201
|
Ishchenko A, Gati C, Cherezov V. Structural biology of G protein-coupled receptors: new opportunities from XFELs and cryoEM. Curr Opin Struct Biol 2018; 51:44-52. [PMID: 29554543 DOI: 10.1016/j.sbi.2018.03.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 03/07/2018] [Accepted: 03/07/2018] [Indexed: 01/14/2023]
Abstract
G protein-coupled receptors mediate cell signaling and regulate the majority of sensory and physiological processes in the human body. Recent breakthroughs in cryo-electron microscopy and X-ray free electron lasers have accelerated structural studies of difficult-to-crystallize receptors and their signaling complexes, and have opened up new opportunities in understanding conformational dynamics and visualizing the process of receptor activation with unprecedented spatial and temporal resolution. Here, we summarize major milestones and challenges associated with the application of these techniques and outline future directions in their development with a focus on membrane protein structural biology.
Collapse
Affiliation(s)
- Andrii Ishchenko
- Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA
| | - Cornelius Gati
- SLAC National Accelerator Laboratory, Bioscience Division, Menlo Park, CA 94025, USA; Stanford University, Department of Structural Biology, Stanford, CA 94305, USA
| | - Vadim Cherezov
- Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA; Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia.
| |
Collapse
|
202
|
Yin W, Zhou XE, Yang D, de Waal PW, Wang M, Dai A, Cai X, Huang CY, Liu P, Wang X, Yin Y, Liu B, Zhou Y, Wang J, Liu H, Caffrey M, Melcher K, Xu Y, Wang MW, Xu HE, Jiang Y. Crystal structure of the human 5-HT 1B serotonin receptor bound to an inverse agonist. Cell Discov 2018; 4:12. [PMID: 29560272 PMCID: PMC5847559 DOI: 10.1038/s41421-018-0009-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/22/2017] [Indexed: 02/02/2023] Open
Abstract
5-hydroxytryptamine (5-HT, also known as serotonin) regulates many physiological processes through the 5-HT receptor family. Here we report the crystal structure of 5-HT1B subtype receptor (5-HT1BR) bound to the psychotropic serotonin receptor inverse agonist methiothepin (MT). Crystallization was facilitated by replacing ICL3 with a novel optimized variant of BRIL (OB1) that enhances the formation of intermolecular polar interactions, making OB1 a potential useful tool for structural studies of membrane proteins. Unlike the agonist ergotamine (ERG), MT occupies only the conserved orthosteric binding pocket, explaining the wide spectrum effect of MT on serotonin receptors. Compared with ERG, MT shifts toward TM6 and sterically pushes residues W3276.48, F3306.50 and F3316.51 from inside the orthosteric binding pocket, leading to an outward movement of the extracellular end and a corresponding inward shift of the intracellular end of TM6, a feature shared by other reported inactive G protein-coupled receptor (GPCR) structures. Together with the previous agonist-bound serotonin receptor structures, the inverse agonist-bound 5-HT1BR structure identifies a basis for the ligand-mediated switch of 5-HT1BR activity and provides a structural understanding of the inactivation mechanism of 5-HT1BR and some other class A GPCRs, characterized by ligand-induced outward movement of the extracellular end of TM6 that is coupled with inward movement of the cytoplasmic end of this helix.
Collapse
Affiliation(s)
- Wanchao Yin
- VARI-SIMM Center, Center for Structure and Function of Drug Targets, The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
- University of Chinese Academy of Sciences, No.19 A Yuquan Road, Beijing, 100049 China
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, 201203 China
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, MI 49503 USA
| | - X. Edward Zhou
- VARI-SIMM Center, Center for Structure and Function of Drug Targets, The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, MI 49503 USA
| | - Dehua Yang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, 201203 China
- The National Center for Drug Screening, Shanghai, 201203 China
| | - Parker W. de Waal
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, MI 49503 USA
| | - Meitian Wang
- Swiss Light Source, Paul Scherrer Institute, Villigen, 5232 Switzerland
| | - Antao Dai
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, 201203 China
- The National Center for Drug Screening, Shanghai, 201203 China
| | - Xiaoqing Cai
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, 201203 China
- The National Center for Drug Screening, Shanghai, 201203 China
| | - Chia-Ying Huang
- Swiss Light Source, Paul Scherrer Institute, Villigen, 5232 Switzerland
| | - Ping Liu
- VARI-SIMM Center, Center for Structure and Function of Drug Targets, The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Xiaoxi Wang
- VARI-SIMM Center, Center for Structure and Function of Drug Targets, The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Yanting Yin
- VARI-SIMM Center, Center for Structure and Function of Drug Targets, The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, MI 49503 USA
| | - Bo Liu
- VARI-SIMM Center, Center for Structure and Function of Drug Targets, The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Yu Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, CAS, Shanghai, 201203 China
| | - Jiang Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, CAS, Shanghai, 201203 China
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, CAS, Shanghai, 201203 China
| | - Martin Caffrey
- Membrane Structural and Functional Biology Group, Schools of Medicine and Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Karsten Melcher
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, MI 49503 USA
| | - Yechun Xu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, 201203 China
| | - Ming-Wei Wang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, 201203 China
- The National Center for Drug Screening, Shanghai, 201203 China
- School of Pharmacy, Fudan University, Shanghai, 201203 China
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai 201203 China
| | - H. Eric Xu
- VARI-SIMM Center, Center for Structure and Function of Drug Targets, The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, MI 49503 USA
| | - Yi Jiang
- VARI-SIMM Center, Center for Structure and Function of Drug Targets, The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, MI 49503 USA
| |
Collapse
|
203
|
Wang S, Che T, Levit A, Shoichet BK, Wacker D, Roth BL. Structure of the D2 dopamine receptor bound to the atypical antipsychotic drug risperidone. Nature 2018; 555:269-273. [PMID: 29466326 PMCID: PMC5843546 DOI: 10.1038/nature25758] [Citation(s) in RCA: 293] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 01/18/2018] [Indexed: 01/07/2023]
Abstract
Dopamine is a neurotransmitter that has been implicated in processes as diverse as reward, addiction, control of coordinated movement, metabolism and hormonal secretion. Correspondingly, dysregulation of the dopaminergic system has been implicated in diseases such as schizophrenia, Parkinson's disease, depression, attention deficit hyperactivity disorder, and nausea and vomiting. The actions of dopamine are mediated by a family of five G-protein-coupled receptors. The D2 dopamine receptor (DRD2) is the primary target for both typical and atypical antipsychotic drugs, and for drugs used to treat Parkinson's disease. Unfortunately, many drugs that target DRD2 cause serious and potentially life-threatening side effects due to promiscuous activities against related receptors. Accordingly, a molecular understanding of the structure and function of DRD2 could provide a template for the design of safer and more effective medications. Here we report the crystal structure of DRD2 in complex with the widely prescribed atypical antipsychotic drug risperidone. The DRD2-risperidone structure reveals an unexpected mode of antipsychotic drug binding to dopamine receptors, and highlights structural determinants that are essential for the actions of risperidone and related drugs at DRD2.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-7365, USA
| | - Tao Che
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-7365, USA
| | - Anat Levit
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, 94158-2280, USA
| | - Brian K. Shoichet
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, 94158-2280, USA
| | - Daniel Wacker
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-7365, USA
| | - Bryan L. Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-7365, USA
- Division of Chemical Biology & Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7360, USA
- National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP), School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7365, USA
| |
Collapse
|
204
|
Abstract
G protein-coupled receptors (GPCRs), which mediate processes as diverse as olfaction and maintenance of metabolic homeostasis, have become the single most effective class of therapeutic drug targets. As a result, understanding the molecular basis for their activity is of paramount importance. Recent technological advances have made GPCR structural biology increasingly tractable, offering views of these receptors in unprecedented atomic detail. Structural and biophysical data have shown that GPCRs function as complex allosteric machines, communicating ligand-binding events through conformational change. Changes in receptor conformation lead to activation of effector proteins, such as G proteins and arrestins, which are themselves conformational switches. Here, we review how structural biology has illuminated the agonist-induced cascade of conformational changes that culminate in a cellular response to GPCR activation.
Collapse
Affiliation(s)
- Sarah C Erlandson
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| | - Conor McMahon
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| | - Andrew C Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| |
Collapse
|
205
|
Lu S, Zhang J. Small Molecule Allosteric Modulators of G-Protein-Coupled Receptors: Drug–Target Interactions. J Med Chem 2018; 62:24-45. [DOI: 10.1021/acs.jmedchem.7b01844] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| |
Collapse
|
206
|
Owen TS, Salom D, Sun W, Palczewski K. Increasing the Stability of Recombinant Human Green Cone Pigment. Biochemistry 2018; 57:1022-1030. [PMID: 29320632 PMCID: PMC5853123 DOI: 10.1021/acs.biochem.7b01118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Three types of cone cells exist in the human retina, each containing a different pigment responsible for the initial step of phototransduction. These pigments are distinguished by their specific absorbance maxima: 425 nm (blue), 530 nm (green), and 560 nm (red). Each pigment contains a common chromophore, 11-cis-retinal covalently bound to an opsin protein via a Schiff base. The 11-cis-retinal protonated Schiff base has an absorbance maxima at 440 nm in methanol. Unfortunately, the chemistry that allows the same chromophore to interact with different opsin proteins to tune the absorbance of the resulting pigments to distinct λmax values is poorly understood. Rhodopsin is the only pigment with a native structure determined at high resolution. Homology models for cone pigments have been generated, but experimentally determined structures are needed for a precise understanding of spectral tuning. The principal obstacle to solving the structures of cone pigments has been their innate instability in recombinant constructs. By inserting five different thermostabilizing proteins (BRIL, T4L, PGS, RUB, and FLAV) into the recombinant green opsin sequence, constructs were created that were up to 9-fold more stable than WT. Using cellular retinaldehyde-binding protein (CRALBP), we developed a quick means of assessing the stability of the green pigment. CRALBP testing also confirmed an additional 48-fold increase in pigment stability when varying the detergent used. These results suggest an efficient protocol for routine purification and stabilization of cone pigments that could be used for high-resolution determination of their structures, as well as for other studies.
Collapse
Affiliation(s)
- Timothy S. Owen
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 2109 Adelbert Road, Cleveland, Ohio 44106, United States
| | - David Salom
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 2109 Adelbert Road, Cleveland, Ohio 44106, United States
| | - Wenyu Sun
- Polgenix, Inc., Cleveland, Ohio 44106, United States
| | - Krzysztof Palczewski
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 2109 Adelbert Road, Cleveland, Ohio 44106, United States
| |
Collapse
|
207
|
Gao N, Liang T, Yuan Y, Xiao X, Zhao Y, Guo Y, Li M, Pu X. Exploring the mechanism of F282L mutation-caused constitutive activity of GPCR by a computational study. Phys Chem Chem Phys 2018; 18:29412-29422. [PMID: 27735961 DOI: 10.1039/c6cp03710k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
G-protein-coupled receptors (GPCRs) are important drug targets and generally activated by ligands. However, some experiments found that GPCRs also give rise to constitutive activity through some mutations (viz., CAM), which are usually associated with different kinds of diseases. However, the mechanisms of CAMs and their roles in interactions with drug-ligands are unclear in experiments. Herein, we used microsecond molecular dynamics simulations to study the effect of one important F282L mutation on β2AR in order to address the questions above. With the aid of principle component and correlation analysis, our results revealed that the F282L mutation could increase the instability of the overall structure, increase the dramatic fluctuations of NPxxY and extracellular loops, and decrease restraint of the helices through weakening interhelical H-bonding and correlations between residues, which could partly contribute to the constitutive activity reported by the experiments. The observations from the protein structure network (PSN) analysis indicate that the mutant exhibits less information flow than the wild β2AR and weakens the role of TM5 and TM6 in the signal transmission, but it enhances the impact of TM3 on the orthosteric pathway and TM4 on the allosteric one. In addition, the results from the virtual screening reveal that the mutant prefers to select agonists rather than antagonists, similar to the active state but opposite of the inactive state, further confirming that the F282L mutation advances the activation of β2AR. Our observations provide valuable information for understanding the mechanism of the mutation-caused constitutive activity of GPCR and related drug-design.
