201
|
Mesarich CH, Bowen JK, Hamiaux C, Templeton MD. Repeat-containing protein effectors of plant-associated organisms. FRONTIERS IN PLANT SCIENCE 2015; 6:872. [PMID: 26557126 PMCID: PMC4617103 DOI: 10.3389/fpls.2015.00872] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/01/2015] [Indexed: 05/10/2023]
Abstract
Many plant-associated organisms, including microbes, nematodes, and insects, deliver effector proteins into the apoplast, vascular tissue, or cell cytoplasm of their prospective hosts. These effectors function to promote colonization, typically by altering host physiology or by modulating host immune responses. The same effectors however, can also trigger host immunity in the presence of cognate host immune receptor proteins, and thus prevent colonization. To circumvent effector-triggered immunity, or to further enhance host colonization, plant-associated organisms often rely on adaptive effector evolution. In recent years, it has become increasingly apparent that several effectors of plant-associated organisms are repeat-containing proteins (RCPs) that carry tandem or non-tandem arrays of an amino acid sequence or structural motif. In this review, we highlight the diverse roles that these repeat domains play in RCP effector function. We also draw attention to the potential role of these repeat domains in adaptive evolution with regards to RCP effector function and the evasion of effector-triggered immunity. The aim of this review is to increase the profile of RCP effectors from plant-associated organisms.
Collapse
Affiliation(s)
- Carl H. Mesarich
- School of Biological Sciences, The University of AucklandAuckland, New Zealand
- Host–Microbe Interactions, Bioprotection, The New Zealand Institute for Plant & Food Research LtdAuckland, New Zealand
- *Correspondence: Carl H. Mesarich
| | - Joanna K. Bowen
- Host–Microbe Interactions, Bioprotection, The New Zealand Institute for Plant & Food Research LtdAuckland, New Zealand
| | - Cyril Hamiaux
- Human Responses, The New Zealand Institute for Plant & Food Research LimitedAuckland, New Zealand
| | - Matthew D. Templeton
- School of Biological Sciences, The University of AucklandAuckland, New Zealand
- Host–Microbe Interactions, Bioprotection, The New Zealand Institute for Plant & Food Research LtdAuckland, New Zealand
| |
Collapse
|
202
|
Hutin M, Pérez-Quintero AL, Lopez C, Szurek B. MorTAL Kombat: the story of defense against TAL effectors through loss-of-susceptibility. FRONTIERS IN PLANT SCIENCE 2015; 6:535. [PMID: 26236326 PMCID: PMC4500901 DOI: 10.3389/fpls.2015.00535] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 06/30/2015] [Indexed: 05/21/2023]
Abstract
Many plant-pathogenic xanthomonads rely on Transcription Activator-Like (TAL) effectors to colonize their host. This particular family of type III effectors functions as specific plant transcription factors via a programmable DNA-binding domain. Upon binding to the promoters of plant disease susceptibility genes in a sequence-specific manner, the expression of these host genes is induced. However, plants have evolved specific strategies to counter the action of TAL effectors and confer resistance. One mechanism is to avoid the binding of TAL effectors by mutations of their DNA binding sites, resulting in resistance by loss-of-susceptibility. This article reviews our current knowledge of the susceptibility hubs targeted by Xanthomonas TAL effectors, possible evolutionary scenarios for plants to combat the pathogen with loss-of-function alleles, and how this knowledge can be used overall to develop new pathogen-informed breeding strategies and improve crop resistance.
Collapse
Affiliation(s)
- Mathilde Hutin
- UMR IPME, Institut de Recherche Pour le Développement, IRD-CIRAD-Université Montpellier 2Montpellier, France
| | - Alvaro L. Pérez-Quintero
- UMR IPME, Institut de Recherche Pour le Développement, IRD-CIRAD-Université Montpellier 2Montpellier, France
| | - Camilo Lopez
- UMR IPME, Institut de Recherche Pour le Développement, IRD-CIRAD-Université Montpellier 2Montpellier, France
- Biology Department, Universidad Nacional de ColombiaBogota, Colombia
| | - Boris Szurek
- UMR IPME, Institut de Recherche Pour le Développement, IRD-CIRAD-Université Montpellier 2Montpellier, France
- *Correspondence: Boris Szurek, UMR IPME, Institut de Recherche Pour le Développement, IRD-CIRAD-Université Montpellier 2, 911 Avenue Agropolis BP 64501, 34394 Montpellier Cedex 5, France,
| |
Collapse
|
203
|
Wang X, Wang P, Fu Z, Ji H, Qu X, Zeng H, Zhu X, Deng J, Lu P, Zha S, Song Z, Zhu H. Designed transcription activator-like effector proteins efficiently induced the expression of latent HIV-1 in latently infected cells. AIDS Res Hum Retroviruses 2015; 31:98-106. [PMID: 25403229 DOI: 10.1089/aid.2014.0121] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
HIV latency is the foremost barrier to clearing HIV infection from patients. Reactivation of latent HIV-1 represents a promising strategy to deplete these viral reservoirs. Here, we report a novel approach to reactivate latent HIV-1 provirus using artificially designed transcription activator-like effector (TALE) fusion proteins containing a DNA-binding domain specifically targeting the HIV-1 promoter and the herpes simplex virus-based transcriptional activator VP64 domain. We engineered four TALE genes (TALE1-4) encoding TALE proteins, each specifically targeting different 20-bp DNA sequences within the HIV-1 promoter, and we constructed four TALE-VP64 expression vectors corresponding to TALE1-4. We found that TALE1-VP64 effectively reactivated HIV-1 gene expression in latently infected C11 and A10.6 cells. We further confirmed that TALE1-VP64 reactivated latent HIV-1 via specific binding to the HIV-LTR promoter. Moreover, we also found that TALE1-VP64 did not affect cell proliferation or cell cycle distribution. Taken together, our data demonstrated that TALE1-VP64 can specifically and effectively reactivate latent HIV-1 transcription, suggesting that this strategy may provide a novel approach for anti-HIV-1 latency therapy in the future.
Collapse
Affiliation(s)
- Xiaohui Wang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Pengfei Wang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Zheng Fu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Haiyan Ji
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiying Qu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Hanxian Zeng
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaoli Zhu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Junxiao Deng
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Panpan Lu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Shijun Zha
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhishuo Song
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Huanzhang Zhu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
204
|
Zhang L, Davies LJ, Elling AA. A Meloidogyne incognita effector is imported into the nucleus and exhibits transcriptional activation activity in planta. MOLECULAR PLANT PATHOLOGY 2015; 16:48-60. [PMID: 24863562 PMCID: PMC6638493 DOI: 10.1111/mpp.12160] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Root-knot nematodes are sedentary biotrophic endoparasites that maintain a complex interaction with their host plants. Nematode effector proteins are synthesized in the oesophageal glands of nematodes and secreted into plant tissue through a needle-like stylet. Effectors characterized to date have been shown to mediate processes essential for nematode pathogenesis. To gain an insight into their site of action and putative function, the subcellular localization of 13 previously isolated Meloidogyne incognita effectors was determined. Translational fusions were created between effectors and EGFP-GUS (enhanced green fluorescent protein-β-glucuronidase) reporter genes, which were transiently expressed in tobacco leaf cells. The majority of effectors localized to the cytoplasm, with one effector, 7H08, imported into the nuclei of plant cells. Deletion analysis revealed that the nuclear localization of 7H08 was mediated by two novel independent nuclear localization domains. As a result of the nuclear localization of the effector, 7H08 was tested for the ability to activate gene transcription. 7H08 was found to activate the expression of reporter genes in both yeast and plant systems. This is the first report of a plant-parasitic nematode effector with transcriptional activation activity.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164, USA
| | | | | |
Collapse
|
205
|
Boch J, Bonas U, Lahaye T. TAL effectors--pathogen strategies and plant resistance engineering. THE NEW PHYTOLOGIST 2014; 204:823-32. [PMID: 25539004 DOI: 10.1111/nph.13015] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Transcription activator-like effectors (TALEs) from plant pathogenic Xanthomonas spp. and the related RipTALs from Ralstonia solanacearum are DNA-binding proteins with a modular DNA-binding domain. This domain is both predictable and programmable, which simplifies elucidation of TALE function in planta and facilitates generation of DNA-binding modules with desired specificity for biotechnological approaches. Recently identified TALE host target genes that either promote or stop bacterial disease provide new insights into how expression of TALE genes affects the plant–pathogen interaction. Since its elucidation the TALE code has been continuously refined and now provides a mature tool that, in combination with transcriptome profiling, allows rapid isolation of novel TALE target genes. The TALE code is also the basis for synthetic promoter-traps that mediate recognition of TALE or RipTAL proteins in engineered plants. In this review, we will summarize recent findings in plant-focused TALE research. In addition, we will provide an outline of the newly established gene isolation approach for TALE or RipTAL host target genes with an emphasis on potential pitfalls.
Collapse
|
206
|
Kim HS, Bernitz JM, Lee DF, Lemischka IR. Genomic editing tools to model human diseases with isogenic pluripotent stem cells. Stem Cells Dev 2014; 23:2673-86. [PMID: 25075441 PMCID: PMC4216528 DOI: 10.1089/scd.2014.0167] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 07/30/2014] [Indexed: 12/21/2022] Open
Abstract
Patient-specific induced pluripotent stem cells (iPSCs) are considered a versatile resource in the field of biomedicine. As iPSCs are generated on an individual basis, iPSCs may be the optimal cellular material to use for disease modeling, drug discovery, and the development of patient-specific cellular therapies. Recently, to gain an in-depth understanding of human pathologies, patient-specific iPSCs have been used to model human diseases with some iPSC-derived cells recapitulating pathological phenotypes in vitro. However, complex multigenic diseases generally have not resulted in concise conclusions regarding the underlying mechanisms of disease, in large part due to genetic variations between disease-state and control iPSCs. To circumvent this, the use of genomic editing tools to generate perfect isogenic controls is gaining momentum. To date, DNA binding domain-based zinc finger nucleases and transcription activator-like effector nucleases have been utilized to create genetically defined conditions in patient-specific iPSCs, with some examples leading to the successful identification of novel mechanisms of disease. As the feasibility and utility of genomic editing tools in iPSCs improve, along with the introduction of the clustered regularly interspaced short palindromic repeat system, understanding the features and limitations of genomic editing tools and their applications to iPSC technology is critical to expending the field of human disease modeling.
