical Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Embryo Molecular Biology, Ministry of Health of China and Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China
| | - Shuyue Fan
- Institute of Medical Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huijun Zhang
- Institute of Medical Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fanyi Zeng
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Institute of Medical Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Embryo Molecular Biology, Ministry of Health of China and Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China.,Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
235
|
Grammatikakis I, Abdelmohsen K, Gorospe M. Posttranslational control of HuR function. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27307117 DOI: 10.1002/wrna.1372] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/18/2016] [Accepted: 05/19/2016] [Indexed: 12/28/2022]
Abstract
The RNA-binding protein HuR (human antigen R) associates with numerous transcripts, coding and noncoding, and controls their splicing, localization, stability, and translation. Through its regulation of target transcripts, HuR has been implicated in cellular events including proliferation, senescence, differentiation, apoptosis, and the stress and immune responses. In turn, HuR influences processes such as cancer and inflammation. HuR function is primarily regulated through posttranslational modifications that alter its subcellular localization and its ability to bind target RNAs; such modifications include phosphorylation, methylation, ubiquitination, NEDDylation, and proteolytic cleavage. In this review, we describe the modifications that impact upon HuR function on gene expression programs and disease states. WIREs RNA 2017, 8:e1372. doi: 10.1002/wrna.1372 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Ioannis Grammatikakis
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Myriam Gorospe
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
236
|
Liu L, Chen X. RNA Quality Control as a Key to Suppressing RNA Silencing of Endogenous Genes in Plants. MOLECULAR PLANT 2016; 9:826-36. [PMID: 27045817 PMCID: PMC5123867 DOI: 10.1016/j.molp.2016.03.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 03/10/2016] [Accepted: 03/14/2016] [Indexed: 05/19/2023]
Abstract
RNA quality control of endogenous RNAs is an integral part of eukaryotic gene expression and often relies on exonucleolytic degradation to eliminate dysfunctional transcripts. In parallel, exogenous and selected endogenous RNAs are degraded through RNA silencing, which is a genome defense mechanism used by many eukaryotes. In plants, RNA silencing is triggered by the production of double-stranded RNAs (dsRNAs) by RNA-DEPENDENT RNA POLYMERASEs (RDRs) and proceeds through small interfering (si) RNA-directed, ARGONAUTE (AGO)-mediated cleavage of homologous transcripts. Many studies revealed that plants avert inappropriate posttranscriptional gene silencing of endogenous coding genes by using RNA surveillance mechanisms as a safeguard to protect their transcriptome profiles. The tug of war between RNA surveillance and RNA silencing ensures the appropriate partitioning of endogenous RNA substrates among these degradation pathways. Here we review recent advances on RNA quality control and its role in the suppression of RNA silencing at endogenous genes and discuss the mechanisms underlying the crosstalk among these pathways.
Collapse
Affiliation(s)
- Lin Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P.R. China; Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Xuemei Chen
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P.R. China; Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA; Howard Hughes Medical Institute, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
237
|
Noren Hooten N, Martin‐Montalvo A, Dluzen DF, Zhang Y, Bernier M, Zonderman AB, Becker KG, Gorospe M, Cabo R, Evans MK. Metformin-mediated increase in DICER1 regulates microRNA expression and cellular senescence. Aging Cell 2016; 15:572-81. [PMID: 26990999 PMCID: PMC4854919 DOI: 10.1111/acel.12469] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2016] [Indexed: 12/20/2022] Open
Abstract
Metformin, an oral hypoglycemic agent, has been used for decades to treat type 2 diabetes mellitus. Recent studies indicate that mice treated with metformin live longer and have fewer manifestations of age‐related chronic disease. However, the molecular mechanisms underlying this phenotype are unknown. Here, we show that metformin treatment increases the levels of the microRNA‐processing protein DICER1 in mice and in humans with diabetes mellitus. Our results indicate that metformin upregulates DICER1 through a post‐transcriptional mechanism involving the RNA‐binding protein AUF1. Treatment with metformin altered the subcellular localization of AUF1, disrupting its interaction with DICER1 mRNA and rendering DICER1 mRNA stable, allowing DICER1 to accumulate. Consistent with the role of DICER1 in the biogenesis of microRNAs, we found differential patterns of microRNA expression in mice treated with metformin or caloric restriction, two proven life‐extending interventions. Interestingly, several microRNAs previously associated with senescence and aging, including miR‐20a, miR‐34a, miR‐130a, miR‐106b, miR‐125, and let‐7c, were found elevated. In agreement with these findings, treatment with metformin decreased cellular senescence in several senescence models in a DICER1‐dependent manner. Metformin lowered p16 and p21 protein levels and the abundance of inflammatory cytokines and oncogenes that are hallmarks of the senescence‐associated secretory phenotype (SASP). These data lead us to hypothesize that changes in DICER1 levels may be important for organismal aging and to propose that interventions that upregulate DICER1 expression (e.g., metformin) may offer new pharmacotherapeutic approaches for age‐related disease.
