201
|
Enhancer of Rudimentary Homolog Affects the Replication Stress Response through Regulation of RNA Processing. Mol Cell Biol 2015; 35:2979-90. [PMID: 26100022 DOI: 10.1128/mcb.01276-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 06/11/2015] [Indexed: 12/21/2022] Open
Abstract
Accurate replication of DNA is imperative for the maintenance of genomic integrity. We identified Enhancer of Rudimentary Homolog (ERH) using a whole-genome RNA interference (RNAi) screen to discover novel proteins that function in the replication stress response. Here we report that ERH is important for DNA replication and recovery from replication stress. ATR pathway activity is diminished in ERH-deficient cells. The reduction in ATR signaling corresponds to a decrease in the expression of multiple ATR pathway genes, including ATR itself. ERH interacts with multiple RNA processing complexes, including splicing regulators. Furthermore, splicing of ATR transcripts is deficient in ERH-depleted cells. Transcriptome-wide analysis indicates that ERH depletion affects the levels of ∼1,500 transcripts, with DNA replication and repair genes being highly enriched among those with reduced expression. Splicing defects were evident in ∼750 protein-coding genes, which again were enriched for DNA metabolism genes. Thus, ERH regulation of RNA processing is needed to ensure faithful DNA replication and repair.
Collapse
|
202
|
Zhang G, Lischetti T, Hayward DG, Nilsson J. Distinct domains in Bub1 localize RZZ and BubR1 to kinetochores to regulate the checkpoint. Nat Commun 2015; 6:7162. [PMID: 26031201 PMCID: PMC4458899 DOI: 10.1038/ncomms8162] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 04/10/2015] [Indexed: 12/29/2022] Open
Abstract
The spindle assembly checkpoint (SAC) ensures proper chromosome segregation by delaying anaphase onset in response to unattached kinetochores. Checkpoint signalling requires the kinetochore localization of the Mad1–Mad2 complex that in more complex eukaryotes depends on the Rod–Zwilch–ZW10 (RZZ) complex. The kinetochore protein Zwint has been proposed to be the kinetochore receptor for RZZ, but here we show that Bub1 and not Zwint is required for RZZ recruitment. We find that the middle region of Bub1 encompassing a domain essential for SAC signalling contributes to RZZ localization. In addition, we show that a distinct region in Bub1 mediates kinetochore localization of BubR1 through direct binding, but surprisingly removal of this region increases checkpoint strength. Our work thus uncovers how Bub1 coordinates checkpoint signalling by distinct domains for RZZ and BubR1 recruitment and suggests that Bub1 localizes antagonistic checkpoint activities. The spindle assembly checkpoint (SAC) depends on the recruitment of specific protein complexes to the kinetochore. Here Zhang et al. show that Bub1 recruits the RZZ complex and BubR1 to the kinetochore, and loss of the BubR1 binding sequence enhances checkpoint activity suggesting both SAC activating and silencing roles.
Collapse
Affiliation(s)
- Gang Zhang
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Tiziana Lischetti
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Daniel G Hayward
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Jakob Nilsson
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| |
Collapse
|
203
|
Yukawa M, Ikebe C, Toda T. The Msd1-Wdr8-Pkl1 complex anchors microtubule minus ends to fission yeast spindle pole bodies. ACTA ACUST UNITED AC 2015; 209:549-62. [PMID: 25987607 PMCID: PMC4442821 DOI: 10.1083/jcb.201412111] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 04/16/2015] [Indexed: 12/26/2022]
Abstract
Msd1–Wdr8 are delivered by Pkl1 to mitotic spindle pole bodies, where the Msd1–Wdr8–Pkl1 complex anchors the minus ends of spindle microtubules and antagonizes the outward-pushing forces generated by Cut7/kinesin-5 in fission yeast. The minus ends of spindle microtubules are anchored to a microtubule-organizing center. The conserved Msd1/SSX2IP proteins are localized to the spindle pole body (SPB) and the centrosome in fission yeast and humans, respectively, and play a critical role in microtubule anchoring. In this paper, we show that fission yeast Msd1 forms a ternary complex with another conserved protein, Wdr8, and the minus end–directed Pkl1/kinesin-14. Individual deletion mutants displayed the identical spindle-protrusion phenotypes. Msd1 and Wdr8 were delivered by Pkl1 to mitotic SPBs, where Pkl1 was tethered through Msd1–Wdr8. The spindle-anchoring defect imposed by msd1/wdr8/pkl1 deletions was suppressed by a mutation of the plus end–directed Cut7/kinesin-5, which was shown to be mutual. Intriguingly, Pkl1 motor activity was not required for its anchoring role once targeted to the SPB. Therefore, spindle anchoring through Msd1–Wdr8–Pkl1 is crucial for balancing the Cut7/kinesin-5–mediated outward force at the SPB. Our analysis provides mechanistic insight into the spatiotemporal regulation of two opposing kinesins to ensure mitotic spindle bipolarity.
Collapse
Affiliation(s)
- Masashi Yukawa
- The Francis Crick Institute, Lincoln's Inn Fields Laboratory, London WC2A 3LY, England, UK Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| | - Chiho Ikebe
- The Francis Crick Institute, Lincoln's Inn Fields Laboratory, London WC2A 3LY, England, UK
| | - Takashi Toda
- The Francis Crick Institute, Lincoln's Inn Fields Laboratory, London WC2A 3LY, England, UK
| |
Collapse
|
204
|
Abstract
The microtubule (MT) cytoskeleton gives cells their shape, organizes the cellular interior, and segregates chromosomes. These functions rely on the precise arrangement of MTs, which is achieved by the coordinated action of MT-associated proteins (MAPs). We highlight the first and most important examples of how different MAP activities are combined in vitro to create an ensemble function that exceeds the simple addition of their individual activities, and how the Xenopus laevis egg extract system has been utilized as a powerful intermediate between cellular and purified systems to uncover the design principles of self-organized MT networks in the cell.
Collapse
Affiliation(s)
- Ray Alfaro-Aco
- From the Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| | - Sabine Petry
- From the Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| |
Collapse
|
205
|
Mann MB, Black MA, Jones DJ, Ward JM, Yew CCK, Newberg JY, Dupuy AJ, Rust AG, Bosenberg MW, McMahon M, Print CG, Copeland NG, Jenkins NA. Transposon mutagenesis identifies genetic drivers of Braf(V600E) melanoma. Nat Genet 2015; 47:486-95. [PMID: 25848750 PMCID: PMC4844184 DOI: 10.1038/ng.3275] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 03/16/2015] [Indexed: 02/06/2023]
Abstract
Although nearly half of human melanomas harbor oncogenic BRAF(V600E) mutations, the genetic events that cooperate with these mutations to drive melanogenesis are still largely unknown. Here we show that Sleeping Beauty (SB) transposon-mediated mutagenesis drives melanoma progression in Braf(V600E) mutant mice and identify 1,232 recurrently mutated candidate cancer genes (CCGs) from 70 SB-driven melanomas. CCGs are enriched in Wnt, PI3K, MAPK and netrin signaling pathway components and are more highly connected to one another than predicted by chance, indicating that SB targets cooperative genetic networks in melanoma. Human orthologs of >500 CCGs are enriched for mutations in human melanoma or showed statistically significant clinical associations between RNA abundance and survival of patients with metastatic melanoma. We also functionally validate CEP350 as a new tumor-suppressor gene in human melanoma. SB mutagenesis has thus helped to catalog the cooperative molecular mechanisms driving BRAF(V600E) melanoma and discover new genes with potential clinical importance in human melanoma.
Collapse
Affiliation(s)
- Michael B Mann
- 1] Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, USA. [2] Institute of Molecular and Cell Biology, Singapore
| | - Michael A Black
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Devin J Jones
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, USA
| | | | | | - Justin Y Newberg
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, USA
| | - Adam J Dupuy
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Alistair G Rust
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Marcus W Bosenberg
- 1] Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut, USA. [2] Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Martin McMahon
- 1] Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA. [2] Department of Cell and Molecular Pharmacology, University of California, San Francisco, San Francisco, California, USA
| | - Cristin G Print
- 1] Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand. [2] New Zealand Bioinformatics Institute, University of Auckland, Auckland, New Zealand
| | - Neal G Copeland
- 1] Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, USA. [2] Institute of Molecular and Cell Biology, Singapore
| | - Nancy A Jenkins
- 1] Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, USA. [2] Institute of Molecular and Cell Biology, Singapore
| |
Collapse
|
206
|
Targeting of γ-tubulin complexes to microtubule organizing centers: conservation and divergence. Trends Cell Biol 2015; 25:296-307. [DOI: 10.1016/j.tcb.2014.12.002] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 11/25/2014] [Accepted: 12/01/2014] [Indexed: 11/29/2022]
|
207
|
Bavelloni A, Piazzi M, Raffini M, Faenza I, Blalock WL. Prohibitin 2: At a communications crossroads. IUBMB Life 2015; 67:239-54. [PMID: 25904163 DOI: 10.1002/iub.1366] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/06/2015] [Indexed: 01/02/2023]
Abstract
Prohibitins (PHBs) are a highly conserved class of proteins first discovered as inhibitors of cellular proliferation. Since then PHBs have been found to have a significant role in transcription, nuclear signaling, mitochondrial structural integrity, cell division, and cellular membrane metabolism, placing these proteins among the key regulators of pathologies such as cancer, neuromuscular degeneration, and other metabolic diseases. The human genome encodes two PHB proteins, prohibitin 1 (PHB1) and prohibitin 2 (PHB2), which function not only as a heterodimeric complex, but also independently. While many previous reviews have focused on the better characterized prohibitin, PHB1, this review focuses on PHB2 and new data concerning its cellular functions both in complex with PHB1 and independent of PHB1.