Collapse
Affiliation(s)
- Huen Suk Kim
- Department of Developmental and Regenerative Biology, The Black Family Stem Cell Institute , Icahn School of Medicine at Mount Sinai, New York, New York
| | | | | | | |
Collapse
|
207
|
Burnight ER, Wiley LA, Mullins RF, Stone EM, Tucker BA. Gene therapy using stem cells. Cold Spring Harb Perspect Med 2014; 5:cshperspect.a017434. [PMID: 25395375 DOI: 10.1101/cshperspect.a017434] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Viral-mediated gene augmentation therapy has recently shown success in restoring vision to patients with retinal degenerative disorders. Key to this success was the availability of animal models that accurately presented the human phenotype to test preclinical efficacy and safety. These exciting studies support the use of gene therapy in the treatment of devastating retinal degenerative diseases. In some cases, however, in vivo gene therapy for retinal degeneration would not be effective because the cell types targeted are no longer present. The development of somatic cell reprogramming methods provides an attractive source of autologous cells for transplantation and treatment of retinal degenerative disease. This article explores the development of gene therapy and patient-derived stem cells for the purpose of restoring vision to individuals suffering from inherited retinal degenerations.
Collapse
Affiliation(s)
- Erin R Burnight
- The Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa 52242
| | - Luke A Wiley
- The Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa 52242
| | - Robert F Mullins
- The Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa 52242
| | - Edwin M Stone
- The Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa 52242 Howard Hughes Medical Institute, University of Iowa, Iowa City, Iowa 52242
| | - Budd A Tucker
- The Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
208
|
Muñoz-Bodnar A, Perez-Quintero AL, Gomez-Cano F, Gil J, Michelmore R, Bernal A, Szurek B, Lopez C. RNAseq analysis of cassava reveals similar plant responses upon infection with pathogenic and non-pathogenic strains of Xanthomonas axonopodis pv. manihotis. PLANT CELL REPORTS 2014; 33:1901-12. [PMID: 25120000 DOI: 10.1007/s00299-014-1667-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 06/25/2014] [Accepted: 07/23/2014] [Indexed: 05/28/2023]
Abstract
An RNAseq-based analysis of the cassava plants inoculated with Xam allowed the identification of transcriptional upregulation of genes involved in jasmonate metabolism, phenylpropanoid biosynthesis and putative targets for a TALE. Cassava bacterial blight, a disease caused by the gram-negative bacterium Xanthomonas axonopodis pv. manihotis (Xam), is a major limitation to cassava production worldwide and especially in developing countries. The molecular mechanisms underlying cassava susceptibility to Xam are currently unknown. To identify host genes and pathways leading to plant susceptibility, we analyzed the transcriptomic responses occurring in cassava plants challenged with either the non-pathogenic Xam strain ORST4, or strain ORST4(TALE1 Xam ) which is pathogenic due to the major virulence transcription activator like effector TALE1 Xam . Both strains triggered similar responses, i.e., induction of genes related to photosynthesis and phenylpropanoid biosynthesis, and repression of genes related to jasmonic acid signaling. Finally, to search for TALE1 Xam virulence targets, we scanned the list of cassava genes induced upon inoculation of ORST4(TALE1 Xam ) for candidates harboring a predicted TALE1 Xam effector binding element in their promoter. Among the six genes identified as potential candidate targets of TALE1 Xam a gene coding for a heat shock transcription factor stands out as the best candidate based on their induction in presence of TALE1 Xam and contain a sequence putatively recognized by TALE1 Xam .
Collapse
Affiliation(s)
- Alejandra Muñoz-Bodnar
- Manihot Biotec Group, Department of Biology, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | | | | | | | | | | | | |
Collapse
|
209
|
Cohn M, Bart RS, Shybut M, Dahlbeck D, Gomez M, Morbitzer R, Hou BH, Frommer WB, Lahaye T, Staskawicz BJ. Xanthomonas axonopodis virulence is promoted by a transcription activator-like effector-mediated induction of a SWEET sugar transporter in cassava. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:1186-98. [PMID: 25083909 DOI: 10.1094/mpmi-06-14-0161-r] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The gene-for-gene concept has historically been applied to describe a specific resistance interaction wherein single genes from the host and the pathogen dictate the outcome. These interactions have been observed across the plant kingdom and all known plant microbial pathogens. In recent years, this concept has been extended to susceptibility phenotypes in the context of transcription activator-like (TAL) effectors that target SWEET sugar transporters. However, because this interaction has only been observed in rice, it was not clear whether the gene-for-gene susceptibility was unique to that system. Here, we show, through a combined systematic analysis of the TAL effector complement of Xanthomonas axonopodis pv. manihotis and RNA sequencing to identify targets in cassava, that TAL20Xam668 specifically induces the sugar transporter MeSWEET10a to promote virulence. Designer TAL effectors (dTALE) complement TAL20Xam668 mutant phenotypes, demonstrating that MeSWEET10a is a susceptibility gene in cassava. Sucrose uptake-deficient X. axonopodis pv. manihotis bacteria do not lose virulence, indicating that sucrose may be cleaved extracellularly and taken up as hexoses into X. axonopodis pv. manihotis. Together, our data suggest that pathogen hijacking of plant nutrients is not unique to rice blight but also plays a role in bacterial blight of the dicot cassava.
Collapse
|
210
|
Moore R, Chandrahas A, Bleris L. Transcription activator-like effectors: a toolkit for synthetic biology. ACS Synth Biol 2014; 3:708-16. [PMID: 24933470 PMCID: PMC4210167 DOI: 10.1021/sb400137b] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
Transcription
activator-like effectors (TALEs) are proteins secreted
by Xanthomonas bacteria to aid the infection of plant
species. TALEs assist infections by binding to specific DNA sequences
and activating the expression of host genes. Recent results show that
TALE proteins consist of a central repeat domain, which determines
the DNA targeting specificity and can be rapidly synthesized de novo. Considering the highly modular nature of TALEs,
their versatility, and the ease of constructing these proteins, this
technology can have important implications for synthetic biology applications.
Here, we review developments in the area with a particular focus on
modifications for custom and controllable gene regulation.
Collapse
Affiliation(s)
- Richard Moore
- Bioengineering
Department, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080 United States
- Center
for Systems Biology, The University of Texas at Dallas, 800 West Campbell
Road, Richardson, Texas 75080 United States
| | - Anita Chandrahas
- Bioengineering
Department, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080 United States
- Center
for Systems Biology, The University of Texas at Dallas, 800 West Campbell
Road, Richardson, Texas 75080 United States
| | - Leonidas Bleris
- Bioengineering
Department, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080 United States
- Electrical
Engineering Department, The University of Texas at Dallas, 800
West Campbell Road, Richardson, Texas 75080 United States
- Center
for Systems Biology, The University of Texas at Dallas, 800 West Campbell
Road, Richardson, Texas 75080 United States
| |
Collapse
|
211
|
Flechsig H. TALEs from a spring--superelasticity of Tal effector protein structures. PLoS One 2014; 9:e109919. [PMID: 25313859 PMCID: PMC4196931 DOI: 10.1371/journal.pone.0109919] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 09/06/2014] [Indexed: 01/03/2023] Open
Abstract
Transcription activator-like effectors (TALEs) are DNA-related proteins that recognise and bind specific target sequences to manipulate gene expression. Recently determined crystal structures show that their common architecture reveals a superhelical overall structure that may undergo drastic conformational changes. To establish a link between structure and dynamics in TALE proteins we have employed coarse-grained elastic-network modelling of currently available structural data and implemented a force-probe setup that allowed us to investigate their mechanical behaviour in computer experiments. Based on the measured force-extension curves we conclude that TALEs exhibit superelastic dynamical properties allowing for large-scale global conformational changes along their helical axis, which represents the soft direction in such proteins. For moderate external forcing the TALE models behave like linear springs, obeying Hooke's law, and the investigated structures can be characterised and compared by a corresponding spring constant. We show that conformational flexibility underlying the large-scale motions is not homogeneously distributed over the TALE structure, but instead soft spot residues around which strain is accumulated and which turn out to represent key agents in the transmission of conformational motions are identified. They correspond to the RVD loop residues that have been experimentally determined to play an eminent role in the binding process of target DNA.
Collapse
Affiliation(s)
- Holger Flechsig
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Japan
- * E-mail:
| |
Collapse
|
212
|
Acevedo-Garcia J, Kusch S, Panstruga R. Magical mystery tour: MLO proteins in plant immunity and beyond. THE NEW PHYTOLOGIST 2014; 204:273-81. [PMID: 25453131 DOI: 10.1111/nph.12889] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Stable heritable restriction of the ubiquitous powdery mildew disease is a desirable trait for agri and horticulture. In barley (Hordeum vulgare), loss-of-function mutant alleles of the Mildew resistance locus o (Mlo) gene confer broad-spectrum resistance to almost all known isolates of the fungal barley powdery mildew pathogen, Blumeria graminis f.sp. hordei. Despite extensive cultivation of barley mlo genotypes, mlo resistance has been durable in the field. Mlo genes are present as small families in the genomes of all higher plant species. The presumed negative regulatory role of particular members in plant immunity is evolutionarily conserved, as powdery mildew resistant mlo mutants have also been described in Arabidopsis thaliana, tomato(Solanum lycopersicum) and pea (Pisum sativum). Barley Mlo encodes a plasma membrane-localized seven-transmembrane domain protein of unknown biochemical activity. Here, we review the known requirements for mlo-mediated disease resistance in barley and Arabidopsis and reflect current views regarding Mlo function. We discuss additional mlo mutant phenotypes recently discovered in Arabidopsis and present a meta-analysis of the phylogenetic relationships within the Mlo family. Finally, we consider the novel versatile tools for functional analysis and targeted genome modification that can be used to induce mlo-based powdery mildew resistance in virtually any plant species.
