201
|
Abstract
For more than two decades, Biotechnology and Bioengineering has documented research focused on natural and engineered microbial biofilms within aquatic and subterranean ecosystems, wastewater and waste-gas treatment systems, marine vessels and structures, and industrial bioprocesses. Compared to suspended culture systems, intentionally engineered biofilms are heterogeneous reaction systems that can increase reactor productivity, system stability, and provide inherent cell:product separation. Unwanted biofilms can create enormous increases in fluid frictional resistances, unacceptable reductions in heat transfer efficiency, product contamination, enhanced material deterioration, and accelerated corrosion. Missing from B&B has been an equivalent research dialogue regarding the basic molecular microbiology, immunology, and biotechnological aspects of medical biofilms. Presented here are the current problems related to medical biofilms; current concepts of biofilm formation, persistence, and interactions with the host immune system; and emerging technologies for controlling medical biofilms.
Collapse
Affiliation(s)
- James D Bryers
- Department of Bioengineering, University of Washington, Seattle, Washington 98195-5061, USA.
| |
Collapse
|
202
|
Abstract
Microbes found on the skin are usually regarded as pathogens, potential pathogens or innocuous symbiotic organisms. Advances in microbiology and immunology are revising our understanding of the molecular mechanisms of microbial virulence and the specific events involved in the host-microbe interaction. Current data contradict some historical classifications of cutaneous microbiota and suggest that these organisms may protect the host, defining them not as simple symbiotic microbes but rather as mutualistic. This review will summarize current information on bacterial skin flora including Staphylococcus, Corynebacterium, Propionibacterium, Streptococcus and Pseudomonas. Specifically, the review will discuss our current understanding of the cutaneous microbiota as well as shifting paradigms in the interpretation of the roles microbes play in skin health and disease.
Collapse
Affiliation(s)
- A L Cogen
- Department of Bioengineering, Division of Dermatology, School of Medicine, University of California, San Diego, CA, USA
| | | | | |
Collapse
|
203
|
|
204
|
Martin CA, Hoven AD, Cook AM. Therapeutic frontiers: preventing and treating infectious diseases by inhibiting bacterial quorum sensing. Eur J Clin Microbiol Infect Dis 2008; 27:635-42. [DOI: 10.1007/s10096-008-0489-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Accepted: 02/07/2008] [Indexed: 10/22/2022]
|
205
|
Affiliation(s)
- Joseph P Mizgerd
- Molecular and Integrative Physiological Sciences Program, Harvard School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
206
|
Hughes DT, Sperandio V. Inter-kingdom signalling: communication between bacteria and their hosts. Nat Rev Microbiol 2008; 6:111-20. [PMID: 18197168 PMCID: PMC2667375 DOI: 10.1038/nrmicro1836] [Citation(s) in RCA: 472] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Microorganisms and their hosts communicate with each other through an array of hormonal signals. This cross-kingdom cell-to-cell signalling involves small molecules, such as hormones that are produced by eukaryotes and hormone-like chemicals that are produced by bacteria. Cell-to-cell signalling between bacteria, usually referred to as quorum sensing, was initially described as a means by which bacteria achieve signalling in microbial communities to coordinate gene expression within a population. Recent evidence shows, however, that quorum-sensing signalling is not restricted to bacterial cell-to-cell communication, but also allows communication between microorganisms and their hosts.
Collapse
Affiliation(s)
- David T Hughes
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | | |
Collapse
|
207
|
Girard G, Bloemberg GV. Central role of quorum sensing in regulating the production of pathogenicity factors in Pseudomonas aeruginosa. Future Microbiol 2008; 3:97-106. [DOI: 10.2217/17460913.3.1.97] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pseudomonas aeruginosa is an important opportunistic human pathogen, causing various infections that are often very persistent. P. aeruginosa infections are the major cause of death in cystic fibrosis patients. Infections are difficult to treat since P. aeruginosa is resistant to most antibiotics and its antibiotic susceptibility is decreased when it is present in biofilms. P. aeruginosa produces many exoproducts (including toxins and hydrolytic enzymes) that are involved in virulence. Recent research has elucidated many mechanisms and pathways that regulate the production of these virulence factors. The regulation is extremely complex and many components are influenced by environmental conditions. Quorum sensing is a key regulatory system, which itself is affected by many other regulators. Targeting the regulation of pathogenicity factors provides a novel strategy for combating P. aeruginosa infections. Degradation of acyl homoserine lactones, the signaling molecules of the quorum-sensing system, is a promising therapeutic treatment option.
Collapse
Affiliation(s)
- Genevieve Girard
- Institute of Biology Leiden, Leiden University, Wassenaarseweg 64, 2333AL Leiden, The Netherlands
| | - Guido V Bloemberg
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 30/32, CH-8006 Zurich, Switzerland and, Institute of Biology Leiden, Leiden University, Wassenaarseweg 64, 2333AL Leiden, The Netherlands
| |
Collapse
|
208
|
Affiliation(s)
- Gail A Hecht
- Section of Digestive Diseases and Nutrition, University of Illinois, Chicago, USA
| |
Collapse
|
209
|
Guyard-Nicodème M, Bazire A, Hémery G, Meylheuc T, Mollé D, Orange N, Fito-Boncompte L, Feuilloley M, Haras D, Dufour A, Chevalier S. Outer membrane Modifications of Pseudomonas fluorescens MF37 in Response to Hyperosmolarity. J Proteome Res 2008; 7:1218-25. [DOI: 10.1021/pr070539x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Muriel Guyard-Nicodème
- Laboratoire de Microbiologie du Froid, UPRES EA 2123,
Université de Rouen, Evreux, France, Laboratoire de Biotechnologie
et Chimie Marines, EA 3884, Université de Bretagne-Sud. Lorient,
France, Laboratoire Bioadhésion et Hygiène des Matériaux,
UMR/INRA-ENSIA, Massy, France, and INRA-Agrocampus, UMR 1253, Science
et Technologie du Lait et de l’Oeuf, Rennes, France
| | - Alexis Bazire
- Laboratoire de Microbiologie du Froid, UPRES EA 2123,
Université de Rouen, Evreux, France, Laboratoire de Biotechnologie
et Chimie Marines, EA 3884, Université de Bretagne-Sud. Lorient,
France, Laboratoire Bioadhésion et Hygiène des Matériaux,
UMR/INRA-ENSIA, Massy, France, and INRA-Agrocampus, UMR 1253, Science