Collapse
Affiliation(s)
- Nicole Noren Hooten
- Laboratory of Epidemiology and Population Sciences National Institute on Aging National Institutes of Health 251 Bayview Boulevard Baltimore MD 21224 USA
| | - Alejandro Martin‐Montalvo
- Translational Gerontology Branch National Institute on Aging National Institutes of Health 251 Bayview Boulevard Baltimore MD 21224 USA
- Pancreatic Islet Development and Regeneration Unit Department of Stem Cells CABIMER‐Andalusian Center for Molecular Biology and Regenerative Medicine Avenida Americo Vespucio, Parque Científico y Tecnologico Cartuja 93 41092 Sevilla Spain
| | - Douglas F. Dluzen
- Laboratory of Epidemiology and Population Sciences National Institute on Aging National Institutes of Health 251 Bayview Boulevard Baltimore MD 21224 USA
| | - Yongqing Zhang
- Laboratory of Genetics National Institute on Aging National Institutes of Health 251 Bayview Boulevard Baltimore MD 21224 USA
| | - Michel Bernier
- Translational Gerontology Branch National Institute on Aging National Institutes of Health 251 Bayview Boulevard Baltimore MD 21224 USA
| | - Alan B. Zonderman
- Laboratory of Epidemiology and Population Sciences National Institute on Aging National Institutes of Health 251 Bayview Boulevard Baltimore MD 21224 USA
| | - Kevin G. Becker
- Laboratory of Genetics National Institute on Aging National Institutes of Health 251 Bayview Boulevard Baltimore MD 21224 USA
| | - Myriam Gorospe
- Laboratory of Genetics National Institute on Aging National Institutes of Health 251 Bayview Boulevard Baltimore MD 21224 USA
| | - Rafael Cabo
- Translational Gerontology Branch National Institute on Aging National Institutes of Health 251 Bayview Boulevard Baltimore MD 21224 USA
| | - Michele K. Evans
- Laboratory of Epidemiology and Population Sciences National Institute on Aging National Institutes of Health 251 Bayview Boulevard Baltimore MD 21224 USA
| |
Collapse
|
238
|
Ebron JS, Shukla GC. Molecular characterization of a novel androgen receptor transgene responsive to MicroRNA mediated post-transcriptional control exerted via 3'-untranslated region. Prostate 2016; 76:834-44. [PMID: 26988939 DOI: 10.1002/pros.23174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/16/2016] [Indexed: 11/11/2022]
Abstract
BACKGROUND Androgen Receptor (AR) gene is associated with Prostate cancer (PCa) and hence targeting androgen-and AR-signaling axis remains the most promising primary therapeutic option to treat the disease. The AR mRNA has a 6.8 kb long 3'-untranslated region (UTR) which harbors several experimentally validated and numerous predicted miRNA binding sites. AR 3'-UTR is likely to positively or negatively regulate AR expression by interacting with miRNAs and possibly other trans-acting auxiliary factors including 3'-UTR RNA binding proteins. In this context, systematic understanding of the regulatory role of AR 3'-UTR in intrinsic post-transcriptional control of AR gene expression is of significance to understand AR related diseases including PCa. METHODS In this study, we have constructed a heterologous reporter system in which Firefly luciferase and AR expression is experimentally influenced by the presence of AR 3'-UTR and its interactions with ectopically expressing miRNA. RESULTS The expression of AR 3'-UTR containing reporters, including the Firefly luciferase and the AR open reading frame (ORF) were repressed by the overexpression of miR-488* mimics. In addition, the AR expressed from 3'-UTR containing expression vectors was fully functional in its transactivation function as determined by a prostate specific antigen (PSA) reporter assay. Further, by using confocal microscopy we also demonstrate that AR can translocate to the nucleus upon DHT activation confirming the functional ability of AR. CONCLUSIONS AR transgenes with AR 3'-UTR fragments closely resemble the endogenous AR expression than any other previously characterized AR expression constructs. The 3'-UTR containing AR expression system is amiable to post-transcriptional manipulations including miRNA mediated repression of AR expression. This AR reporter system has the potential to be used in determining specificity of AR targeting miRNAs and their role in AR functional regulatory networks. Prostate 76:834-844, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jey Sabith Ebron
- Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, Ohio
- Department of Biological Sciences, Cleveland State University, Cleveland, Ohio
| | - Girish C Shukla
- Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, Ohio