Collapse
Affiliation(s)
- Johanna Acevedo-Garcia
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany
| | | | | |
Collapse
|
213
|
Scott JNF, Kupinski AP, Boyes J. Targeted genome regulation and modification using transcription activator-like effectors. FEBS J 2014; 281:4583-97. [DOI: 10.1111/febs.12973] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/07/2014] [Accepted: 08/13/2014] [Indexed: 11/30/2022]
Affiliation(s)
- James N. F. Scott
- School of Molecular and Cellular Biology; Faculty of Biological Sciences; University of Leeds; UK
| | - Adam P. Kupinski
- School of Molecular and Cellular Biology; Faculty of Biological Sciences; University of Leeds; UK
| | - Joan Boyes
- School of Molecular and Cellular Biology; Faculty of Biological Sciences; University of Leeds; UK
| |
Collapse
|
214
|
Ji ZY, Zakria M, Zou LF, Xiong L, Li Z, Ji GH, Chen GY. Genetic diversity of transcriptional activator-like effector genes in Chinese isolates of Xanthomonas oryzae pv. oryzicola. PHYTOPATHOLOGY 2014; 104:672-82. [PMID: 24423401 DOI: 10.1094/phyto-08-13-0232-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Xanthomonas oryzae pv. oryzicola causes bacterial leaf streak (BLS), a devastating disease of rice in Asia countries. X. oryzae pv. oryzicola utilizes repertoires of transcriptional activator-like effectors (TALEs) to manipulate host resistance or susceptibility; thus, TALEs can determine the outcome of BLS. In this report, we studied genetic diversity in putative tale genes of 65 X. oryzae pv. oryzicola strains that originated from nine provinces of southern China. Genomic DNAs from the 65 strains were digested with BamHI and hybridized with an internal fragment of avrXa3, a tale gene originating from the related pathogen, X. oryzae pv. oryzae, which causes bacterial leaf blight (BLB). Southern blot analysis indicated that the strains contained a variable number (9 to 22) of avrXa3-hybridizing fragments (e.g., putative tale genes). Based on the number and size of hybridizing bands, strains were classified into 14 genotypes (designated 1 to 14), and genotypes 3 and 10 represented 29.23 and 24.64% of the total, respectively. A high molecular weight BamHI fragment (HMWB; ≈6.0 kb) was present in 12 of the 14 genotypes, and sequence analysis of the HMWB revealed the presence of a C-terminally truncated tale, an insertion element related to IS1403, and genes encoding phosphoglycerate mutase and endonuclease V. Primers were developed from the 6.0-kb HMWB fragment and showed potential in genotyping X. oryzae pv. oryzicola strains by polymerase chain reaction. Virulence of X. oryzae pv. oryzicola strains was assessed on 23 rice cultivars containing different resistance genes for BLB. The X. oryzae pv. oryzicola strains could be grouped into 14 pathotypes (I to XIV), and the grouping of strains was almost identical to the categories determined by genotypic analysis. In general, strains containing higher numbers of putative tale genes were more virulent on rice than strains containing fewer tales. The results also indicate that there are no gene-for-gene relationships between the tested rice lines and X. oryzae pv. oryzicola strains. To our knowledge, this is the first description of genetic diversity of X. oryzae pv. oryzicola strains based on tale gene analysis.
Collapse
|
215
|
Lange O, Binder A, Lahaye T. From dead leaf, to new life:
TAL
effectors as tools for synthetic biology. THE PLANT JOURNAL 2014; 78:753-771. [PMID: 24602153 DOI: 10.1111/tpj.12431] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Affiliation(s)
- Orlando Lange
- Department of General Genetics Centre for Plant Molecular Biology Eberhard‐Karls‐University Tübingen Auf der Morgenstelle 32 72076 Tübingen Germany
| | - Andreas Binder
- Genetics Faculty of Biology I University of Munich Großhaderner Straße 2‐4 82152 Martinsried Germany
| | - Thomas Lahaye
- Department of General Genetics Centre for Plant Molecular Biology Eberhard‐Karls‐University Tübingen Auf der Morgenstelle 32 72076 Tübingen Germany
| |
Collapse
|
216
|
Puchta H, Fauser F. Synthetic nucleases for genome engineering in plants: prospects for a bright future. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:727-41. [PMID: 24112784 DOI: 10.1111/tpj.12338] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/13/2013] [Accepted: 09/19/2013] [Indexed: 05/20/2023]
Abstract
By inducing double-strand breaks (DSB), it is possible to initiate DNA recombination. For a long time, it was not possible to use DSB induction for efficient genome engineering due to the lack of a means to target DSBs to specific sites. This limitation was overcome by development of modified meganucleases and synthetic DNA-binding domains. Domains derived from zinc-finger transcription factors or transcription activator-like effectors may be designed to recognize almost any DNA sequence. By fusing these domains to the endonuclease domains of a class II restriction enzyme, an active endonuclease dimer may be formed that introduces a site-specific DSB. Recent studies demonstrate that gene knockouts via non-homologous end joining or gene modification via homologous recombination are becoming routine in many plant species. By creating a single genomic DSB, complete knockout of a gene, sequence-specific integration of foreign DNA or subtle modification of individual amino acids in a specific protein domain may be achieved. The induction of two or more DSBs allows complex genomic rearrangements such as deletions, inversions or the exchange of chromosome arms. The potential for controlled genome engineering in plants is tremendous. The recently discovered RNA-based CRISPR/Cas system, a new tool to induce multiple DSBs, and sophisticated technical applications, such as the in planta gene targeting system, are further steps in this development. At present, the focus remains on engineering of single genes; in the future, engineering of whole genomes will become an option.
Collapse
Affiliation(s)
- Holger Puchta
- Botanical Institute II, Karlsruhe Institute of Technology, PO Box 6980, Karlsruhe, 76049, Germany
| | | |
Collapse
|
217
|
Schreiber T, Bonas U. Repeat 1 of TAL effectors affects target specificity for the base at position zero. Nucleic Acids Res 2014; 42:7160-9. [PMID: 24792160 PMCID: PMC4066769 DOI: 10.1093/nar/gku341] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
AvrBs3, the founding member of the Xanthomonas transcription-activator-like effectors (TALEs), is translocated into the plant cell where it localizes to the nucleus and acts as transcription factor. The DNA-binding domain of AvrBs3 consists of 17.5 nearly-identical 34 amino acid-repeats. Each repeat specifies binding to one base in the target DNA via amino acid residues 12 and 13 termed repeat variable diresidue (RVD). Natural target sequences of TALEs are generally preceded by a thymine (T0), which is coordinated by a tryptophan residue (W232) in a degenerated repeat upstream of the canonical repeats. To investigate the necessity of T0 and the conserved tryptophan for AvrBs3-mediated gene activation we tested TALE mutant derivatives on target sequences preceded by all possible four bases. In addition, we performed domain swaps with TalC from a rice pathogenic Xanthomonas because TalC lacks the tryptophan residue, and the TalC target sequence is preceded by cytosine. We show that T0 works best and that T0 specificity depends on the repeat number and overall RVD-composition. T0 and W232 appear to be particularly important if the RVD of the first repeat is HD ('rep1 effect'). Our findings provide novel insights into the mechanism of T0 recognition by TALE proteins and are important for TALE-based biotechnological applications.
Collapse
Affiliation(s)
- Tom Schreiber
- Department of Genetics, Martin Luther University, Weinbergweg 10, 06120 Halle (Saale), Germany
| | - Ulla Bonas
- Department of Genetics, Martin Luther University, Weinbergweg 10, 06120 Halle (Saale), Germany
| |
Collapse
|
218
|
|
219
|
Liu W, Rudis MR, Peng Y, Mazarei M, Millwood RJ, Yang JP, Xu W, Chesnut JD, Stewart CN. Synthetic TAL effectors for targeted enhancement of transgene expression in plants. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:436-46. [PMID: 24373379 DOI: 10.1111/pbi.12150] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 10/19/2013] [Accepted: 11/02/2013] [Indexed: 06/03/2023]
Abstract
Transcription activator-like effectors (TALEs), secreted by the pathogenic bacteria Xanthomonas, specifically activate expression of targeted genes in plants. Here, we designed synthetic TALEs that bind to the flanking regions of the TATA-box motif on the CaMV 35S promoter for the purpose of understanding the engineerable 'hot-spots' for increasing transgene expression. We demonstrated that transient expression of de novo-engineered TALEs using agroinfiltration could significantly increase reporter gene expression in stable transgenic tobacco expressing the orange fluorescent protein reporter gene pporRFP under the control of synthetic inducible, minimal or full-length 35S promoters. Moreover, the additive effects of a combination of two different synthetic TALEs could significantly enhance the activation effects of TALEs on reporter gene expression more than when each TALE was used individually. We also studied the effects of the C-terminal domain and the activation domain of synthetic TALEs, as well as the best 'hot-spots' on the 35S promoter on targeted transgene activation. Furthermore, TALE activation of the Arabidopsis MYB transcription factor AtPAP1 (PRODUCTION OF ANTHOCYANIN PIGMENT 1) in stable transgenic tobacco gave rise to a dark purple colour on infiltrated leaves when driven by four copies of cis-regulatory elements of pathogenesis-related gene (PR1) with enhancer motifs B and A1 from the 35S promoter. These results provide novel insights into the potential applications of synthetic TALEs for targeted gene activation of transgenes in plants.
Collapse
Affiliation(s)
- Wusheng Liu
- Department of Plant Sciences, The University of Tennessee, Knoxville, TN, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
220
|
Kuhn H, Panstruga R. Introduction to a Virtual Special Issue on phytopathogen effector proteins. THE NEW PHYTOLOGIST 2014; 202:727-730. [PMID: 24716512 DOI: 10.1111/nph.12804] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Affiliation(s)
- Hannah Kuhn
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Ralph Panstruga
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
221
|
Wijshake T, Baker DJ, van de Sluis B. Endonucleases: new tools to edit the mouse genome. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1942-1950. [PMID: 24794718 DOI: 10.1016/j.bbadis.2014.04.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 04/16/2014] [Accepted: 04/18/2014] [Indexed: 12/26/2022]
Abstract
Mouse transgenesis has been instrumental in determining the function of genes in the pathophysiology of human diseases and modification of genes by homologous recombination in mouse embryonic stem cells remains a widely used technology. However, this approach harbors a number of disadvantages, as it is time-consuming and quite laborious. Over the last decade a number of new genome editing technologies have been developed, including zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR/Cas). These systems are characterized by a designed DNA binding protein or RNA sequence fused or co-expressed with a non-specific endonuclease, respectively. The engineered DNA binding protein or RNA sequence guides the nuclease to a specific target sequence in the genome to induce a double strand break. The subsequent activation of the DNA repair machinery then enables the introduction of gene modifications at the target site, such as gene disruption, correction or insertion. Nuclease-mediated genome editing has numerous advantages over conventional gene targeting, including increased efficiency in gene editing, reduced generation time of mutant mice, and the ability to mutagenize multiple genes simultaneously. Although nuclease-driven modifications in the genome are a powerful tool to generate mutant mice, there are concerns about off-target cleavage, especially when using the CRISPR/Cas system. Here, we describe the basic principles of these new strategies in mouse genome manipulation, their inherent advantages, and their potential disadvantages compared to current technologies used to study gene function in mouse models. This article is part of a Special Issue entitled: From Genome to Function.