Collapse
Affiliation(s)
- Alberto Bavelloni
- Laboratory of Musculoskeletal Cell Biology, Rizzoli Orthopedic Institute, Bologna, Italy.,Laboratory RAMSES, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Manuela Piazzi
- Department of Biomedical Sciences, University of Bologna, Bologna, Italy
| | - Mirco Raffini
- Laboratory RAMSES, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Irene Faenza
- Department of Biomedical Sciences, University of Bologna, Bologna, Italy
| | - William L Blalock
- Laboratory of Musculoskeletal Cell Biology, Rizzoli Orthopedic Institute, Bologna, Italy.,National Research Council of Italy, Institute of Molecular Genetics, Bologna, Italy
| |
Collapse
|
208
|
Gordon CA, Gulzar ZG, Brooks JD. NUSAP1 expression is upregulated by loss of RB1 in prostate cancer cells. Prostate 2015; 75:517-26. [PMID: 25585568 DOI: 10.1002/pros.22938] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 11/05/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND Overexpression of NUSAP1 is associated with poor prognosis in prostate cancer, but little is known about what leads to its overexpression. Based on previous observations that NUSAP1 expression is enhanced by E2F1, we hypothesized that NUSAP1 expression is regulated, at least in part, by loss of RB1 via the RB1/E2F1 axis. METHODS Using Significance Analysis of Microarrays, we examined RB1, E2F1, and NUSAP1 transcript levels in prostate cancer gene expression datasets. We compared NUSAP1 expression levels in DU145, LNCaP, and PC-3 prostate cancer cell lines via use of cDNA microarray data, RT-qPCR, and Western blots. In addition, we used lentiviral expression constructs to knockdown RB1 in prostate cancer cell lines and transient transfections to knockdown E2F1, and investigated RB1, E2F1, and NUSAP1 expression levels with RT-qPCR and Western blots. Finally, in DU145 cells or PC-3 cells that stably underexpress RB1, we used proliferation and invasion assays to assess whether NUSAP1 knockdown affects proliferation or invasion. RESULTS NUSAP1 transcript levels are positively correlated with E2F1 and negatively correlated with RB1 transcript levels in prostate cancer microarray datasets. NUSAP1 expression is elevated in the RB1-null DU145 prostate cancer cell line, as opposed to LNCaP and PC-3 cell lines. Furthermore, NUSAP1 expression increases upon knockdown of RB1 in prostate cancer cell lines (LNCaP and PC-3) and decreases after knockdown of E2F1. Lastly, knockdown of NUSAP1 in DU145 cells or PC-3 cells with stable knockdown of RB1 decreases proliferation and invasion of these cells. CONCLUSION Our studies support the notion that NUSAP1 expression is upregulated by loss of RB1 via the RB1/E2F1 axis in prostate cancer cells. Such upregulation may promote prostate cancer progression by increasing proliferation and invasion of prostate cancer cells. NUSAP1 may thus represent a novel therapeutic target.
Collapse
Affiliation(s)
- Catherine A Gordon
- Department of Urology, Stanford University School of Medicine, Stanford, California
| | | | | |
Collapse
|
209
|
Abstract
A shared feature among all microtubule (MT)-dependent processes is the requirement for MTs to be organized in arrays of defined geometry. At a fundamental level, this is achieved by precisely controlling the timing and localization of the nucleation events that give rise to new MTs. To this end, MT nucleation is restricted to specific subcellular sites called MT-organizing centres. The primary MT-organizing centre in proliferating animal cells is the centrosome. However, the discovery of MT nucleation capacity of the Golgi apparatus (GA) has substantially changed our understanding of MT network organization in interphase cells. Interestingly, MT nucleation at the Golgi apparently relies on multiprotein complexes, similar to those present at the centrosome, that assemble at the cis-face of the organelle. In this process, AKAP450 plays a central role, acting as a scaffold to recruit other centrosomal proteins important for MT generation. MT arrays derived from either the centrosome or the GA differ in their geometry, probably reflecting their different, yet complementary, functions. Here, I review our current understanding of the molecular mechanisms involved in MT nucleation at the GA and how Golgi- and centrosome-based MT arrays work in concert to ensure the formation of a pericentrosomal polarized continuous Golgi ribbon structure, a critical feature for cell polarity in mammalian cells. In addition, I comment on the important role of the Golgi-nucleated MTs in organizing specialized MT arrays that serve specific functions in terminally differentiated cells.
Collapse
Affiliation(s)
- Rosa M Rios
- Cell Signalling Department, CABIMER-CSIC, Seville 41092, Spain
| |
Collapse
|
210
|
Woodruff JB, Wueseke O, Hyman AA. Pericentriolar material structure and dynamics. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0459. [PMID: 25047613 PMCID: PMC4113103 DOI: 10.1098/rstb.2013.0459] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A centrosome consists of two barrel-shaped centrioles embedded in a matrix of proteins known as the pericentriolar material (PCM). The PCM serves as a platform for protein complexes that regulate organelle trafficking, protein degradation and spindle assembly. Perhaps most important for cell division, the PCM concentrates tubulin and serves as the primary organizing centre for microtubules in metazoan somatic cells. Thus, similar to other well-described organelles, such as the nucleus and mitochondria, the cell has compartmentalized a multitude of vital biochemical reactions in the PCM. However, unlike these other organelles, the PCM is not membrane bound, but rather a dynamic collection of protein complexes and nucleic acids that constitute the organelle's interior and determine its boundary. How is the complex biochemical machinery necessary for the myriad centrosome functions concentrated and maintained in the PCM? Recent advances in proteomics and RNAi screening have unveiled most of the key PCM components and hinted at their molecular interactions (
table 1). Now we must understand how the interactions between these molecules contribute to the mesoscale organization and the assembly of the centrosome. Among outstanding questions are the intrinsic mechanisms that determine PCM shape and size, and how it functions as a biochemical reaction hub.
Collapse
Affiliation(s)
- Jeffrey B Woodruff
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| | - Oliver Wueseke
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| |
Collapse
|
211
|
Wachsmuth M, Conrad C, Bulkescher J, Koch B, Mahen R, Isokane M, Pepperkok R, Ellenberg J. High-throughput fluorescence correlation spectroscopy enables analysis of proteome dynamics in living cells. Nat Biotechnol 2015; 33:384-9. [PMID: 25774713 DOI: 10.1038/nbt.3146] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 12/24/2014] [Indexed: 12/25/2022]
Abstract
To understand the function of cellular protein networks, spatial and temporal context is essential. Fluorescence correlation spectroscopy (FCS) is a single-molecule method to study the abundance, mobility and interactions of fluorescence-labeled biomolecules in living cells. However, manual acquisition and analysis procedures have restricted live-cell FCS to short-term experiments of a few proteins. Here, we present high-throughput (HT)-FCS, which automates screening and time-lapse acquisition of FCS data at specific subcellular locations and subsequent data analysis. We demonstrate its utility by studying the dynamics of 53 nuclear proteins. We made 60,000 measurements in 10,000 living human cells, to obtain biophysical parameters that allowed us to classify proteins according to their chromatin binding and complex formation. We also analyzed the cell-cycle-dependent dynamics of the mitotic kinase complex Aurora B/INCENP and showed how a rise in Aurora concentration triggers two-step complex formation. We expect that throughput and robustness will make HT-FCS a broadly applicable technology for characterizing protein network dynamics in cells.
Collapse
Affiliation(s)
- Malte Wachsmuth
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Christian Conrad
- 1] Advanced Light Microscopy Facility, European Molecular Biology Laboratory, Heidelberg, Germany. [2] Theoretical Bioinformatics, German Cancer Research Center/BioQuant, Heidelberg, Germany
| | - Jutta Bulkescher
- Advanced Light Microscopy Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Birgit Koch
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Robert Mahen
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Mayumi Isokane
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Rainer Pepperkok
- 1] Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany. [2] Advanced Light Microscopy Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jan Ellenberg
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
212
|
Fontaine F, Overman J, François M. Pharmacological manipulation of transcription factor protein-protein interactions: opportunities and obstacles. CELL REGENERATION (LONDON, ENGLAND) 2015; 4:2. [PMID: 25848531 PMCID: PMC4365538 DOI: 10.1186/s13619-015-0015-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 02/10/2015] [Indexed: 12/19/2022]
Abstract
Much research on transcription factor biology and their genetic pathways has been undertaken over the last 30 years, especially in the field of developmental biology and cancer. Yet, very little is known about the molecular modalities of highly dynamic interactions between transcription factors, genomic DNA, and protein partners. Methodological breakthroughs such as RNA-seq (RNA-sequencing), ChIP-seq (chromatin immunoprecipitation sequencing), RIME (rapid immunoprecipitation mass spectrometry of endogenous proteins), and single-molecule imaging will dramatically accelerate the discovery rate of their molecular mode of action in the next few years. From a pharmacological viewpoint, conventional methods used to target transcription factor activity with molecules mimicking endogenous ligands fail to achieve high specificity and are limited by a lack of identification of new molecular targets. Protein-protein interactions are likely to represent one of the next major classes of therapeutic targets. Transcription factors, known to act mostly via protein-protein interaction, may well be at the forefront of this type of drug development. One hurdle in this field remains the difficulty to collate structural data into meaningful information for rational drug design. Another hurdle is the lack of chemical libraries meeting the structural requirements of protein-protein interaction disruption. As more attempts at modulating transcription factor activity are undertaken, valuable knowledge will be accumulated on the modality of action required to modulate transcription and how these findings can be applied to developing transcription factor drugs. Key discoveries will spawn into new therapeutic approaches not only as anticancer targets but also for other indications, such as those with an inflammatory component including neurodegenerative disorders, diabetes, and chronic liver and kidney diseases.
Collapse
Affiliation(s)
- Frank Fontaine
- Division of Genomics of Development and Diseases, Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, St Lucia, QLD 4072 Australia
| | - Jeroen Overman
- Division of Genomics of Development and Diseases, Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, St Lucia, QLD 4072 Australia
| | - Mathias François
- Division of Genomics of Development and Diseases, Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, St Lucia, QLD 4072 Australia
| |
Collapse
|
213
|
Hutchins JRA. What's that gene (or protein)? Online resources for exploring functions of genes, transcripts, and proteins. Mol Biol Cell 2015; 25:1187-201. [PMID: 24723265 PMCID: PMC3982986 DOI: 10.1091/mbc.e13-10-0602] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The genomic era has enabled research projects that use approaches including genome-scale screens, microarray analysis, next-generation sequencing, and mass spectrometry-based proteomics to discover genes and proteins involved in biological processes. Such methods generate data sets of gene, transcript, or protein hits that researchers wish to explore to understand their properties and functions and thus their possible roles in biological systems of interest. Recent years have seen a profusion of Internet-based resources to aid this process. This review takes the viewpoint of the curious biologist wishing to explore the properties of protein-coding genes and their products, identified using genome-based technologies. Ten key questions are asked about each hit, addressing functions, phenotypes, expression, evolutionary conservation, disease association, protein structure, interactors, posttranslational modifications, and inhibitors. Answers are provided by presenting the latest publicly available resources, together with methods for hit-specific and data set-wide information retrieval, suited to any genome-based analytical technique and experimental species. The utility of these resources is demonstrated for 20 factors regulating cell proliferation. Results obtained using some of these are discussed in more depth using the p53 tumor suppressor as an example. This flexible and universally applicable approach for characterizing experimental hits helps researchers to maximize the potential of their projects for biological discovery.