et Technologie du Lait et de l’Oeuf, Rennes, France
| | - Gaëlle Hémery
- Laboratoire de Microbiologie du Froid, UPRES EA 2123,
Université de Rouen, Evreux, France, Laboratoire de Biotechnologie
et Chimie Marines, EA 3884, Université de Bretagne-Sud. Lorient,
France, Laboratoire Bioadhésion et Hygiène des Matériaux,
UMR/INRA-ENSIA, Massy, France, and INRA-Agrocampus, UMR 1253, Science
et Technologie du Lait et de l’Oeuf, Rennes, France
| | - Thierry Meylheuc
- Laboratoire de Microbiologie du Froid, UPRES EA 2123,
Université de Rouen, Evreux, France, Laboratoire de Biotechnologie
et Chimie Marines, EA 3884, Université de Bretagne-Sud. Lorient,
France, Laboratoire Bioadhésion et Hygiène des Matériaux,
UMR/INRA-ENSIA, Massy, France, and INRA-Agrocampus, UMR 1253, Science
et Technologie du Lait et de l’Oeuf, Rennes, France
| | - Daniel Mollé
- Laboratoire de Microbiologie du Froid, UPRES EA 2123,
Université de Rouen, Evreux, France, Laboratoire de Biotechnologie
et Chimie Marines, EA 3884, Université de Bretagne-Sud. Lorient,
France, Laboratoire Bioadhésion et Hygiène des Matériaux,
UMR/INRA-ENSIA, Massy, France, and INRA-Agrocampus, UMR 1253, Science
et Technologie du Lait et de l’Oeuf, Rennes, France
| | - Nicole Orange
- Laboratoire de Microbiologie du Froid, UPRES EA 2123,
Université de Rouen, Evreux, France, Laboratoire de Biotechnologie
et Chimie Marines, EA 3884, Université de Bretagne-Sud. Lorient,
France, Laboratoire Bioadhésion et Hygiène des Matériaux,
UMR/INRA-ENSIA, Massy, France, and INRA-Agrocampus, UMR 1253, Science
et Technologie du Lait et de l’Oeuf, Rennes, France
| | - Laurène Fito-Boncompte
- Laboratoire de Microbiologie du Froid, UPRES EA 2123,
Université de Rouen, Evreux, France, Laboratoire de Biotechnologie
et Chimie Marines, EA 3884, Université de Bretagne-Sud. Lorient,
France, Laboratoire Bioadhésion et Hygiène des Matériaux,
UMR/INRA-ENSIA, Massy, France, and INRA-Agrocampus, UMR 1253, Science
et Technologie du Lait et de l’Oeuf, Rennes, France
| | - Marc Feuilloley
- Laboratoire de Microbiologie du Froid, UPRES EA 2123,
Université de Rouen, Evreux, France, Laboratoire de Biotechnologie
et Chimie Marines, EA 3884, Université de Bretagne-Sud. Lorient,
France, Laboratoire Bioadhésion et Hygiène des Matériaux,
UMR/INRA-ENSIA, Massy, France, and INRA-Agrocampus, UMR 1253, Science
et Technologie du Lait et de l’Oeuf, Rennes, France
| | - Dominique Haras
- Laboratoire de Microbiologie du Froid, UPRES EA 2123,
Université de Rouen, Evreux, France, Laboratoire de Biotechnologie
et Chimie Marines, EA 3884, Université de Bretagne-Sud. Lorient,
France, Laboratoire Bioadhésion et Hygiène des Matériaux,
UMR/INRA-ENSIA, Massy, France, and INRA-Agrocampus, UMR 1253, Science
et Technologie du Lait et de l’Oeuf, Rennes, France
| | - Alain Dufour
- Laboratoire de Microbiologie du Froid, UPRES EA 2123,
Université de Rouen, Evreux, France, Laboratoire de Biotechnologie
et Chimie Marines, EA 3884, Université de Bretagne-Sud. Lorient,
France, Laboratoire Bioadhésion et Hygiène des Matériaux,
UMR/INRA-ENSIA, Massy, France, and INRA-Agrocampus, UMR 1253, Science
et Technologie du Lait et de l’Oeuf, Rennes, France
| | - Sylvie Chevalier
- Laboratoire de Microbiologie du Froid, UPRES EA 2123,
Université de Rouen, Evreux, France, Laboratoire de Biotechnologie
et Chimie Marines, EA 3884, Université de Bretagne-Sud. Lorient,
France, Laboratoire Bioadhésion et Hygiène des Matériaux,
UMR/INRA-ENSIA, Massy, France, and INRA-Agrocampus, UMR 1253, Science
et Technologie du Lait et de l’Oeuf, Rennes, France
| |
Collapse
|
210
|
Jacobs MA. How to make a defined near-saturation mutant library. Case 1: Pseudomonas aeruginosa PAO1. Methods Mol Biol 2008; 416:133-152. [PMID: 18392965 DOI: 10.1007/978-1-59745-321-9_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We have constructed a near-saturation level mutant library for Pseudomonas aeruginosa strain PAO1 using Tn5-derived transposons mapped to the PAO1 reference sequence. This chapter describes the high-throughput techniques used to generate and map the mutant strains. In addition, an analysis of the utility of this collection is presented based on changes to the annotation for the PAO1 genome in the past years, as well as the citation record for this collection. It is clear that many avenues of research have been accelerated by this collection and that additional large mutant strain collections will further aid in defining gene function and biological processes in pathogens.
Collapse
Affiliation(s)
- Michael A Jacobs
- Department of Medicine, University of Washington Genome Center, Seattle, WA, USA
| |
Collapse
|
211
|
|
212
|
Lowery CA, Dickerson TJ, Janda KD. Interspecies and interkingdom communication mediated by bacterial quorum sensing. Chem Soc Rev 2008; 37:1337-46. [DOI: 10.1039/b702781h] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
213
|
Alverdy JC, Chang EB. The re-emerging role of the intestinal microflora in critical illness and inflammation: why the gut hypothesis of sepsis syndrome will not go away. J Leukoc Biol 2007; 83:461-6. [PMID: 18160538 DOI: 10.1189/jlb.0607372] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Recent advances in the ability to genetically interrogate microbial communities within the intestinal tract of humans have revealed many striking findings. That there may be as many as 300 unculturable and unclassified microbes within the human intestinal tract opens the possibility that yet-unidentified microbes may play a role in various human diseases [( 1) ]. Technologically, the regional and spatial aspects of intestinal microbial communities can now be better appreciated by emerging genetic and in vivo imaging systems using a bioinformatics approach [( 2) ]. Finally, in situ PCR of tissues and blood now allows the detection of microbes at concentrations that would otherwise remain undetected by culture alone [( 3) ]. In the aggregate, these studies have empowered clinicians to readdress the issue of how our microbial partners are affected by extreme states of physiologic stress and antibiotic use through the course of critical illness. The role of microbes in systemic inflammatory states, such as systemic inflammatory response syndrome, as well as in primary intestinal mucosal diseases, such as necrotizing enterocolitis, inflammatory bowel disease, and ischemia-reperfusion injury, can now be more completely defined, and the microbial genes that mediate the immune activation during these disorders can be identified. The 2008 roadmap initiative at the National Institutes of Health to fully define the human microbiome is further testament to the power of this technology and the importance of understanding how intestinal microbes, their genes, and their gene products affect the course of human disease and inflammation.