Collapse
Affiliation(s)
- Tobias Wijshake
- Molecular Genetics, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Darren J Baker
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, 200 First St SW, Rochester, MN 55905, USA
| | - Bart van de Sluis
- Molecular Genetics, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| |
Collapse
|
222
|
Fichtner F, Urrea Castellanos R, Ülker B. Precision genetic modifications: a new era in molecular biology and crop improvement. PLANTA 2014; 239:921-39. [PMID: 24510124 DOI: 10.1007/s00425-014-2029-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 01/06/2014] [Indexed: 05/26/2023]
Abstract
Recently, the use of programmable DNA-binding proteins such as ZFP/ZFNs, TALE/TALENs and CRISPR/Cas has produced unprecedented advances in gene targeting and genome editing in prokaryotes and eukaryotes. These advances allow researchers to specifically alter genes, reprogram epigenetic marks, generate site-specific deletions and potentially cure diseases. Unlike previous methods, these precision genetic modification techniques (PGMs) are specific, efficient, easy to use and economical. Here we discuss the capabilities and pitfalls of PGMs and highlight the recent, exciting applications of PGMs in molecular biology and crop genetic engineering. Further improvement of the efficiency and precision of PGM techniques will enable researchers to precisely alter gene expression and biological/chemical pathways, probe gene function, modify epigenetic marks and improve crops by increasing yield, quality and tolerance to limiting biotic and abiotic stress conditions.
Collapse
Affiliation(s)
- Franziska Fichtner
- Plant Molecular Engineering Group, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | | | | |
Collapse
|
223
|
Lecourieux F, Kappel C, Lecourieux D, Serrano A, Torres E, Arce-Johnson P, Delrot S. An update on sugar transport and signalling in grapevine. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:821-32. [PMID: 24323501 DOI: 10.1093/jxb/ert394] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In addition to their role as a source of reduced carbon, sugars may directly or indirectly control a wide range of activities in plant cells, through transcriptional and post-translational regulation. This control has been studied in detail using Arabidopsis thaliana, where genetic analysis offers many possibilities. Much less is known about perennial woody species. For several years, various aspects of sugar sensing and signalling have been investigated in the grape (Vitis vinifera L.) berry, an organ that accumulates high concentrations of hexoses in the vacuoles of flesh cells. Here we review various aspects of this topic: the molecular basis of sugar transport and its regulation by sugars in grapevine; the functional analysis of several sugar-induced genes; the effects of some biotic and abiotic stresses on the sugar content of the berry; and finally the effects of exogenous sugar supply on the ripening process in field conditions. A picture of complex feedback and multiprocess regulation emerges from these data.
Collapse
|
224
|
Cernadas RA, Doyle EL, Niño-Liu DO, Wilkins KE, Bancroft T, Wang L, Schmidt CL, Caldo R, Yang B, White FF, Nettleton D, Wise RP, Bogdanove AJ. Code-assisted discovery of TAL effector targets in bacterial leaf streak of rice reveals contrast with bacterial blight and a novel susceptibility gene. PLoS Pathog 2014; 10:e1003972. [PMID: 24586171 PMCID: PMC3937315 DOI: 10.1371/journal.ppat.1003972] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 01/17/2014] [Indexed: 12/17/2022] Open
Abstract
Bacterial leaf streak of rice, caused by Xanthomonas oryzae pv. oryzicola (Xoc) is an increasingly important yield constraint in this staple crop. A mesophyll colonizer, Xoc differs from X. oryzae pv. oryzae (Xoo), which invades xylem to cause bacterial blight of rice. Both produce multiple distinct TAL effectors, type III-delivered proteins that transactivate effector-specific host genes. A TAL effector finds its target(s) via a partially degenerate code whereby the modular effector amino acid sequence identifies nucleotide sequences to which the protein binds. Virulence contributions of some Xoo TAL effectors have been shown, and their relevant targets, susceptibility (S) genes, identified, but the role of TAL effectors in leaf streak is uncharacterized. We used host transcript profiling to compare leaf streak to blight and to probe functions of Xoc TAL effectors. We found that Xoc and Xoo induce almost completely different host transcriptional changes. Roughly one in three genes upregulated by the pathogens is preceded by a candidate TAL effector binding element. Experimental analysis of the 44 such genes predicted to be Xoc TAL effector targets verified nearly half, and identified most others as false predictions. None of the Xoc targets is a known bacterial blight S gene. Mutational analysis revealed that Tal2g, which activates two genes, contributes to lesion expansion and bacterial exudation. Use of designer TAL effectors discriminated a sulfate transporter gene as the S gene. Across all targets, basal expression tended to be higher than genome-average, and induction moderate. Finally, machine learning applied to real vs. falsely predicted targets yielded a classifier that recalled 92% of the real targets with 88% precision, providing a tool for better target prediction in the future. Our study expands the number of known TAL effector targets, identifies a new class of S gene, and improves our ability to predict functional targeting. Many crop and ornamental plants suffer losses due to bacterial pathogens in the genus Xanthomonas. Pathogen manipulation of host gene expression by injected proteins called TAL effectors is important in many of these diseases. A TAL effector finds its gene target(s) by virtue of structural repeats in the protein that differ one from another at two amino acids that together identify one DNA base. The number of repeats and those amino acids thereby code for the DNA sequence the protein binds. This code allows target prediction and engineering TAL effectors for custom gene activation. By combining genome-wide analysis of gene expression with TAL effector binding site prediction and verification using designer TAL effectors, we identified 19 targets of TAL effectors in bacterial leaf streak of rice, a disease of growing importance worldwide caused by X. oryzae pv. oryzicola. Among these was a sulfate transport gene that plays a major role. Comparison of true vs. false predictions using machine learning yielded a classifier that will streamline TAL effector target identification in the future. Probing the diversity and functions of such plant genes is critical to expand our knowledge of disease and defense mechanisms, and open new avenues for effective disease control.
Collapse
Affiliation(s)
- Raul A. Cernadas
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Erin L. Doyle
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America
- Bioinformatics and Computational Biology Graduate Program, Iowa State University, Ames, Iowa, United States of America
| | - David O. Niño-Liu
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America
| | - Katherine E. Wilkins
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Timothy Bancroft
- Department of Statistics, Iowa State University, Ames, Iowa, United States of America
| | - Li Wang
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Clarice L. Schmidt
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America
| | - Rico Caldo
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America
| | - Bing Yang
- Genetics Development and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| | - Frank F. White
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas, United States of America
| | - Dan Nettleton
- Department of Statistics, Iowa State University, Ames, Iowa, United States of America
| | - Roger P. Wise
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America
- Corn Insects and Crop Genetics Research, USDA-ARS, Iowa State University, Ames, Iowa, United States of America
| | - Adam J. Bogdanove
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
225
|
Pereira ALA, Carazzolle MF, Abe VY, de Oliveira MLP, Domingues MN, Silva JC, Cernadas RA, Benedetti CE. Identification of putative TAL effector targets of the citrus canker pathogens shows functional convergence underlying disease development and defense response. BMC Genomics 2014; 15:157. [PMID: 24564253 PMCID: PMC4028880 DOI: 10.1186/1471-2164-15-157] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 02/18/2014] [Indexed: 11/25/2022] Open
Abstract
Background Transcriptional activator-like (TAL) effectors, formerly known as the AvrBs3/PthA protein family, are DNA-binding effectors broadly found in Xanthomonas spp. that transactivate host genes upon injection via the bacterial type three-secretion system. Biologically relevant targets of TAL effectors, i.e. host genes whose induction is vital to establish a compatible interaction, have been reported for xanthomonads that colonize rice and pepper; however, citrus genes modulated by the TAL effectors PthA“s” and PthC“s” of the citrus canker bacteria Xanthomonas citri (Xc) and Xanthomonas aurantifolii pathotype C (XaC), respectively, are poorly characterized. Of particular interest, XaC causes canker disease in its host lemon (Citrus aurantifolia), but triggers a defense response in sweet orange. Results Based on, 1) the TAL effector-DNA binding code, 2) gene expression data of Xc and XaC-infiltrated sweet orange leaves, and 3) citrus hypocotyls transformed with PthA2, PthA4 or PthC1, we have identified a collection of Citrus sinensis genes potentially targeted by Xc and XaC TAL effectors. Our results suggest that similar with other strains of Xanthomonas TAL effectors, PthA2 and PthA4, and PthC1 to some extent, functionally converge. In particular, towards induction of genes involved in the auxin and gibberellin synthesis and response, cell division, and defense response. We also present evidence indicating that the TAL effectors act as transcriptional repressors and that the best scoring predicted DNA targets of PthA“s” and PthC“s” in citrus promoters predominantly overlap with or localize near to TATA boxes of core promoters, supporting the idea that TAL effectors interact with the host basal transcriptional machinery to recruit the RNA pol II and start transcription. Conclusions The identification of PthA“s” and PthC“s” targets, such as the LOB (LATERAL ORGAN BOUNDARY) and CCNBS genes that we report here, is key for the understanding of the canker symptoms development during host susceptibility, or the defenses of sweet orange against the canker bacteria. We have narrowed down candidate targets to a few, which pointed out the host metabolic pathways explored by the pathogens.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Celso E Benedetti
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, R, Giuseppe Máximo Scolfaro 10000, Campinas, SP 13083-970, Brazil.
| |
Collapse
|
226
|
|
227
|
Sung YH, Jin Y, Kim S, Lee HW. Generation of knockout mice using engineered nucleases. Methods 2014; 69:85-93. [PMID: 24561165 DOI: 10.1016/j.ymeth.2014.02.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 02/01/2014] [Accepted: 02/06/2014] [Indexed: 12/26/2022] Open
Abstract
The use of engineered nucleases in one-cell stage mouse embryos is emerging as an efficient alternative to conventional gene targeting in mouse embryonic stem (ES) cells. These nucleases are designed or reprogrammed to specifically induce double strand breaks (DSBs) at a desired genomic locus, and efficiently introduce mutations by both error-prone and error-free DNA repair mechanisms. Since these mutations frequently result in the loss or alteration of gene function by inserting, deleting, or substituting nucleotide sequences, engineered nucleases are enabling us to efficiently generate gene knockout and knockin mice. Three kinds of engineered endonucleases have been developed and successfully applied to the generation of mutant mice: zinc-finger nuclease (ZFNs), transcription activator-like effector nucleases (TALENs) and RNA-guided endonucleases (RGENs). Based on recent advances, here we provide experimentally validated, detailed guidelines for generating non-homologous end-joining (NHEJ)-mediated mutant mice by microinjecting TALENs and RGENs into the cytoplasm or the pronucleus of one-cell stage mouse embryos.