Collapse
Affiliation(s)
- Nan Gao
- Faculty of Chemistry, Sichuan University, Chengdu, Sichuan 610064, People's Republic of China.
| | - Tao Liang
- Faculty of Chemistry, Sichuan University, Chengdu, Sichuan 610064, People's Republic of China.
| | - Yuan Yuan
- College of Management, Southwest University for Nationalities, Chengdu 610041, P. R. China
| | - Xiuchan Xiao
- Department of Architecture and Environmental Engineering, Chengdu Technological University, Chengdu, Sichuan 611730, China
| | - Yihuan Zhao
- Faculty of Chemistry, Sichuan University, Chengdu, Sichuan 610064, People's Republic of China.
| | - Yanzhi Guo
- Faculty of Chemistry, Sichuan University, Chengdu, Sichuan 610064, People's Republic of China.
| | - Menglong Li
- Faculty of Chemistry, Sichuan University, Chengdu, Sichuan 610064, People's Republic of China.
| | - Xuemei Pu
- Faculty of Chemistry, Sichuan University, Chengdu, Sichuan 610064, People's Republic of China.
| |
Collapse
|
208
|
Chevillard F, Rimmer H, Betti C, Pardon E, Ballet S, van Hilten N, Steyaert J, Diederich WE, Kolb P. Binding-Site Compatible Fragment Growing Applied to the Design of β 2-Adrenergic Receptor Ligands. J Med Chem 2018; 61:1118-1129. [PMID: 29364664 DOI: 10.1021/acs.jmedchem.7b01558] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fragment-based drug discovery is intimately linked to fragment extension approaches that can be accelerated using software for de novo design. Although computers allow for the facile generation of millions of suggestions, synthetic feasibility is however often neglected. In this study we computationally extended, chemically synthesized, and experimentally assayed new ligands for the β2-adrenergic receptor (β2AR) by growing fragment-sized ligands. In order to address the synthetic tractability issue, our in silico workflow aims at derivatized products based on robust organic reactions. The study started from the predicted binding modes of five fragments. We suggested a total of eight diverse extensions that were easily synthesized, and further assays showed that four products had an improved affinity (up to 40-fold) compared to their respective initial fragment. The described workflow, which we call "growing via merging" and for which the key tools are available online, can improve early fragment-based drug discovery projects, making it a useful creative tool for medicinal chemists during structure-activity relationship (SAR) studies.
Collapse
Affiliation(s)
- Florent Chevillard
- Department of Pharmaceutical Chemistry, Philipps-University Marburg , Marbacher Weg 6, 35032 Marburg, Germany
| | - Helena Rimmer
- Department of Pharmaceutical Chemistry and Center for Tumor Biology and Immunology, Philipps-University Marburg , Hans-Meerwein-Straße 3, 35032 Marburg, Germany
| | - Cecilia Betti
- Research Group of Organic Chemistry, Departments of Chemistry and Bio-Engineering Sciences, Vrije Universiteit Brussel , Pleinlaan 2, 1050 Brussels, Belgium
| | - Els Pardon
- VIB-VUB Center for Structural Biology, VIB , 1050 Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel , 1050 Brussels, Belgium
| | - Steven Ballet
- Research Group of Organic Chemistry, Departments of Chemistry and Bio-Engineering Sciences, Vrije Universiteit Brussel , Pleinlaan 2, 1050 Brussels, Belgium
| | - Niek van Hilten
- Department of Pharmaceutical Chemistry, Philipps-University Marburg , Marbacher Weg 6, 35032 Marburg, Germany
| | - Jan Steyaert
- VIB-VUB Center for Structural Biology, VIB , 1050 Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel , 1050 Brussels, Belgium
| | - Wibke E Diederich
- Department of Pharmaceutical Chemistry and Center for Tumor Biology and Immunology, Philipps-University Marburg , Hans-Meerwein-Straße 3, 35032 Marburg, Germany
| | - Peter Kolb
- Department of Pharmaceutical Chemistry, Philipps-University Marburg , Marbacher Weg 6, 35032 Marburg, Germany
| |
Collapse
|
209
|
Schmidt P, Bender BJ, Kaiser A, Gulati K, Scheidt HA, Hamm HE, Meiler J, Beck-Sickinger AG, Huster D. Improved in Vitro Folding of the Y 2 G Protein-Coupled Receptor into Bicelles. Front Mol Biosci 2018; 4:100. [PMID: 29387686 PMCID: PMC5776092 DOI: 10.3389/fmolb.2017.00100] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/28/2017] [Indexed: 12/26/2022] Open
Abstract
Prerequisite for structural studies on G protein-coupled receptors is the preparation of highly concentrated, stable, and biologically active receptor samples in milligram amounts of protein. Here, we present an improved protocol for Escherichia coli expression, functional refolding, and reconstitution into bicelles of the human neuropeptide Y receptor type 2 (Y2R) for solution and solid-state NMR experiments. The isotopically labeled receptor is expressed in inclusion bodies and purified using SDS. We studied the details of an improved preparation protocol including the in vitro folding of the receptor, e.g., the native disulfide bridge formation, the exchange of the denaturating detergent SDS, and the functional reconstitution into bicelle environments of varying size. Full pharmacological functionality of the Y2R preparation was shown by a ligand affinity of 4 nM and G-protein activation. Further, simple NMR experiments are used to test sample quality in high micromolar concentration.
Collapse
Affiliation(s)
- Peter Schmidt
- Faculty of Medicine, Institute for Medical Physics and Biophysics, Leipzig University, Leipzig, Germany
| | - Brian J Bender
- Center for Structural Biology, Vanderbilt University, Nashville, TN, United States.,Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Anette Kaiser
- Faculty of Life Sciences, Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| | - Khushboo Gulati
- Department of Biotechnology, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Holger A Scheidt
- Faculty of Medicine, Institute for Medical Physics and Biophysics, Leipzig University, Leipzig, Germany
| | - Heidi E Hamm
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jens Meiler
- Center for Structural Biology, Vanderbilt University, Nashville, TN, United States.,Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States
| | | | - Daniel Huster
- Faculty of Medicine, Institute for Medical Physics and Biophysics, Leipzig University, Leipzig, Germany
| |
Collapse
|
210
|
Phosphorylation-induced conformation of β 2-adrenoceptor related to arrestin recruitment revealed by NMR. Nat Commun 2018; 9:194. [PMID: 29335412 PMCID: PMC5768704 DOI: 10.1038/s41467-017-02632-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 12/15/2017] [Indexed: 02/07/2023] Open
Abstract
The C-terminal region of G-protein-coupled receptors (GPCRs), stimulated by agonist binding, is phosphorylated by GPCR kinases, and the phosphorylated GPCRs bind to arrestin, leading to the cellular responses. To understand the mechanism underlying the formation of the phosphorylated GPCR-arrestin complex, we performed NMR analyses of the phosphorylated β2-adrenoceptor (β2AR) and the phosphorylated β2AR–β-arrestin 1 complex, in the lipid bilayers of nanodisc. Here we show that the phosphorylated C-terminal region adheres to either the intracellular side of the transmembrane region or lipids, and that the phosphorylation of the C-terminal region allosterically alters the conformation around M2155.54 and M2796.41, located on transemembrane helices 5 and 6, respectively. In addition, we found that the conformation induced by the phosphorylation is similar to that corresponding to the β-arrestin-bound state. The phosphorylation-induced structures revealed in this study propose a conserved structural motif of GPCRs that enables β-arrestin to recognize dozens of GPCRs. Upon stimulation by agonist binding, the C-terminal regions of G-protein-coupled receptors (GPCRs) become phosphorylated by GPCR kinases, and phosphorylated GPCRs bind arrestin. Here the authors give structural insights into the phosphorylation induced conformational changes in GPCRs by performing NMR studies with the β2-adrenoceptor.
Collapse
|
211
|
Hori T, Okuno T, Hirata K, Yamashita K, Kawano Y, Yamamoto M, Hato M, Nakamura M, Shimizu T, Yokomizo T, Miyano M, Yokoyama S. Na +-mimicking ligands stabilize the inactive state of leukotriene B 4 receptor BLT1. Nat Chem Biol 2018; 14:262-269. [PMID: 29309055 DOI: 10.1038/nchembio.2547] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 11/14/2017] [Indexed: 01/07/2023]
Abstract
Most G-protein-coupled receptors (GPCRs) are stabilized in common in the inactive state by the formation of the sodium ion-centered water cluster with the conserved Asp2.50 inside the seven-transmembrane domain. We determined the crystal structure of the leukotriene B4 (LTB4) receptor BLT1 bound with BIIL260, a chemical bearing a benzamidine moiety. Surprisingly, the amidine group occupies the sodium ion and water locations, interacts with D662.50, and mimics the entire sodium ion-centered water cluster. Thus, BLT1 is fixed in the inactive state, and the transmembrane helices cannot change their conformations to form the active state. Moreover, the benzamidine molecule alone serves as a negative allosteric modulator for BLT1. As the residues involved in the benzamidine binding are widely conserved among GPCRs, the unprecedented inverse-agonist mechanism by the benzamidine moiety could be adapted to other GPCRs. Consequently, the present structure will enable the rational development of inverse agonists specific for each GPCR.
Collapse
Affiliation(s)
- Tetsuya Hori
- RIKEN Structural Biology Laboratory, Tsurumi-ku, Yokohama, Kanagawa, Japan.,RIKEN SPring-8 Center, Sayo, Hyogo, Japan
| | - Toshiaki Okuno
- Department of Biochemistry, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Kunio Hirata
- RIKEN SPring-8 Center, Sayo, Hyogo, Japan.,Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology (PRESTO), Kawaguchi, Saitama, Japan
| | | | | | | | - Masakatsu Hato
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Tsurumi-ku, Yokohama, Japan
| | - Motonao Nakamura
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.,Department of Life Science, Faculty of Science, Okayama University of Science, Kita-ku, Okayama, Japan
| | - Takao Shimizu
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.,Department of Lipid Signaling, National Center for Global Health and Medicine, Shinjuku, Tokyo, Japan
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Masashi Miyano
- RIKEN SPring-8 Center, Sayo, Hyogo, Japan.,Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Chuo-ku, Sagamihara, Kanagawa, Japan
| | - Shigeyuki Yokoyama
- RIKEN Structural Biology Laboratory, Tsurumi-ku, Yokohama, Kanagawa, Japan
| |
Collapse
|
212
|
Rodríguez-Espigares I, Kaczor AA, Stepniewski TM, Selent J. Challenges and Opportunities in Drug Discovery of Biased Ligands. Methods Mol Biol 2018; 1705:321-334. [PMID: 29188569 DOI: 10.1007/978-1-4939-7465-8_14] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The observation of biased agonism in G protein-coupled receptors (GPCRs) has provided new approaches for the development of more efficacious and safer drugs. However, in order to rationally design biased drugs, one must understand the molecular basis of this phenomenon. Computational approaches can help in exploring the conformational universe of GPCRs and detecting conformational states with relevance for distinct functional outcomes. This information is extremely valuable for the development of new therapeutic agents that promote desired conformational receptor states and responses while avoiding the ones leading to undesired side-effects.This book chapter intends to introduce the reader to powerful computational approaches for sampling the conformational space of these receptors, focusing first on molecular dynamics and the analysis of the produced data through methods such as dimensionality reduction, Markov State Models and adaptive sampling. Then, we show how to seek for compounds that target distinct conformational states via docking and virtual screening. In addition, we describe how to detect receptor-ligand interactions that drive signaling bias and comment current challenges and opportunities of presented methods.