Collapse
Affiliation(s)
- John C Alverdy
- Laboratory for Surgical Infection Research and Therapeutics, 5841 S. Maryland MC 6090, Chicago, IL 60025, USA.
| | | |
Collapse
|
214
|
Abstract
Steven Opal reviews the phenomenon of bacterial communities and discusses the role played by bacterial communication and cooperation in host-pathogen interactions, particularly in urinary tract infection.
Collapse
Affiliation(s)
- Steven M Opal
- Warren Alpert Medical School of Brown University, Infectious Disease Division, Memorial Hospital of Rhode Island, Pawtucket, Rhode Island, United States of America.
| |
Collapse
|
215
|
Williams P. Quorum sensing, communication and cross-kingdom signalling in the bacterial world. Microbiology (Reading) 2007; 153:3923-3938. [DOI: 10.1099/mic.0.2007/012856-0] [Citation(s) in RCA: 500] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Paul Williams
- Institute of Infection, Immunity and Inflammation, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
216
|
Zinkernagel AS, Johnson RS, Nizet V. Hypoxia inducible factor (HIF) function in innate immunity and infection. J Mol Med (Berl) 2007; 85:1339-46. [DOI: 10.1007/s00109-007-0282-2] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2007] [Revised: 10/25/2007] [Accepted: 10/26/2007] [Indexed: 01/10/2023]
|
217
|
Veron W, Lesouhaitier O, Pennanec X, Rehel K, Leroux P, Orange N, Feuilloley MGJ. Natriuretic peptides affect Pseudomonas aeruginosa and specifically modify lipopolysaccharide biosynthesis. FEBS J 2007; 274:5852-64. [PMID: 17944935 DOI: 10.1111/j.1742-4658.2007.06109.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Natriuretic peptides of various forms are present in animals and plants, and display structural similarities to cyclic antibacterial peptides. Pretreatment of Pseudomonas aeruginosa PAO1 with brain natriuretic peptide (BNP) or C-type natriuretic peptide (CNP) increases bacterium-induced glial cell necrosis. In eukaryotes, natriuretic peptides act through receptors coupled to cyclases. We observed that stable analogs of cAMP (dibutyryl cAMP) and cGMP (8-bromo-cGMP) mimicked the effect of brain natriuretic peptide and CNP on bacteria. Further evidence for the involvement of bacterial cyclases in the regulation of P. aeruginosa PAO1 cytotoxicity by natriuretic peptides is provided by the observed doubling of intrabacterial cAMP concentration after exposure to CNP. Lipopolysaccharide (LPS) extracted from P. aeruginosa PAO1 treated with both dibutyryl cAMP and 8-bromo-cGMP induces higher levels of necrosis than LPS extracted from untreated bacteria. Capillary electrophoresis and MALDI-TOF MS analysis have shown that differences in LPS toxicity are due to specific differences in the structure of the macromolecule. Using a strain deleted in the vfr gene, we showed that the Vfr protein is essential for the effect of natriuretic peptides on P. aeruginosa PAO1 virulence. These data support the hypothesis that P. aeruginosa has a cyclic nucleotide-dependent natriuretic peptide sensor system that may affect virulence by activating the expression of Vfr and LPS biosynthesis.
Collapse
Affiliation(s)
- Wilfried Veron
- Laboratory of Cold Microbiology, UPRES 2123, University of Rouen, Evreux, France
| | | | | | | | | | | | | |
Collapse
|
218
|
|
219
|
Williams P, Winzer K, Chan WC, Cámara M. Look who's talking: communication and quorum sensing in the bacterial world. Philos Trans R Soc Lond B Biol Sci 2007; 362:1119-34. [PMID: 17360280 PMCID: PMC2435577 DOI: 10.1098/rstb.2007.2039] [Citation(s) in RCA: 497] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
For many years bacteria were considered primarily as autonomous unicellular organisms with little capacity for collective behaviour. However, we now appreciate that bacterial cells are in fact, highly communicative. The generic term 'quorum sensing' has been adopted to describe the bacterial cell-to-cell communication mechanisms which co-ordinate gene expression usually, but not always, when the population has reached a high cell density. Quorum sensing depends on the synthesis of small molecules (often referred to as pheromones or autoinducers) that diffuse in and out of bacterial cells. As the bacterial population density increases, so does the synthesis of quorum sensing signal molecules, and consequently, their concentration in the external environment rises. Once a critical threshold concentration has been reached, a target sensor kinase or response regulator is activated (or repressed) so facilitating the expression of quorum sensing-dependent genes. Quorum sensing enables a bacterial population to mount a co-operative response that improves access to nutrients or specific environmental niches, promotes collective defence against other competitor prokaryotes or eukaryotic defence mechanisms and facilitates survival through differentiation into morphological forms better able to combat environmental threats. Quorum sensing also crosses the prokaryotic-eukaryotic boundary since quorum sensing-dependent signalling can be exploited or inactivated by both plants and mammals.