Collapse
Affiliation(s)
- Young Hoon Sung
- Department of Biochemistry, College of Life Science and Biotechnology, Laboratory Animal Research Center, Yonsei University, Seoul 120-749, Republic of Korea
| | - Young Jin
- Department of Biochemistry, College of Life Science and Biotechnology, Laboratory Animal Research Center, Yonsei University, Seoul 120-749, Republic of Korea
| | - Seokjoong Kim
- ToolGen, Inc., Byucksan Kyoungin Digital Valley 2-Cha, Geumcheon-Gu, Seoul 153-023, Republic of Korea
| | - Han-Woong Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Laboratory Animal Research Center, Yonsei University, Seoul 120-749, Republic of Korea.
| |
Collapse
|
228
|
Chen W, Qian Y, Wu X, Sun Y, Wu X, Cheng X. Inhibiting replication of begomoviruses using artificial zinc finger nucleases that target viral-conserved nucleotide motif. Virus Genes 2014; 48:494-501. [PMID: 24474330 DOI: 10.1007/s11262-014-1041-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 01/16/2014] [Indexed: 11/26/2022]
Abstract
Geminiviridae consists of a large group of single-stranded DNA viruses that cause tremendous losses worldwide. Frequent mixed infection and high rates of recombination and mutation allow them to adapt rapidly to new hosts and overcome hosts' resistances. Therefore, an effective strategy able to confer plants with resistance against multiple begomoviruses is needed. In the present study, artificial zinc finger proteins were designed based on a conserved sequence motif of begomoviruses. DNA-binding affinities and specificities of these artificial zinc fingers were evaluated using electrophoretic mobility shift assay. Artificial zinc finger nuclease (AZFNs) were then constructed based on the ones with the highest DNA-binding affinities. In vitro digest and transient expression assay showed that these AZFNs can efficiently cleave the target sequence and inhibit the replication of different begomoviruses. These results suggest that artificial zinc finger protein technology may be used to achieve resistance against multiple begomoviruses.
Collapse
Affiliation(s)
- Wei Chen
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, 310036, Zhejiang, People's Republic of China
| | | | | | | | | | | |
Collapse
|
229
|
Hu Y, Zhang J, Jia H, Sosso D, Li T, Frommer WB, Yang B, White FF, Wang N, Jones JB. Lateral organ boundaries 1 is a disease susceptibility gene for citrus bacterial canker disease. Proc Natl Acad Sci U S A 2014; 111:E521-9. [PMID: 24474801 PMCID: PMC3910620 DOI: 10.1073/pnas.1313271111] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Citrus bacterial canker (CBC) disease occurs worldwide and incurs considerable costs both from control measures and yield losses. Bacteria that cause CBC require one of six known type III transcription activator-like (TAL) effector genes for the characteristic pustule formation at the site of infection. Here, we show that Xanthomonas citri subspecies citri strain Xcc306, with the type III TAL effector gene pthA4 or with the distinct yet biologically equivalent gene pthAw from strain XccA(w), induces two host genes, CsLOB1 and CsSWEET1, in a TAL effector-dependent manner. CsLOB1 is a member of the Lateral Organ Boundaries (LOB) gene family of transcription factors, and CsSWEET1 is a homolog of the SWEET sugar transporter and rice disease susceptibility gene. Both TAL effectors drive expression of CsLOB1 and CsSWEET1 promoter reporter gene fusions when coexpressed in citrus or Nicotiana benthamiana. Artificially designed TAL effectors directed to sequences in the CsLOB1 promoter region, but not the CsSWEET1 promoter, promoted pustule formation and higher bacterial leaf populations. Three additional distinct TAL effector genes, pthA*, pthB, and pthC, also direct pustule formation and expression of CsLOB1. Unlike pthA4 and pthAw, pthB and pthC do not promote the expression of CsSWEET1. CsLOB1 expression was associated with the expression of genes associated with cell expansion. The results indicate that CBC-inciting species of Xanthomonas exploit a single host disease susceptibility gene by altering the expression of an otherwise developmentally regulated gene using any one of a diverse set of TAL effector genes in the pathogen populations.
Collapse
Affiliation(s)
- Yang Hu
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - Junli Zhang
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506
| | - Hongge Jia
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850
| | - Davide Sosso
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94306; and
| | - Ting Li
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011
| | - Wolf B. Frommer
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94306; and
| | - Bing Yang
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011
| | - Frank F. White
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506
| | - Nian Wang
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850
| | - Jeffrey B. Jones
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| |
Collapse
|
230
|
Wang H, Yang L, Wu K, Li G. Rational selection and engineering of exogenous principal sigma factor (σ(HrdB)) to increase teicoplanin production in an industrial strain of Actinoplanes teichomyceticus. Microb Cell Fact 2014; 13:10. [PMID: 24428890 PMCID: PMC3897980 DOI: 10.1186/1475-2859-13-10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 01/09/2014] [Indexed: 11/13/2022] Open
Abstract
Background Transcriptional engineering has presented a strong ability of phenotypic improvement in microorganisms. However, it could not be directly applied to Actinoplanes teichomyceticus L-27 because of the paucity of endogenous transcription factors in the strain. In this study, exogenous transcription factors were rationally selected and transcriptional engineering was carried out to increase the productivity of teicoplanin in L-27. Results It was illuminated that the σHrdB molecules shared strong similarity of amino acid sequences among some genera of actinomycetes. Combining this advantage with the ability of transcriptional engineering, exogenous sigma factor σHrdB molecules were rationally selected and engineered to improve L-27. hrdB genes from Actinoplanes missouriensis 431, Micromonospora aurantiaca ATCC 27029 and Salinispora arenicola CNS-205 were selected based on molecular evolutionary analysis. Random mutagenesis, DNA shuffling and point mutation were subsequently performed to generate diversified mutants. A recombinant was identified through screening program, yielding 5.3 mg/ml of teicoplanin, over 2-fold compared to that of L-27. More significantly, the engineered strain presented a good performance in 500-l pilot scale fermentation, which meant its valuable potential application in industry. Conclusions Through rational selection and engineering of exogenous transcriptional factor, we have extended the application of transcriptional engineering. To our knowledge, it is the first time to focus on the related issue. In addition, possessing the advantage of efficient metabolic perturbation in transcription level, this strategy could be useful in analyzing metabolic and physiological mechanisms of strains, especially those with the only information on taxonomy.
Collapse
Affiliation(s)
| | - Liu Yang
- School of Food and Bioengineering, Qilu University of Technology, Jinan 250353, PR China.
| | | | | |
Collapse
|
231
|
Tian D, Wang J, Zeng X, Gu K, Qiu C, Yang X, Zhou Z, Goh M, Luo Y, Murata-Hori M, White FF, Yin Z. The rice TAL effector-dependent resistance protein XA10 triggers cell death and calcium depletion in the endoplasmic reticulum. THE PLANT CELL 2014; 26:497-515. [PMID: 24488961 PMCID: PMC3963592 DOI: 10.1105/tpc.113.119255] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 12/30/2013] [Accepted: 01/13/2014] [Indexed: 05/19/2023]
Abstract
The recognition between disease resistance (R) genes in plants and their cognate avirulence (Avr) genes in pathogens can produce a hypersensitive response of localized programmed cell death. However, our knowledge of the early signaling events of the R gene-mediated hypersensitive response in plants remains limited. Here, we report the cloning and characterization of Xa10, a transcription activator-like (TAL) effector-dependent R gene for resistance to bacterial blight in rice (Oryza sativa). Xa10 contains a binding element for the TAL effector AvrXa10 (EBEAvrXa10) in its promoter, and AvrXa10 specifically induces Xa10 expression. Expression of Xa10 induces programmed cell death in rice, Nicotiana benthamiana, and mammalian HeLa cells. The Xa10 gene product XA10 localizes as hexamers in the endoplasmic reticulum (ER) and is associated with ER Ca(2+) depletion in plant and HeLa cells. XA10 variants that abolish programmed cell death and ER Ca(2+) depletion in N. benthamiana and HeLa cells also abolish disease resistance in rice. We propose that XA10 is an inducible, intrinsic terminator protein that triggers programmed cell death by a conserved mechanism involving disruption of the ER and cellular Ca(2+) homeostasis.
Collapse
Affiliation(s)
- Dongsheng Tian
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Republic of Singapore
| | - Junxia Wang
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Republic of Singapore
| | - Xuan Zeng
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Republic of Singapore
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Republic of Singapore
| | - Keyu Gu
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Republic of Singapore
| | - Chengxiang Qiu
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Republic of Singapore
| | - Xiaobei Yang
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Republic of Singapore
| | - Zhiyun Zhou
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Republic of Singapore
| | - Meiling Goh
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Republic of Singapore
| | - Yanchang Luo
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Republic of Singapore
| | - Maki Murata-Hori
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Republic of Singapore
| | - Frank F. White
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506
| | - Zhongchao Yin
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Republic of Singapore
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Republic of Singapore
| |
Collapse
|
232
|
Abstract
To confer resistance against pathogens and pests in plants, typically dominant resistance genes are deployed. However, because resistance is based on recognition of a single pathogen-derived molecular pattern, these narrow-spectrum genes are usually readily overcome. Disease arises from a compatible interaction between plant and pathogen. Hence, altering a plant gene that critically facilitates compatibility could provide a more broad-spectrum and durable type of resistance. Here, such susceptibility (S) genes are reviewed with a focus on the mechanisms underlying loss of compatibility. We distinguish three groups of S genes acting during different stages of infection: early pathogen establishment, modulation of host defenses, and pathogen sustenance. The many examples reviewed here show that S genes have the potential to be used in resistance breeding. However, because S genes have a function other than being a compatibility factor for the pathogen, the side effects caused by their mutation demands a one-by-one assessment of their usefulness for application.
Collapse
|
233
|
Natural and modified promoters for tailored metabolic engineering of the yeast Saccharomyces cerevisiae. Methods Mol Biol 2014; 1152:17-42. [PMID: 24744025 DOI: 10.1007/978-1-4939-0563-8_2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ease of highly sophisticated genetic manipulations in the yeast Saccharomyces cerevisiae has initiated numerous initiatives towards development of metabolically engineered strains for novel applications beyond its traditional use in brewing, baking, and wine making. In fact, baker's yeast has become a key cell factory for the production of various bulk and fine chemicals. Successful metabolic engineering requires fine-tuned adjustments of metabolic fluxes and coordination of multiple pathways within the cell. This has mostly been achieved by controlling gene expression at the transcriptional level, i.e., by using promoters with appropriate strengths and regulatory properties. Here we present an overview of natural and modified promoters, which have been used in metabolic pathway engineering of S. cerevisiae. Recent developments in creating promoters with tailor-made properties are also discussed.
