201
|
Abstract
The capacity of influenza A viruses (IAVs) to host jump from animal reservoir species to humans presents an ongoing pandemic threat. Birds and swine are considered major reservoirs of viral genetic diversity, whereas equines and canines have historically been restricted to one or two stable IAV lineages with no transmission to humans. Here, by sequencing the complete genomes of 16 IAVs obtained from canines in southern China (Guangxi Zhuang Autonomous Region [Guangxi]) in 2013 to 2015, we demonstrate that the evolution of canine influenza viruses (CIVs) in Asian dogs is increasingly complex, presenting a potential threat to humans. First, two reassortant H1N1 virus genotypes were introduced independently from swine into canines in Guangxi, including one genotype associated with a zoonotic infection. The genomes contain segments from three lineages that circulate in swine in China: North American triple reassortant H3N2, Eurasian avian-like H1N1, and pandemic H1N1. Furthermore, the swine-origin H1N1 viruses have transmitted onward in canines and reassorted with the CIV-H3N2 viruses that circulate endemically in Asian dogs, producing three novel reassortant CIV genotypes (H1N1r, H1N2r, and H3N2r [r stands for reassortant]). CIVs from this study were collected primarily from pet dogs presenting with respiratory symptoms at veterinary clinics, but dogs in Guangxi are also raised for meat, and street dogs roam freely, creating a more complex ecosystem for CIV transmission. Further surveillance is greatly needed to understand the full genetic diversity of CIV in southern China, the nature of viral emergence and persistence in the region’s diverse canine populations, and the zoonotic risk as the viruses continue to evolve. Mammals have emerged as critically underrecognized sources of influenza virus diversity, including pigs that were the source of the 2009 pandemic and bats and bovines that harbor highly divergent viral lineages. Here, we identify two reassortant IAVs that recently host switched from swine to canines in southern China, including one virus with known zoonotic potential. Three additional genotypes were generated via reassortment events in canine hosts, demonstrating the capacity of dogs to serve as “mixing vessels.” The continued expansion of IAV diversity in canines with high human contact rates requires enhanced surveillance and ongoing evaluation of emerging pandemic threats.
Collapse
|
202
|
Ranadheera C, Coombs KM, Kobasa D. Comprehending a Killer: The Akt/mTOR Signaling Pathways Are Temporally High-Jacked by the Highly Pathogenic 1918 Influenza Virus. EBioMedicine 2018; 32:142-163. [PMID: 29866590 PMCID: PMC6021456 DOI: 10.1016/j.ebiom.2018.05.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/08/2018] [Accepted: 05/21/2018] [Indexed: 02/06/2023] Open
Abstract
Previous transcriptomic analyses suggested that the 1918 influenza A virus (IAV1918), one of the most devastating pandemic viruses of the 20th century, induces a dysfunctional cytokine storm and affects other innate immune response patterns. Because all viruses are obligate parasites that require host cells for replication, we globally assessed how IAV1918 induces host protein dysregulation. We performed quantitative mass spectrometry of IAV1918-infected cells to measure host protein dysregulation. Selected proteins were validated by immunoblotting and phosphorylation levels of members of the PI3K/AKT/mTOR pathway were assessed. Compared to mock-infected controls, >170 proteins in the IAV1918-infected cells were dysregulated. Proteins mapped to amino sugar metabolism, purine metabolism, steroid biosynthesis, transmembrane receptors, phosphatases and transcription regulation. Immunoblotting demonstrated that IAV1918 induced a slight up-regulation of the lamin B receptor whereas all other tested virus strains induced a significant down-regulation. IAV1918 also strongly induced Rab5b expression whereas all other tested viruses induced minor up-regulation or down-regulation. IAV1918 showed early reduced phosphorylation of PI3K/AKT/mTOR pathway members and was especially sensitive to rapamycin. These results suggest the 1918 strain requires mTORC1 activity in early replication events, and may explain the unique pathogenicity of this virus. Proteomic analyses of influenza 1918 virus-infected cells identified >170 dysregulated host proteins. Dysregulated proteins mapped to numerous important cellular pathways. 1918 virus infection showed prominent early reduced phosphorylation of PI3K/Akt/mTOR.