Collapse
Affiliation(s)
- Paul Williams
- Institute of Infection, Immunity and Inflammation, Centre for Biomolecular Sciences, School of Molecular Medical Sciences, University of Nottingham, Nottingham NG7 2RD, UK.
| | | | | | | |
Collapse
|
220
|
Zaborina O, Lepine F, Xiao G, Valuckaite V, Chen Y, Li T, Ciancio M, Zaborin A, Petroff E, Turner JR, Rahme LG, Chang E, Alverdy JC. Dynorphin activates quorum sensing quinolone signaling in Pseudomonas aeruginosa. PLoS Pathog 2007; 3:e35. [PMID: 17367209 PMCID: PMC1828698 DOI: 10.1371/journal.ppat.0030035] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Accepted: 01/24/2007] [Indexed: 01/17/2023] Open
Abstract
There is now substantial evidence that compounds released during host stress directly activate the virulence of certain opportunistic pathogens. Here, we considered that endogenous opioids might function as such compounds, given that they are among the first signals to be released at multiple tissue sites during host stress. We tested the ability of various opioid compounds to enhance the virulence of Pseudomonas aeruginosa using pyocyanin production as a biological readout, and demonstrated enhanced virulence when P. aeruginosa was exposed to synthetic (U-50,488) and endogenous (dynorphin) κ-agonists. Using various mutants and reporter strains of P. aeruginosa, we identified involvement of key elements of the quorum sensing circuitry such as the global transcriptional regulator MvfR and the quorum sensing-related quinolone signaling molecules PQS, HHQ, and HQNO that respond to κ-opioids. The in vivo significance of κ-opioid signaling of P. aeruginosa was demonstrated in mice by showing that dynorphin is released from the intestinal mucosa following ischemia/reperfusion injury, activates quinolone signaling in P. aeruginosa, and enhances the virulence of P. aeruginosa against Lactobacillus spp. and Caenorhabditis elegans. Taken together, these data demonstrate that P. aeruginosa can intercept opioid compounds released during host stress and integrate them into core elements of quorum sensing circuitry leading to enhanced virulence. Precisely how bacterial pathogens such as Pseudomonas aeruginosa cause fatal infections in critically ill humans is unknown. Evidence suggests that a major source of infection may be the patient's own intestinal microflora, which is subjected to unusual environmental conditions during critical illness. Here, we show that intestinal P. aeruginosa can be alerted to the presence of a physiological disturbance in its host by dynorphin, a human morphine-like chemical released during severe stress. Exposure of P. aeruginosa to dynorphin activates its virulence machinery to produce harmful toxins and to suppress the growth of probiotic bacteria, which are known to promote intestinal health. The molecular mechanisms of these events involve the activation of highly regulated virulence machinery in Pseudomonas, called quorum sensing, that allows bacteria to sense host stress and respond with enhanced harmfulness. These observations suggest that opportunistic pathogens like P. aeruginosa are equipped with sophisticated surveillance systems that take advantage of a weakened host by intercepting and responding to naturally occurring host chemicals that are normally used as signaling molecules for immune activation and analgesia. Elucidation of the effect of dynorphin on Pseudomonas exposes a major mechanism by which this organism behaves as a true opportunist.
Collapse
Affiliation(s)
- Olga Zaborina
- Department of Surgery, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Francois Lepine
- Institut National de la Recherche Scientifique (INRS)–Institut Armand-Frappier, Laval, Quebec, Canada
| | - Gaoping Xiao
- Department of Surgery, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Vesta Valuckaite
- Department of Medicine, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Yimei Chen
- Department of Biochemistry and Molecular Biology, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Terry Li
- Department of Immunohistochemistry, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Mae Ciancio
- Department of Medicine, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Alex Zaborin
- Department of Surgery, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Elaine Petroff
- Department of Medicine, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Jerrold R Turner
- Department of Pathology, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Laurence G Rahme
- Department of Surgery, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Eugene Chang
- Department of Medicine, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - John C Alverdy
- Department of Surgery, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
221
|
Duan K, Surette MG. Environmental regulation of Pseudomonas aeruginosa PAO1 Las and Rhl quorum-sensing systems. J Bacteriol 2007; 189:4827-36. [PMID: 17449617 PMCID: PMC1913434 DOI: 10.1128/jb.00043-07] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The lasI-lasR and the rhlI-rhlR quorum-sensing systems in Pseudomonas aeruginosa regulate the expression of numerous cellular and secreted virulence factor genes and play important roles in the development of biofilms. The las and rhl systems themselves are known to be directly or indirectly regulated by a number of transcriptional regulators, and consequently, their expression is sensitive to environmental conditions. In this report, the activities of these two quorum-sensing systems have been examined systematically under 46 growth conditions, and the regulation by environmental conditions has been investigated. The relative timing and strength of expression of these two systems varied significantly under different conditions, which contrasts with the notion of a preset hierarchy with these two systems in P. aeruginosa. Depending on the growth conditions, the correlation between each synthase and its cognate transcriptional regulator also varied, suggesting that the transcription of these genes independently allows for further fine tuning of each system. Finally, we observe that the activities of both the lasI-lasR and the rhlI-rhlR quorum-sensing systems were dramatically enhanced in the presence of extracts of sputum samples from cystic fibrosis patients.
Collapse
Affiliation(s)
- Kangmin Duan
- Faculty of Medicine, Department of Microbiology and Infectious Diseases, Biochemistry and Molecular Biology, University of Calgary, 3330 Hospital Drive NW, Calgary, Canada
| | | |
Collapse
|
222
|
Salzman NH, Underwood MA, Bevins CL. Paneth cells, defensins, and the commensal microbiota: A hypothesis on intimate interplay at the intestinal mucosa. Semin Immunol 2007; 19:70-83. [PMID: 17485224 DOI: 10.1016/j.smim.2007.04.002] [Citation(s) in RCA: 263] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2007] [Accepted: 04/16/2007] [Indexed: 02/06/2023]
Abstract
Mucosal surfaces are colonized by a diverse and dynamic microbiota. Much investigation has focused on bacterial colonization of the intestine, home to the vast majority of this microbiota. Experimental evidence has highlighted that these colonizing microbes are essential to host development and homeostasis, but less is known about host factors that may regulate the composition of this ecosystem. While evidence shows that IgA has a role in shaping this microbiota, it is likely that effector molecules of the innate immune system are also involved. One hypothesis is that gene-encoded antimicrobial peptides, key elements of innate immunity throughout nature, have an essential role in this regulation. These effector molecules characteristically have activity against a broad spectrum of bacteria and other microbes. At mucosal surfaces, antimicrobial peptides may affect the numbers and/or composition of the colonizing microbiota. In humans and other mammals, defensins are a predominant class of antimicrobial peptides. In the small intestine, Paneth cells (specialized secretory epithelial cells) produce high quantities of defensins and several other antibiotic peptides and proteins. Data from murine models indicate that Paneth cell defensins play a pivotal role in defense from food and water-borne pathogens in the intestinal lumen. Recent studies in humans provide evidence that reduced Paneth cell defensin expression may be a key pathogenic factor in ileal Crohn's disease, a subgroup of inflammatory bowel disease (IBD), and changes in the colonizing microbiota may mediate this pathogenic mechanism. It is also possible that low levels of Paneth cell defensins, characteristic of normal intestinal development, may predispose premature neonates to necrotizing enterocolitis (NEC) through similar close links with the composition of the intestinal microbiota. Future studies to further define mechanisms by which defensins and other host factors regulate the composition of the intestinal microbiota will likely provide new insights into intestinal homeostasis and new therapeutic strategies for inflammatory and infectious diseases of the bowel.