Collapse
|
234
|
Abstract
The rapid development of programmable site-specific endonucleases has led to a dramatic increase in genome engineering activities for research and therapeutic purposes. Specific loci of interest in the genomes of a wide range of organisms including mammals can now be modified using zinc-finger nucleases, transcription activator-like effectornucleases, and CRISPR-associated Cas9 endonucleases in a site-specific manner, in some cases requiring relatively modest effort for endonuclease design, construction, and application. While these technologies have made genome engineering widely accessible, the ability of programmable nucleases to cleave off-target sequences can limit their applicability and raise concerns about therapeutic safety. In this chapter, we review methods to evaluate and improve the DNA cleavage activity of programmable site-specific endonucleases and describe a procedure for a comprehensive off-target profiling method based on the in vitro selection of very large (~10(12)-membered) libraries of potential nuclease substrates.
Collapse
|
235
|
Chang JH, Desveaux D, Creason AL. The ABCs and 123s of bacterial secretion systems in plant pathogenesis. ANNUAL REVIEW OF PHYTOPATHOLOGY 2014; 52:317-45. [PMID: 24906130 DOI: 10.1146/annurev-phyto-011014-015624] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Bacteria have many export and secretion systems that translocate cargo into and across biological membranes. Seven secretion systems contribute to pathogenicity by translocating proteinaceous cargos that can be released into the extracellular milieu or directly into recipient cells. In this review, we describe these secretion systems and how their complexities and functions reflect differences in the destinations, states, functions, and sizes of the translocated cargos as well as the architecture of the bacterial cell envelope. We examine the secretion systems from the perspective of pathogenic bacteria that proliferate within plant tissues and highlight examples of translocated proteins that contribute to the infection and disease of plant hosts.
Collapse
Affiliation(s)
- Jeff H Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331; ,
| | | | | |
Collapse
|
236
|
Hamdoun S, Liu Z, Gill M, Yao N, Lu H. Dynamics of defense responses and cell fate change during Arabidopsis-Pseudomonas syringae interactions. PLoS One 2013; 8:e83219. [PMID: 24349466 PMCID: PMC3859648 DOI: 10.1371/journal.pone.0083219] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 11/01/2013] [Indexed: 11/24/2022] Open
Abstract
Plant-pathogen interactions involve sophisticated action and counteraction strategies from both parties. Plants can recognize pathogen derived molecules, such as conserved pathogen associated molecular patterns (PAMPs) and effector proteins, and subsequently activate PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI), respectively. However, pathogens can evade such recognitions and suppress host immunity with effectors, causing effector-triggered susceptibility (ETS). The differences among PTI, ETS, and ETI have not been completely understood. Toward a better understanding of PTI, ETS, and ETI, we systematically examined various defense-related phenotypes of Arabidopsis infected with different Pseudomonas syringae pv. maculicola ES4326 strains, using the virulence strain DG3 to induce ETS, the avirulence strain DG34 that expresses avrRpm1 (recognized by the resistance protein RPM1) to induce ETI, and HrcC- that lacks the type three secretion system to activate PTI. We found that plants infected with different strains displayed dynamic differences in the accumulation of the defense signaling molecule salicylic acid, expression of the defense marker gene PR1, cell death formation, and accumulation/localization of the reactive oxygen species, H2O2. The differences between PTI, ETS, and ETI are dependent on the doses of the strains used. These data support the quantitative nature of PTI, ETS, and ETI and they also reveal qualitative differences between PTI, ETS, and ETI. Interestingly, we observed the induction of large cells in the infected leaves, most obviously with HrcC- at later infection stages. The enlarged cells have increased DNA content, suggesting a possible activation of endoreplication. Consistent with strong induction of abnormal cell growth by HrcC-, we found that the PTI elicitor flg22 also activates abnormal cell growth, depending on a functional flg22-receptor FLS2. Thus, our study has revealed a comprehensive picture of dynamic changes of defense phenotypes and cell fate determination during Arabidopsis-P. syringae interactions, contributing to a better understanding of plant defense mechanisms.
Collapse
Affiliation(s)
- Safae Hamdoun
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, United States of America
| | - Zhe Liu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Manroop Gill
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, United States of America
| | - Nan Yao
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Hua Lu
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
237
|
Yanik M, Alzubi J, Lahaye T, Cathomen T, Pingoud A, Wende W. TALE-PvuII fusion proteins--novel tools for gene targeting. PLoS One 2013; 8:e82539. [PMID: 24349308 PMCID: PMC3857828 DOI: 10.1371/journal.pone.0082539] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 11/01/2013] [Indexed: 12/15/2022] Open
Abstract
Zinc finger nucleases (ZFNs) consist of zinc fingers as DNA-binding module and the non-specific DNA-cleavage domain of the restriction endonuclease FokI as DNA-cleavage module. This architecture is also used by TALE nucleases (TALENs), in which the DNA-binding modules of the ZFNs have been replaced by DNA-binding domains based on transcription activator like effector (TALE) proteins. Both TALENs and ZFNs are programmable nucleases which rely on the dimerization of FokI to induce double-strand DNA cleavage at the target site after recognition of the target DNA by the respective DNA-binding module. TALENs seem to have an advantage over ZFNs, as the assembly of TALE proteins is easier than that of ZFNs. Here, we present evidence that variant TALENs can be produced by replacing the catalytic domain of FokI with the restriction endonuclease PvuII. These fusion proteins recognize only the composite recognition site consisting of the target site of the TALE protein and the PvuII recognition sequence (addressed site), but not isolated TALE or PvuII recognition sites (unaddressed sites), even at high excess of protein over DNA and long incubation times. In vitro, their preference for an addressed over an unaddressed site is > 34,000-fold. Moreover, TALE-PvuII fusion proteins are active in cellula with minimal cytotoxicity.
Collapse
Affiliation(s)
- Mert Yanik
- Institute for Biochemistry, Justus-Liebig-University Giessen, Giessen, Germany
| | - Jamal Alzubi
- Institute for Cell and Gene Therapy, University Medical Center Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - Thomas Lahaye
- ZMBP – General Genetics, University of Tuebingen, Tuebingen, Germany
| | - Toni Cathomen
- Institute for Cell and Gene Therapy, University Medical Center Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - Alfred Pingoud
- Institute for Biochemistry, Justus-Liebig-University Giessen, Giessen, Germany
| | - Wolfgang Wende
- Institute for Biochemistry, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
238
|
Doyle EL, Hummel AW, Demorest ZL, Starker CG, Voytas DF, Bradley P, Bogdanove AJ. TAL effector specificity for base 0 of the DNA target is altered in a complex, effector- and assay-dependent manner by substitutions for the tryptophan in cryptic repeat -1. PLoS One 2013; 8:e82120. [PMID: 24312634 PMCID: PMC3849474 DOI: 10.1371/journal.pone.0082120] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 10/21/2013] [Indexed: 12/20/2022] Open
Abstract
TAL effectors are re-targetable transcription factors used for tailored gene regulation and, as TAL effector-nuclease fusions (TALENs), for genome engineering. Their hallmark feature is a customizable central string of polymorphic amino acid repeats that interact one-to-one with individual DNA bases to specify the target. Sequences targeted by TAL effector repeats in nature are nearly all directly preceded by a thymine (T) that is required for maximal activity, and target sites for custom TAL effector constructs have typically been selected with this constraint. Multiple crystal structures suggest that this requirement for T at base 0 is encoded by a tryptophan residue (W232) in a cryptic repeat N-terminal to the central repeats that exhibits energetically favorable van der Waals contacts with the T. We generated variants based on TAL effector PthXo1 with all single amino acid substitutions for W232. In a transcriptional activation assay, many substitutions altered or relaxed the specificity for T and a few were as active as wild type. Some showed higher activity. However, when replicated in a different TAL effector, the effects of the substitutions differed. Further, the effects differed when tested in the context of a TALEN in a DNA cleavage assay, and in a TAL effector-DNA binding assay. Substitution of the N-terminal region of the PthXo1 construct with that of one of the TAL effector-like proteins of Ralstonia solanacearum, which have arginine in place of the tryptophan, resulted in specificity for guanine as the 5' base but low activity, and several substitutions for the arginine, including tryptophan, destroyed activity altogether. Thus, the effects on specificity and activity generated by substitutions at the W232 (or equivalent) position are complex and context dependent. Generating TAL effector scaffolds with high activity that robustly accommodate sites without a T at position 0 may require larger scale re-engineering.
Collapse
Affiliation(s)
- Erin L. Doyle
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America
| | - Aaron W. Hummel
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America
| | - Zachary L. Demorest
- Department of Genetics, Cell Biology & Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
- Cellectis Plant Sciences, New Brighton, Minnesota, United States of America
| | - Colby G. Starker
- Department of Genetics, Cell Biology & Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Daniel F. Voytas
- Department of Genetics, Cell Biology & Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Philip Bradley
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Adam J. Bogdanove
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America
- Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
239
|
Abstract
Plants are invaded by an array of pathogens of which only a few succeed in causing disease. The attack by others is countered by a sophisticated immune system possessed by the plants. The plant immune system is broadly divided into two, viz. microbial-associated molecular-patterns-triggered immunity (MTI) and effector-triggered immunity (ETI). MTI confers basal resistance, while ETI confers durable resistance, often resulting in hypersensitive response. Plants also possess systemic acquired resistance (SAR), which provides long-term defense against a broad-spectrum of pathogens. Salicylic-acid-mediated systemic acquired immunity provokes the defense response throughout the plant system during pathogen infection at a particular site. Trans-generational immune priming allows the plant to heritably shield their progeny towards pathogens previously encountered. Plants circumvent the viral infection through RNA interference phenomena by utilizing small RNAs. This review summarizes the molecular mechanisms of plant immune system, and the latest breakthroughs reported in plant defense. We discuss the plant–pathogen interactions and integrated defense responses in the context of presenting an integral understanding in plant molecular immunity.
Collapse
|
240
|
Wan H, Hu JP, Li KS, Tian XH, Chang S. Molecular dynamics simulations of DNA-free and DNA-bound TAL effectors. PLoS One 2013; 8:e76045. [PMID: 24130757 PMCID: PMC3794935 DOI: 10.1371/journal.pone.0076045] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 08/22/2013] [Indexed: 12/05/2022] Open
Abstract
TAL (transcriptional activator-like) effectors (TALEs) are DNA-binding proteins, containing a modular central domain that recognizes specific DNA sequences. Recently, the crystallographic studies of TALEs revealed the structure of DNA-recognition domain. In this article, molecular dynamics (MD) simulations are employed to study two crystal structures of an 11.5-repeat TALE, in the presence and absence of DNA, respectively. The simulated results indicate that the specific binding of RVDs (repeat-variable diresidues) with DNA leads to the markedly reduced fluctuations of tandem repeats, especially at the two ends. In the DNA-bound TALE system, the base-specific interaction is formed mainly by the residue at position 13 within a TAL repeat. Tandem repeats with weak RVDs are unfavorable for the TALE-DNA binding. These observations are consistent with experimental studies. By using principal component analysis (PCA), the dominant motions are open-close movements between the two ends of the superhelical structure in both DNA-free and DNA-bound TALE systems. The open-close movements are found to be critical for the recognition and binding of TALE-DNA based on the analysis of free energy landscape (FEL). The conformational analysis of DNA indicates that the 5′ end of DNA target sequence has more remarkable structural deformability than the other sites. Meanwhile, the conformational change of DNA is likely associated with the specific interaction of TALE-DNA. We further suggest that the arrangement of N-terminal repeats with strong RVDs may help in the design of efficient TALEs. This study provides some new insights into the understanding of the TALE-DNA recognition mechanism.