- Department of Biological Sciences, Cleveland State University, Cleveland, Ohio
| |
Collapse
|
239
|
Noh JH, Kim KM, Abdelmohsen K, Yoon JH, Panda AC, Munk R, Kim J, Curtis J, Moad CA, Wohler CM, Indig FE, de Paula W, Dudekula DB, De S, Piao Y, Yang X, Martindale JL, de Cabo R, Gorospe M. HuR and GRSF1 modulate the nuclear export and mitochondrial localization of the lncRNA RMRP. Genes Dev 2016; 30:1224-39. [PMID: 27198227 PMCID: PMC4888842 DOI: 10.1101/gad.276022.115] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 04/14/2016] [Indexed: 01/06/2023]
Abstract
Noh et al. found two RNA-binding proteins (RBPs)—HuR and GRSF1—that associated with the nuclear DNA-encoded lncRNA RMRP and mobilized it to mitochondria. In cultured human cells, HuR bound RMRP in the nucleus and mediated its CRM1-dependent export to the cytosol. After RMRP was imported into mitochondria, GRSF1 bound RMRP and increased its abundance in the matrix. Some mitochondrial long noncoding RNAs (lncRNAs) are encoded by nuclear DNA, but the mechanisms that mediate their transport to mitochondria are poorly characterized. Using affinity RNA pull-down followed by mass spectrometry analysis, we found two RNA-binding proteins (RBPs), HuR (human antigen R) and GRSF1 (G-rich RNA sequence-binding factor 1), that associated with the nuclear DNA-encoded lncRNA RMRP and mobilized it to mitochondria. In cultured human cells, HuR bound RMRP in the nucleus and mediated its CRM1 (chromosome region maintenance 1)-dependent export to the cytosol. After RMRP was imported into mitochondria, GRSF1 bound RMRP and increased its abundance in the matrix. Loss of GRSF1 lowered the mitochondrial levels of RMRP, in turn suppressing oxygen consumption rates and modestly reducing mitochondrial DNA replication priming. Our findings indicate that RBPs HuR and GRSF1 govern the cytoplasmic and mitochondrial localization of the lncRNA RMRP, which is encoded by nuclear DNA but has key functions in mitochondria.
Collapse
Affiliation(s)
- Ji Heon Noh
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Kyoung Mi Kim
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Je-Hyun Yoon
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Amaresh C Panda
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Rachel Munk
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Jiyoung Kim
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Jessica Curtis
- Laboratory of Experimental Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Christopher A Moad
- Confocal Imaging Facility, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Christina M Wohler
- Confocal Imaging Facility, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Fred E Indig
- Confocal Imaging Facility, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Wilson de Paula
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Dawood B Dudekula
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Supriyo De
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Yulan Piao
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Xiaoling Yang
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Jennifer L Martindale
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Rafael de Cabo
- Laboratory of Experimental Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| |
Collapse
|
240
|
Wang C, Han B, Zhou R, Zhuang X. Real-Time Imaging of Translation on Single mRNA Transcripts in Live Cells. Cell 2016; 165:990-1001. [PMID: 27153499 PMCID: PMC4905760 DOI: 10.1016/j.cell.2016.04.040] [Citation(s) in RCA: 247] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/07/2016] [Accepted: 04/15/2016] [Indexed: 10/21/2022]
Abstract
Translation is under tight spatial and temporal controls to ensure protein production in the right time and place in cells. Methods that allow real-time, high-resolution visualization of translation in live cells are essential for understanding the spatiotemporal dynamics of translation regulation. Based on multivalent fluorescence amplification of the nascent polypeptide signal, we develop a method to image translation on individual mRNA molecules in real time in live cells, allowing direct visualization of translation events at the translation sites. Using this approach, we monitor transient changes of translation dynamics in responses to environmental stresses, capture distinct mobilities of individual polysomes in different subcellular compartments, and detect 3' UTR-dependent local translation and active transport of polysomes in dendrites of primary neurons.