Collapse
Affiliation(s)
- Nita H Salzman
- Department of Pediatrics, Division of Gastroenterology, The Medical College of Wisconsin, 8701 Watertown Plank Rd. Milwaukee, WI 53226, USA
| | | | | |
Collapse
|
223
|
Patel NJ, Zaborina O, Wu L, Wang Y, Wolfgeher DJ, Valuckaite V, Ciancio MJ, Kohler JE, Shevchenko O, Colgan SP, Chang EB, Turner JR, Alverdy JC. Recognition of intestinal epithelial HIF-1alpha activation by Pseudomonas aeruginosa. Am J Physiol Gastrointest Liver Physiol 2007; 292:G134-42. [PMID: 16901993 PMCID: PMC2694754 DOI: 10.1152/ajpgi.00276.2006] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Human intestinal epithelial cell monolayers (Caco-2) subjected to hypoxia and reoxygenation release soluble factors into the apical medium that activate the virulence of the opportunistic pathogen Pseudomonas aeruginosa to express the potent barrier-dysregulating protein PA-I lectin/adhesin. In this study, we defined the role of hypoxia-inducible factor (HIF)-1alpha in this response. We tested the ability of medium from Caco-2 cells with forced expression of HIF-1alpha to increase PA-I expression in P. aeruginosa and found that medium from Caco-2 cells overexpressing HIF-1alpha increased PA-I expression compared with medium from control cells (P < 0.001, ANOVA). To identify the components responsible for this response, medium was fractionated by molecular weight and subjected to mass spectroscopy, which identified adenosine as the possible mediator. Both adenosine and its immediate downstream metabolite inosine induced PA-I expression in P. aeruginosa in a dose-dependent fashion. Because inosine was not detectable in the medium of Caco-2 cells exposed to hypoxia or overexpressing HIF-1alpha, we hypothesized that P. aeruginosa itself might metabolize adenosine to inosine. Using mutant and parental strains of P. aeruginosa, we demonstrated that P. aeruginosa metabolized adenosine to inosine via adenosine deaminase and that the conditioned medium enhanced the extracellular accumulation of inosine. Together, these results provide evidence that P. aeruginosa can recognize and respond to extracellular end products of intestinal hypoxia that are released after activation of HIF-1alpha. The ability of P. aeruginosa to metabolize adenosine to inosine may represent a subversive microbial virulence strategy that deprives the epithelium of the cytoprotective actions of adenosine.
Collapse
Affiliation(s)
- Nachiket J Patel
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
224
|
Chugani S, Greenberg EP. The influence of human respiratory epithelia on Pseudomonas aeruginosa gene expression. Microb Pathog 2006; 42:29-35. [PMID: 17166692 PMCID: PMC1934408 DOI: 10.1016/j.micpath.2006.10.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 10/04/2006] [Accepted: 10/18/2006] [Indexed: 11/22/2022]
Abstract
The opportunistic pathogen Pseudomonas aeruginosa can cause acute or chronic infections in humans. Little is known about the initial adaptation of P. aeruginosa to host tissues and the factors that determine whether a P. aeruginosa-epithelial cell interaction will manifest as an acute or a chronic infection. To gain insights into the initial phases of P. aeruginosa infections and to identify P. aeruginosa genes regulated in response to respiratory epithelia, we exposed P. aeruginosa to cultured primary differentiated human airway epithelia. We used a P. aeruginosa strain that causes acute damage to the epithelia and a mutant with defects in Type III secretion and in rhamnolipid synthesis. The mutant did not cause rapid damage to epithelia as did the wildtype. We compared the transcriptomes of the P. aeruginosa wildtype and the mutant to each other and to P. aeruginosa grown under other conditions, and we discovered overlapping sets of differentially expressed genes in the wildtype and mutant exposed to epithelia. A recent study reported that exposure of P. aeruginosa to epithelia is characterized by a repression of the bacterial iron-responsive genes. These findings were suggestive of ample iron availability during infection. In contrast, we found that P. aeruginosa shows an iron-starvation response upon exposure to epithelial cells. This observation highlights the importance of the iron starvation response in both acute and chronic infections and suggests opportunities for therapy.
Collapse
Affiliation(s)
| | - E. P. Greenberg
- *Corresponding author: E. P. Greenberg, Department of Microbiology, University of Washington, 1959 NE Pacific St., HSB I-420, Seattle, WA 98195, Phone: (206) 616-2881, FAX: (206) 616-2938, E-mail:
| |
Collapse
|
225
|
Sonawane A, Jyot J, During R, Ramphal R. Neutrophil elastase, an innate immunity effector molecule, represses flagellin transcription in Pseudomonas aeruginosa. Infect Immun 2006; 74:6682-9. [PMID: 16982831 PMCID: PMC1698043 DOI: 10.1128/iai.00922-06] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 08/09/2006] [Accepted: 08/25/2006] [Indexed: 11/20/2022] Open
Abstract
Recognition of pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors triggers an innate immune response to colonizing or invading bacteria. Conversely, many bacteria have evolved mechanisms to dampen this response by downregulating the synthesis of such PAMPs. We have previously demonstrated that Pseudomonas aeruginosa growing in mucopurulent human respiratory mucus from cystic fibrosis patients represses the expression of its flagellin, a potent stimulant of the innate immune response. Here we demonstrate that this phenomenon occurs in response to the presence of neutrophil elastase in such mucus. Nonpurulent mucus from animals had no such repressive effect. Furthermore, lysed neutrophils from human blood reproduced the flagellin-repressive effect ex mucus and, significantly, had no effect on the viability of this organism. Neutrophil elastase, a component of the innate host defense system, has been described to be bactericidal for gram-negative bacteria and to degrade bacterial virulence factors. Thus, the resistance of P. aeruginosa to the bactericidal effect of neutrophil elastase, as well as this organism's ability to sense this enzyme's presence and downregulate the synthesis of a PAMP, may be the key factors in allowing P. aeruginosa to colonize the lungs. These findings demonstrate the dynamic nature of this bacterium's response to host defenses that ensures its success as a colonizer and also highlights the dual nature of defense molecules that confer advantages and disadvantages to both hosts and pathogens.