Collapse
Affiliation(s)
- Hua Wan
- College of Informatics, South China Agricultural University, Guangzhou, China
| | - Jian-ping Hu
- College of Chemistry, Leshan Normal University, Leshan, China
| | - Kang-shun Li
- College of Informatics, South China Agricultural University, Guangzhou, China
| | - Xu-hong Tian
- College of Informatics, South China Agricultural University, Guangzhou, China
| | - Shan Chang
- College of Informatics, South China Agricultural University, Guangzhou, China
- * E-mail:
| |
Collapse
|
241
|
Abstract
Over the past decade, considerable advances have been made in understanding the molecular mechanisms that underpin the arms race between plant pathogens and their hosts. Alongside genomic, bioinformatic, proteomic, biochemical and cell biological analyses of plant-pathogen interactions, three-dimensional structural studies of virulence proteins deployed by pathogens to promote infection, in some cases complexed with their plant cell targets, have uncovered key insights into the functions of these molecules. Structural information on plant immune receptors, which regulate the response to pathogen attack, is also starting to emerge. Structural studies of bacterial plant pathogen-host systems have been leading the way, but studies of filamentous plant pathogens are gathering pace. In this Review, we summarize the key developments in the structural biology of plant pathogen-host interactions.
Collapse
|
242
|
Abstract
Pathogenic bacteria of the Xanthomonas and Ralstonia genus have developed resourceful strategies creating a favorable environment to multiply and colonize their host plants. One of these strategies involves the secretion and translocation of several families of effector proteins into the host cell. The transcription activator-like effector (TALE) family forms a subset of proteins involved in the direct modulation of host gene expression. TALEs include a number of tandem 34-amino acid repeats in their central part, where specific residues variable in two adjacent positions determine DNA-binding in the host genome. The specificity of this binding and its predictable nature make TALEs a revolutionary tool for gene editing, functional analysis, modification of target gene expression, and directed mutagenesis. Several examples have been reported in higher organisms as diverse as plants, Drosophila, zebrafish, mouse, and even human cells. Here, we summarize the functions of TALEs in their natural context and the biotechnological perspectives of their use.
Collapse
Affiliation(s)
- Alejandra Muñoz Bodnar
- Manihot Biotec Laboratory, Departamento de Biología, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | | | | |
Collapse
|
243
|
Zhou K, Aertsen A, Michiels CW. The role of variable DNA tandem repeats in bacterial adaptation. FEMS Microbiol Rev 2013; 38:119-41. [PMID: 23927439 DOI: 10.1111/1574-6976.12036] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 07/13/2013] [Accepted: 07/26/2013] [Indexed: 01/05/2023] Open
Abstract
DNA tandem repeats (TRs), also designated as satellite DNA, are inter- or intragenic nucleotide sequences that are repeated two or more times in a head-to-tail manner. Because TR tracts are prone to strand-slippage replication and recombination events that cause the TR copy number to increase or decrease, loci containing TRs are hypermutable. An increasing number of examples illustrate that bacteria can exploit this instability of TRs to reversibly shut down or modulate the function of specific genes, allowing them to adapt to changing environments on short evolutionary time scales without an increased overall mutation rate. In this review, we discuss the prevalence and distribution of inter- and intragenic TRs in bacteria and the mechanisms of their instability. In addition, we review evidence demonstrating a role of TR variations in bacterial adaptation strategies, ranging from immune evasion and tissue tropism to the modulation of environmental stress tolerance. Nevertheless, while bioinformatic analysis reveals that most bacterial genomes contain a few up to several dozens of intra- and intergenic TRs, only a small fraction of these have been functionally studied to date.
Collapse
Affiliation(s)
- Kai Zhou
- Department of Microbial and Molecular Systems (M²S), Faculty of Bioscience Engineering, Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | | | | |
Collapse
|
244
|
de Lange O, Schreiber T, Schandry N, Radeck J, Braun KH, Koszinowski J, Heuer H, Strauß A, Lahaye T. Breaking the DNA-binding code of Ralstonia solanacearum TAL effectors provides new possibilities to generate plant resistance genes against bacterial wilt disease. THE NEW PHYTOLOGIST 2013; 199:773-86. [PMID: 23692030 DOI: 10.1111/nph.12324] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 04/03/2013] [Indexed: 05/22/2023]
Abstract
Ralstonia solanacearum is a devastating bacterial phytopathogen with a broad host range. Ralstonia solanacearum injected effector proteins (Rips) are key to the successful invasion of host plants. We have characterized Brg11(hrpB-regulated 11), the first identified member of a class of Rips with high sequence similarity to the transcription activator-like (TAL) effectors of Xanthomonas spp., collectively termed RipTALs. Fluorescence microscopy of in planta expressed RipTALs showed nuclear localization. Domain swaps between Brg11 and Xanthomonas TAL effector (TALE) AvrBs3 (avirulence protein triggering Bs3 resistance) showed the functional interchangeability of DNA-binding and transcriptional activation domains. PCR was used to determine the sequence of brg11 homologs from strains infecting phylogenetically diverse host plants. Brg11 localizes to the nucleus and activates promoters containing a matching effector-binding element (EBE). Brg11 and homologs preferentially activate promoters containing EBEs with a 5' terminal guanine, contrasting with the TALE preference for a 5' thymine. Brg11 and other RipTALs probably promote disease through the transcriptional activation of host genes. Brg11 and the majority of homologs identified in this study were shown to activate similar or identical target sequences, in contrast to TALEs, which generally show highly diverse target preferences. This information provides new options for the engineering of plants resistant to R. solanacearum.
Collapse
Affiliation(s)
- Orlando de Lange
- Genetics, Department of Biology I, Ludwig-Maximilians-University Munich, Martinsried, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Lukhovitskaya NI, Gushchin VA, Solovyev AG, Savenkov EI. Making sense of nuclear localization: a zinc-finger protein encoded by a cytoplasmically replicating plant RNA virus acts a transcription factor: a novel function for a member of large family of viral proteins. PLANT SIGNALING & BEHAVIOR 2013; 8:e25263. [PMID: 23759549 PMCID: PMC3999073 DOI: 10.4161/psb.25263] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 06/03/2013] [Accepted: 06/03/2013] [Indexed: 05/16/2023]
Abstract
Recent studies have uncovered numerous nucleus-localized proteins encoded by plant RNA viruses. Whereas for some of these viruses nuclear (or, more specifically, nucleolar) passage of the proteins is needed for the virus movement within the plant or suppression of host defense, the nuclear function of these proteins remains largely unknown. Recently, the situation has been clarified for one group of plant RNA viruses, the Carlaviruses. Being positive-stranded RNA viruses, carlaviruses multiply exclusively in the cytoplasm. Chrysanthemum virus B (CVB, a carlavirus) encodes a zinc-finger protein p12 targeted to the nucleus in a nuclear localization signal-dependent manner. In a recent work, we demonstrated that p12 directly interacts with chromatin and plant promoters, thus, acts as a eukaryotic transcription factor (TF) and activates expression of a host TF involved in regulation of cell size and proliferation to favor virus infection. Therefore our studies identified a novel nuclear stage of in CVB infection involving modulation of host gene expression and plant development. Whereas it is well established that any RNA virus actively replicating in the cell causes changes in the transcriptome, our study expanded this view by showing that some positive-stranded RNA viruses can directly manipulate host transcription by encoding eukaryotic TFs.
Collapse
Affiliation(s)
- Nina I. Lukhovitskaya
- Department of Plant Biology and Forest Genetics; Uppsala BioCenter; Swedish University of Agricultural Sciences and Linnean Center for Plant Biology; Uppsala, Sweden
| | - Vladimir A. Gushchin
- Department of Virology; Biological Faculty; Moscow State University; Moscow, Russia
| | - Andrey G. Solovyev
- A.N.Belozersky Institute of Physico-Chemical Biology; Moscow State University; Moscow, Russia
- Institute of Agricultural Biotechnology; Russian Academy of Agricultural Sciences; Moscow, Russia
| | - Eugene I. Savenkov
- Department of Plant Biology and Forest Genetics; Uppsala BioCenter; Swedish University of Agricultural Sciences and Linnean Center for Plant Biology; Uppsala, Sweden
| |
Collapse
|
246
|
Pérez-Quintero AL, Rodriguez-R LM, Dereeper A, López C, Koebnik R, Szurek B, Cunnac S. An improved method for TAL effectors DNA-binding sites prediction reveals functional convergence in TAL repertoires of Xanthomonas oryzae strains. PLoS One 2013; 8:e68464. [PMID: 23869221 PMCID: PMC3711819 DOI: 10.1371/journal.pone.0068464] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 05/30/2013] [Indexed: 11/19/2022] Open
Abstract
Transcription Activators-Like Effectors (TALEs) belong to a family of virulence proteins from the Xanthomonas genus of bacterial plant pathogens that are translocated into the plant cell. In the nucleus, TALEs act as transcription factors inducing the expression of susceptibility genes. A code for TALE-DNA binding specificity and high-resolution three-dimensional structures of TALE-DNA complexes were recently reported. Accurate prediction of TAL Effector Binding Elements (EBEs) is essential to elucidate the biological functions of the many sequenced TALEs as well as for robust design of artificial TALE DNA-binding domains in biotechnological applications. In this work a program with improved EBE prediction performances was developed using an updated specificity matrix and a position weight correction function to account for the matching pattern observed in a validation set of TALE-DNA interactions. To gain a systems perspective on the large TALE repertoires from X. oryzae strains, this program was used to predict rice gene targets for 99 sequenced family members. Integrating predictions and available expression data in a TALE-gene network revealed multiple candidate transcriptional targets for many TALEs as well as several possible instances of functional convergence among TALEs.