The 1918 influenza pandemic was one of the most devastating infectious disease events of the 20th century, resulting in 20–100 million deaths. Gene-based assays showed severe dysregulation of the host's cytokine responses, but little was known about global protein responses to virus infection. This work identifies unique and temporal alterations in phosphorylation of the PI3K/AKT/mTOR signaling pathway, which is important in determining cell death. This work paves the way for further research on how this pathway influences host mechanisms responsible for aiding virus replication and in determining levels and severity of influenza virus-induced patho
Collapse
Affiliation(s)
- Charlene Ranadheera
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0J6, Canada; Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba R3E 3R2, Canada
| | - Kevin M Coombs
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0J6, Canada; Manitoba Centre for Proteomics & Systems Biology, Room 799, 715 McDermot Avenue, Winnipeg, Manitoba R3E 3P4, Canada; Manitoba Institute of Child Health, John Buhler Research Centre, Room 513, 715 McDermot Avenue, Winnipeg, Manitoba R3E 3P4, Canada.
| | - Darwyn Kobasa
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0J6, Canada; Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba R3E 3R2, Canada.
| |
Collapse
|
203
|
Chaisri U, Chaicumpa W. Evolution of Therapeutic Antibodies, Influenza Virus Biology, Influenza, and Influenza Immunotherapy. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9747549. [PMID: 29998138 PMCID: PMC5994580 DOI: 10.1155/2018/9747549] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 03/19/2018] [Accepted: 03/31/2018] [Indexed: 02/07/2023]
Abstract
This narrative review article summarizes past and current technologies for generating antibodies for passive immunization/immunotherapy. Contemporary DNA and protein technologies have facilitated the development of engineered therapeutic monoclonal antibodies in a variety of formats according to the required effector functions. Chimeric, humanized, and human monoclonal antibodies to antigenic/epitopic myriads with less immunogenicity than animal-derived antibodies in human recipients can be produced in vitro. Immunotherapy with ready-to-use antibodies has gained wide acceptance as a powerful treatment against both infectious and noninfectious diseases. Influenza, a highly contagious disease, precipitates annual epidemics and occasional pandemics, resulting in high health and economic burden worldwide. Currently available drugs are becoming less and less effective against this rapidly mutating virus. Alternative treatment strategies are needed, particularly for individuals at high risk for severe morbidity. In a setting where vaccines are not yet protective or available, human antibodies that are broadly effective against various influenza subtypes could be highly efficacious in lowering morbidity and mortality and controlling unprecedented epidemic/pandemic. Prototypes of human single-chain antibodies to several conserved proteins of influenza virus with no Fc portion (hence, no ADE effect in recipients) are available. These antibodies have high potential as a novel, safe, and effective anti-influenza agent.
Collapse
Affiliation(s)
- Urai Chaisri
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
204
|
Wang Q, Li Q, Liu T, Chang G, Sun Z, Gao Z, Wang F, Zhou H, Liu R, Zheng M, Cui H, Chen G, Li H, Yuan X, Wen J, Peng D, Zhao G. Host Interaction Analysis of PA-N155 and PA-N182 in Chicken Cells Reveals an Essential Role of UBA52 for Replication of H5N1 Avian Influenza Virus. Front Microbiol 2018; 9:936. [PMID: 29867845 PMCID: PMC5963055 DOI: 10.3389/fmicb.2018.00936] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/23/2018] [Indexed: 01/17/2023] Open
Abstract
PA-N155 and PA-N182 proteins were translated from the 11th and 13th start codon AUG of the RNA polymerase acidic protein (PA) mRNA of H5N1 influenza A virus (IAV), which plays an important role in viral replication. Little is known about the interactions between PA-N155 and PA-N182 and the host proteins. This study investigated the interaction landscape of PA-N155 and PA-N182 of H5N1 IAV in chicken cells while their interacting complexes were captured by immunoprecipitation and analyzed by mass spectrometry. A total of 491 (PA-N155) and 302 (PA-N182) interacting proteins were identified. Gene ontology and pathway enrichment analyses showed that proteins of the two interactomes were enriched in RNA processing, viral processing and protein transport, and proteins related to signaling pathways of proteasome, ribosome, and aminoacy1-tRNA biosynthesis were significantly enriched, suggesting their potential roles in H5N1 IAV infection. Comparative analysis of the interactome of PA, PA-N155, and PA-N182 identified UBA52 as a conserved host factor that interacted with all three viral proteins. UBA52 is a fusion protein consisting of ubiquitin at the N terminus and ribosomal protein L40 at the C terminus. Knockdown of UBA52 significantly decreased the titer of H5N1 IAV in chicken cells and was accompanied with attenuated production of proinflammatory cytokines. Our analyses of the influenza–host protein interactomes identified UBA52 as a PA interaction protein for virus replication.