Collapse
Affiliation(s)
- James R A Hutchins
- Institute of Human Genetics, Centre National de la Recherche Scientifique (CNRS), 34396 Montpellier, France
| |
Collapse
|
214
|
Abstract
Microtubules (MTs) are highly conserved polar polymers that are key elements of the eukaryotic cytoskeleton and are essential for various cell functions. αβ-tubulin, a heterodimer containing one structural GTP and one hydrolysable and exchangeable GTP, is the building block of MTs and is formed by the sequential action of several molecular chaperones. GTP hydrolysis in the MT lattice is mechanistically coupled with MT growth, thus giving MTs a metastable and dynamic nature. MTs adopt several distinct higher-order organizations that function in cell division and cell morphogenesis. Small molecular weight compounds that bind tubulin are used as herbicides and as research tools to investigate MT functions in plant cells. The de novo formation of MTs in cells requires conserved γ-tubulin-containing complexes and targeting/activating regulatory proteins that contribute to the geometry of MT arrays. Various MT regulators and tubulin modifications control the dynamics and organization of MTs throughout the cell cycle and in response to developmental and environmental cues. Signaling pathways that converge on the regulation of versatile MT functions are being characterized.
Collapse
Affiliation(s)
- Takashi Hashimoto
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-0192, Japan
- Address correspondence to
| |
Collapse
|
215
|
Gholkar AA, Senese S, Lo YC, Capri J, Deardorff WJ, Dharmarajan H, Contreras E, Hodara E, Whitelegge JP, Jackson PK, Torres JZ. Tctex1d2 associates with short-rib polydactyly syndrome proteins and is required for ciliogenesis. Cell Cycle 2015; 14:1116-25. [PMID: 25830415 PMCID: PMC4614626 DOI: 10.4161/15384101.2014.985066] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/28/2014] [Accepted: 11/03/2014] [Indexed: 12/26/2022] Open
Abstract
Short-rib polydactyly syndromes (SRPS) arise from mutations in genes involved in retrograde intraflagellar transport (IFT) and basal body homeostasis, which are critical for cilia assembly and function. Recently, mutations in WDR34 or WDR60 (candidate dynein intermediate chains) were identified in SRPS. We have identified and characterized Tctex1d2, which associates with Wdr34, Wdr60 and other dynein complex 1 and 2 subunits. Tctex1d2 and Wdr60 localize to the base of the cilium and their depletion causes defects in ciliogenesis. We propose that Tctex1d2 is a novel dynein light chain important for trafficking to the cilium and potentially retrograde IFT and is a new molecular link to understanding SRPS pathology.
Collapse
Affiliation(s)
- Ankur A. Gholkar
- Department of Chemistry and Biochemistry; University of California; Los Angeles, CA USA
| | - Silvia Senese
- Department of Chemistry and Biochemistry; University of California; Los Angeles, CA USA
| | - Yu-Chen Lo
- Department of Chemistry and Biochemistry; University of California; Los Angeles, CA USA
- Program in Bioengineering; University of California; Los Angeles, CA USA
| | - Joseph Capri
- Pasarow Mass Spectrometry Laboratory; The Jane and Terry Semel Institute for Neuroscience and Human Behavior; David Geffen School of Medicine; University of California; Los Angeles, CA USA
| | - William J Deardorff
- Department of Chemistry and Biochemistry; University of California; Los Angeles, CA USA
| | - Harish Dharmarajan
- Department of Chemistry and Biochemistry; University of California; Los Angeles, CA USA
| | - Ely Contreras
- Department of Chemistry and Biochemistry; University of California; Los Angeles, CA USA
| | - Emmanuelle Hodara
- Department of Chemistry and Biochemistry; University of California; Los Angeles, CA USA
| | - Julian P Whitelegge
- Pasarow Mass Spectrometry Laboratory; The Jane and Terry Semel Institute for Neuroscience and Human Behavior; David Geffen School of Medicine; University of California; Los Angeles, CA USA
- Molecular Biology Institute; University of California; Los Angeles, CA USA
| | - Peter K Jackson
- Baxter Laboratory for Stem Cell Biology; Department of Microbiology & Immunology; Stanford University School of Medicine; Stanford, CA USA
| | - Jorge Z Torres
- Department of Chemistry and Biochemistry; University of California; Los Angeles, CA USA
- Molecular Biology Institute; University of California; Los Angeles, CA USA
- Jonsson Comprehensive Cancer Center; University of California; Los Angeles, CA USA
| |
Collapse
|
216
|
An improved toolbox to unravel the plant cellular machinery by tandem affinity purification of Arabidopsis protein complexes. Nat Protoc 2014; 10:169-87. [DOI: 10.1038/nprot.2014.199] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
217
|
Yamaguchi M, Yu S, Qiao R, Weissmann F, Miller DJ, VanderLinden R, Brown NG, Frye JJ, Peters JM, Schulman BA. Structure of an APC3-APC16 complex: insights into assembly of the anaphase-promoting complex/cyclosome. J Mol Biol 2014; 427:1748-64. [PMID: 25490258 DOI: 10.1016/j.jmb.2014.11.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 11/14/2014] [Accepted: 11/15/2014] [Indexed: 01/05/2023]
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is a massive E3 ligase that controls mitosis by catalyzing ubiquitination of key cell cycle regulatory proteins. The APC/C assembly contains two subcomplexes: the "Platform" centers around a cullin-RING-like E3 ligase catalytic core; the "Arc Lamp" is a hub that mediates transient association with regulators and ubiquitination substrates. The Arc Lamp contains the small subunits APC16, CDC26, and APC13, and tetratricopeptide repeat (TPR) proteins (APC7, APC3, APC6, and APC8) that homodimerize and stack with quasi-2-fold symmetry. Within the APC/C complex, APC3 serves as center for regulation. APC3's TPR motifs recruit substrate-binding coactivators, CDC20 and CDH1, via their C-terminal conserved Ile-Arg (IR) tail sequences. Human APC3 also binds APC16 and APC7 and contains a >200-residue loop that is heavily phosphorylated during mitosis, although the basis for APC3 interactions and whether loop phosphorylation is required for ubiquitination are unclear. Here, we map the basis for human APC3 assembly with APC16 and APC7, report crystal structures of APC3Δloop alone and in complex with the C-terminal domain of APC16, and test roles of APC3's loop and IR tail binding surfaces in APC/C-catalyzed ubiquitination. The structures show how one APC16 binds asymmetrically to the symmetric APC3 dimer and, together with biochemistry and prior data, explain how APC16 recruits APC7 to APC3, show how APC3's C-terminal domain is rearranged in the full APC/C assembly, and visualize residues in the IR tail binding cleft important for coactivator-dependent ubiquitination. Overall, the results provide insights into assembly, regulation, and interactions of TPR proteins and the APC/C.
Collapse
Affiliation(s)
- Masaya Yamaguchi
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shanshan Yu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Renping Qiao
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Florian Weissmann
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Darcie J Miller
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ryan VanderLinden
- Howard Hughes Medical Institute, St. Jude Children's Research Hospital, Memphis, TN 38105 USA
| | - Nicholas G Brown
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jeremiah J Frye
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jan-Michael Peters
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Brenda A Schulman
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Howard Hughes Medical Institute, St. Jude Children's Research Hospital, Memphis, TN 38105 USA.
| |
Collapse
|
218
|
Sato N, Maeda M, Sugiyama M, Ito S, Hyodo T, Masuda A, Tsunoda N, Kokuryo T, Hamaguchi M, Nagino M, Senga T. Inhibition of SNW1 association with spliceosomal proteins promotes apoptosis in breast cancer cells. Cancer Med 2014; 4:268-77. [PMID: 25450007 PMCID: PMC4329010 DOI: 10.1002/cam4.366] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 12/13/2022] Open
Abstract
RNA splicing is a fundamental process for protein synthesis. Recent studies have reported that drugs that inhibit splicing have cytotoxic effects on various tumor cell lines. In this report, we demonstrate that depletion of SNW1, a component of the spliceosome, induces apoptosis in breast cancer cells. Proteomics and biochemical analyses revealed that SNW1 directly associates with other spliceosome components, including EFTUD2 (Snu114) and SNRNP200 (Brr2). The SKIP region of SNW1 interacted with the N-terminus of EFTUD2 as well as two independent regions in the C-terminus of SNRNP200. Similar to SNW1 depletion, knockdown of EFTUD2 increased the numbers of apoptotic cells. Furthermore, we demonstrate that exogenous expression of either the SKIP region of SNW1 or the N-terminus region of EFTUD2 significantly promoted cellular apoptosis. Our results suggest that the inhibition of SNW1 or its associating proteins may be a novel therapeutic strategy for cancer treatment.
Collapse
Affiliation(s)
- Naoki Sato
- Department of Surgical Oncology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, 466-8550, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
219
|
Zhou H, Rigoutsos I. The emerging roles of GPRC5A in diseases. Oncoscience 2014; 1:765-76. [PMID: 25621293 PMCID: PMC4303886 DOI: 10.18632/oncoscience.104] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 11/24/2014] [Indexed: 12/14/2022] Open
Abstract
The ‘Retinoic Acid-Inducible G-protein-coupled receptors’ or RAIG are a group comprising the four orphan receptors GPRC5A, GPRC5B, GPRC5C and GPRC5D. As the name implies, their expression is induced by retinoic acid but beyond that very little is known about their function. In recent years, one member, GPRC5A, has been receiving increasing attention as it was shown to play important roles in human cancers. As a matter of fact, dysregulation of GPRC5A has been associated with several cancers including lung cancer, breast cancer, colorectal cancer, and pancreatic cancer. Here we review the current state of knowledge about the heterogeneity and evolution of GPRC5A, its regulation, its molecular functions, and its involvement in human disease.