Collapse
Affiliation(s)
- Chong Wang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology and Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Boran Han
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology and Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Ruobo Zhou
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology and Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Xiaowei Zhuang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology and Department of Physics, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
241
|
Diederichs S, Bartsch L, Berkmann JC, Fröse K, Heitmann J, Hoppe C, Iggena D, Jazmati D, Karschnia P, Linsenmeier M, Maulhardt T, Möhrmann L, Morstein J, Paffenholz SV, Röpenack P, Rückert T, Sandig L, Schell M, Steinmann A, Voss G, Wasmuth J, Weinberger ME, Wullenkord R. The dark matter of the cancer genome: aberrations in regulatory elements, untranslated regions, splice sites, non-coding RNA and synonymous mutations. EMBO Mol Med 2016; 8:442-57. [PMID: 26992833 PMCID: PMC5126213 DOI: 10.15252/emmm.201506055] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cancer is a disease of the genome caused by oncogene activation and tumor suppressor gene inhibition. Deep sequencing studies including large consortia such as TCGA and ICGC identified numerous tumor‐specific mutations not only in protein‐coding sequences but also in non‐coding sequences. Although 98% of the genome is not translated into proteins, most studies have neglected the information hidden in this “dark matter” of the genome. Malignancy‐driving mutations can occur in all genetic elements outside the coding region, namely in enhancer, silencer, insulator, and promoter as well as in 5′‐UTR and 3′‐UTR. Intron or splice site mutations can alter the splicing pattern. Moreover, cancer genomes contain mutations within non‐coding RNA, such as microRNA, lncRNA, and lincRNA. A synonymous mutation changes the coding region in the DNA and RNA but not the protein sequence. Importantly, oncogenes such as TERT or miR‐21 as well as tumor suppressor genes such as TP53/p53,APC,BRCA1, or RB1 can be affected by these alterations. In summary, coding‐independent mutations can affect gene regulation from transcription, splicing, mRNA stability to translation, and hence, this largely neglected area needs functional studies to elucidate the mechanisms underlying tumorigenesis. This review will focus on the important role and novel mechanisms of these non‐coding or allegedly silent mutations in tumorigenesis.
Collapse
Affiliation(s)
- Sven Diederichs
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany Division of RNA Biology & Cancer (B150), German Cancer Research Center (DKFZ), Heidelberg, Germany German Cancer Consortium (DKTK), Freiburg, Germany
| | - Lorenz Bartsch
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Julia C Berkmann
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Karin Fröse
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Jana Heitmann
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Caroline Hoppe
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Deetje Iggena
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Danny Jazmati
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Philipp Karschnia
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Miriam Linsenmeier
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Thomas Maulhardt
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Lino Möhrmann
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Johannes Morstein
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Stella V Paffenholz
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Paula Röpenack
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Timo Rückert
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Ludger Sandig
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Maximilian Schell
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Anna Steinmann
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Gjendine Voss
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Jacqueline Wasmuth
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Maria E Weinberger
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Ramona Wullenkord
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| |
Collapse
|
242
|
Sucularli C, Shehwana H, Kuscu C, Dungul DC, Ozdag H, Konu O. Functionally conserved effects of rapamycin exposure on zebrafish. Mol Med Rep 2016; 13:4421-30. [PMID: 27035657 DOI: 10.3892/mmr.2016.5059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 01/22/2016] [Indexed: 11/06/2022] Open
Abstract
Mechanistic target of rapamycin (mTOR) is a conserved serine/threonine kinase important in cell proliferation, growth and protein translation. Rapamycin, a well‑known anti‑cancer agent and immunosuppressant drug, inhibits mTOR activity in different taxa including zebrafish. In the present study, the effect of rapamycin exposure on the transcriptome of a zebrafish fibroblast cell line, ZF4, was investigated. Microarray analysis demonstrated that rapamycin treatment modulated a large set of genes with varying functions including protein synthesis, assembly of mitochondrial and proteasomal machinery, cell cycle, metabolism and oxidative phosphorylation in ZF4 cells. A mild however, coordinated reduction in the expression of proteasomal and mitochondrial ribosomal subunits was detected, while the expression of numerous ribosomal subunits increased. Meta‑analysis of heterogeneous mouse rapamycin microarray datasets enabled the comparison of zebrafish and mouse pathways modulated by rapamycin, using Kyoto Encyclopedia of Genes and Genomes and Gene Ontology pathway analysis. The analyses demonstrated a high degree of functional conservation between zebrafish and mice in response to rapamycin. In addition, rapamycin treatment resulted in a marked dose‑dependent reduction in body size and pigmentation in zebrafish embryos. The present study is the first, to the best of our knowledge, to evaluate the conservation of rapamycin‑modulated functional pathways between zebrafish and mice, in addition to the dose‑dependent growth curves of zebrafish embryos upon rapamycin exposure.