Collapse
Affiliation(s)
- Ismael Rodríguez-Espigares
- Department of Experimental and Health Sciences, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Pompeu Fabra University (UPF), Dr. Aiguader 88, E-08003, Barcelona, Spain
| | - Agnieszka A Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modelling Lab, Faculty of Pharmacy with Division of Medical Analytics, Medical University of Lublin, 4A Chodzki St., PL-20093, Lublin, Poland.,Department of Pharmaceutical Chemistry, School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Tomasz Maciej Stepniewski
- Department of Experimental and Health Sciences, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Pompeu Fabra University (UPF), Dr. Aiguader 88, E-08003, Barcelona, Spain
| | - Jana Selent
- Department of Experimental and Health Sciences, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Pompeu Fabra University (UPF), Dr. Aiguader 88, E-08003, Barcelona, Spain.
| |
Collapse
|
213
|
Abstract
GPCRs play a pervasive physiological role and, in turn, are the leading target class for pharmaceuticals. Beginning with the determination of the structure of rhodopsin, and dramatically accelerating since the reporting of the first ligand-mediated GPCR X-ray structures, our understanding of the structural and functional characteristics of these proteins has grown dramatically. Deploying this now rapidly emerging information for drug discovery has already been extensively demonstrated through a watershed of studies appearing in numerous scientific reports. Included in these expositions are areas such as sites and characteristics of ligand to GPCR binding, protein activation, effector bias, allosteric mechanisms, dimerization, polypharmacology and others. Computational chemistry studies are demonstrating an increasing role in capitalizing on the structural studies to further advance our understanding of these proteins as well as to drive drug discovery. Such drug discovery activities range from the design of orthosteric site inhibitors through, for example, allosteric modulators, biased ligands, partial agonists and bitopic ligands. Herein, these topics are outlined through specific examples in the hopes of providing a glimpse of the state of the field.
Collapse
|
214
|
Bailey LJ, Sheehy KM, Dominik PK, Liang WG, Rui H, Clark M, Jaskolowski M, Kim Y, Deneka D, Tang WJ, Kossiakoff AA. Locking the Elbow: Improved Antibody Fab Fragments as Chaperones for Structure Determination. J Mol Biol 2017; 430:337-347. [PMID: 29273204 DOI: 10.1016/j.jmb.2017.12.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/05/2017] [Accepted: 12/13/2017] [Indexed: 01/01/2023]
Abstract
Antibody Fab fragments have been exploited with significant success to facilitate the structure determination of challenging macromolecules as crystallization chaperones and as molecular fiducial marks for single particle cryo-electron microscopy approaches. However, the inherent flexibility of the "elbow" regions, which link the constant and variable domains of the Fab, can introduce disorder and thus diminish their effectiveness. We have developed a phage display engineering strategy to generate synthetic Fab variants that significantly reduces elbow flexibility, while maintaining their high affinity and stability. This strategy was validated using previously recalcitrant Fab-antigen complexes where introduction of an engineered elbow region enhanced crystallization and diffraction resolution. Furthermore, incorporation of the mutations appears to be generally portable to other synthetic antibodies and may serve as a universal strategy to enhance the success rates of Fabs as structure determination chaperones.
Collapse
Affiliation(s)
- Lucas J Bailey
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Kimberly M Sheehy
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Pawel K Dominik
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Wenguang G Liang
- Ben May Institute for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Huan Rui
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Michael Clark
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Mateusz Jaskolowski
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA; University of Gdansk and Medical University of Gdansk, International Faculty of Biotechnology, Gdansk, Poland
| | - Yejoon Kim
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Dawid Deneka
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA; Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Krakow, Poland
| | - Wei-Jen Tang
- Ben May Institute for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA; Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
215
|
Evolutionary action and structural basis of the allosteric switch controlling β 2AR functional selectivity. Nat Commun 2017; 8:2169. [PMID: 29255305 PMCID: PMC5735088 DOI: 10.1038/s41467-017-02257-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 11/15/2017] [Indexed: 12/18/2022] Open
Abstract
Functional selectivity of G-protein-coupled receptors is believed to originate from ligand-specific conformations that activate only subsets of signaling effectors. In this study, to identify molecular motifs playing important roles in transducing ligand binding into distinct signaling responses, we combined in silico evolutionary lineage analysis and structure-guided site-directed mutagenesis with large-scale functional signaling characterization and non-negative matrix factorization clustering of signaling profiles. Clustering based on the signaling profiles of 28 variants of the β2-adrenergic receptor reveals three clearly distinct phenotypical clusters, showing selective impairments of either the Gi or βarrestin/endocytosis pathways with no effect on Gs activation. Robustness of the results is confirmed using simulation-based error propagation. The structural changes resulting from functionally biasing mutations centered around the DRY, NPxxY, and PIF motifs, selectively linking these micro-switches to unique signaling profiles. Our data identify different receptor regions that are important for the stabilization of distinct conformations underlying functional selectivity. Ligand-induced biased signaling is thought to result in part from ligand-specific receptor conformations that cause the engagement of distinct effectors. Here the authors trace and evaluate the impact of mutations of the β2–adrenergic receptor on multiple signaling outputs to provide structural-level insight into the determinants of GPCR functional selectivity.
Collapse
|
216
|
Carpenter B, Lebon G. Human Adenosine A 2A Receptor: Molecular Mechanism of Ligand Binding and Activation. Front Pharmacol 2017; 8:898. [PMID: 29311917 PMCID: PMC5736361 DOI: 10.3389/fphar.2017.00898] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 11/24/2017] [Indexed: 11/29/2022] Open
Abstract
Adenosine receptors (ARs) comprise the P1 class of purinergic receptors and belong to the largest family of integral membrane proteins in the human genome, the G protein-coupled receptors (GPCRs). ARs are classified into four subtypes, A1, A2A, A2B, and A3, which are all activated by extracellular adenosine, and play central roles in a broad range of physiological processes, including sleep regulation, angiogenesis and modulation of the immune system. ARs are potential therapeutic targets in a variety of pathophysiological conditions, including sleep disorders, cancer, and dementia, which has made them important targets for structural biology. Over a decade of research and innovation has culminated with the publication of more than 30 crystal structures of the human adenosine A2A receptor (A2AR), making it one of the best structurally characterized GPCRs at the atomic level. In this review we analyze the structural data reported for A2AR that described for the first time the binding of mode of antagonists, including newly developed drug candidates, synthetic and endogenous agonists, sodium ions and an engineered G protein. These structures have revealed the key conformational changes induced upon agonist and G protein binding that are central to signal transduction by A2AR, and have highlighted both similarities and differences in the activation mechanism of this receptor compared to other class A GPCRs. Finally, comparison of A2AR with the recently solved structures of A1R has provided the first structural insight into the molecular determinants of ligand binding specificity in different AR subtypes.
Collapse
Affiliation(s)
- Byron Carpenter
- Warwick Integrative Synthetic Biology Centre, School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Guillaume Lebon
- Institut de Génomique Fonctionnelle, Neuroscience Department, UMR CNRS 5203, INSERM U1191, Université de Montpellier, Montpellier, France
| |
Collapse
|
217
|
Yano H, Provasi D, Cai NS, Filizola M, Ferré S, Javitch JA. Development of novel biosensors to study receptor-mediated activation of the G-protein α subunits G s and G olf. J Biol Chem 2017; 292:19989-19998. [PMID: 29042444 PMCID: PMC5723988 DOI: 10.1074/jbc.m117.800698] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/02/2017] [Indexed: 11/06/2022] Open
Abstract
Gαs (Gs) and Gαolf (Golf) are highly homologous G-protein α subunits that activate adenylate cyclase, thereby serving as crucial mediators of intracellular signaling. Because of their dramatically different brain expression patterns, we studied similarities and differences between their activation processes with the aim of comparing their receptor coupling mechanisms. We engineered novel luciferase- and Venus-fused Gα constructs that can be used in bioluminescence resonance energy transfer assays. In conjunction with molecular simulations, these novel biosensors were used to determine receptor activation-induced changes in conformation. Relative movements in Gs were consistent with the crystal structure of β2 adrenergic receptor in complex with Gs Conformational changes in Golf activation are shown to be similar to those in Gs Overall the current study reveals general similarities between Gs and Golf activation at the molecular level and provides a novel set of tools to search for Gs- and Golf-specific receptor pharmacology. In view of the wide functional and pharmacological roles of Gs- and Golf-coupled dopamine D1 receptor and adenosine A2A receptor in the brain and other organs, elucidating their differential structure-function relationships with Gs and Golf might provide new approaches for the treatment of a variety of neuropsychiatric disorders. In particular, these novel biosensors can be used to reveal potentially therapeutic dopamine D1 receptor and adenosine A2A receptor ligands with functionally selective properties between Gs and Golf signaling.
Collapse
Affiliation(s)
- Hideaki Yano
- National Institute on Drug Abuse, Baltimore, Maryland 21224.
| | - Davide Provasi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Ning Sheng Cai
- National Institute on Drug Abuse, Baltimore, Maryland 21224
| | - Marta Filizola
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Sergi Ferré
- National Institute on Drug Abuse, Baltimore, Maryland 21224
| | - Jonathan A Javitch
- Departments of Psychiatry and Pharmacology, College of Physicians & Surgeons, Columbia University, New York, New York 10032; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York 10032.
| |
Collapse
|
218
|
Wolf S, Jovancevic N, Gelis L, Pietsch S, Hatt H, Gerwert K. Dynamical Binding Modes Determine Agonistic and Antagonistic Ligand Effects in the Prostate-Specific G-Protein Coupled Receptor (PSGR). Sci Rep 2017; 7:16007. [PMID: 29167480 PMCID: PMC5700038 DOI: 10.1038/s41598-017-16001-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 11/03/2017] [Indexed: 01/14/2023] Open
Abstract
We analysed the ligand-based activation mechanism of the prostate-specific G-protein coupled receptor (PSGR), which is an olfactory receptor that mediates cellular growth in prostate cancer cells. Furthermore, it is an olfactory receptor with a known chemically near identic antagonist/agonist pair, α- and β-ionone. Using a combined theoretical and experimental approach, we propose that this receptor is activated by a ligand-induced rearrangement of a protein-internal hydrogen bond network. Surprisingly, this rearrangement is not induced by interaction of the ligand with the network, but by dynamic van der Waals contacts of the ligand with the involved amino acid side chains, altering their conformations and intraprotein connectivity. Ligand recognition in this GPCR is therefore highly stereo selective, but seemingly lacks any ligand recognition via polar contacts. A putative olfactory receptor-based drug design scheme will have to take this unique mode of protein/ligand action into account.