Collapse
Affiliation(s)
- Avinash Sonawane
- Department of Medicine/Infectious Diseases, JHMHC, University of Florida, Gainesville, FL 32610, USA
| | | | | | | |
Collapse
|
226
|
Bjarnsholt T, Givskov M. The role of quorum sensing in the pathogenicity of the cunning aggressor Pseudomonas aeruginosa. Anal Bioanal Chem 2006; 387:409-14. [PMID: 17019573 DOI: 10.1007/s00216-006-0774-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 08/08/2006] [Accepted: 08/10/2006] [Indexed: 10/24/2022]
Abstract
Recent decades have revealed that many bacterial species are capable of communicating with each other, and this observation has been largely responsible for a paradigm shift in microbiology. Whereas it was previously believed that bacteria lived as individual cells, it is now acknowledged that bacteria preferentially live in communities in the form of primitive organisms in which the behavior of individual cells is coordinated by cell-cell communication, known as quorum sensing (QS). Bacteria use QS for regulation of the processes involved in their interaction with each other, their environment, and, particularly, higher organisms We have focused on Pseudomonas aeruginosa, an opportunistic pathogen producing more than 30 QS-regulated virulence factors. P. aeruginosa causes several types of nosocomial infection, and lung infection in cystic fibrosis (CF) patients. We review the role of QS in the protective mechanisms of P. aeruginosa and show how disruption of the QS can be used as an approach to control this cunning aggressor.
Collapse
Affiliation(s)
- Thomas Bjarnsholt
- Center for Biomedical Microbiology, BioCentrum-DTU Technical University of Denmark, Bldg 301, 2800, Lyngby, Denmark
| | | |
Collapse
|
227
|
Bodilis J, Hedde M, Orange N, Barray S. OprF polymorphism as a marker of ecological niche in Pseudomonas. Environ Microbiol 2006; 8:1544-51. [PMID: 16913915 DOI: 10.1111/j.1462-2920.2006.01045.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OprF is the major outer-membrane protein of Pseudomonas sensu stricto (rRNA group I). In addition to playing a role as porin, membrane structural protein and root adhesion, this pleiotropic protein shows a length polymorphism corresponding to two types of OprF, termed OprF type 1 and OprF type 2. In a previous work, all the P. fluorescens isolated from bulk soil (non-rhizospheric) were shown to possess oprF type 1, while all the clinical P. fluorescens isolates and most rhizospheric strains corresponded to type 2. In this study, we further investigated the relation between the OprF polymorphism and the ecological niche by developing a culture-independent approach (a ratio polymerase chain reaction) to measure the percentage of each oprF type in environmental DNA samples, including two different soils and three different cultured plants (flax, wheat and grassland). Although the proportions of oprF type 2 between rhizospheric samples were quite variable, they were always very significantly higher (P<0.001) than the proportions of oprF type 2 of the adjacent bulk soil where the vast majority of oprF (>95%) corresponded to type 1. We discuss the potential applications of this ecological fingerprint in an agronomic and taxonomic point of view.
Collapse
Affiliation(s)
- Josselin Bodilis
- LMDF (Laboratoire de Microbiologie Du Froid), UPRES 2123, Université de Rouen, 76821 Mont Saint Aignan, France.
| | | | | | | |
Collapse
|
228
|
Hemery G, Chevalier S, Bellon-Fontaine MN, Haras D, Orange N. Growth temperature and OprF porin affect cell surface physicochemical properties and adhesive capacities of Pseudomonas fluorescens MF37. J Ind Microbiol Biotechnol 2006; 34:49-54. [PMID: 16932888 DOI: 10.1007/s10295-006-0160-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Accepted: 07/05/2006] [Indexed: 10/24/2022]
Abstract
Pseudomonads adapt to various ecological niches by forming biofilms, which first requires bacterial adhesion on surfaces. We studied the influence of growth temperature on surface physicochemical properties of Pseudomonas fluorescens MF37 and on its adhesive capacities onto inert surfaces. It presented a global hydrophilic character, measured by microbial adhesion to solvent (MATS), and showed a cell surface more hydrophilic at 8 and 28 degrees C than at 17 degrees C. Moreover, P. fluorescens MF37 was more adhesive at 17 degrees C. This critical temperature thus should be carefully taken into account in food safety. Adhesion onto inert surfaces is thus influenced by the growth temperature, which modifies the bacteria cell wall properties through changes in the outer membrane components. Therefore, we studied the effect of the loss of OprF, the major outer membrane protein, known to act as an adhesin (root, and endothelial cells). The OprF-deficient mutant was able to adhere to surfaces, but showed the same physicochemical and adhesion properties on abiotic surfaces whatever the growth temperature. OprF is thus not essential in this adhesion process. However, we suggest that OprF is involved in the bacterial environmental temperature sensing by P. fluorescens.
Collapse
Affiliation(s)
- Gaëlle Hemery
- Laboratoire de Microbiologie Du Froid, EA 2123, Université de Rouen, 55 rue St Germain, 27000, Evreux, France
| | | | | | | | | |
Collapse
|
229
|
Melstrom KA, Smith JW, Gamelli RL, Shankar R. New perspectives for a new century: implications of pathogen responses for the future of antimicrobial therapy. J Burn Care Res 2006; 27:251-64. [PMID: 16679890 DOI: 10.1097/01.bcr.0000216291.68192.54] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although the discovery of new classes of antibiotics has lagged behind in the last three decades, the incidence of life-threatening nosocomial infections that are resistant to multiple antibacterial agents has increased steadily. Recent advances in bacterial pathogenicity through the identification of a number of virulence factors and the bacterial genetics behind it have opened the way to a clearer understanding of the pathogen-host relationship. Bacteria communicate with each other through specific signaling chemicals to act as a community rather than individual cells to achieve a critical density or a "quorum." Establishment of quorum is the initiating signal for turning on a variety of virulence factors essential for the pathogenicity and dissemination of pathogens through the host. Pathogenic bacteria use a variety of biochemical mediators, collectively called "virulence factors," to invade and attack host tissues and to avoid detection and elimination by the host immune system. Delineating the specific responses the host immune system elicits in response to specific virulence factors and quorum-sensing molecules is essential to the development of new diagnostic methods for early detection of an infection and the prognosis to a given antibacterial therapy. Identification of inhibitors of virulence factors will represent new antimicrobial therapeutic modalities, and this can be used synergistically with current antibiotic therapy because they act through independent prokaryotic pathways to inhibit bacterial growth and survival.