Collapse
Affiliation(s)
- Ceren Sucularli
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara 06800, Turkey
| | - Huma Shehwana
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara 06800, Turkey
| | - Cem Kuscu
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara 06800, Turkey
| | | | - Hilal Ozdag
- Biotechnology Institute, Ankara University, Ankara 06010, Turkey
| | - Ozlen Konu
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara 06800, Turkey
| |
Collapse
|
243
|
Kleene KC. Position-dependent interactions of Y-box protein 2 (YBX2) with mRNA enable mRNA storage in round spermatids by repressing mRNA translation and blocking translation-dependent mRNA decay. Mol Reprod Dev 2016; 83:190-207. [PMID: 26773323 DOI: 10.1002/mrd.22616] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 01/08/2016] [Indexed: 12/18/2022]
Abstract
Many mRNAs encoding proteins needed for the construction of the specialized organelles of spermatozoa are stored as translationally repressed, free messenger ribonucleoproteins in round spermatids, to be actively translated in elongating and elongated spermatids. The factors that repress translation in round spermatids, however, have been elusive. Two lines of evidence implicate the highly abundant and well-known translational repressor, Y-box protein 2 (YBX2), as a critical factor: First, protamine 1 (Prm1) and sperm-mitochondria cysteine-rich protein (Smcp) mRNAs are prematurely recruited onto polysomes in Ybx2-knockout mouse round spermatids. Second, mutations in 3' untranslated region (3'UTR) cis-elements that abrogate YBX2 binding activate translation of Prm1 and Smcp mRNAs in round spermatids of transgenic mice. The abundance of YBX2 and its affinity for variable sequences, however, raise questions of how YBX2 targets specific mRNAs for repression. Mutations to the Prm1 and Smcp mRNAs in transgenic mice reveal that strong repression in round spermatids requires YBX2 binding sites located near the 3' ends of their 3'UTRs as locating the same sites in upstream positions produce negligible repression. This location-dependence implies that the assembly of repressive complexes is nucleated by adjacent cis-elements that enable cooperative interactions of YBX2 with co-factors. The available data suggest that, in vertebrates, YBX2 has the important role of coordinating the storage of translationally repressed mRNAs in round spermatids by inhibiting translational activity and the degradation of transcripts via translation-dependent deadenylation. These insights should facilitiate future experiments designed to unravel how YBX2 targets mRNAs for repression in round spermatids and how mutations in the YBX2 gene cause infertility in humans. Mol. Reprod. Dev. 83: 190-207, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kenneth C Kleene
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts
| |
Collapse
|
244
|
Kim C, Lee H, Kang H, Shin JJ, Tak H, Kim W, Gorospe M, Lee EK. RNA-binding protein HuD reduces triglyceride production in pancreatic β cells by enhancing the expression of insulin-induced gene 1. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:675-85. [PMID: 26945853 DOI: 10.1016/j.bbagrm.2016.02.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 02/26/2016] [Accepted: 02/29/2016] [Indexed: 01/12/2023]
Abstract
Although triglyceride (TG) accumulation in the pancreas leads to β-cell dysfunction and raises the chance to develop metabolic disorders such as type 2 diabetes (T2DM), the molecular mechanisms whereby intracellular TG levels are regulated in pancreatic β cells have not been fully elucidated. Here, we present evidence that the RNA-binding protein HuD regulates TG production in pancreatic β cells. Mouse insulinoma βTC6 cells stably expressing a small hairpin RNA targeting HuD (shHuD) (βTC6-shHuD) contained higher TG levels compared to control cells. Moreover, downregulation of HuD resulted in a decrease in insulin-induced gene 1 (INSIG1) levels but not in the levels of sterol regulatory element-binding protein 1c (SREBP1c), a key transcription factor for lipid production. We identified Insig1 mRNA as a direct target of HuD by using ribonucleoprotein immunoprecipitation (RIP) and biotin pulldown analyses. By associating with the 3'-untranslated region (3'UTR) of Insig1 mRNA, HuD promoted INSIG1 translation; accordingly, HuD downregulation reduced while ectopic HuD expression increased INSIG1 levels. We further observed that HuD downregulation facilitated the nuclear localization of SREBP1c, thereby increasing the transcriptional activity of SREBP1c and the expression of target genes involved in lipogenesis; likewise, we observed lower INSIG1 levels in the pancreatic islets of HuD-null mice. Taken together, our results indicate that HuD functions as a novel repressor of lipid synthesis in pancreatic β cells.
Collapse
Affiliation(s)
- Chongtae Kim
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea
| | - Heejin Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea
| | - Hoin Kang
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea
| | - Jung Jae Shin
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, South Korea
| | - Hyosun Tak
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea
| | - Wook Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, South Korea
| | - Myriam Gorospe
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| | - Eun Kyung Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea; Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea.