Collapse
Affiliation(s)
- Steffen Wolf
- Department of Biophysics, ND 04 North, Ruhr-University Bochum, 44780, Bochum, Germany.
- Department of Biophysics, CAS-MPG Partner Institute for Computational Biology, Key Laboratory of Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031, Shanghai, P.R. China.
| | - Nikolina Jovancevic
- Department of Cellphysiology, ND 4, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Lian Gelis
- Department of Cellphysiology, ND 4, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Sebastian Pietsch
- Department of Biophysics, ND 04 North, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Hanns Hatt
- Department of Cellphysiology, ND 4, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Klaus Gerwert
- Department of Biophysics, ND 04 North, Ruhr-University Bochum, 44780, Bochum, Germany
- Department of Biophysics, CAS-MPG Partner Institute for Computational Biology, Key Laboratory of Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031, Shanghai, P.R. China
| |
Collapse
|
219
|
Wang T, Liu H, Duan Y. Assessment of the transmembrane domain structures in GPCR Dock 2013 models. J Struct Biol 2017; 201:210-220. [PMID: 29174398 DOI: 10.1016/j.jsb.2017.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 11/15/2017] [Accepted: 11/20/2017] [Indexed: 01/08/2023]
Abstract
The community-wide blind prediction of G-protein coupled receptor (GPCR) structures and ligand docking has been conducted three times and the quality of the models was primarily assessed by the accuracy of ligand binding modes. The seven transmembrane (TM) helices of the receptors were taken as a whole; thus the model quality within the 7TM domains has not been evaluated. Here we evaluate the 7TM domain structures in the models submitted for the last round of prediction - GPCR Dock 2013. Applying the 7 × 7 RMSD matrix analysis described in our prior work, we show that the models vary widely in prediction accuracy of the 7TM structures, exhibiting diverse structural differences from the targets. For the prediction of the 5-hydroxytryptamine receptors, the top 7TM models are rather close to the targets, which however are not ranked top by ligand-docking. On the other hand, notable deviations of the TMs are found in in the previously identified top docking models that closely resemble other receptors. We further reveal reasons of success and failure in ligand docking for the models. This current assessment not only complements the previous assessment, but also provides important insights into the current status of GPCR modeling and ligand docking.
Collapse
Affiliation(s)
- Ting Wang
- Genome Center, 451 East Health Science Drive, University of California, Davis, CA 95616, United States; Sichuan University of Science and Engineering, 180 Xueyuan Street, Huixing Road, Zigong 643000, Sichuan Province, China.
| | - Haiguang Liu
- Complex Systems Division, Beijing Computational Science Research Center, 10 W. Dongbeiwang Rd, Haidian District, Beijing 100193, China
| | - Yong Duan
- Genome Center, 451 East Health Science Drive, University of California, Davis, CA 95616, United States
| |
Collapse
|
220
|
Fragment-based drug discovery and its application to challenging drug targets. Essays Biochem 2017; 61:475-484. [PMID: 29118094 DOI: 10.1042/ebc20170029] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/26/2017] [Accepted: 09/27/2017] [Indexed: 11/17/2022]
Abstract
Fragment-based drug discovery (FBDD) is a technique for identifying low molecular weight chemical starting points for drug discovery. Since its inception 20 years ago, FBDD has grown in popularity to the point where it is now an established technique in industry and academia. The approach involves the biophysical screening of proteins against collections of low molecular weight compounds (fragments). Although fragments bind to proteins with relatively low affinity, they form efficient, high quality binding interactions with the protein architecture as they have to overcome a significant entropy barrier to bind. Of the biophysical methods available for fragment screening, X-ray protein crystallography is one of the most sensitive and least prone to false positives. It also provides detailed structural information of the protein-fragment complex at the atomic level. Fragment-based screening using X-ray crystallography is therefore an efficient method for identifying binding hotspots on proteins, which can then be exploited by chemists and biologists for the discovery of new drugs. The use of FBDD is illustrated here with a recently published case study of a drug discovery programme targeting the challenging protein-protein interaction Kelch-like ECH-associated protein 1:nuclear factor erythroid 2-related factor 2.
Collapse
|
221
|
Sadaf A, Du Y, Santillan C, Mortensen JS, Molist I, Seven AB, Hariharan P, Skiniotis G, Loland CJ, Kobilka BK, Guan L, Byrne B, Chae PS. Dendronic trimaltoside amphiphiles (DTMs) for membrane protein study. Chem Sci 2017; 8:8315-8324. [PMID: 29619178 PMCID: PMC5858085 DOI: 10.1039/c7sc03700g] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/14/2017] [Indexed: 01/07/2023] Open
Abstract
A novel amphiphile with a dendronic hydrophobic group (DTM-A6) was markedly effective at stabilizing and visualizing a GPCR-Gs complex.
The critical contribution of membrane proteins in normal cellular function makes their detailed structure and functional analysis essential. Detergents, amphipathic agents with the ability to maintain membrane proteins in a soluble state in aqueous solution, have key roles in membrane protein manipulation. Structural and functional stability is a prerequisite for biophysical characterization. However, many conventional detergents are limited in their ability to stabilize membrane proteins, making development of novel detergents for membrane protein manipulation an important research area. The architecture of a detergent hydrophobic group, that directly interacts with the hydrophobic segment of membrane proteins, is a key factor in dictating their efficacy for both membrane protein solubilization and stabilization. In the current study, we developed two sets of maltoside-based detergents with four alkyl chains by introducing dendronic hydrophobic groups connected to a trimaltoside head group, designated dendronic trimaltosides (DTMs). Representative DTMs conferred enhanced stabilization to multiple membrane proteins compared to the benchmark conventional detergent, DDM. One DTM (i.e., DTM-A6) clearly outperformed DDM in stabilizing human β2 adrenergic receptor (β2AR) and its complex with Gs protein. A further evaluation of this DTM led to a clear visualization of β2AR-Gs complex via electron microscopic analysis. Thus, the current study not only provides novel detergent tools useful for membrane protein study, but also suggests that the dendronic architecture has a role in governing detergent efficacy for membrane protein stabilization.
Collapse
Affiliation(s)
- Aiman Sadaf
- Department of Bionanotechnology , Hanyang University , Ansan , 155-88 , Korea .
| | - Yang Du
- Molecular and Cellular Physiology , Stanford , CA 94305 , USA .
| | - Claudia Santillan
- Department of Cell Physiology and Molecular Biophysics , Center for Membrane Protein Research , School of Medicine , Texas Tech University Health Sciences Center , Lubbock , TX 79430 , USA .
| | - Jonas S Mortensen
- Center of Neuroscience , University of Copenhagen , DK 2200 Copenhagen , Denmark .
| | - Iago Molist
- Department of Life Sciences , Imperial College London , London , SW7 2AZ , UK .
| | - Alpay B Seven
- Structural Biology & Molecular and Cellular Physiology , Stanford , CA 94305 , USA .
| | - Parameswaran Hariharan
- Department of Cell Physiology and Molecular Biophysics , Center for Membrane Protein Research , School of Medicine , Texas Tech University Health Sciences Center , Lubbock , TX 79430 , USA .
| | - Georgios Skiniotis
- Structural Biology & Molecular and Cellular Physiology , Stanford , CA 94305 , USA .
| | - Claus J Loland
- Center of Neuroscience , University of Copenhagen , DK 2200 Copenhagen , Denmark .
| | - Brian K Kobilka
- Molecular and Cellular Physiology , Stanford , CA 94305 , USA .
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics , Center for Membrane Protein Research , School of Medicine , Texas Tech University Health Sciences Center , Lubbock , TX 79430 , USA .
| | - Bernadette Byrne
- Department of Life Sciences , Imperial College London , London , SW7 2AZ , UK .
| | - Pil Seok Chae
- Department of Bionanotechnology , Hanyang University , Ansan , 155-88 , Korea .
| |
Collapse
|
222
|
Discovery of new GPCR ligands to illuminate new biology. Nat Chem Biol 2017; 13:1143-1151. [PMID: 29045379 DOI: 10.1038/nchembio.2490] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 08/30/2017] [Indexed: 12/12/2022]
Abstract
Although a plurality of drugs target G-protein-coupled receptors (GPCRs), most have emerged from classical medicinal chemistry and pharmacology programs and resemble one another structurally and functionally. Though effective, these drugs are often promiscuous. With the realization that GPCRs signal via multiple pathways, and with the emergence of crystal structures for this family of proteins, there is an opportunity to target GPCRs with new chemotypes and confer new signaling modalities. We consider structure-based and physical screening methods that have led to the discovery of new reagents, focusing particularly on the former. We illustrate their use against previously untargeted or orphan GPCRs, against allosteric sites, and against classical orthosteric sites that selectively activate one downstream pathway over others. The ligands that emerge are often chemically novel, which can lead to new biological effects.
Collapse
|
223
|
Abstract
G protein-coupled receptors (GPCRs) are critical regulators of human physiology and make up the largest single class of therapeutic drug targets. Although GPCRs regulate highly diverse physiology, they share a common signaling mechanism whereby extracellular stimuli induce conformational changes in the receptor that enable activation of heterotrimeric G proteins and other intracellular effectors. Advances in GPCR structural biology have made it possible to examine ligand-induced GPCR activation at an unprecedented level of detail. Here, we review the structural basis for family A GPCR activation, with a focus on GPCRs for which structures are available in both active or active-like states and inactive states. Crystallographic and other biophysical data show how chemically diverse ligands stabilize highly conserved conformational changes on the intracellular side of the receptors, allowing many different extracellular stimuli to utilize shared downstream signaling molecules. Finally, we discuss the remaining challenges in understanding GPCR activation and signaling and highlight new technologies that may allow unanswered questions to be resolved.
Collapse
Affiliation(s)
- Aashish Manglik
- Department of Pharmaceutical Chemistry, University of California, San Francisco , San Francisco, California 94158, United States
| | - Andrew C Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School , Boston, Massachusetts 02115, United States
| |
Collapse
|
224
|
Clark LD, Dikiy I, Chapman K, Rödström KE, Aramini J, LeVine MV, Khelashvili G, Rasmussen SG, Gardner KH, Rosenbaum DM. Ligand modulation of sidechain dynamics in a wild-type human GPCR. eLife 2017; 6:28505. [PMID: 28984574 PMCID: PMC5650471 DOI: 10.7554/elife.28505] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/20/2017] [Indexed: 11/13/2022] Open
Abstract
GPCRs regulate all aspects of human physiology, and biophysical studies have deepened our understanding of GPCR conformational regulation by different ligands. Yet there is no experimental evidence for how sidechain dynamics control allosteric transitions between GPCR conformations. To address this deficit, we generated samples of a wild-type GPCR (A2AR) that are deuterated apart from 1H/13C NMR probes at isoleucine δ1 methyl groups, which facilitated 1H/13C methyl TROSY NMR measurements with opposing ligands. Our data indicate that low [Na+] is required to allow large agonist-induced structural changes in A2AR, and that patterns of sidechain dynamics substantially differ between agonist (NECA) and inverse agonist (ZM241385) bound receptors, with the inverse agonist suppressing fast ps-ns timescale motions at the G protein binding site. Our approach to GPCR NMR creates a framework for exploring how different regions of a receptor respond to different ligands or signaling proteins through modulation of fast ps-ns sidechain dynamics.