Collapse
Affiliation(s)
- Kurt A Melstrom
- Department of Surgery and Burn & Shock Trauma Institute, Loyola University Medical Center, Maywood, Illinois 60153, USA
| | | | | | | |
Collapse
|
230
|
Groisman EA, Mouslim C. Sensing by bacterial regulatory systems in host and non-host environments. Nat Rev Microbiol 2006; 4:705-9. [PMID: 16894339 DOI: 10.1038/nrmicro1478] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Free-living organisms have the ability to gauge their surroundings and modify their gene expression patterns in ways that help them cope with new environments. Here we discuss the physiological significance of recent reports describing the ability of the Salmonella typhimurium PhoP/PhoQ two-component system to recognize and respond to host-derived antimicrobial peptides.
Collapse
Affiliation(s)
- Eduardo A Groisman
- Department of Molecular Microbiology, Washington University School of Medicine, Campus P.O. Box 8230, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
231
|
Valvano MA. Infections by Burkholderia spp.: the psychodramatic life of an opportunistic pathogen. Future Microbiol 2006; 1:145-9. [PMID: 17661657 DOI: 10.2217/17460913.1.2.145] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
232
|
Bodilis J, Barray S. Molecular evolution of the major outer-membrane protein gene (oprF) of Pseudomonas. MICROBIOLOGY-SGM 2006; 152:1075-1088. [PMID: 16549671 DOI: 10.1099/mic.0.28656-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The major outer-membrane protein of Pseudomonas, OprF, is multifunctional. It is a non-specific porin that plays a role in maintenance of cell shape, in growth in a low-osmolarity environment, and in adhesion to various supports or molecules. OprF has been studied extensively for its utility as a vaccine component, its role in antimicrobial drug resistance, and its porin function. The authors have previously shown important differences between the OprF and 16S rDNA phylogenies: Pseudomonas fluorescens isolates split into two quite separate clusters, probably according to their ecological niche. In this study, the evolutionary history of the oprF gene was investigated further. The study of G+C content at the third codon position, synonymous codon usage (codon adaptation index, CAI) and genomic context showed no evidence of horizontal transfer or gene duplication. Similarly, a robust likelihood test of incongruence showed no significant incongruence between the oprF phylogeny and the species phylogeny. In addition, the ratio of nonsynonymous mutations to synonymous mutations (K(a)/K(s)) is high between the different clusters, especially between the two clusters containing P. fluorescens isolates, highlighting important modifications in evolutionary constraints during the history of the oprF gene. Since OprF is known as a pleiotropic protein, modifications in evolutionary constraints could have resulted from variations in cryptic functions, correlated with the ecological fingerprint. Finally, relaxed constraints and/or episodic positive evolution, especially for some P. fluorescens strains, could have led to a phylogeny reconstruction artifact.
Collapse
Affiliation(s)
- Josselin Bodilis
- LMDF (Laboratoire de Microbiologie Du Froid), UPRES 2123, ABISS (Atelier de Biologie, Informatique, Statistique et Sociolinguistinque), Université de Rouen, 76821 Mont Saint Aignan, France
| | - Sylvie Barray
- LMDF (Laboratoire de Microbiologie Du Froid), UPRES 2123, ABISS (Atelier de Biologie, Informatique, Statistique et Sociolinguistinque), Université de Rouen, 76821 Mont Saint Aignan, France
| |
Collapse
|
233
|
Le Berre R, Faure K, Nguyen S, Pierre M, Ader F, Guery B. Quorum sensing : une nouvelle cible thérapeutique pour Pseudomonas aeruginosa. Med Mal Infect 2006; 36:349-57. [PMID: 16631332 DOI: 10.1016/j.medmal.2006.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2005] [Accepted: 01/27/2006] [Indexed: 11/16/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic bacteria causing a wide variety of infections. The bacterial virulence depends on a large panel of cell-associated and extracellular factors. Quorum sensing (QS) allows cell-to-cell communication: sensing the environment, this system coordinates the expression of various genes within the bacterial population. QS is based on an interaction between a small diffusible molecule, an acylhomoserine lactone (AHL), and a transcriptionnal activator. Two QS systems, the las and rhl systems, have been identified in P. aeruginosa. The las system associates the transcriptionnal activator protein LasR and LasI responsible for the synthesis of a specific AHL: C12-HSL. This system was shown to activate the expression of a large number of virulence factors. Similarly, the rhl system associates the transcriptionnal activator protein RhlR with RhlI, which is responsible for the synthesis of another AHL: C4-HSL. Synthesis and secretion of a number of virulence factors are controlled by QS. Utilization of different animals models showed the crucial role of QS in the pathogenesis of P. aeruginosa infections. The discovery of QS has given a new opportunity to treat bacterial infection by another means than growth inhibition. New drugs inhibiting QS were recently discovered: furanone compounds can repress a large number of QS-regulated genes, including numerous P. aeruginosa virulence factor genes. Furanone administration to mice infected with P. aeruginosa significantly reduced lung bacterial load compared with the control group.
Collapse
Affiliation(s)
- R Le Berre
- Laboratoire de recherche en pathologie infectieuse, EA 2689, faculté de médecine de Lille, 59045 Lille, France.