| |
Collapse
|
245
|
G Hendrickson D, Kelley DR, Tenen D, Bernstein B, Rinn JL. Widespread RNA binding by chromatin-associated proteins. Genome Biol 2016; 17:28. [PMID: 26883116 PMCID: PMC4756407 DOI: 10.1186/s13059-016-0878-3] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 01/12/2016] [Indexed: 01/01/2023] Open
Abstract
Background Recent evidence suggests that RNA interaction can regulate the activity and localization of chromatin-associated proteins. However, it is unknown if these observations are specialized instances for a few key RNAs and chromatin factors in specific contexts, or a general mechanism underlying the establishment of chromatin state and regulation of gene expression. Results Here, we perform formaldehyde RNA immunoprecipitation (fRIP-Seq) to survey the RNA associated with a panel of 24 chromatin regulators and traditional RNA binding proteins. For each protein that reproducibly bound measurable quantities of bulk RNA (90 % of the panel), we detect enrichment for hundreds to thousands of both noncoding and mRNA transcripts. Conclusion For each protein, we find that the enriched sets of RNAs share distinct biochemical, functional, and chromatin properties. Thus, these data provide evidence for widespread specific and relevant RNA association across diverse classes of chromatin-modifying complexes. Electronic supplementary material The online version of this article (doi:10.1186/s13059-016-0878-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David G Hendrickson
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA. .,Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
| | - David R Kelley
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA. .,Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
| | - Danielle Tenen
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA. .,Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
| | | | - John L Rinn
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA. .,Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA. .,Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA.
| |
Collapse
|
246
|
Schmidt T, Knick P, Lilie H, Friedrich S, Golbik RP, Behrens SE. Coordinated Action of Two Double-Stranded RNA Binding Motifs and an RGG Motif Enables Nuclear Factor 90 To Flexibly Target Different RNA Substrates. Biochemistry 2016; 55:948-59. [PMID: 26795062 DOI: 10.1021/acs.biochem.5b01072] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mechanisms of how RNA binding proteins (RBP) bind to and distinguish different RNA molecules are yet uncertain. Here, we performed a comprehensive analysis of the RNA binding properties of multidomain RBP nuclear factor 90 (NF90) by investigating specifically the functional activities of two double-stranded RNA binding motifs (dsRBM) and an RGG motif in the protein's unstructured C-terminus. By comparison of the RNA binding affinities of several NF90 variants and their modes of binding to a set of defined RNA molecules, the activities of the motifs turned out to be very different. While dsRBM1 contributes little to RNA binding, dsRBM2 is essential for effective binding of double-stranded RNA. The protein's immediate C-terminus, including the RGG motif, is indispensable for interactions of the protein with single-stranded RNA, and the RGG motif decisively contributes to NF90's overall RNA binding properties. Conformational studies, which compared wild-type NF90 with a variant that contains a pseudophosphorylated residue in the RGG motif, suggest that the NF90 C-terminus is involved in conformational changes in the protein after RNA binding, with the RGG motif acting as a central regulatory element. In summary, our data propose a concerted action of all RNA binding motifs within the frame of the full-length protein, which may be controlled by regulation of the activity of the RGG motif, e.g., by phosphorylation. This multidomain interplay enables the RBP NF90 to discriminate RNA features by dynamic and adaptable interactions.
Collapse
Affiliation(s)
- Tobias Schmidt
- Institute of Biochemistry and Biotechnology (NFI), Section of Microbial Biotechnology, and ‡Section of Protein Biochemistry, Martin Luther University Halle-Wittenberg , Kurt-Mothes-Strasse 3, D-06120 Halle/Saale, Germany
| | - Paul Knick
- Institute of Biochemistry and Biotechnology (NFI), Section of Microbial Biotechnology, and ‡Section of Protein Biochemistry, Martin Luther University Halle-Wittenberg , Kurt-Mothes-Strasse 3, D-06120 Halle/Saale, Germany
| | - Hauke Lilie
- Institute of Biochemistry and Biotechnology (NFI), Section of Microbial Biotechnology, and ‡Section of Protein Biochemistry, Martin Luther University Halle-Wittenberg , Kurt-Mothes-Strasse 3, D-06120 Halle/Saale, Germany
| | - Susann Friedrich