Collapse
Affiliation(s)
- Lindsay D Clark
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, United States.,Molecular Biophysics Graduate Program, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Igor Dikiy
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, United States
| | - Karen Chapman
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Karin Ej Rödström
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - James Aramini
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, United States
| | - Michael V LeVine
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, United States.,Institute for Computational Bioscience, Weill Cornell Medical College, New York, United States
| | - George Khelashvili
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, United States.,Institute for Computational Bioscience, Weill Cornell Medical College, New York, United States
| | - Søren Gf Rasmussen
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Kevin H Gardner
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, United States.,Department of Chemistry and Biochemistry, City College of New York, New York, United States.,Biochemistry, Chemistry and Biology PhD Programs, Graduate Center, City University of New York, New York, United States
| | - Daniel M Rosenbaum
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, United States.,Molecular Biophysics Graduate Program, The University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
225
|
Kharche S, Joshi M, Sengupta D, Chattopadhyay A. Membrane-induced organization and dynamics of the N-terminal domain of chemokine receptor CXCR1: insights from atomistic simulations. Chem Phys Lipids 2017; 210:142-148. [PMID: 28939366 DOI: 10.1016/j.chemphyslip.2017.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/13/2017] [Accepted: 09/18/2017] [Indexed: 12/28/2022]
Abstract
The CXC chemokine receptor 1 (CXCR1) is an important member of the G protein-coupled receptor (GPCR) family in which the extracellular N-terminal domain has been implicated in ligand binding and selectivity. The structure of this domain has not yet been elucidated due to its inherent dynamics, but experimental evidence points toward membrane-dependent organization and dynamics. To gain molecular insight into the interaction of the N-terminal domain with the membrane bilayer, we performed a series of microsecond time scale atomistic simulations of the N-terminal domain of CXCR1 in the presence and absence of POPC bilayers. Our results show that the peptide displays a high propensity to adopt a β-sheet conformation in the presence of the membrane bilayer. The interaction of the peptide with the membrane bilayer was found to be transient in our simulations. Interestingly, a scrambled peptide, containing the same residues in a randomly varying sequence, did not exhibit membrane-modulated structural dynamics. These results suggest that sequence-dependent electrostatics, modulated by the membrane, could play an important role in folding of the N-terminal domain. We believe that our results reinforce the emerging paradigm that cellular membranes could be important modulators of function of G protein-coupled receptors such as CXCR1.
Collapse
Affiliation(s)
- Shalmali Kharche
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India; Academy of Scientific and Innovative Research, New Delhi, India
| | - Manali Joshi
- Bioinformatics Center, S.P. Pune University, Ganeshkhind Road, Pune 411 007, India
| | - Durba Sengupta
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India; Academy of Scientific and Innovative Research, New Delhi, India.
| | | |
Collapse
|
226
|
Ramil CP, Dong M, An P, Lewandowski TM, Yu Z, Miller LJ, Lin Q. Spirohexene-Tetrazine Ligation Enables Bioorthogonal Labeling of Class B G Protein-Coupled Receptors in Live Cells. J Am Chem Soc 2017; 139:13376-13386. [PMID: 28876923 DOI: 10.1021/jacs.7b05674] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A new bioorthogonal reactant pair, spiro[2.3]hex-1-ene (Sph) and 3,6-di(2-pyridyl)-s-tetrazine (DpTz), for the strain-promoted inverse electron-demand Diels-Alder cycloaddition, that is, tetrazine ligation, is reported. As compared to the previously reported strained alkenes such as trans-cyclooctene (TCO) and 1,3-disubstituted cyclopropene, Sph exhibits balanced reactivity and stability in tetrazine ligation with the protein substrates. A lysine derivative of Sph, SphK, was site-selectively incorporated into the extracellular loop regions (ECLs) of GCGR and GLP-1R, two members of class B G protein-coupled receptors (GPCRs) in mammalian cells with the incorporation efficiency dependent on the location. Subsequent bioorthogonal reactions with the fluorophore-conjugated DpTz reagents afforded the fluorescently labeled GCGR and GLP-1R ECL mutants with labeling yield as high as 68%. A multitude of functional assays were performed with these GPCR mutants, including ligand binding, ligand-induced receptor internalization, and ligand-stimulated intracellular cAMP accumulation. Several positions in the ECL3s of GCGR and GLP-1R were identified that tolerate SphK mutagenesis and subsequent bioorthogonal labeling. The generation of functional, fluorescently labeled ECL3 mutants of GCGR and GLP-1R should allow biophysical studies of conformation dynamics of this important class of GPCRs in their native environment in live cells.
Collapse
Affiliation(s)
- Carlo P Ramil
- Department of Chemistry, State University of New York at Buffalo , Buffalo, New York 14260-3000, United States
| | - Maoqing Dong
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic , Scottsdale, Arizona 85259, United States
| | - Peng An
- Department of Chemistry, State University of New York at Buffalo , Buffalo, New York 14260-3000, United States
| | - Tracey M Lewandowski
- Department of Chemistry, State University of New York at Buffalo , Buffalo, New York 14260-3000, United States
| | - Zhipeng Yu
- Department of Chemistry, State University of New York at Buffalo , Buffalo, New York 14260-3000, United States
| | - Laurence J Miller
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic , Scottsdale, Arizona 85259, United States
| | - Qing Lin
- Department of Chemistry, State University of New York at Buffalo , Buffalo, New York 14260-3000, United States
| |
Collapse
|
227
|
Kjaergaard M, Kragelund BB. Functions of intrinsic disorder in transmembrane proteins. Cell Mol Life Sci 2017; 74:3205-3224. [PMID: 28601983 PMCID: PMC11107515 DOI: 10.1007/s00018-017-2562-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/01/2017] [Indexed: 12/19/2022]
Abstract
Intrinsic disorder is common in integral membrane proteins, particularly in the intracellular domains. Despite this observation, these domains are not always recognized as being disordered. In this review, we will discuss the biological functions of intrinsically disordered regions of membrane proteins, and address why the flexibility afforded by disorder is mechanistically important. Intrinsically disordered regions are present in many common classes of membrane proteins including ion channels and transporters; G-protein coupled receptors (GPCRs), receptor tyrosine kinases and cytokine receptors. The functions of the disordered regions are many and varied. We will discuss selected examples including: (1) Organization of receptors, kinases, phosphatases and second messenger sources into signaling complexes. (2) Modulation of the membrane-embedded domain function by ball-and-chain like mechanisms. (3) Trafficking of membrane proteins. (4) Transient membrane associations. (5) Post-translational modifications most notably phosphorylation and (6) disorder-linked isoform dependent function. We finish the review by discussing the future challenges facing the membrane protein community regarding protein disorder.
Collapse
Affiliation(s)
- Magnus Kjaergaard
- Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus, Denmark.
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark.
- The Danish Research Institute of Translational Neuroscience (DANDRITE), Aarhus, Denmark.
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory and The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
228
|
Yamamoto M, Hirata K, Yamashita K, Hasegawa K, Ueno G, Ago H, Kumasaka T. Protein microcrystallography using synchrotron radiation. IUCRJ 2017; 4:529-539. [PMID: 28989710 PMCID: PMC5619846 DOI: 10.1107/s2052252517008193] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 06/02/2017] [Indexed: 05/21/2023]
Abstract
The progress in X-ray microbeam applications using synchrotron radiation is beneficial to structure determination from macromolecular microcrystals such as small in meso crystals. However, the high intensity of microbeams causes severe radiation damage, which worsens both the statistical quality of diffraction data and their resolution, and in the worst cases results in the failure of structure determination. Even in the event of successful structure determination, site-specific damage can lead to the misinterpretation of structural features. In order to overcome this issue, technological developments in sample handling and delivery, data-collection strategy and data processing have been made. For a few crystals with dimensions of the order of 10 µm, an elegant two-step scanning strategy works well. For smaller samples, the development of a novel method to analyze multiple isomorphous microcrystals was motivated by the success of serial femtosecond crystallography with X-ray free-electron lasers. This method overcame the radiation-dose limit in diffraction data collection by using a sufficient number of crystals. Here, important technologies and the future prospects for microcrystallography are discussed.
Collapse
Affiliation(s)
- Masaki Yamamoto
- Advanced Photon Technology Division, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Kunio Hirata
- Advanced Photon Technology Division, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Keitaro Yamashita
- Advanced Photon Technology Division, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Kazuya Hasegawa
- Advanced Photon Technology Division, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Protein Crystal Analysis Division, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Go Ueno
- Advanced Photon Technology Division, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Hideo Ago
- Advanced Photon Technology Division, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Takashi Kumasaka
- Advanced Photon Technology Division, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Protein Crystal Analysis Division, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| |
Collapse
|
229
|
Tian H, Sakmar TP, Huber T. The Energetics of Chromophore Binding in the Visual Photoreceptor Rhodopsin. Biophys J 2017; 113:60-72. [PMID: 28700926 DOI: 10.1016/j.bpj.2017.05.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 05/04/2017] [Accepted: 05/25/2017] [Indexed: 01/06/2023] Open
Abstract
The visual photoreceptor rhodopsin is a prototypical G-protein-coupled receptor (GPCR) that stabilizes its inverse agonist ligand, 11-cis-retinal (11CR), by a covalent, protonated Schiff base linkage. In the visual dark adaptation, the fundamental molecular event after photobleaching of rhodopsin is the recombination reaction between its apoprotein opsin and 11CR. Here we present a detailed analysis of the kinetics and thermodynamics of this reaction, also known as the "regeneration reaction". We compared the regeneration of purified rhodopsin reconstituted into phospholipid/detergent bicelles with rhodopsin reconstituted into detergent micelles. We found that the lipid bilayer of bicelles stabilized the chromophore-free opsin over the long timescale required for the regeneration experiments, and also facilitated the ligand reuptake binding reaction. We utilized genetic code expansion and site-specific bioorthogonal labeling of rhodopsin with Alexa488 to enable, to our knowledge, a novel fluorescence resonance energy transfer-based measurement of the binding kinetics between opsin and 11CR. Based on these results, we report a complete energy diagram for the regeneration reaction of rhodopsin. We show that the dissociation reaction of rhodopsin to 11CR and opsin has a 25-pM equilibrium dissociation constant, which corresponds to only 0.3 kcal/mol stabilization compared to the noncovalent, tightly bound antagonist-GPCR complex of iodopindolol and β-adrenergic receptor. However, 11CR dissociates four orders-of-magnitude slower than iodopindolol, which corresponds to a 6-kcal/mol higher dissociation free energy barrier. We further used isothermal titration calorimetry to show that ligand binding in rhodopsin is enthalpy driven with -22 kcal/mol, which is 12 kcal/mol more stable than the antagonist-GPCR complex. Our data provide insights into the ligand-receptor binding reaction for rhodopsin in particular, and for GPCRs more broadly.