Collapse
Affiliation(s)
- Alvaro L. Pérez-Quintero
- UMR 186 Résistance des Plantes aux Bioagresseurs, Institut de Recherche pour le Développement, Montpellier, France
- Biology Department, Universidad Nacional de Colombia, Bogotá D.C., Colombia
| | - Luis M. Rodriguez-R
- UMR 186 Résistance des Plantes aux Bioagresseurs, Institut de Recherche pour le Développement, Montpellier, France
| | - Alexis Dereeper
- UMR 186 Résistance des Plantes aux Bioagresseurs, Institut de Recherche pour le Développement, Montpellier, France
| | - Camilo López
- Biology Department, Universidad Nacional de Colombia, Bogotá D.C., Colombia
| | - Ralf Koebnik
- UMR 186 Résistance des Plantes aux Bioagresseurs, Institut de Recherche pour le Développement, Montpellier, France
| | - Boris Szurek
- UMR 186 Résistance des Plantes aux Bioagresseurs, Institut de Recherche pour le Développement, Montpellier, France
| | - Sebastien Cunnac
- UMR 186 Résistance des Plantes aux Bioagresseurs, Institut de Recherche pour le Développement, Montpellier, France
- * E-mail: .
| |
Collapse
|
247
|
Li L, Atef A, Piatek A, Ali Z, Piatek M, Aouida M, Sharakuu A, Mahjoub A, Wang G, Khan S, Fedoroff NV, Zhu JK, Mahfouz MM. Characterization and DNA-binding specificities of Ralstonia TAL-like effectors. MOLECULAR PLANT 2013; 6:1318-30. [PMID: 23300258 PMCID: PMC3716395 DOI: 10.1093/mp/sst006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Accepted: 12/20/2012] [Indexed: 05/22/2023]
Abstract
Transcription activator-like effectors (TALEs) from Xanthomonas sp. have been used as customizable DNA-binding modules for genome-engineering applications. Ralstonia solanacearum TALE-like proteins (RTLs) exhibit similar structural features to TALEs, including a central DNA-binding domain composed of 35 amino acid-long repeats. Here, we characterize the RTLs and show that they localize in the plant cell nucleus, mediate DNA binding, and might function as transcriptional activators. RTLs have a unique DNA-binding architecture and are enriched in repeat variable di-residues (RVDs), which determine repeat DNA-binding specificities. We determined the DNA-binding specificities for the RVD sequences ND, HN, NP, and NT. The RVD ND mediates highly specific interactions with C nucleotide, HN interacts specifically with A and G nucleotides, and NP binds to C, A, and G nucleotides. Moreover, we developed a highly efficient repeat assembly approach for engineering RTL effectors. Taken together, our data demonstrate that RTLs are unique DNA-targeting modules that are excellent alternatives to be tailored to bind to user-selected DNA sequences for targeted genomic and epigenomic modifications. These findings will facilitate research concerning RTL molecular biology and RTL roles in the pathogenicity of Ralstonia spp.
Collapse
Affiliation(s)
- Lixin Li
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal 23955–6900, Kingdom of Saudi Arabia
| | - Ahmed Atef
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, PO Box 80203, Jeddah 21589, Kingdom of Saudi Arabia
| | - Agnieszka Piatek
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal 23955–6900, Kingdom of Saudi Arabia
| | - Zahir Ali
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, PO Box 80203, Jeddah 21589, Kingdom of Saudi Arabia
| | - Marek Piatek
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal 23955–6900, Kingdom of Saudi Arabia
| | - Mustapha Aouida
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal 23955–6900, Kingdom of Saudi Arabia
| | - Altanbadralt Sharakuu
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal 23955–6900, Kingdom of Saudi Arabia
| | - Ali Mahjoub
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal 23955–6900, Kingdom of Saudi Arabia
| | - Guangchao Wang
- Imaging Core Laboratory, King Abdullah University of Science and Technology, Thuwal 23955–6900, Kingdom of Saudi Arabia
| | - Suhail Khan
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal 23955–6900, Kingdom of Saudi Arabia
| | - Nina V. Fedoroff
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal 23955–6900, Kingdom of Saudi Arabia
| | - Jian-Kang Zhu
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | - Magdy M. Mahfouz
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal 23955–6900, Kingdom of Saudi Arabia
- To whom correspondence should be addressed. E-mail , tel. 00966544700010
| |
Collapse
|
248
|
Zhang Z, Li D, Xu H, Xin Y, Zhang T, Ma L, Wang X, Chen Z, Zhang Z. A simple and efficient method for assembling TALE protein based on plasmid library. PLoS One 2013; 8:e66459. [PMID: 23840477 PMCID: PMC3688977 DOI: 10.1371/journal.pone.0066459] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 05/05/2013] [Indexed: 02/01/2023] Open
Abstract
DNA binding domain of the transcription activator-like effectors (TALEs) from Xanthomonas sp. consists of tandem repeats that can be rearranged according to a simple cipher to target new DNA sequences with high DNA-binding specificity. This technology has been successfully applied in varieties of species for genome engineering. However, assembling long TALE tandem repeats remains a big challenge precluding wide use of this technology. Although several new methodologies for efficiently assembling TALE repeats have been recently reported, all of them require either sophisticated facilities or skilled technicians to carry them out. Here, we described a simple and efficient method for generating customized TALE nucleases (TALENs) and TALE transcription factors (TALE-TFs) based on TALE repeat tetramer library. A tetramer library consisting of 256 tetramers covers all possible combinations of 4 base pairs. A set of unique primers was designed for amplification of these tetramers. PCR products were assembled by one step of digestion/ligation reaction. 12 TALE constructs including 4 TALEN pairs targeted to mouse Gt(ROSA)26Sor gene and mouse Mstn gene sequences as well as 4 TALE-TF constructs targeted to mouse Oct4, c-Myc, Klf4 and Sox2 gene promoter sequences were generated by using our method. The construction routines took 3 days and parallel constructions were available. The rate of positive clones during colony PCR verification was 64% on average. Sequencing results suggested that all TALE constructs were performed with high successful rate. This is a rapid and cost-efficient method using the most common enzymes and facilities with a high success rate.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- College of Animal Science and Technology, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling, Shaan'xi, P. R. China
| | - Duo Li
- College of Animal Science and Technology, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling, Shaan'xi, P. R. China
| | - Huarong Xu
- College of Animal Science and Technology, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling, Shaan'xi, P. R. China
| | - Ying Xin
- College of Animal Science and Technology, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling, Shaan'xi, P. R. China
| | - Tingting Zhang
- College of Animal Science and Technology, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling, Shaan'xi, P. R. China
| | - Lixia Ma
- College of Animal Science and Technology, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling, Shaan'xi, P. R. China
| | - Xin Wang
- College of Animal Science and Technology, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling, Shaan'xi, P. R. China
| | - Zhilong Chen
- College of Animal Science and Technology, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling, Shaan'xi, P. R. China
| | - Zhiying Zhang
- College of Animal Science and Technology, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling, Shaan'xi, P. R. China
- * E-mail:
| |
Collapse
|
249
|
Dehury B, Sahu M, Sarma K, Sahu J, Sen P, Modi MK, Sharma GD, Choudhury MD, Barooah M. Molecular phylogeny, homology modeling, and molecular dynamics simulation of race-specific bacterial blight disease resistance protein (xa5) of rice: a comparative agriproteomics approach. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2013; 17:423-38. [PMID: 23758479 DOI: 10.1089/omi.2012.0131] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Rice (Oryza sativa L.), a model plant belonging to the family Poaceae, is a staple food for a majority of the people worldwide. Grown in the tropical and subtropical regions of the world, this important cereal crop is under constant and serious threat from both biotic and abiotic stresses. Among the biotic threats, Xanthomonas oryzae pv. oryzae, causing the damaging bacterial blight disease in rice, is a prominent pathogen. The xa5 gene in the host plant rice confers race-specific resistance to this pathogen. This recessive gene belongs to the Xa gene family of rice and encodes a gamma subunit of transcription factor IIA (TFIIAγ). In view of the importance of this gene in conferring resistance to the devastating disease, we reconstructed the phylogenetic relationship of this gene, developed a three-dimensional protein model, followed by long-term molecular dynamics simulation studies to gain a better understanding of the evolution, structure, and function of xa5. The modeled structure was found to fit well with the small subunit of TFIIA from human, suggesting that it may also act as a small subunit of TFIIA in rice. The model had a stable conformation in response to the atomic flexibility and interaction, when subjected to MD simulation at 20 nano second in aqueous solution. Further structural analysis of xa5 indicated that the protein retained its basic transcription factor function, suggesting that it might govern a novel pathway responsible for bacterial blight resistance. Future molecular docking studies of xa5 underway with its corresponding avirulence gene is expected to shed more direct light into plant-pathogen interactions at the molecular level and thus pave the way for richer agriproteomic insights.
Collapse
Affiliation(s)
- Budheswar Dehury
- Agri-Bioinformatics Promotion Programme, Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Li T, Huang S, Zhou J, Yang B. Designer TAL effectors induce disease susceptibility and resistance to Xanthomonas oryzae pv. oryzae in rice. MOLECULAR PLANT 2013; 6:781-9. [PMID: 23430045 DOI: 10.1093/mp/sst034] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
TAL (transcription activator-like) effectors from Xanthomonas bacteria activate the cognate host genes, leading to disease susceptibility or resistance dependent on the genetic context of host target genes. The modular nature and DNA recognition code of TAL effectors enable custom-engineering of designer TAL effectors (dTALE) for gene activation. However, the feasibility of dTALEs as transcription activators for gene functional analysis has not been demonstrated. Here, we report the use of dTALEs, as expressed and delivered by the pathogenic Xanthomonas oryzae pv. oryzae (Xoo), in revealing the new function of two previously identified disease-related genes and the potential of one developmental gene for disease susceptibility in rice/Xoo interactions. The dTALE gene dTALE-xa27, designed to target the susceptible allele of the resistance gene Xa27, elicited a resistant reaction in the otherwise susceptible rice cultivar IR24. Four dTALE genes were made to induce the four annotated Xa27 homologous genes in rice cultivar Nipponbare, but none of the four induced Xa27-like genes conferred resistance to the dTALE-containing Xoo strains. A dTALE gene was also generated to activate the recessive resistance gene xa13, an allele of the disease-susceptibility gene Os8N3 (also named Xa13 or OsSWEET11, a member of sucrose efflux transporter SWEET gene family). The induction of xa13 by the dTALE rendered the resistant rice IRBB13 (xa13/xa13) susceptible to Xoo. Finally, OsSWEET12, an as-yet uncharacterized SWEET gene with no corresponding naturally occurring TAL effector identified, conferred susceptibility to the Xoo strains expressing the corresponding dTALE genes. Our results demonstrate that dTALEs can be delivered through the bacterial secretion system to activate genes of interest for functional analysis in plants.
Collapse
Affiliation(s)
- Ting Li
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | | | | | | |
Collapse
|