- Institute of Biochemistry and Biotechnology (NFI), Section of Microbial Biotechnology, and ‡Section of Protein Biochemistry, Martin Luther University Halle-Wittenberg , Kurt-Mothes-Strasse 3, D-06120 Halle/Saale, Germany
| | - Ralph Peter Golbik
- Institute of Biochemistry and Biotechnology (NFI), Section of Microbial Biotechnology, and ‡Section of Protein Biochemistry, Martin Luther University Halle-Wittenberg , Kurt-Mothes-Strasse 3, D-06120 Halle/Saale, Germany
| | - Sven-Erik Behrens
- Institute of Biochemistry and Biotechnology (NFI), Section of Microbial Biotechnology, and ‡Section of Protein Biochemistry, Martin Luther University Halle-Wittenberg , Kurt-Mothes-Strasse 3, D-06120 Halle/Saale, Germany
| |
Collapse
|
247
|
Zhang X, Trépanier V, Beaujois R, Viranaicken W, Drobetsky E, DesGroseillers L. The downregulation of the RNA-binding protein Staufen2 in response to DNA damage promotes apoptosis. Nucleic Acids Res 2016; 44:3695-712. [PMID: 26843428 PMCID: PMC4856980 DOI: 10.1093/nar/gkw057] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/21/2016] [Indexed: 12/14/2022] Open
Abstract
Staufen2 (Stau2) is an RNA-binding protein involved in cell fate decision by controlling several facets of mRNA processing including localization, splicing, translation and stability. Herein we report that exposure to DNA-damaging agents that generate replicative stress such as camptothecin (CPT), 5-fluoro-uracil (5FU) and ultraviolet radiation (UVC) causes downregulation of Stau2 in HCT116 colorectal cancer cells. In contrast, other agents such as doxorubicin and ionizing radiation had no effect on Stau2 expression. Consistently, Stau2 expression is regulated by the ataxia telangiectasia and Rad3-related (ATR) signaling pathway but not by the DNA-PK or ataxia telangiectasia mutated/checkpoint kinase 2 pathways. Stau2 downregulation is initiated at the level of transcription, independently of apoptosis induction. Promoter analysis identified a short 198 bp region which is necessary and sufficient for both basal and CPT-regulated Stau2 expression. The E2F1 transcription factor regulates Stau2 in untreated cells, an effect that is abolished by CPT treatment due to E2F1 displacement from the promoter. Strikingly, Stau2 downregulation enhances levels of DNA damage and promotes apoptosis in CPT-treated cells. Taken together our results suggest that Stau2 is an anti-apoptotic protein that could be involved in DNA replication and/or maintenance of genome integrity and that its expression is regulated by E2F1 via the ATR signaling pathway.
Collapse
Affiliation(s)
- Xin Zhang
- Département de Biochimie et médecine moléculaire, Faculté de médecine, Université de Montréal, 2900 Edouard Montpetit Montréal, QC H3T 1J4, Canada
| | - Véronique Trépanier
- Département de Biochimie et médecine moléculaire, Faculté de médecine, Université de Montréal, 2900 Edouard Montpetit Montréal, QC H3T 1J4, Canada
| | - Remy Beaujois
- Département de Biochimie et médecine moléculaire, Faculté de médecine, Université de Montréal, 2900 Edouard Montpetit Montréal, QC H3T 1J4, Canada
| | - Wildriss Viranaicken
- Département de Biochimie et médecine moléculaire, Faculté de médecine, Université de Montréal, 2900 Edouard Montpetit Montréal, QC H3T 1J4, Canada
| | - Elliot Drobetsky
- Département de Médecine, Université de Montréal and Centre de Recherche, Hôpital Maisonneuve Rosemont, Montréal, Québec, H1T 2M4, Canada
| | - Luc DesGroseillers
- Département de Biochimie et médecine moléculaire, Faculté de médecine, Université de Montréal, 2900 Edouard Montpetit Montréal, QC H3T 1J4, Canada
| |
Collapse
|
248
|
Lück S, Westermark PO. Circadian mRNA expression: insights from modeling and transcriptomics. Cell Mol Life Sci 2016; 73:497-521. [PMID: 26496725 PMCID: PMC11108398 DOI: 10.1007/s00018-015-2072-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/13/2015] [Accepted: 10/14/2015] [Indexed: 01/08/2023]
Abstract
Circadian clocks synchronize organisms to the 24 h rhythms of the environment. These clocks persist under constant conditions, have their origin at the cellular level, and produce an output of rhythmic mRNA expression affecting thousands of transcripts in many mammalian cell types. Here, we review the charting of circadian output rhythms in mRNA expression, focusing on mammals. We emphasize the challenges in statistics, interpretation, and quantitative descriptions that such investigations have faced and continue to face, and outline remaining outstanding questions.
Collapse
Affiliation(s)
- Sarah Lück
- Institute for Theoretical Biology, Charité - Universitätsmedizin Berlin, Invalidenstrasse 43, 10115, Berlin, Germany
| | - Pål O Westermark
- Institute for Theoretical Biology, Charité - Universitätsmedizin Berlin, Invalidenstrasse 43, 10115, Berlin, Germany.