Collapse
Affiliation(s)
- He Tian
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York
| | - Thomas P Sakmar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York; Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden.
| | - Thomas Huber
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York.
| |
Collapse
|
230
|
Gao Y, Westfield G, Erickson JW, Cerione RA, Skiniotis G, Ramachandran S. Isolation and structure-function characterization of a signaling-active rhodopsin-G protein complex. J Biol Chem 2017; 292:14280-14289. [PMID: 28655769 PMCID: PMC5572916 DOI: 10.1074/jbc.m117.797100] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/26/2017] [Indexed: 01/06/2023] Open
Abstract
The visual photo-transduction cascade is a prototypical G protein-coupled receptor (GPCR) signaling system, in which light-activated rhodopsin (Rho*) is the GPCR catalyzing the exchange of GDP for GTP on the heterotrimeric G protein transducin (GT). This results in the dissociation of GT into its component αT-GTP and β1γ1 subunit complex. Structural information for the Rho*-GT complex will be essential for understanding the molecular mechanism of visual photo-transduction. Moreover, it will shed light on how GPCRs selectively couple to and activate their G protein signaling partners. Here, we report on the preparation of a stable detergent-solubilized complex between Rho* and a heterotrimer (GT*) comprising a GαT/Gαi1 chimera (αT*) and β1γ1 The complex was formed on native rod outer segment membranes upon light activation, solubilized in lauryl maltose neopentyl glycol, and purified with a combination of affinity and size-exclusion chromatography. We found that the complex is fully functional and that the stoichiometry of Rho* to GαT* is 1:1. The molecular weight of the complex was calculated from small-angle X-ray scattering data and was in good agreement with a model consisting of one Rho* and one GT*. The complex was visualized by negative-stain electron microscopy, which revealed an architecture similar to that of the β2-adrenergic receptor-GS complex, including a flexible αT* helical domain. The stability and high yield of the purified complex should allow for further efforts toward obtaining a high-resolution structure of this important signaling complex.
Collapse
Affiliation(s)
- Yang Gao
- From the Department of Chemistry and Chemical Biology, Baker Laboratory, and Ithaca, New York 14853
| | - Gerwin Westfield
- Life Sciences Institute and Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Jon W Erickson
- From the Department of Chemistry and Chemical Biology, Baker Laboratory, and Ithaca, New York 14853
| | - Richard A Cerione
- From the Department of Chemistry and Chemical Biology, Baker Laboratory, and Ithaca, New York 14853; Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853.
| | - Georgios Skiniotis
- Life Sciences Institute and Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Sekar Ramachandran
- From the Department of Chemistry and Chemical Biology, Baker Laboratory, and Ithaca, New York 14853
| |
Collapse
|
231
|
Wright DJ, O'Reilly M, Tisi D. Engineering and purification of a thermostable, high-yield, variant of PfCRT, the Plasmodium falciparum chloroquine resistance transporter. Protein Expr Purif 2017; 141:7-18. [PMID: 28823509 DOI: 10.1016/j.pep.2017.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 06/16/2017] [Accepted: 08/10/2017] [Indexed: 11/30/2022]
Abstract
Historically chloroquine was used to treat the most deadly form of malaria, caused by the parasite Plasmodium falciparum. The selective pressure of chloroquine therapy led to the rapid emergence of chloroquine resistant parasites. Resistance has been attributed to the Plasmodium falciparum Chloroquine Resistance Transporter (PfCRT), an integral membrane protein of unknown structure. A PfCRT structure would provide new insights into how the protein confers chloroquine resistance and thereby also yield novel opportunities for developing anti-malarial therapies. Although PfCRT is an attractive target for characterisation and structure determination, very little work has been published on its expression and purification. Here we present a medium throughput protocol, employing Sf9 insect cells, for testing the expression, stability and purification yield of rationally designed PfCRT mutant constructs and constructs of a PfCRT orthologue from Neospora caninum (NcCRT). We have identified a conserved cysteine residue in PfCRT that results in elevated protein stability when mutated. Combining this mutation with the insertion of T4-lysozyme into a specific surface loop further augments PfCRT protein yield and thermostability. Screening also identified an NcCRT construct with an elevated purification yield. Furthermore it was possible to purify both PfCRT and NcCRT constructs at milligram-scales, with high purities and with size exclusion chromatography profiles that were consistent with monodispersed, homogeneous protein.
Collapse
Affiliation(s)
- David J Wright
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, UK
| | - Marc O'Reilly
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, UK
| | - Dominic Tisi
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, UK.
| |
Collapse
|
232
|
Liu X, Ahn S, Kahsai AW, Meng KC, Latorraca NR, Pani B, Venkatakrishnan AJ, Masoudi A, Weis WI, Dror RO, Chen X, Lefkowitz RJ, Kobilka BK. Mechanism of intracellular allosteric β 2AR antagonist revealed by X-ray crystal structure. Nature 2017; 548:480-484. [PMID: 28813418 DOI: 10.1038/nature23652] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 07/17/2017] [Indexed: 12/24/2022]
Abstract
G-protein-coupled receptors (GPCRs) pose challenges for drug discovery efforts because of the high degree of structural homology in the orthosteric pocket, particularly for GPCRs within a single subfamily, such as the nine adrenergic receptors. Allosteric ligands may bind to less-conserved regions of these receptors and therefore are more likely to be selective. Unlike orthosteric ligands, which tonically activate or inhibit signalling, allosteric ligands modulate physiologic responses to hormones and neurotransmitters, and may therefore have fewer adverse effects. The majority of GPCR crystal structures published to date were obtained with receptors bound to orthosteric antagonists, and only a few structures bound to allosteric ligands have been reported. Compound 15 (Cmpd-15) is an allosteric modulator of the β2 adrenergic receptor (β2AR) that was recently isolated from a DNA-encoded small-molecule library. Orthosteric β-adrenergic receptor antagonists, known as beta-blockers, are amongst the most prescribed drugs in the world and Cmpd-15 is the first allosteric beta-blocker. Cmpd-15 exhibits negative cooperativity with agonists and positive cooperativity with inverse agonists. Here we present the structure of the β2AR bound to a polyethylene glycol-carboxylic acid derivative (Cmpd-15PA) of this modulator. Cmpd-15PA binds to a pocket formed primarily by the cytoplasmic ends of transmembrane segments 1, 2, 6 and 7 as well as intracellular loop 1 and helix 8. A comparison of this structure with inactive- and active-state structures of the β2AR reveals the mechanism by which Cmpd-15 modulates agonist binding affinity and signalling.
Collapse
Affiliation(s)
- Xiangyu Liu
- Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Seungkirl Ahn
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Alem W Kahsai
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Kai-Cheng Meng
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Naomi R Latorraca
- Department of Computer Science, Stanford University, Stanford, California 94305, USA.,Institute for Computational and Mathematical Engineering, Stanford University, Stanford, California 94305, USA
| | - Biswaranjan Pani
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - A J Venkatakrishnan
- Department of Computer Science, Stanford University, Stanford, California 94305, USA.,Institute for Computational and Mathematical Engineering, Stanford University, Stanford, California 94305, USA.,Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, California 94305, USA
| | - Ali Masoudi
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - William I Weis
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Ron O Dror
- Department of Computer Science, Stanford University, Stanford, California 94305, USA.,Institute for Computational and Mathematical Engineering, Stanford University, Stanford, California 94305, USA
| | - Xin Chen
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Robert J Lefkowitz
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA.,Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA.,Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Brian K Kobilka
- Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, Beijing 100084, China.,Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, California 94305, USA
| |
Collapse
|
233
|
Park M, Reddy GR, Wallukat G, Xiang YK, Steinberg SF. β 1-adrenergic receptor O-glycosylation regulates N-terminal cleavage and signaling responses in cardiomyocytes. Sci Rep 2017; 7:7890. [PMID: 28801655 PMCID: PMC5554155 DOI: 10.1038/s41598-017-06607-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 06/15/2017] [Indexed: 11/09/2022] Open
Abstract
β1-adrenergic receptors (β1ARs) mediate catecholamine actions in cardiomyocytes by coupling to both Gs/cAMP-dependent and Gs-independent/growth-regulatory pathways. Structural studies of the β1AR define ligand-binding sites in the transmembrane helices and effector docking sites at the intracellular surface of the β1AR, but the extracellular N-terminus, which is a target for post-translational modifications, typically is ignored. This study identifies β1AR N-terminal O-glycosylation at Ser37/Ser41 as a mechanism that prevents β1AR N-terminal cleavage. We used an adenoviral overexpression strategy to show that both full-length/glycosylated β1ARs and N-terminally truncated glycosylation-defective β1ARs couple to cAMP and ERK-MAPK signaling pathways in cardiomyocytes. However, a glycosylation defect that results in N-terminal truncation stabilizes β1ARs in a conformation that is biased toward the cAMP pathway. The identification of O-glycosylation and N-terminal cleavage as novel structural determinants of β1AR responsiveness in cardiomyocytes could be exploited for therapeutic advantage.
Collapse
Affiliation(s)
- Misun Park
- Department of Pharmacology, Columbia University, New York, NY, USA
| | - Gopireddy R Reddy
- Department of Pharmacology, University of California at Davis, Davis, CA, USA
| | - Gerd Wallukat
- Experimental and Clinical Research Center, Charité Campus Buch and Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Yang K Xiang
- Department of Pharmacology, University of California at Davis, Davis, CA, USA.,VA Northern California Health Care System, Mather, CA, USA
| | | |
Collapse
|
234
|
Abstract
High-resolution membrane protein structures are essential for understanding the molecular basis of diverse biological events and important in drug development. Detergents are usually used to extract these bio-macromolecules from the membranes and maintain them in a soluble and stable state in aqueous solutions for downstream characterization. However, many eukaryotic membrane proteins solubilized in conventional detergents tend to undergo structural degradation, necessitating the development of new amphiphilic agents with enhanced properties. In this study, we designed and synthesized a novel class of glucoside amphiphiles, designated tandem malonate-based glucosides (TMGs). A few TMG agents proved effective at both stabilizing a range of membrane proteins and extracting proteins from the membrane environment. These favourable characteristics, along with synthetic convenience, indicate that these agents have potential in membrane protein research.
Collapse
|
235
|
Grisshammer R. New approaches towards the understanding of integral membrane proteins: A structural perspective on G protein-coupled receptors. Protein Sci 2017; 26:1493-1504. [PMID: 28547763 DOI: 10.1002/pro.3200] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 01/12/2023]
Abstract
Three-dimensional structure determination of integral membrane proteins has advanced in unprecedented detail our understanding of mechanistic events of how ion channels, transporters, receptors, and enzymes function. This exciting progress required a tremendous amount of methods development, as exemplified here with G protein-coupled receptors (GPCRs): Optimizing the production of GPCRs in recombinant hosts; increasing the probability of crystal formation using high-affinity ligands, nanobodies, and minimal G proteins for co-crystallization, thus stabilizing receptors into one conformation; using the T4 lysozyme technology and other fusion partners to promote crystal contacts; advancing crystallization methods including the development of novel detergents, and miniaturization and automation of the lipidic cubic phase crystallization method; the concept of conformational thermostabilization of GPCRs; and developing microfocus X-ray synchrotron technologies to analyze small GPCR crystals. However, despite immense progress to explain how GPCRs function, many receptors pose intractable hurdles to structure determination at this time. Three emerging methods, serial femtosecond crystallography, micro electron diffraction, and single particle electron cryo-microscopy, hold promise to overcome current limitations in structural membrane biology.
Collapse
Affiliation(s)
- Reinhard Grisshammer
- Department of Health and Human Services, Membrane Protein Structure Function Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Rockville, Maryland, 20852
| |
Collapse
|
236
|
Clark T. G-Protein coupled receptors: answers from simulations. Beilstein J Org Chem 2017; 13:1071-1078. [PMID: 28684986 PMCID: PMC5480328 DOI: 10.3762/bjoc.13.106] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/16/2017] [Indexed: 12/31/2022] Open
Abstract
Molecular-dynamics (MD) simulations are playing an increasingly important role in research into the modes of action of G-protein coupled receptors (GPCRs). In this field, MD simulations are unusually important as, because of the difficult experimental situation, they often offer the only opportunity to determine structural and mechanistic features in atomistic detail. Modern combinations of soft- and hardware have made MD simulations a powerful tool in GPCR research. This is important because GPCRs are targeted by approximately half of the drugs on the market, so that computer-aided drug design plays a major role in GPCR research.