| | | | | | | | | | | |
Collapse
|
234
|
Diggle SP, Stacey RE, Dodd C, Cámara M, Williams P, Winzer K. The galactophilic lectin, LecA, contributes to biofilm development in Pseudomonas aeruginosa. Environ Microbiol 2006; 8:1095-104. [PMID: 16689730 DOI: 10.1111/j.1462-2920.2006.001001.x] [Citation(s) in RCA: 228] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
LecA (PA-IL) is a cytotoxic lectin and adhesin produced by Pseudomonas aeruginosa which binds hydrophobic galactosides with high specificity and affinity. By using a lecA-egfp translation fusion and immunoblot analysis of the biofilm extracellular matrix, we show that lecA is expressed in biofilm-grown cells. In static biofilm assays on both polystyrene and stainless steel, biofilm depth and surface coverage was reduced by mutation of lecA and enhanced in the LecA-overproducing strain PAO-P47. Biofilm surface coverage by the parent strain, PAO-P47 but not the lecA mutant on steel coupons was also inhibited by growth in the presence of either isopropyl-beta-D-thiogalactoside (IPTG) or p-nitrophenyl-alpha-D-galactoside (NPG). Furthermore, mature wild-type biofilms formed in the absence of these hydrophobic galactosides could be dispersed by the addition of IPTG. In contrast, addition of p-nitrophenyl-alpha-L-fucose (NPF) which has a high affinity for the P. aeruginosa LecB (PA-IIL) lectin had no effect on biofilm formation or dispersal. Planktonic growth of P. aeruginosa PAO1 was unaffected by the presence of IPTG, NPG or NPF, nor was the strain able to utilize these sugars as carbon sources, suggesting that the observed effects on biofilm formation were due to the competitive inhibition of LecA-ligand binding. Similar results were also obtained for biofilms grown under dynamic flow conditions on steel coupons, suggesting that LecA contributes to P. aeruginosa biofilm architecture under different environmental conditions.
Collapse
Affiliation(s)
- Stephen P Diggle
- Institute of Infection, Immunity and Inflammation, Centre for Biomolecular Sciences, University Park, University of Nottingham, Nottingham NG7 2RD, UK.
| | | | | | | | | | | |
Collapse
|
235
|
Affiliation(s)
- Eric B Milbrandt
- CRISMA (Clinical Research, Investigation, and Systems Modelling of Acute Illness) Laboratory, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
236
|
Dudler R, Eberl L. Interactions between bacteria and eukaryotes via small molecules. Curr Opin Biotechnol 2006; 17:268-73. [PMID: 16650977 DOI: 10.1016/j.copbio.2006.04.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 03/25/2006] [Accepted: 04/19/2006] [Indexed: 11/29/2022]
Abstract
The interactions that occur between eukaryotes and bacteria have long been of interest, as knowledge of these processes could lead to the development of novel therapeutics and other potential applications in biotechnology. Many of these interactions are mediated by small molecules, which have subsequently formed the focus of numerous studies. An arsenal of small molecules exhibiting a wide range of activities has been isolated from various sources, including plants, animals and microorganisms. As a number of these compounds are pharmacologically active, there is a strong continued interest in natural product chemistry. Recent developments in this field have focused on two areas: evidence has been gathered to show that secondary metabolites are often produced by symbiotic bacteria, rather than by the eukaryotic host, and the importance of bacterial cell-to-cell signalling in bacteria-host interactions has been confirmed.
Collapse
Affiliation(s)
- Robert Dudler
- Department of Microbiology, Institute of Plant Biology, University of Zürich, Switzerland
| | | |
Collapse
|
237
|
Wagner VE, Frelinger JG, Barth RK, Iglewski BH. Quorum sensing: dynamic response of Pseudomonas aeruginosa to external signals. Trends Microbiol 2006; 14:55-8. [PMID: 16406629 DOI: 10.1016/j.tim.2005.12.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 11/04/2005] [Accepted: 12/15/2005] [Indexed: 11/25/2022]
Abstract
A recent study suggests that the opportunistic pathogen Pseudomonas aeruginosa can actively monitor the host immune system. The P. aeruginosa outer membrane protein OprF was found to bind specifically to the cytokine interferon-gamma (IFN-gamma), and this interaction upregulated production of virulence factors through a cell-cell communication system known as quorum sensing (QS). Taken together with previous findings that P. aeruginosa QS can alter the host immune response (e.g. by activation of IFN-gamma), these data illustrate an exciting new element of bacteria-host interactions in which the P. aeruginosa quorum-sensing system both senses and modulates the host immune state.
Collapse
Affiliation(s)
- Victoria E Wagner
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
238
|
Smith D, Wang JH, Swatton JE, Davenport P, Price B, Mikkelsen H, Stickland H, Nishikawa K, Gardiol N, Spring DR, Welch M. Variations on a theme: diverse N-acyl homoserine lactone-mediated quorum sensing mechanisms in gram-negative bacteria. Sci Prog 2006; 89:167-211. [PMID: 17338438 PMCID: PMC10368359 DOI: 10.3184/003685006783238335] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Many Gram-negative bacteria employ a mechanism of cell-cell communication known as quorum sensing (QS). The role of QS is to enable the cells in a culture to coordinate their gene expression profile with changes in the population cell density. The best characterized mechanisms of QS employ N-acylated homoserine lactones (AHLs) as signalling molecules. These AHLs are made by enzymes known as LuxI homologs, and accumulate in the culture supernatant at a rate proportional to the increase in cell density. Once the AHL concentration exceeds a certain threshold value, these ligands bind to intracellular receptors known as LuxR homologs. The latter are transcriptional regulators, whose activity alters upon binding the AHL ligand, thereby eliciting a change in gene transcription. Over the last five years, it has become increasingly obvious that this is a rather simplistic view of AHL-dependent QS, and that in fact, there is considerable diversity in the way in which LuxI-R homologs operate. The aim of the current review is to describe these variations on the basic theme, and to show how functional genomics is revolutionizing our understanding of QS-controlled regulons.
Collapse
Affiliation(s)
- Debra Smith
- Department of Biochemistry, Building 0, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Jin-Hong Wang
- Department of Veterinary Medicine, Madingley Road, Cambridge CB3 OES, UK
| | - Jane E. Swatton
- Department of Biochemistry, Building 0, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Peter Davenport
- Department of Biochemistry, Building 0, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Bianca Price
- Department of Biochemistry, Building 0, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Helga Mikkelsen
- Department of Biochemistry, Building 0, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Hannah Stickland
- Department of Biochemistry, Building 0, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Kahoko Nishikawa
- Department of Biochemistry, Building 0, Tennis Court Road, Cambridge CB2 1QW, UK
- Department of Traumatology and Critical Care Medicine, National Defense Medical College, 3–2 Namiki Tokorozawa, Saitama, 359–8513 Japan
| | - NoéMie Gardiol
- Department of Biochemistry, Building 0, Tennis Court Road, Cambridge CB2 1QW, UK
| | - David R. Spring
- Department of Chemistry, Lensfield Road, Cambridge CB2 1EW, UK
| | - Martin Welch
- Department of Biochemistry, Building 0, Tennis Court Road, Cambridge CB2 1QW, UK
| |
Collapse
|