| |
Collapse
|
249
|
Ceolin L, Romitti M, Rodrigues Siqueira D, Vaz Ferreira C, Oliboni Scapineli J, Assis-Brazil B, Vieira Maximiano R, Dias Amarante T, de Souza Nunes MC, Weber G, Maia AL. Effect of 3'UTR RET Variants on RET mRNA Secondary Structure and Disease Presentation in Medullary Thyroid Carcinoma. PLoS One 2016; 11:e0147840. [PMID: 26829565 PMCID: PMC4734678 DOI: 10.1371/journal.pone.0147840] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 01/08/2016] [Indexed: 12/21/2022] Open
Abstract
Background The RET S836S variant has been associated with early onset and increased risk for metastatic disease in medullary thyroid carcinoma (MTC). However, the mechanism by which this variant modulates MTC pathogenesis is still open to discuss. Of interest, strong linkage disequilibrium (LD) between RET S836S and 3'UTR variants has been reported in Hirschsprung's disease patients. Objective To evaluate the frequency of the RET 3’UTR variants (rs76759170 and rs3026785) in MTC patients and to determine whether these variants are in LD with S836S polymorphism. Methods Our sample comprised 152 patients with sporadic MTC. The RET S836S and 3’UTR (rs76759170 and rs3026785) variants were genotyped using Custom TaqMan Genotyping Assays. Haplotypes were inferred using the phase 2.1 program. RET mRNA structure was assessed by Vienna Package. Results The mean age of MTC diagnosis was 48.5±15.5 years and 57.9% were women. The minor allele frequencies of RET polymorphisms were as follows: S836S, 5.6%; rs76759170, 5.6%; rs3026785, 6.2%. We observed a strong LD among S836S and 3’UTR variants (|D’| = -1, r2 = 1 and |D’| = -1, r2 = 0,967). Patients harboring the S836S/3’UTR variants presented a higher percentage of lymph node and distant metastasis (P = 0.013 and P<0.001, respectively). Accordingly, RNA folding analyses demonstrated different RNA secondary structure predictions for WT(TCCGT), S836S(TTCGT) or 3’UTR(GTCAC) haplotypes. The S836S/3’UTR haplotype presented a greater number of double helices sections and lower levels of minimal free energy when compared to the wild-type haplotype, suggesting that these variants provides the most thermodynamically stable mRNA structure, which may have functional consequences on the rate of mRNA degradation. Conclusion The RET S836S polymorphism is in LD with 3’UTR variants. In silico analysis indicate that the 3’UTR variants may affect the secondary structure of RET mRNA, suggesting that these variants might play a role in posttranscriptional control of the RET transcripts.
Collapse
Affiliation(s)
- Lucieli Ceolin
- Thyroid Section, Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Mirian Romitti
- Thyroid Section, Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Débora Rodrigues Siqueira
- Thyroid Section, Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Carla Vaz Ferreira
- Thyroid Section, Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Jessica Oliboni Scapineli
- Thyroid Section, Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Beatriz Assis-Brazil
- Pathology Department, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rodolfo Vieira Maximiano
- Department of Physics, Computational Biophysics Group, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Tauanne Dias Amarante
- Department of Physics, Computational Biophysics Group, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Miriam Celi de Souza Nunes
- Department of Physics, Computational Biophysics Group, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gerald Weber
- Department of Physics, Computational Biophysics Group, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Luiza Maia
- Thyroid Section, Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
- * E-mail:
| |
Collapse
|
250
|
Chang X. RNA-binding protein hnRNPLL as a critical regulator of lymphocyte homeostasis and differentiation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:295-302. [PMID: 26821996 DOI: 10.1002/wrna.1335] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 12/18/2015] [Indexed: 12/24/2022]
Abstract
RNA-binding proteins orchestrate posttranscriptional regulation of gene expression, such as messenger RNA (mRNA) splicing, RNA stability regulation, and translation regulation. Heterogeneous nuclear RNA-binding proteins (hnRNPs) refer to a collection of unrelated RNA-binding proteins predominantly located in the nucleus (Han et al. Biochem J 2010, 430:379-392). Although canonical functions of hnRNPs are to promote pre-mRNA splicing, they are involved in all the processes of RNA metabolism through recognizing specific cis-elements on RNA (Dreyfuss et al. Annu Rev Biochem 1993, 62:289-321; Huelga et al. Cell Rep 2012, 1:167-178; Krecic and Swanson. Curr Opin Cell Biol 1999, 11:363-371). Heterogeneous nuclear RNA-binding protein L like (hnRNPLL) is a tissue-specific hnRNP, which was identified as a regulator of CD45RA to CD45RO switching during memory T-cell development (Oberdoerffer et al. Science 2008, 321:686-691; Topp et al. RNA 2008, 14:2038-2049; Wu et al. Immunity 2008, 29:863-875). Since then, hnRNPLL has emerged as a critical regulator of lymphocyte homeostasis and terminal differentiation, controlling alternative splicing or expression of critical genes for the lymphocytes development (Wu et al. Immunity 2008, 29:863-875; Chang et al. Proc Natl Acad Sci USA 2015, 112:E1888-E1897). This review will summarize recent advances in understanding the functions of hnRNPLL, focusing on its biochemical functions and physiological roles in lymphocyte differentiation and homeostasis. WIREs RNA 2016, 7:295-302. doi: 10.1002/wrna.1335 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Xing Chang
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| |
Collapse
|