Collapse
Affiliation(s)
- Timothy Clark
- Computer-Chemie-Centrum, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuernberg, Naegelsbachstr. 25, 91052 Erlangen, Germany
| |
Collapse
|
237
|
Kufareva I, Gustavsson M, Zheng Y, Stephens BS, Handel TM. What Do Structures Tell Us About Chemokine Receptor Function and Antagonism? Annu Rev Biophys 2017; 46:175-198. [PMID: 28532213 PMCID: PMC5764094 DOI: 10.1146/annurev-biophys-051013-022942] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Chemokines and their cell surface G protein-coupled receptors are critical for cell migration, not only in many fundamental biological processes but also in inflammatory diseases and cancer. Recent X-ray structures of two chemokines complexed with full-length receptors provided unprecedented insight into the atomic details of chemokine recognition and receptor activation, and computational modeling informed by new experiments leverages these insights to gain understanding of many more receptor:chemokine pairs. In parallel, chemokine receptor structures with small molecules reveal the complicated and diverse structural foundations of small molecule antagonism and allostery, highlight the inherent physicochemical challenges of receptor:chemokine interfaces, and suggest novel epitopes that can be exploited to overcome these challenges. The structures and models promote unique understanding of chemokine receptor biology, including the interpretation of two decades of experimental studies, and will undoubtedly assist future drug discovery endeavors.
Collapse
Affiliation(s)
- Irina Kufareva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093; ,
| | - Martin Gustavsson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093; ,
| | - Yi Zheng
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093; ,
| | - Bryan S Stephens
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093; ,
| | - Tracy M Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093; ,
| |
Collapse
|
238
|
Schmidt D, Gunera J, Baker JG, Kolb P. Similarity- and Substructure-Based Development of β 2-Adrenergic Receptor Ligands Based on Unusual Scaffolds. ACS Med Chem Lett 2017; 8:481-485. [PMID: 28523097 DOI: 10.1021/acsmedchemlett.6b00363] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 03/27/2017] [Indexed: 11/30/2022] Open
Abstract
The β2-adrenergic receptor (β2AR) is a G protein-coupled receptor (GPCR) and a well-explored target. Here, we report the discovery of 13 ligands, ten of which are novel, of this particular GPCR. They have been identified by similarity- and substructure-based searches using multiple ligands, which were described in an earlier study, as starting points. Of note, two of the molecules used as queries here distinguish themselves from other β2AR antagonists by their unique scaffold. The molecules described in this work allow us to explore the ligand space around the previously reported molecules in greater detail, leading to insights into their structure-activity relationship. We also report experimental binding and selectivity data and putative binding modes for the novel molecules.
Collapse
Affiliation(s)
- Denis Schmidt
- Department
of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg
6, 35032 Marburg, Germany
- Institute
of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Jakub Gunera
- Department
of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg
6, 35032 Marburg, Germany
| | - Jillian G. Baker
- Cell
Signalling, School of Life Science, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, U.K
| | - Peter Kolb
- Department
of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg
6, 35032 Marburg, Germany
| |
Collapse
|
239
|
Expression, Functional Characterization, and Solid-State NMR Investigation of the G Protein-Coupled GHS Receptor in Bilayer Membranes. Sci Rep 2017; 7:46128. [PMID: 28387359 PMCID: PMC5384189 DOI: 10.1038/srep46128] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 03/13/2017] [Indexed: 01/14/2023] Open
Abstract
The expression, functional reconstitution and first NMR characterization of the human growth hormone secretagogue (GHS) receptor reconstituted into either DMPC or POPC membranes is described. The receptor was expressed in E. coli. refolded, and reconstituted into bilayer membranes. The molecule was characterized by 15N and 13C solid-state NMR spectroscopy in the absence and in the presence of its natural agonist ghrelin or an inverse agonist. Static 15N NMR spectra of the uniformly labeled receptor are indicative of axially symmetric rotational diffusion of the G protein-coupled receptor in the membrane. In addition, about 25% of the 15N sites undergo large amplitude motions giving rise to very narrow spectral components. For an initial quantitative assessment of the receptor mobility, 1H-13C dipolar coupling values, which are scaled by molecular motions, were determined quantitatively. From these values, average order parameters, reporting the motional amplitudes of the individual receptor segments can be derived. Average backbone order parameters were determined with values between 0.56 and 0.69, corresponding to average motional amplitudes of 40–50° of these segments. Differences between the receptor dynamics in DMPC or POPC membranes were within experimental error. Furthermore, agonist or inverse agonist binding only insignificantly influenced the average molecular dynamics of the receptor.
Collapse
|
240
|
Boura E, Baumlova A, Chalupska D, Dubankova A, Klima M. Metal ions-binding T4 lysozyme as an intramolecular protein purification tag compatible with X-ray crystallography. Protein Sci 2017; 26:1116-1123. [PMID: 28342173 DOI: 10.1002/pro.3162] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/17/2017] [Indexed: 11/08/2022]
Abstract
Phage T4 lysozyme is a well folded and highly soluble protein that is widely used as an insertion tag to improve solubility and crystallization properties of poorly behaved recombinant proteins. It has been used in the fusion protein strategy to facilitate crystallization of various proteins including multiple G protein-coupled receptors, lipid kinases, or sterol binding proteins. Here, we present a structural and biochemical characterization of its novel, metal ions-binding mutant (mbT4L). We demonstrate that mbT4L can be used as a purification tag in the immobilized-metal affinity chromatography and that, in many respects, it is superior to the conventional hexahistidine tag. In addition, structural characterization of mbT4L suggests that mbT4L can be used as a purification tag compatible with X-ray crystallography.
Collapse
Affiliation(s)
- Evzen Boura
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Adriana Baumlova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Dominika Chalupska
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Anna Dubankova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Klima
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
241
|
Yano A, Takahashi Y, Moriguchi H, Inazumi T, Koga T, Otaka A, Sugimoto Y. An aromatic amino acid within intracellular loop 2 of the prostaglandin EP2 receptor is a prerequisite for selective association and activation of Gαs. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:615-622. [PMID: 28336329 DOI: 10.1016/j.bbalip.2017.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 03/17/2017] [Accepted: 03/18/2017] [Indexed: 10/19/2022]
Abstract
We previously demonstrated that the aromatic moiety of Tyr143 within the intracellular loop 2 (ICL2) region of the prostaglandin EP2 receptor plays a crucial role in Gs coupling. Here we investigated whether the ICL2 of the EP2 receptor directly binds to Gαs and whether an aromatic moiety affects this interaction. In Chinese hamster ovary cells, mutations of Tyr143 reduced the ability of the EP2 receptor to interact with G proteins as demonstrated by GTPγS sensitivity, as well as the ability of agonist-induced cAMP formation, with the rank order of Phe>Tyr (wild-type)=Trp>Leu>Ala (=0). We found that the wild-type ICL2 peptide (i2Y) and its mutant with Phe at Tyr143 (i2F) inhibited receptor-G protein complex formation of wild-type EP2 in membranes, whereas the Ala-substituted mutant (i2A) did not. Specific interactions between these peptides and the Gαs protein were detected by surface plasmon resonance, but Gαs showed different association rates, with a rank order of i2F>i2Y≫i2A, with similar dissociation rates. Moreover, i2F and i2Y, but not i2A activated membrane adenylyl cyclase. These results indicate that the ICL2 region of the EP2 receptor is its potential interaction site with Gαs, and that the aromatic side chain moiety at position 143 is a determinant for the accessibility of the ICL2 to the Gαs protein.
Collapse
Affiliation(s)
- Akiko Yano
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yuko Takahashi
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Hiromi Moriguchi
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Tomoaki Inazumi
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan; AMED-CREST, Tokyo 100-0004, Japan
| | - Tomoaki Koga
- Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto, Japan
| | - Akira Otaka
- Department of Bioorganic Synthetic Chemistry, Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, Japan
| | - Yukihiko Sugimoto
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan; Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan; AMED-CREST, Tokyo 100-0004, Japan.
| |
Collapse
|
242
|
Park BB, Lee N, Kim Y, Jae Y, Choi S, Kang N, Hong YR, Ok K, Cho J, Jeon YH, Lee EH, Byun Y, Koo J. Analogues of Dehydroacetic Acid as Selective and Potent Agonists of an Ectopic Odorant Receptor through a Combination of Hydrophilic and Hydrophobic Interactions. ChemMedChem 2017; 12:477-482. [DOI: 10.1002/cmdc.201600612] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/03/2017] [Indexed: 01/08/2023]
Affiliation(s)
| | - NaHye Lee
- Department of Brain and Cognitive Sciences; DGIST; Daegu 42988 South Korea
- Department of New Biology; DGIST
| | - YunHye Kim
- College of Pharmacy; Korea University; Sejong 30019 South Korea
| | - YoonGyu Jae
- Department of Brain and Cognitive Sciences; DGIST; Daegu 42988 South Korea
- Department of New Biology; DGIST
| | - Seunghyun Choi
- College of Pharmacy; Korea University; Sejong 30019 South Korea
| | | | | | - Kiwon Ok
- College of Pharmacy; Korea University; Sejong 30019 South Korea
| | - Jeonghee Cho
- Department of NanoBio Medical Science; Dankook University; Cheonan 31116 South Korea
| | - Young Ho Jeon
- College of Pharmacy; Korea University; Sejong 30019 South Korea
| | - Eun Hee Lee
- College of Pharmacy; Korea University; Sejong 30019 South Korea
| | - Youngjoo Byun
- College of Pharmacy; Korea University; Sejong 30019 South Korea
| | - JaeHyung Koo
- Department of Brain and Cognitive Sciences; DGIST; Daegu 42988 South Korea
- Department of New Biology; DGIST
| |
Collapse
|
243
|
Das M, Du Y, Ribeiro O, Hariharan P, Mortensen JS, Patra D, Skiniotis G, Loland CJ, Guan L, Kobilka BK, Byrne B, Chae PS. Conformationally Preorganized Diastereomeric Norbornane-Based Maltosides for Membrane Protein Study: Implications of Detergent Kink for Micellar Properties. J Am Chem Soc 2017; 139:3072-3081. [PMID: 28218862 PMCID: PMC5818264 DOI: 10.1021/jacs.6b11997] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Detergents are essential tools for functional and structural studies of membrane proteins. However, conventional detergents are limited in their scope and utility, particularly for eukaryotic membrane proteins. Thus, there are major efforts to develop new amphipathic agents with enhanced properties. Here, a novel class of diastereomeric agents with a preorganized conformation, designated norbornane-based maltosides (NBMs), were prepared and evaluated for their ability to solubilize and stabilize membrane proteins. Representative NBMs displayed enhanced behaviors compared to n-dodecyl-β-d-maltoside (DDM) for all membrane proteins tested. Efficacy of the individual NBMs varied depending on the overall detergent shape and alkyl chain length. Specifically, NBMs with no kink in the lipophilic region conferred greater stability to the proteins than NBMs with a kink. In addition, long alkyl chain NBMs were generally better at stabilizing membrane proteins than short alkyl chain agents. Furthermore, use of one well-behaving NBM enabled us to attain a marked stabilization and clear visualization of a challenging membrane protein complex using electron microscopy. Thus, this study not only describes novel maltoside detergents with enhanced protein-stabilizing properties but also suggests that overall detergent geometry has an important role in determining membrane protein stability. Notably, this is the first systematic study on the effect of detergent kinking on micellar properties and associated membrane protein stability.