Collapse
Affiliation(s)
- Honglei Zhou
- Computational Medicine Center, Jefferson Alumni Hall, Thomas Jefferson University, Philadelphia, PA
| | - Isidore Rigoutsos
- Computational Medicine Center, Jefferson Alumni Hall, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
220
|
Cohen H, Ben-Hamo R, Gidoni M, Yitzhaki I, Kozol R, Zilberberg A, Efroni S. Shift in GATA3 functions, and GATA3 mutations, control progression and clinical presentation in breast cancer. Breast Cancer Res 2014; 16:464. [PMID: 25410484 PMCID: PMC4303202 DOI: 10.1186/s13058-014-0464-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 10/14/2014] [Indexed: 02/03/2023] Open
Abstract
Introduction GATA binding protein 3 (GATA3) is a regulator of mammary luminal cell differentiation, and an estrogen receptor (ER) associated marker in breast cancer. Tumor suppressor functions of GATA3 have been demonstrated primarily in basal-like breast cancers. Here, we focused on its function in luminal breast cancer, where GATA3 is frequently mutated, and its levels are significantly elevated. Methods GATA3 target genes were identified in normal- and luminal cancer- mammary cells by ChIP-seq, followed by examination of the effects of GATA3 expressions and mutations on tumorigenesis-associated genes and processes. Additionally, mutations and expression data of luminal breast cancer patients from The Cancer Genome Atlas were analyzed to characterize genetic signatures associated with GATA3 mutations. Results We show that some GATA3 effects shift from tumor suppressing to tumor promoting during tumorigenesis, with deregulation of three genes, BCL2, DACH1, THSD4, representing major GATA3-controlled processes in cancer progression. In addition, we identify an altered activity of mutant GATA3, and distinct associated genetic signatures. These signatures depend on the functional domain mutated; and, for a specific subgroup, are shared with basal-like breast cancer patients, who are a clinical group with regard to considerations of mode of treatment. Conclusions The GATA3 dependent mechanisms may call for special considerations for proper prognosis and treatment of patients. Electronic supplementary material The online version of this article (doi:10.1186/s13058-014-0464-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Helit Cohen
- The Mina and Everard Goodman Faculty of Life Science, Bar Ilan University, Ramat Gan, 52900, Israel.
| | - Rotem Ben-Hamo
- The Mina and Everard Goodman Faculty of Life Science, Bar Ilan University, Ramat Gan, 52900, Israel.
| | - Moriah Gidoni
- The Mina and Everard Goodman Faculty of Life Science, Bar Ilan University, Ramat Gan, 52900, Israel.
| | - Ilana Yitzhaki
- The Mina and Everard Goodman Faculty of Life Science, Bar Ilan University, Ramat Gan, 52900, Israel.
| | - Renana Kozol
- The Mina and Everard Goodman Faculty of Life Science, Bar Ilan University, Ramat Gan, 52900, Israel.
| | - Alona Zilberberg
- The Mina and Everard Goodman Faculty of Life Science, Bar Ilan University, Ramat Gan, 52900, Israel.
| | - Sol Efroni
- The Mina and Everard Goodman Faculty of Life Science, Bar Ilan University, Ramat Gan, 52900, Israel.
| |
Collapse
|
221
|
The kinetochore protein Kis1/Eic1/Mis19 ensures the integrity of mitotic spindles through maintenance of kinetochore factors Mis6/CENP-I and CENP-A. PLoS One 2014; 9:e111905. [PMID: 25375240 PMCID: PMC4222959 DOI: 10.1371/journal.pone.0111905] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/06/2014] [Indexed: 12/14/2022] Open
Abstract
Microtubules play multiple roles in a wide range of cellular phenomena, including cell polarity establishment and chromosome segregation. A number of microtubule regulators have been identified, including microtubule-associated proteins and kinases, and knowledge of these factors has contributed to our molecular understanding of microtubule regulation of each relevant cellular process. The known regulators, however, are insufficient to explain how those processes are linked to one another, underscoring the need to identify additional regulators. To find such novel mechanisms and microtubule regulators, we performed a screen that combined genetics and microscopy for fission yeast mutants defective in microtubule organization. We isolated approximately 900 mutants showing defects in either microtubule organization or the nuclear envelope, and these mutants were classified into 12 categories. We particularly focused on one mutant, kis1, which displayed spindle defects in early mitosis. The kis1 mutant frequently failed to assemble a normal bipolar spindle. The responsible gene encoded a kinetochore protein, Mis19 (also known as Eic1), which localized to the interface of kinetochores and spindle poles. We also found that the inner kinetochore proteins Mis6/CENP-I and Cnp1/CENP-A were delocalized from kinetochores in the kis1 cells and that kinetochore-microtubule attachment was defective. Another mutant, mis6, also displayed similar spindle defects. We conclude that Kis1 is required for inner kinetochore organization, through which Kis1 ensures kinetochore-microtubule attachment and spindle integrity. Thus, we propose an unexpected relationship between inner kinetochore organization and spindle integrity.
Collapse
|
222
|
Santos A, Wernersson R, Jensen LJ. Cyclebase 3.0: a multi-organism database on cell-cycle regulation and phenotypes. Nucleic Acids Res 2014; 43:D1140-4. [PMID: 25378319 PMCID: PMC4383920 DOI: 10.1093/nar/gku1092] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The eukaryotic cell division cycle is a highly regulated process that consists of a complex series of events and involves thousands of proteins. Researchers have studied the regulation of the cell cycle in several organisms, employing a wide range of high-throughput technologies, such as microarray-based mRNA expression profiling and quantitative proteomics. Due to its complexity, the cell cycle can also fail or otherwise change in many different ways if important genes are knocked out, which has been studied in several microscopy-based knockdown screens. The data from these many large-scale efforts are not easily accessed, analyzed and combined due to their inherent heterogeneity. To address this, we have created Cyclebase--available at http://www.cyclebase.org--an online database that allows users to easily visualize and download results from genome-wide cell-cycle-related experiments. In Cyclebase version 3.0, we have updated the content of the database to reflect changes to genome annotation, added new mRNA and protein expression data, and integrated cell-cycle phenotype information from high-content screens and model-organism databases. The new version of Cyclebase also features a new web interface, designed around an overview figure that summarizes all the cell-cycle-related data for a gene.
Collapse
Affiliation(s)
- Alberto Santos
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Rasmus Wernersson
- Center for Biological Sequence Analysis, Technical University of Denmark, 2800 Lyngby, Denmark Intomics A/S, 2800 Lyngby, Denmark
| | - Lars Juhl Jensen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
223
|
Protein-protein interaction predictions using text mining methods. Methods 2014; 74:47-53. [PMID: 25448298 DOI: 10.1016/j.ymeth.2014.10.026] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 09/05/2014] [Accepted: 10/21/2014] [Indexed: 01/10/2023] Open
Abstract
It is beyond any doubt that proteins and their interactions play an essential role in most complex biological processes. The understanding of their function individually, but also in the form of protein complexes is of a great importance. Nowadays, despite the plethora of various high-throughput experimental approaches for detecting protein-protein interactions, many computational methods aiming to predict new interactions have appeared and gained interest. In this review, we focus on text-mining based computational methodologies, aiming to extract information for proteins and their interactions from public repositories such as literature and various biological databases. We discuss their strengths, their weaknesses and how they complement existing experimental techniques by simultaneously commenting on the biological databases which hold such information and the benchmark datasets that can be used for evaluating new tools.
Collapse
|
224
|
Wong M, Hyodo T, Asano E, Funasaka K, Miyahara R, Hirooka Y, Goto H, Hamaguchi M, Senga T. Silencing of STRN4 suppresses the malignant characteristics of cancer cells. Cancer Sci 2014; 105:1526-32. [PMID: 25250919 PMCID: PMC4317966 DOI: 10.1111/cas.12541] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 08/17/2014] [Accepted: 09/18/2014] [Indexed: 12/23/2022] Open
Abstract
The striatin family of proteins, comprising STRN, STRN3 and STRN4, are multidomain-containing proteins that associate with additional proteins to form a large protein complex. We previously reported that STRN4 directly associated with protein kinases, such as MINK1, TNIK and MAP4K4, which are associated with tumor suppression or tumor progression. However, it remains unclear whether STRN4 is associated with tumor progression. In this report, we examined the role that STRN4 plays in cancer malignancy. We show that depletion of STRN4 suppresses proliferation, migration, invasion and the anchorage-independent growth of cancer cells. In addition, STRN4 knockdown increases the sensitivity of pancreatic cancer cells to gemcitabine. Finally, we show that STRN4 knockdown suppresses the proliferation and metastasis of cancer cells in mice. Our results demonstrate a possible role of STRN4 in tumor progression.
Collapse
Affiliation(s)
- Meihong Wong
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Senese S, Lo YC, Huang D, Zangle TA, Gholkar AA, Robert L, Homet B, Ribas A, Summers MK, Teitell MA, Damoiseaux R, Torres JZ. Chemical dissection of the cell cycle: probes for cell biology and anti-cancer drug development. Cell Death Dis 2014; 5:e1462. [PMID: 25321469 PMCID: PMC4237247 DOI: 10.1038/cddis.2014.420] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 08/27/2014] [Accepted: 08/28/2014] [Indexed: 12/02/2022]
Abstract
Cancer cell proliferation relies on the ability of cancer cells to grow, transition through the cell cycle, and divide. To identify novel chemical probes for dissecting the mechanisms governing cell cycle progression and cell division, and for developing new anti-cancer therapeutics, we developed and performed a novel cancer cell-based high-throughput chemical screen for cell cycle modulators. This approach identified novel G1, S, G2, and M-phase specific inhibitors with drug-like properties and diverse chemotypes likely targeting a broad array of processes. We further characterized the M-phase inhibitors and highlight the most potent M-phase inhibitor MI-181, which targets tubulin, inhibits tubulin polymerization, activates the spindle assembly checkpoint, arrests cells in mitosis, and triggers a fast apoptotic cell death. Importantly, MI-181 has broad anti-cancer activity, especially against BRAFV600E melanomas.
Collapse
Affiliation(s)
- S Senese
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Y C Lo
- 1] Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA [2] Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - D Huang
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - T A Zangle
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - A A Gholkar
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - L Robert
- Department of Medicine (Division of Hematology-Oncology), David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - B Homet
- Department of Medicine (Division of Hematology-Oncology), David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - A Ribas
- 1] Department of Medicine (Division of Hematology-Oncology), David Geffen School of Medicine, University of California, Los Angeles, CA, USA [2] Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA [3] Department of Surgery (Division of Surgical-Oncology), David Geffen School of Medicine, University of California, Los Angeles, CA, USA [4] Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
| | - M K Summers
- The Department of Cancer Biology, Lerner Research Institute, Cleveland, OH, USA
| | - M A Teitell
- 1] Department of Bioengineering, University of California, Los Angeles, CA, USA [2] Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA [3] Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA [4] Broad Stem Cell Research Center, University of California, Los Angeles, CA, USA [5] California NanoSystems Institute, University of California, Los Angeles, CA, USA [6] Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - R Damoiseaux
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
| | - J Z Torres
- 1] Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA [2] Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA [3] Molecular Biology Institute, University of California, Los Angeles, CA, USA
| |
Collapse
|
226
|
Proximity biotinylation and affinity purification are complementary approaches for the interactome mapping of chromatin-associated protein complexes. J Proteomics 2014; 118:81-94. [PMID: 25281560 DOI: 10.1016/j.jprot.2014.09.011] [Citation(s) in RCA: 210] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 09/04/2014] [Accepted: 09/07/2014] [Indexed: 12/19/2022]
Abstract
UNLABELLED Mapping protein-protein interactions for chromatin-associated proteins remains challenging. Here we explore the use of BioID, a proximity biotinylation approach in which a mutated biotin ligase (BirA*) is fused to a bait of interest, allowing for the local activation of biotin and subsequent biotinylation of proteins in the bait vicinity. BioID allowed for successful interactome mapping of core histones and members of the mediator complex. We explored the background signal produced by the BioID approach and found that using distinct types of controls increased the stringency of our statistical analysis with SAINTexpress. A direct comparison of BioID with our AP-MS protocol optimized for chromatin-associated protein complexes revealed that the approaches identified few shared interaction partners and enriched for distinct biological processes; yet, both approaches permitted the recovery of biologically meaningful interactions. While no clear bias could be observed for either technique toward protein complexes of particular functions, BioID allowed for the purification of proteins of lower cellular abundance. Finally, we were able to identify a strong association of MED4 with the centrosome by BioID and validated this finding by immunofluorescence. In summary, BioID complements AP-MS for the study of chromatin-associated protein complexes. BIOLOGICAL SIGNIFICANCE This manuscript describes the application of BioID, a proximity biotinylation approach, to chromatin-associated proteins, namely core histones and members of the mediator complex. We observed that BioID was successful at identifying known interaction partners for the baits tested, but also allowed novel putative interaction partners to be identified. By performing a detailed comparison of BioID versus a standard method for interactome mapping (affinity purification coupled to mass spectrometry, AP-MS), we show that the approaches were complementary, allowing for purification of different interaction partners. These interaction partners were different in the biological processes they are associated with, but also in their abundance. BioID represents a significant technical development in the field of chromatin research by expanding the search space for interactome mapping beyond what is possible with AP-MS. This article is part of a Special Issue entitled: Protein dynamics in health and disease. Guest Editors: Pierre Thibault and Anne-Claude Gingras.
Collapse
|
227
|
van der Lelij P, Stocsits RR, Ladurner R, Petzold G, Kreidl E, Koch B, Schmitz J, Neumann B, Ellenberg J, Peters JM. SNW1 enables sister chromatid cohesion by mediating the splicing of sororin and APC2 pre-mRNAs. EMBO J 2014; 33:2643-58. [PMID: 25257309 DOI: 10.15252/embj.201488202] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Although splicing is essential for the expression of most eukaryotic genes, inactivation of splicing factors causes specific defects in mitosis. The molecular cause of this defect is unknown. Here, we show that the spliceosome subunits SNW1 and PRPF8 are essential for sister chromatid cohesion in human cells. A transcriptome-wide analysis revealed that SNW1 or PRPF8 depletion affects the splicing of specific introns in a subset of pre-mRNAs, including pre-mRNAs encoding the cohesion protein sororin and the APC/C subunit APC2. SNW1 depletion causes cohesion defects predominantly by reducing sororin levels, which causes destabilisation of cohesin on DNA. SNW1 depletion also reduces APC/C activity and contributes to cohesion defects indirectly by delaying mitosis and causing "cohesion fatigue". Simultaneous expression of sororin and APC2 from intron-less cDNAs restores cohesion in SNW1-depleted cells. These results indicate that the spliceosome is required for mitosis because it enables expression of genes essential for cohesion. Our transcriptome-wide identification of retained introns in SNW1- and PRPF8-depleted cells may help to understand the aetiology of diseases associated with splicing defects, such as retinosa pigmentosum and cancer.
Collapse
Affiliation(s)
| | | | - Rene Ladurner
- IMP Research Institute of Molecular Pathology, Vienna, Austria
| | - Georg Petzold
- IMP Research Institute of Molecular Pathology, Vienna, Austria
| | - Emanuel Kreidl
- IMP Research Institute of Molecular Pathology, Vienna, Austria
| | - Birgit Koch
- IMP Research Institute of Molecular Pathology, Vienna, Austria EMBL Heidelberg, Heidelberg, Germany
| | - Julia Schmitz
- IMP Research Institute of Molecular Pathology, Vienna, Austria
| | | | | | | |
Collapse
|
228
|
Chang LF, Zhang Z, Yang J, McLaughlin SH, Barford D. Molecular architecture and mechanism of the anaphase-promoting complex. Nature 2014; 513:388-393. [PMID: 25043029 PMCID: PMC4456660 DOI: 10.1038/nature13543] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 05/28/2014] [Indexed: 12/12/2022]
Abstract
The ubiquitination of cell cycle regulatory proteins by the anaphase-promoting complex/cyclosome (APC/C) controls sister chromatid segregation, cytokinesis and the establishment of the G1 phase of the cell cycle. The APC/C is an unusually large multimeric cullin-RING ligase. Its activity is strictly dependent on regulatory coactivator subunits that promote APC/C-substrate interactions and stimulate its catalytic reaction. Because the structures of many APC/C subunits and their organization within the assembly are unknown, the molecular basis for these processes is poorly understood. Here, from a cryo-electron microscopy reconstruction of a human APC/C-coactivator-substrate complex at 7.4 Å resolution, we have determined the complete secondary structural architecture of the complex. With this information we identified protein folds for structurally uncharacterized subunits, and the definitive location of all 20 APC/C subunits within the 1.2 MDa assembly. Comparison with apo APC/C shows that the coactivator promotes a profound allosteric transition involving displacement of the cullin-RING catalytic subunits relative to the degron-recognition module of coactivator and APC10. This transition is accompanied by increased flexibility of the cullin-RING subunits and enhanced affinity for UBCH10-ubiquitin, changes which may contribute to coactivator-mediated stimulation of APC/C E3 ligase activity.
Collapse
Affiliation(s)
- Lei-Fu Chang
- Division of Structural Biology, Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Ziguo Zhang
- Division of Structural Biology, Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Jing Yang
- Division of Structural Biology, Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | | | - David Barford
- Division of Structural Biology, Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| |
Collapse
|
229
|
Basak O, van de Born M, Korving J, Beumer J, van der Elst S, van Es JH, Clevers H. Mapping early fate determination in Lgr5+ crypt stem cells using a novel Ki67-RFP allele. EMBO J 2014; 33:2057-68. [PMID: 25092767 PMCID: PMC4195772 DOI: 10.15252/embj.201488017] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cycling Lgr5+ stem cells fuel the rapid turnover of the adult intestinal epithelium. The existence of quiescent Lgr5+ cells has been reported, while an alternative quiescent stem cell population is believed to reside at crypt position +4. Here, we generated a novel Ki67RFP knock-in allele that identifies dividing cells. Using Lgr5-GFP;Ki67RFP mice, we isolated crypt stem and progenitor cells with distinct Wnt signaling levels and cell cycle features and generated their molecular signature using microarrays. Stem cell potential of these populations was further characterized using the intestinal organoid culture. We found that Lgr5high stem cells are continuously in cell cycle, while a fraction of Lgr5low progenitors that reside predominantly at +4 position exit the cell cycle. Unlike fast dividing CBCs, Lgr5low Ki67− cells have lost their ability to initiate organoid cultures, are enriched in secretory differentiation factors, and resemble the Dll1 secretory precursors and the label-retaining cells of Winton and colleagues. Our findings support the cycling stem cell hypothesis and highlight the cell cycle heterogeneity of early progenitors during lineage commitment.
Collapse
Affiliation(s)
- Onur Basak
- Hubrecht Institute - KNAW and University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Maaike van de Born
- Hubrecht Institute - KNAW and University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Jeroen Korving
- Hubrecht Institute - KNAW and University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Joep Beumer
- Hubrecht Institute - KNAW and University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Stefan van der Elst
- Hubrecht Institute - KNAW and University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Johan H van Es
- Hubrecht Institute - KNAW and University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Hans Clevers
- Hubrecht Institute - KNAW and University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
230
|
Oka Y, Varmark H, Vitting-Seerup K, Beli P, Waage J, Hakobyan A, Mistrik M, Choudhary C, Rohde M, Bekker-Jensen S, Mailand N. UBL5 is essential for pre-mRNA splicing and sister chromatid cohesion in human cells. EMBO Rep 2014; 15:956-64. [PMID: 25092792 DOI: 10.15252/embr.201438679] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
UBL5 is an atypical ubiquitin-like protein, whose function in metazoans remains largely unexplored. We show that UBL5 is required for sister chromatid cohesion maintenance in human cells. UBL5 primarily associates with spliceosomal proteins, and UBL5 depletion decreases pre-mRNA splicing efficiency, leading to globally enhanced intron retention. Defective sister chromatid cohesion is a general consequence of dysfunctional pre-mRNA splicing, resulting from the selective downregulation of the cohesion protection factor Sororin. As the UBL5 yeast orthologue, Hub1, also promotes spliceosome functions, our results show that UBL5 plays an evolutionary conserved role in pre-mRNA splicing, the integrity of which is essential for the fidelity of chromosome segregation.