Collapse
Affiliation(s)
- Manabendra Das
- Department of Bionanotechnology, Hanyang University, Ansan 155-88, Korea
| | - Yang Du
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, United States
| | - Orquidea Ribeiro
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Parameswaran Hariharan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Jonas S. Mortensen
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Dhabaleswar Patra
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Georgios Skiniotis
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Claus J. Loland
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Brian K. Kobilka
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, United States
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Pil Seok Chae
- Department of Bionanotechnology, Hanyang University, Ansan 155-88, Korea
| |
Collapse
|
244
|
Gallion J, Koire A, Katsonis P, Schoenegge A, Bouvier M, Lichtarge O. Predicting phenotype from genotype: Improving accuracy through more robust experimental and computational modeling. Hum Mutat 2017; 38:569-580. [PMID: 28230923 PMCID: PMC5516182 DOI: 10.1002/humu.23193] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/25/2017] [Accepted: 02/04/2017] [Indexed: 11/11/2022]
Abstract
Computational prediction yields efficient and scalable initial assessments of how variants of unknown significance may affect human health. However, when discrepancies between these predictions and direct experimental measurements of functional impact arise, inaccurate computational predictions are frequently assumed as the source. Here, we present a methodological analysis indicating that shortcomings in both computational and biological data can contribute to these disagreements. We demonstrate that incomplete assaying of multifunctional proteins can affect the strength of correlations between prediction and experiments; a variant's full impact on function is better quantified by considering multiple assays that probe an ensemble of protein functions. Additionally, many variants predictions are sensitive to protein alignment construction and can be customized to maximize relevance of predictions to a specific experimental question. We conclude that inconsistencies between computation and experiment can often be attributed to the fact that they do not test identical hypotheses. Aligning the design of the computational input with the design of the experimental output will require cooperation between computational and biological scientists, but will also lead to improved estimations of computational prediction accuracy and a better understanding of the genotype–phenotype relationship.
Collapse
Affiliation(s)
- Jonathan Gallion
- Program in Structural and Computational Biology and Molecular BiophysicsBaylor College of MedicineHoustonTexas
| | - Amanda Koire
- Program in Structural and Computational Biology and Molecular BiophysicsBaylor College of MedicineHoustonTexas
| | - Panagiotis Katsonis
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTexas
| | - Anne‐Marie Schoenegge
- Department of BiochemistryInstitute for Research in Immunology and CancerUniversité de MontrealQuebecCanada
| | - Michel Bouvier
- Department of BiochemistryInstitute for Research in Immunology and CancerUniversité de MontrealQuebecCanada
| | - Olivier Lichtarge
- Program in Structural and Computational Biology and Molecular BiophysicsBaylor College of MedicineHoustonTexas
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTexas
| |
Collapse
|
245
|
Expression, Purification, and Monitoring of Conformational Changes of hCB2 TMH67H8 in Different Membrane-Mimetic Lipid Mixtures Using Circular Dichroism and NMR Techniques. MEMBRANES 2017; 7:membranes7010010. [PMID: 28218648 PMCID: PMC5371971 DOI: 10.3390/membranes7010010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/26/2017] [Accepted: 02/06/2017] [Indexed: 12/13/2022]
Abstract
This work was intended to develop self-assembly lipids for incorporating G-protein coupled receptors (GPCRs) in order to improve the success rate for nuclear magnetic resonance spectroscopy (NMR) structural elucidation. We hereby report the expression and purification of uniformly 15N-labeled human cannabinoid receptor-2 domain in insect cell media. The domain was refolded by screening several membrane mimetic environments. Different q ratios of isotropic bicelles were screened for solubilizing transmembrane helix 6, 7 and 8 (TMH67H8). As the concentration of dimyristoylphosphocholine (DMPC) was increased such that the q ratio was between 0.16 and 0.42, there was less crowding in the cross peaks with increasing q ratio. In bicelles of q = 0.42, the maximum number of cross peaks were obtained and the cross peaks were uniformly dispersed. The receptor domain in bicelles beyond q = 0.42 resulted in peak crowding. These studies demonstrate that GPCRs folding especially in bicelles is protein-specific and requires the right mix of the longer chain and shorter chain lipids to provide the right environment for proper folding. These findings will allow further development of novel membrane mimetics to provide greater diversity of lipid mixtures than those currently being employed for GPCR stability and folding, which are critical for both X-ray and NMR studies of GPCRs.
Collapse
|
246
|
Podlewska S, Czarnecki WM, Kafel R, Bojarski AJ. Creating the New from the Old: Combinatorial Libraries Generation with Machine-Learning-Based Compound Structure Optimization. J Chem Inf Model 2017; 57:133-147. [DOI: 10.1021/acs.jcim.6b00426] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Sabina Podlewska
- Department of Medicinal
Chemistry, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Wojciech M. Czarnecki
- Faculty
of Mathematics and Computer Science, Jagiellonian University, 30-348 Kraków, Poland
| | - Rafał Kafel
- Department of Medicinal
Chemistry, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Andrzej J. Bojarski
- Department of Medicinal
Chemistry, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| |
Collapse
|
247
|
Oddi S, Stepniewski TM, Totaro A, Selent J, Scipioni L, Dufrusine B, Fezza F, Dainese E, Maccarrone M. Palmitoylation of cysteine 415 of CB 1 receptor affects ligand-stimulated internalization and selective interaction with membrane cholesterol and caveolin 1. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:523-532. [PMID: 28215712 DOI: 10.1016/j.bbalip.2017.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 02/02/2017] [Accepted: 02/10/2017] [Indexed: 10/20/2022]
Abstract
We previously demonstrated that CB1 receptor is palmitoylated at cysteine 415, and that such a post-translational modification affects its biological activity. To assess the molecular mechanisms responsible for modulation of CB1 receptor function by S-palmitoylation, in this study biochemical and morphological approaches were paralleled with computational analyses. Molecular dynamics simulations suggested that this acyl chain stabilizes helix 8 as well as the interaction of CB1 receptor with membrane cholesterol. In keeping with these in silico data, experimental results showed that the non-palmitoylated CB1 receptor was unable to interact efficaciously with caveolin 1, independently of its activation state. Moreover, in contrast with the wild-type receptor, the lack of S-palmitoylation in the helix 8 made the mutant CB1 receptor completely irresponsive to agonist-induced effects in terms of both lipid raft partitioning and receptor internalization. Overall, our results support the notion that palmitoylation of cysteine 415 modulates the conformational state of helix 8 and influences the interactions of CB1 receptor with cholesterol and caveolin 1, suggesting that the palmitoyl chain may serve as a functional interface for CB1 receptor localization and function.
Collapse
Affiliation(s)
- Sergio Oddi
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy; European Center for Brain Research (CERC)/Santa Lucia Foundation IRCCS, Rome, Italy.
| | - Tomasz Maciej Stepniewski
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences of Pompeu Fabra University (UPF), Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain; Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Antonio Totaro
- European Center for Brain Research (CERC)/Santa Lucia Foundation IRCCS, Rome, Italy
| | - Jana Selent
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences of Pompeu Fabra University (UPF), Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Lucia Scipioni
- European Center for Brain Research (CERC)/Santa Lucia Foundation IRCCS, Rome, Italy; Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Beatrice Dufrusine
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Filomena Fezza
- European Center for Brain Research (CERC)/Santa Lucia Foundation IRCCS, Rome, Italy; Department of Experimental Medicine and Surgery, Tor Vergata University of Rome, Rome, Italy
| | - Enrico Dainese
- European Center for Brain Research (CERC)/Santa Lucia Foundation IRCCS, Rome, Italy; Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Mauro Maccarrone
- European Center for Brain Research (CERC)/Santa Lucia Foundation IRCCS, Rome, Italy; Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy.
| |
Collapse
|
248
|
Glukhova A, Thal DM, Nguyen AT, Vecchio EA, Jörg M, Scammells PJ, May LT, Sexton PM, Christopoulos A. Structure of the Adenosine A1 Receptor Reveals the Basis for Subtype Selectivity. Cell 2017; 168:867-877.e13. [DOI: 10.1016/j.cell.2017.01.042] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 12/15/2016] [Accepted: 01/30/2017] [Indexed: 01/10/2023]
|
249
|
Jin T, Chuenchor W, Jiang J, Cheng J, Li Y, Fang K, Huang M, Smith P, Xiao TS. Design of an expression system to enhance MBP-mediated crystallization. Sci Rep 2017; 7:40991. [PMID: 28112203 PMCID: PMC5256280 DOI: 10.1038/srep40991] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/13/2016] [Indexed: 11/09/2022] Open
Abstract
Crystallization chaperones have been used to facilitate the crystallization of challenging proteins. Even though the maltose-binding protein (MBP) is one of the most commonly used crystallization chaperones, the design of optimal expression constructs for crystallization of MBP fusion proteins remains a challenge. To increase the success rate of MBP-facilitated crystallization, a series of expression vectors have been designed with either a short flexible linker or a set of rigid helical linkers. Seven death domain superfamily members were tested for crystallization with this set of vectors, six of which had never been crystallized before. All of the seven targets were crystallized, and their structures were determined using at least one of the vectors. Our successful crystallization of all of the targets demonstrates the validity of our approach and expands the arsenal of the crystallization chaperone toolkit, which may be applicable to crystallization of other difficult protein targets, as well as to other crystallization chaperones.
Collapse
Affiliation(s)
- Tengchuan Jin
- Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Diseases, CAS Center for Excellence in Molecular Cell Sciences, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei 230027 China.,Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Watchalee Chuenchor
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Jiansheng Jiang
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Jinbo Cheng
- Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Diseases, CAS Center for Excellence in Molecular Cell Sciences, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei 230027 China
| | - Yajuan Li
- Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Diseases, CAS Center for Excellence in Molecular Cell Sciences, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei 230027 China
| | - Kang Fang
- Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Diseases, CAS Center for Excellence in Molecular Cell Sciences, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei 230027 China
| | - Mo Huang
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Patrick Smith
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Tsan Sam Xiao
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106 USA
| |
Collapse
|
250
|
Abstract
Ligand-induced activation of G protein-coupled receptors (GPCRs) is a key mechanism permitting communication between cells and organs. Enormous progress has recently elucidated the structural and dynamic features of GPCR transmembrane signaling. Nanobodies, the recombinant antigen-binding fragments of camelid heavy-chain-only antibodies, have emerged as important research tools to lock GPCRs in particular conformational states. Active-state stabilizing nanobodies have elucidated several agonist-bound structures of hormone-activated GPCRs and have provided insight into the dynamic character of receptors. Nanobodies have also been used to stabilize transient GPCR transmembrane signaling complexes, yielding the first structural insights into GPCR signal transduction across the cellular membrane. Beyond their in vitro uses, nanobodies have served as conformational biosensors in living systems and have provided novel ways to modulate GPCR function. Here, we highlight several examples of how nanobodies have enabled the study of GPCR function and give insights into potential future uses of these important tools.
Collapse
Affiliation(s)
- Aashish Manglik
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305; ,
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305; ,
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium;
- VIB Structural Biology Research Center, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| |
Collapse
|