Collapse
Affiliation(s)
- Yasuyoshi Oka
- Ubiquitin Signaling Group, Department of Disease Biology, The Novo Nordisk Foundation Center for Protein Research University of Copenhagen, Copenhagen, Denmark
| | - Hanne Varmark
- Ubiquitin Signaling Group, Department of Disease Biology, The Novo Nordisk Foundation Center for Protein Research University of Copenhagen, Copenhagen, Denmark
| | - Kristoffer Vitting-Seerup
- Bioinformatics Centre, Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Petra Beli
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark Institute of Molecular Biology (IMB), Mainz, Germany
| | - Johannes Waage
- Bioinformatics Centre, Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Anna Hakobyan
- Department of Cell Death and Metabolism, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Martin Mistrik
- Institute of Molecular and Translational Medicine, Palacky University, Olomouc, Czech Republic
| | - Chunaram Choudhary
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel Rohde
- Department of Cell Death and Metabolism, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Simon Bekker-Jensen
- Ubiquitin Signaling Group, Department of Disease Biology, The Novo Nordisk Foundation Center for Protein Research University of Copenhagen, Copenhagen, Denmark
| | - Niels Mailand
- Ubiquitin Signaling Group, Department of Disease Biology, The Novo Nordisk Foundation Center for Protein Research University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
231
|
Tagaya M, Arasaki K, Inoue H, Kimura H. Moonlighting functions of the NRZ (mammalian Dsl1) complex. Front Cell Dev Biol 2014; 2:25. [PMID: 25364732 PMCID: PMC4206994 DOI: 10.3389/fcell.2014.00025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 05/20/2014] [Indexed: 12/31/2022] Open
Abstract
The yeast Dsl1 complex, which comprises Dsl1, Tip20, and Sec39/Dsl3, has been shown to participate, as a vesicle-tethering complex, in retrograde trafficking from the Golgi apparatus to the endoplasmic reticulum. Its metazoan counterpart NRZ complex, which comprises NAG, RINT1, and ZW10, is also involved in Golgi-to-ER retrograde transport, but each component of the complex has diverse cellular functions including endosome-to-Golgi transport, cytokinesis, cell cycle checkpoint, autophagy, and mRNA decay. In this review, we summarize the current knowledge of the metazoan NRZ complex and discuss the "moonlighting" functions and intercorrelation of their subunits.
Collapse
Affiliation(s)
- Mitsuo Tagaya
- Department of Molecular Life Sciences, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences Hachioji, Japan
| | - Kohei Arasaki
- Department of Molecular Life Sciences, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences Hachioji, Japan
| | - Hiroki Inoue
- Department of Molecular Life Sciences, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences Hachioji, Japan
| | - Hana Kimura
- Department of Molecular Life Sciences, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences Hachioji, Japan
| |
Collapse
|
232
|
Kuhn M, Hyman AA, Beyer A. Coiled-coil proteins facilitated the functional expansion of the centrosome. PLoS Comput Biol 2014; 10:e1003657. [PMID: 24901223 PMCID: PMC4046923 DOI: 10.1371/journal.pcbi.1003657] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 04/15/2014] [Indexed: 12/16/2022] Open
Abstract
Repurposing existing proteins for new cellular functions is recognized as a main mechanism of evolutionary innovation, but its role in organelle evolution is unclear. Here, we explore the mechanisms that led to the evolution of the centrosome, an ancestral eukaryotic organelle that expanded its functional repertoire through the course of evolution. We developed a refined sequence alignment technique that is more sensitive to coiled coil proteins, which are abundant in the centrosome. For proteins with high coiled-coil content, our algorithm identified 17% more reciprocal best hits than BLAST. Analyzing 108 eukaryotic genomes, we traced the evolutionary history of centrosome proteins. In order to assess how these proteins formed the centrosome and adopted new functions, we computationally emulated evolution by iteratively removing the most recently evolved proteins from the centrosomal protein interaction network. Coiled-coil proteins that first appeared in the animal–fungi ancestor act as scaffolds and recruit ancestral eukaryotic proteins such as kinases and phosphatases to the centrosome. This process created a signaling hub that is crucial for multicellular development. Our results demonstrate how ancient proteins can be co-opted to different cellular localizations, thereby becoming involved in novel functions. The centrosome helps cells to divide, and is important for the development of animals. It has its evolutionary origins in the basal body, which was present in the last common ancestor of all eukaryotes. Here, we study how the evolution of novel proteins helped the formation of the centrosome. Coiled-coil proteins are important for the function of the centrosome. But, they have repeating patterns that can confuse existing methods for finding related proteins. We refined these methods by adjusting for the special properties of the coiled-coil regions. This enabled us to find more distant relatives of centrosomal proteins. We then tested how novel proteins affect the protein interaction network of the centrosome. We did this by removing the most novel proteins step by step. At each stage, we observed how the remaining proteins are connected to the centriole, the core of the centrosome. We found that coiled-coil proteins that first occurred in the ancestor of fungi and animals help to recruit older proteins. By being recruited to the centrosome, these older proteins acquired new functions. We thus now have a clearer picture of how the centrosome became such an important part of animal cells.
Collapse
Affiliation(s)
- Michael Kuhn
- Biotechnology Center, TU Dresden, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Anthony A. Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- * E-mail: (AAH); (AB)
| | - Andreas Beyer
- Biotechnology Center, TU Dresden, Dresden, Germany
- University of Cologne, Cologne, Germany
- * E-mail: (AAH); (AB)
| |
Collapse
|
233
|
Pache RA, Aloy P. Increasing the precision of orthology-based complex prediction through network alignment. PeerJ 2014; 2:e413. [PMID: 24918034 PMCID: PMC4045337 DOI: 10.7717/peerj.413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/13/2014] [Indexed: 12/01/2022] Open
Abstract
Macromolecular assemblies play an important role in almost all cellular processes. However, despite several large-scale studies, our current knowledge about protein complexes is still quite limited, thus advocating the use of in silico predictions to gather information on complex composition in model organisms. Since protein–protein interactions present certain constraints on the functional divergence of macromolecular assemblies during evolution, it is possible to predict complexes based on orthology data. Here, we show that incorporating interaction information through network alignment significantly increases the precision of orthology-based complex prediction. Moreover, we performed a large-scale in silico screen for protein complexes in human, yeast and fly, through the alignment of hundreds of known complexes to whole organism interactomes. Systematic comparison of the resulting network alignments to all complexes currently known in those species revealed many conserved complexes, as well as several novel complex components. In addition to validating our predictions using orthogonal data, we were able to assign specific functional roles to the predicted complexes. In several cases, the incorporation of interaction data through network alignment allowed to distinguish real complex components from other orthologous proteins. Our analyses indicate that current knowledge of yeast protein complexes exceeds that in other organisms and that predicting complexes in fly based on human and yeast data is complementary rather than redundant. Lastly, assessing the conservation of protein complexes of the human pathogen Mycoplasma pneumoniae, we discovered that its complexes repertoire is different from that of eukaryotes, suggesting new points of therapeutic intervention, whereas targeting the pathogen’s Restriction enzyme complex might lead to adverse effects due to its similarity to ATP-dependent metalloproteases in the human host.
Collapse
Affiliation(s)
- Roland A Pache
- Joint IRB-BSC Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona) , Barcelona , Spain
| | - Patrick Aloy
- Joint IRB-BSC Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona) , Barcelona , Spain ; Institució Catalana de Recerca i Estudis Avançats (ICREA) , Barcelona , Spain
| |
Collapse
|
234
|
Abstract
The γ-tubulin ring complex (γTuRC) is the primary microtubule nucleator in animal cells. NME7 possesses an intrinsic kinase activity that is involved in the stimulation of the γTuRC. As the primary microtubule nucleator in animal cells, the γ-tubulin ring complex (γTuRC) plays a crucial role in microtubule organization, but little is known about how the activity of the γTuRC is regulated. Recently, isolated γTuRC was found to contain NME7, a poorly characterized member of the NME family. Here we report that NME7 is a γTuRC component that regulates the microtubule-nucleating activity of the γTuRC. NME7 contains two putative kinase domains, A and B, and shows autophosphorylating activity. Whereas domain A is involved in the autophosphorylation, domain B is inactive. NME7 interacts with the γTuRC through both A and B domains, with Arg-322 in domain B being crucial to the binding. In association with the γTuRC, NME7 localizes to centrosomes throughout the cell cycle and to mitotic spindles during mitosis. Suppression of NME7 expression does not affect γTuRC assembly or localization to centrosomes, but it does impair centrosome-based microtubule nucleation. Of importance, wild-type NME7 promotes γTuRC-dependent nucleation of microtubules, but kinase-deficient NME7 does so only poorly. These results suggest that NME7 functions in the γTuRC in a kinase-dependent manner to facilitate microtubule nucleation.
Collapse
Affiliation(s)
- Pengfei Liu
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Kowloon, Hong Kong, ChinaNanoscience and Nanotechnology Program, Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Yuk-Kwan Choi
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Robert Z Qi
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Kowloon, Hong Kong, ChinaNanoscience and Nanotechnology Program, Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| |
Collapse
|
235
|
Rhie SK, Hazelett DJ, Coetzee SG, Yan C, Noushmehr H, Coetzee GA. Nucleosome positioning and histone modifications define relationships between regulatory elements and nearby gene expression in breast epithelial cells. BMC Genomics 2014; 15:331. [PMID: 24885402 PMCID: PMC4035062 DOI: 10.1186/1471-2164-15-331] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 04/24/2014] [Indexed: 02/03/2023] Open
Abstract
Background The precise nature of how cell type specific chromatin structures at enhancer sites affect gene expression is largely unknown. Here we identified cell type specific enhancers coupled with gene expression in two different types of breast epithelial cells, HMEC (normal breast epithelial cells) and MDAMB231 (triple negative breast cancer cell line). Results Enhancers were defined by modified neighboring histones [using chromatin immunoprecipitation followed by sequencing (ChIP-seq)] and nucleosome depletion [using formaldehyde-assisted isolation of regulatory elements followed by sequencing (FAIRE-seq)]. Histone modifications at enhancers were related to the expression levels of nearby genes up to 750 kb away. These expression levels were correlated with enhancer status (poised or active), defined by surrounding histone marks. Furthermore, about fifty percent of poised and active enhancers contained nucleosome-depleted regions. We also identified response element motifs enriched at these enhancer sites that revealed key transcription factors (e.g. TP63) likely involved in regulating breast epithelial enhancer-mediated gene expression. By utilizing expression data, potential target genes of more than 600 active enhancers were identified. These genes were involved in proteolysis, epidermis development, cell adhesion, mitosis, cell cycle, and DNA replication. Conclusions These findings facilitate the understanding of epigenetic regulation specifically, such as the relationships between regulatory elements and gene expression and generally, how breast epithelial cellular phenotypes are determined by cell type specific enhancers. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-331) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | - Gerhard A Coetzee
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
236
|
Katsani KR, Irimia M, Karapiperis C, Scouras ZG, Blencowe BJ, Promponas VJ, Ouzounis CA. Functional genomics evidence unearths new moonlighting roles of outer ring coat nucleoporins. Sci Rep 2014; 4:4655. [PMID: 24722254 PMCID: PMC3983603 DOI: 10.1038/srep04655] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 02/21/2014] [Indexed: 01/03/2023] Open
Abstract
There is growing evidence for the involvement of Y-complex nucleoporins (Y-Nups) in cellular processes beyond the inner core of nuclear pores of eukaryotes. To comprehensively assess the range of possible functions of Y-Nups, we delimit their structural and functional properties by high-specificity sequence profiles and tissue-specific expression patterns. Our analysis establishes the presence of Y-Nups across eukaryotes with novel composite domain architectures, supporting new moonlighting functions in DNA repair, RNA processing, signaling and mitotic control. Y-Nups associated with a select subset of the discovered domains are found to be under tight coordinated regulation across diverse human and mouse cell types and tissues, strongly implying that they function in conjunction with the nuclear pore. Collectively, our results unearth an expanded network of Y-Nup interactions, thus supporting the emerging view of the Y-complex as a dynamic protein assembly with diverse functional roles in the cell.
Collapse
Affiliation(s)
- Katerina R Katsani
- Department of Molecular Biology & Genetics, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece
| | - Manuel Irimia
- Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Christos Karapiperis
- Department of Genetics, Development & Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, GR-54124 Thessalonica, Greece
| | - Zacharias G Scouras
- Department of Genetics, Development & Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, GR-54124 Thessalonica, Greece
| | - Benjamin J Blencowe
- Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Vasilis J Promponas
- Bioinformatics Research Laboratory, Department of Biological Sciences, University of Cyprus, PO Box 20537, CY-1678 Nicosia, Cyprus
| | - Christos A Ouzounis
- 1] Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada [2] Bioinformatics Research Laboratory, Department of Biological Sciences, University of Cyprus, PO Box 20537, CY-1678 Nicosia, Cyprus [3] Institute of Applied Biosciences, Centre for Research & Technology, PO Box 361, GR-57001 Thessalonica, Greece [4]
| |
Collapse
|
237
|
Schweizer N, Ferrás C, Kern DM, Logarinho E, Cheeseman IM, Maiato H. Spindle assembly checkpoint robustness requires Tpr-mediated regulation of Mad1/Mad2 proteostasis. ACTA ACUST UNITED AC 2014; 203:883-93. [PMID: 24344181 PMCID: PMC3871433 DOI: 10.1083/jcb.201309076] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Tpr is a kinetochore-independent, rate-limiting factor required to mount and sustain a robust spindle assembly checkpoint response by stabilizing Mad1 and Mad2 before mitosis. Tpr is a conserved nuclear pore complex (NPC) protein implicated in the spindle assembly checkpoint (SAC) by an unknown mechanism. Here, we show that Tpr is required for normal SAC response by stabilizing Mad1 and Mad2 before mitosis. Tpr coimmunoprecipitated with Mad1 and Mad2 (hereafter designated as Tpr/Mad1/Mad2 or TM2 complex) during interphase and mitosis, and is required for Mad1–c-Mad2 recruitment to NPCs. Interestingly, Tpr was normally undetectable at kinetochores and dispensable for Mad1, but not for Mad2, kinetochore localization, which suggests that SAC robustness depends on Mad2 levels at kinetochores. Protein half-life measurements demonstrate that Tpr stabilizes Mad1 and Mad2, ensuring normal Mad1–c-Mad2 production in an mRNA- and kinetochore-independent manner. Overexpression of GFP-Mad2 restored normal SAC response and Mad2 kinetochore levels in Tpr-depleted cells. Mechanistically, we provide evidence that Tpr might spatially regulate SAC proteostasis through the SUMO-isopeptidases SENP1 and SENP2 at NPCs. Thus, Tpr is a kinetochore-independent, rate-limiting factor required to mount and sustain a robust SAC response.
Collapse
|
238
|
Bouissou A, Vérollet C, de Forges H, Haren L, Bellaïche Y, Perez F, Merdes A, Raynaud-Messina B. γ-Tubulin Ring Complexes and EB1 play antagonistic roles in microtubule dynamics and spindle positioning. EMBO J 2014; 33:114-28. [PMID: 24421324 DOI: 10.1002/embj.201385967] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
γ-Tubulin is critical for microtubule (MT) assembly and organization. In metazoa, this protein acts in multiprotein complexes called γ-Tubulin Ring Complexes (γ-TuRCs). While the subunits that constitute γ-Tubulin Small Complexes (γ-TuSCs), the core of the MT nucleation machinery, are essential, mutation of γ-TuRC-specific proteins in Drosophila causes sterility and morphological abnormalities via hitherto unidentified mechanisms. Here, we demonstrate a role of γ-TuRCs in controlling spindle orientation independent of MT nucleation activity, both in cultured cells and in vivo, and examine a potential function for γ-TuRCs on astral MTs. γ-TuRCs locate along the length of astral MTs, and depletion of γ-TuRC-specific proteins increases MT dynamics and causes the plus-end tracking protein EB1 to redistribute along MTs. Moreover, suppression of MT dynamics through drug treatment or EB1 down-regulation rescues spindle orientation defects induced by γ-TuRC depletion. Therefore, we propose a role for γ-TuRCs in regulating spindle positioning by controlling the stability of astral MTs.
Collapse
Affiliation(s)
- Anaïs Bouissou
- Centre Biologie du Développement, UMR 5547 CNRS-UPS Toulouse 3, Toulouse Cedex 04, France
| | | | | | | | | | | | | | | |
Collapse
|
239
|
Barbar E, Nyarko A. NMR Characterization of Self-Association Domains Promoted by Interactions with LC8 Hub Protein. Comput Struct Biotechnol J 2014; 9:e201402003. [PMID: 24757501 PMCID: PMC3995210 DOI: 10.5936/csbj.201402003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/04/2014] [Accepted: 02/08/2014] [Indexed: 01/04/2023] Open
Abstract
Most proteins in interaction networks have a small number of partners, while a few, called hubs, participate in a large number of interactions and play a central role in cell homeostasis. One highly conserved hub is a protein called LC8 that was originally identified as an essential component of the multi-subunit complex dynein but later shown to be also critical in multiple protein complexes in diverse systems. What is intriguing about this hub protein is that it does not passively bind its various partners but emerging evidence suggests that LC8 acts as a dimerization engine that promotes self-association and/or higher order organization of its primarily disordered monomeric partners. This structural organization process does not require ATP but is triggered by long-range allosteric regulation initiated by LC8 binding a pair of disordered chains forming a bivalent or polybivalent scaffold. This review focuses on the role of LC8 in promoting self-association of two of its binding partners, a dynein intermediate chain and a non dynein protein called Swallow.
Collapse
Affiliation(s)
- Elisar Barbar
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Afua Nyarko
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
240
|
Batzenschlager M, Herzog E, Houlné G, Schmit AC, Chabouté ME. GIP/MZT1 proteins orchestrate nuclear shaping. FRONTIERS IN PLANT SCIENCE 2014; 5:29. [PMID: 24570680 PMCID: PMC3916773 DOI: 10.3389/fpls.2014.00029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 01/22/2014] [Indexed: 05/28/2023]
Abstract
The functional organization of the nuclear envelope (NE) is only just emerging in plants with the recent characterization of NE protein complexes and their molecular links to the actin cytoskeleton. The NE also plays a role in microtubule nucleation by recruiting γ-Tubulin Complexes (γ-TuCs) which contribute to the establishment of a robust mitotic spindle. γ-tubulin Complex Protein 3 (GCP3)-interacting proteins (GIPs) have been identified recently as integral components of γ-TuCs. GIPs have been conserved throughout evolution and are also named MZT1 (mitotic-spindle organizing protein 1). This review focuses on recent data investigating the role of GIP/MZT1 at the NE, including insights from the study of GIP partners. It also uncovers new functions for GIP/MZT1 during interphase and highlights a current view of NE-associated components which are critical for nuclear shaping during both cell division and differentiation.
Collapse
Affiliation(s)
| | | | | | - Anne-Catherine Schmit
- *Correspondence: Anne-Catherine Schmit, Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, UPR 2357, 12 rue du Gl Zimmer, 67084 Strasbourg, France e-mail:
| | | |
Collapse
|
241
|
Woodsmith J, Stelzl U. Studying post-translational modifications with protein interaction networks. Curr Opin Struct Biol 2014; 24:34-44. [DOI: 10.1016/j.sbi.2013.11.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/15/2013] [Accepted: 11/22/2013] [Indexed: 12/14/2022]
|
242
|
Synthetic genetic array screen identifies PP2A as a therapeutic target in Mad2-overexpressing tumors. Proc Natl Acad Sci U S A 2014; 111:1628-33. [PMID: 24425774 DOI: 10.1073/pnas.1315588111] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The spindle checkpoint is essential to ensure proper chromosome segregation and thereby maintain genomic stability. Mitotic arrest deficiency 2 (Mad2), a critical component of the spindle checkpoint, is overexpressed in many cancer cells. Thus, we hypothesized that Mad2 overexpression could specifically make cancer cells susceptible to death by inducing a synthetic dosage lethality defect. Because the spindle checkpoint pathway is highly conserved between yeast and humans, we performed a synthetic genetic array analysis in yeast, which revealed that Mad2 overexpression induced lethality in 13 gene deletions. Among the human homologs of candidate genes, knockdown of PPP2R1A, a gene encoding a constant regulatory subunit of protein phosphatase 2, significantly inhibited the growth of Mad2-overexpressing tumor cells. PPP2R1A inhibition induced Mad2 phosphorylation and suppressed Mad2 protein levels. Depletion of PPP2R1A inhibited colony formation of Mad2-overexpressing HeLa cells but not of unphosphorylated Mad2 mutant-overexpressing cells, suggesting that the lethality induced by PP2A depletion in Mad2-overexpressing cells is dependent on Mad2 phosphorylation. Also, the PP2A inhibitor cantharidin induced Mad2 phosphorylation and inhibited the growth of Mad2-overexpressing cancer cells. Aurora B knockdown inhibited Mad2 phosphorylation in mitosis, resulting in the blocking of PPP2R1A inhibition-induced cell death. Taken together, our results strongly suggest that PP2A is a good therapeutic target in Mad2-overexpressing tumors.
Collapse
|
243
|
Mailhes JB, Marchetti F. Advances in understanding the genetic causes and mechanisms of female germ cell aneuploidy. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/eog.10.62] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
244
|
Abstract
Microtubule organization by microtubule-organizing centers such as the centrosome requires γ-tubulin, which exists in the γ-tubulin ring complex (γTuRC) that nucleates microtubules. The γTuRC is a ring-shaped, macromolecular complex whose core components are γ-tubulin and the γ-tubulin complex proteins. Despite the recent identification of additional γTuRC components, the molecular composition and regulatory properties of the complex remain poorly understood. The ability to purify the γTuRC at a large scale for characterization may hold a key to understanding the mechanism by which the γTuRC nucleates microtubules. In this chapter, we describe methods to isolate the γTuRC from human cell cultures and to perform assays on the purified γTuRC.
Collapse
Affiliation(s)
- Yuk-Kwan Choi
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Robert Z Qi
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
245
|
Abstract
Our ability to sequence genomes has provided us with near-complete lists of the proteins that compose cells, tissues, and organisms, but this is only the beginning of the process to discover the functions of cellular components. In the future, it's going to be crucial to develop computational analyses that can predict the biological functions of uncharacterised proteins. At the same time, we must not forget those fundamental experimental skills needed to confirm the predictions or send the analysts back to the drawing board to devise new ones.
Collapse
Affiliation(s)
- William C. Earnshaw
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, ICB, Edinburgh, Scotland, United Kingdom
- * E-mail:
| |
Collapse
|
246
|
Du G, Stinski MF. Interaction network of proteins associated with human cytomegalovirus IE2-p86 protein during infection: a proteomic analysis. PLoS One 2013; 8:e81583. [PMID: 24358118 PMCID: PMC3864812 DOI: 10.1371/journal.pone.0081583] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 10/22/2013] [Indexed: 12/22/2022] Open
Abstract
Human cytomegalovirus protein IE2-p86 exerts its functions through interaction with other viral and cellular proteins. To further delineate its protein interaction network, we generated a recombinant virus expressing SG-tagged IE2-p86 and used tandem affinity purification coupled with mass spectrometry. A total of 9 viral proteins and 75 cellular proteins were found to associate with IE2-p86 protein during the first 48 hours of infection. The protein profile at 8, 24, and 48 h post infection revealed that UL84 tightly associated with IE2-p86, and more viral and cellular proteins came into association with IE2-p86 with the progression of virus infection. A computational analysis of the protein-protein interaction network indicated that all of the 9 viral proteins and most of the cellular proteins identified in the study are interconnected to varying degrees. Of the cellular proteins that were confirmed to associate with IE2-p86 by immunoprecipitation, C1QBP was further shown to be upregulated by HCMV infection and colocalized with IE2-p86, UL84 and UL44 in the virus replication compartment of the nucleus. The IE2-p86 interactome network demonstrated the temporal development of stable and abundant protein complexes that associate with IE2-p86 and provided a framework to benefit future studies of various protein complexes during HCMV infection.
Collapse
Affiliation(s)
- Guixin Du
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Mark F. Stinski
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
247
|
Fraisier V, Kasri A, Miserey-Lenkei S, Sibarita JB, Nair D, Mayeux A, Bardin S, Toyoda Y, Poser I, Poznyakovskiy A, Goud B, Hyman AA, Dimitrov A. C11ORF24 is a novel type I membrane protein that cycles between the Golgi apparatus and the plasma membrane in Rab6-positive vesicles. PLoS One 2013; 8:e82223. [PMID: 24312644 PMCID: PMC3846831 DOI: 10.1371/journal.pone.0082223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 10/21/2013] [Indexed: 01/03/2023] Open
Abstract
The Golgi apparatus is an intracellular compartment necessary for post-translational modification, sorting and transport of proteins. It plays a key role in mitotic entry through the Golgi mitotic checkpoint. In order to identify new proteins involved in the Golgi mitotic checkpoint, we combine the results of a knockdown screen for mitotic phenotypes and a localization screen. Using this approach, we identify a new Golgi protein C11ORF24 (NP_071733.1). We show that C11ORF24 has a signal peptide at the N-terminus and a transmembrane domain in the C-terminal region. C11ORF24 is localized on the Golgi apparatus and on the trans-Golgi network. A large part of the protein is present in the lumen of the Golgi apparatus whereas only a short tail extends into the cytosol. This cytosolic tail is well conserved in evolution. By FRAP experiments we show that the dynamics of C11ORF24 in the Golgi membrane are coherent with the presence of a transmembrane domain in the protein. C11ORF24 is not only present on the Golgi apparatus but also cycles to the plasma membrane via endosomes in a pH sensitive manner. Moreover, via video-microscopy studies we show that C11ORF24 is found on transport intermediates and is colocalized with the small GTPase RAB6, a GTPase involved in anterograde transport from the Golgi to the plasma membrane. Knocking down C11ORF24 does not lead to a mitotic phenotype or an intracellular transport defect in our hands. All together, these data suggest that C11ORF24 is present on the Golgi apparatus, transported to the plasma membrane and cycles back through the endosomes by way of RAB6 positive carriers.
Collapse
Affiliation(s)
- Vincent Fraisier
- UMR144, Institut Curie/ CNRS, Cell and Tissue Imaging Platform, Paris, France
| | - Amal Kasri
- UMR144, Institut Curie/CNRS, Molecular Mechanisms of Intracellular Transport, Paris, France
| | | | - Jean-Baptiste Sibarita
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, Bordeaux, France
- CNRS, UMR 5297, Bordeaux, France
| | - Deepak Nair
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, Bordeaux, France
- CNRS, UMR 5297, Bordeaux, France
| | - Adeline Mayeux
- UMR144, Institut Curie/CNRS, Molecular Mechanisms of Intracellular Transport, Paris, France
| | - Sabine Bardin
- UMR144, Institut Curie/CNRS, Molecular Mechanisms of Intracellular Transport, Paris, France
| | - Yusuke Toyoda
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Ina Poser
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Bruno Goud
- UMR144, Institut Curie/CNRS, Molecular Mechanisms of Intracellular Transport, Paris, France
| | - Anthony A. Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Ariane Dimitrov
- UMR144, Institut Curie/CNRS, Molecular Mechanisms of Intracellular Transport, Paris, France
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- * E-mail:
| |
Collapse
|
248
|
Leiserson MDM, Eldridge JV, Ramachandran S, Raphael BJ. Network analysis of GWAS data. Curr Opin Genet Dev 2013; 23:602-10. [PMID: 24287332 PMCID: PMC3867794 DOI: 10.1016/j.gde.2013.09.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/19/2013] [Accepted: 09/23/2013] [Indexed: 02/07/2023]
Abstract
Genome-wide association studies (GWAS) identify genetic variants that distinguish a control population from a population with a specific trait. Two challenges in GWAS are: (1) identification of the causal variant within a longer haplotype that is associated with the trait; (2) identification of causal variants for polygenic traits that are caused by variants in multiple genes within a pathway. We review recent methods that use information in protein-protein and protein-DNA interaction networks to address these two challenges.
Collapse
Affiliation(s)
- Mark D M Leiserson
- Department of Computer Science, Brown University, Providence, RI 02912, United States; Center for Computational Molecular Biology, Brown University, Providence, RI 02912, United States
| | | | | | | |
Collapse
|
249
|
Sasvari Z, Gonzalez PA, Rachubinski RA, Nagy PD. Tombusvirus replication depends on Sec39p endoplasmic reticulum-associated transport protein. Virology 2013; 447:21-31. [PMID: 24210096 DOI: 10.1016/j.virol.2013.07.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 07/03/2013] [Accepted: 07/31/2013] [Indexed: 10/26/2022]
Abstract
Positive-stranded RNA viruses subvert subcellular membranes to built viral replicases complexes (VRCs) in infected cells. Tombusviruses use peroxisomal membranes for the assembly of their VRCs and they can efficiently switch to the endoplasmic reticulum membrane in the absence of peroxisomes. In this paper, we show that the ER-resident Sec39p vesicular transport protein is critical for the formation of active VRCs in yeast model host. Repression of Sec39p expression in yeast or in plants resulted in greatly reduced tombusvirus accumulation. Moreover, the purified tombusvirus replicase from Sec39p-depleted yeast cells showed low in vitro activity. Also, tombusvirus RNA replication was poor in cell-free extracts or in isolated ER membranes from yeast with repressed Sec39p expression. The tombusvirus p33 replication protein was mislocalized to the ER when Sec39p was depleted in yeast. Overall, Sec39p is the first peroxisomal biogenesis protein characterized that is critical for tombusvirus replication in yeast and plants.
Collapse
Affiliation(s)
- Zsuzsanna Sasvari
- Department of Plant Pathology, University of Kentucky, Lexington, 201F Plant Science Building, KY 40546, USA
| | | | | | | |
Collapse
|
250
|
Hashimoto T. A ring for all: γ-tubulin-containing nucleation complexes in acentrosomal plant microtubule arrays. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:698-703. [PMID: 24075308 DOI: 10.1016/j.pbi.2013.09.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 08/24/2013] [Accepted: 09/04/2013] [Indexed: 06/02/2023]
Abstract
The construction of dynamic polar microtubules from 13 protofilaments consisting of α-tubulin and β-tubulin heterodimers requires a preformed nucleation seed that specifies subcellular localization and timing of microtubule polymerization in vivo. An evolutionarily conserved γ-tubulin-containing ring complex is recruited to the lateral wall of preexisting microtubules or outer nuclear membranes in plant cells, and is then activated as a template for new microtubules of defined geometry. Specific regulators are thought to target/activate the ring complex to nucleate nascent microtubules in distinct polymerization patterns, as seen in interphase and mitotic arrays. The augmin complex, which was initially identified in metazoan cells, recruits the ring complex to plant mitotic microtubules, where new polymers are abundantly generated at shallow angles.
Collapse
Affiliation(s)
- Takashi Hashimoto
- Nara Institute of Science and Technology, Graduate School of Biological Sciences, Japan.
| |
Collapse
|