Collapse
Affiliation(s)
- Qiao Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,State Key Laboratory of Animal Nutrition, Beijing, China
| | - Qinghe Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,State Key Laboratory of Animal Nutrition, Beijing, China
| | - Tao Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guobin Chang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhihao Sun
- School of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhao Gao
- School of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Fei Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,State Key Laboratory of Animal Nutrition, Beijing, China
| | - Huaijun Zhou
- Department of Animal Sciences, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA, United States
| | - Ranran Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,State Key Laboratory of Animal Nutrition, Beijing, China
| | - Maiqing Zheng
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,State Key Laboratory of Animal Nutrition, Beijing, China
| | - Huanxian Cui
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,State Key Laboratory of Animal Nutrition, Beijing, China
| | - Guohong Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Hua Li
- School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Xiaoya Yuan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jie Wen
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,State Key Laboratory of Animal Nutrition, Beijing, China
| | - Daxin Peng
- School of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Guiping Zhao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,State Key Laboratory of Animal Nutrition, Beijing, China.,School of Life Sciences and Engineering, Foshan University, Foshan, China
| |
Collapse
|
205
|
Gahan J, Garvey M, Gildea S, Gür E, Kagankaya A, Cullinane A. Whole-genome sequencing and antigenic analysis of the first equine influenza virus identified in Turkey. Influenza Other Respir Viruses 2018; 12:374-382. [PMID: 28940727 PMCID: PMC5907808 DOI: 10.1111/irv.12485] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2017] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND In 2013, there was an outbreak of acute respiratory disease in racehorses in Turkey. The clinical signs were consistent with equine influenza (EI). OBJECTIVE The aim was to confirm the cause of the outbreak and characterise the causal virus. METHODS A pan-reactive influenza type A real-time RT-PCR and a rapid antigen detection kit were used for confirmatory diagnosis of equine influenza virus (EIV). Immunological susceptibility to EIV was examined using single radial haemolysis and ELISA. Antigenic characterisation was completed by haemagglutinin inhibition using a panel of specific ferret antisera. Genetic characterisation was achieved by whole-genome sequencing using segment-specific primers with M13 tags. RESULTS A H3N8 EIV of the Florida clade 2 sublineage (FC2) was confirmed as the causal agent. The index cases were unvaccinated and immunologically susceptible. Phylogenetic analysis of the HA1 and NA genes demonstrated that A/equine/Ankara/1/2013 clustered with the FC2 strains circulating in Europe. Antigenic characterisation confirmed the FC2 classification and demonstrated the absence of significant drift. Whole-genome sequencing indicated that A/equine/Ankara/1/2013 is most closely related to the viruses described as the 179 group based on the substitution I179V in HA1, for example A/equine/East Renfrewshire/2/2011, A/equine/Cambremer/1/2012 and A/equine/Saone et Loire/1/2015. The greatest diversity was observed in the NS1 segment and the polymerase complex. CONCLUSIONS The first recorded outbreak of EI in Turkey was caused by an FC2 virus closely related to viruses circulating in Europe. Antigenic and genetic characterisation gave no indication that the current OIE recommendations for EI vaccine composition require modification.
Collapse
Affiliation(s)
| | | | | | - Emre Gür
- Head of Equine Health and Veterinary Services DepartmentJockey Club of TurkeyIstanbulTurkey
| | - Anil Kagankaya
- Department of SurgeryAnkara University Faculty of Veterinary MedicineAnkaraTurkey
| | | |
Collapse
|
206
|
Chen C, Fan W, Li J, Zheng W, Zhang S, Yang L, Liu D, Liu W, Sun L. A Promising IFN-Deficient System to Manufacture IFN-Sensitive Influenza Vaccine Virus. Front Cell Infect Microbiol 2018; 8:127. [PMID: 29765910 PMCID: PMC5938381 DOI: 10.3389/fcimb.2018.00127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/13/2018] [Indexed: 02/01/2023] Open
Abstract
Interferon (IFN)-sensitive and replication-incompetent influenza viruses are likely to be the alternatives to inactivated and attenuated virus vaccines. Some IFN-sensitive influenza vaccine candidates with modified non-structural protein 1 (NS1) are highly attenuated in IFN-competent hosts but induce robust antiviral immune responses. However, little research has been done on the manufacturability of these IFN-sensitive vaccine viruses. Here, RIG-I-knockout 293T cells were used to package the IFN-sensitive influenza A/WSN/33 (H1N1) virus expressing the mutant NS1 R38A/K41A. We found that the packaging efficiency of the NS1 R38A/K41A virus in RIG-I-knockout 293T cells was much higher than that in 293T cells. Moreover, the NS1 R38A/K41A virus almost lost its IFN antagonist activity and could no longer replicate in A549, MDCK, and Vero cells after 3-6 passages. This indicated that the replication of NS1 R38A/K41A virus is limited in conventional cells. Therefore, we further established a stable Vero cell line expressing the wild-type (WT) NS1 of the WSN virus, based on the Tet-On 3G system. The NS1 R38A/K41A virus was able to steadily propagate in this IFN-deficient cell line for at least 20 passages. In a mouse model, the NS1 R38A/K41A virus showed more than a 4-log reduction in lung virus titers compared to the WT virus at 3 and 5 days post infection. Furthermore, we observed that the NS1 R38A/K41A virus triggered high-level of IFN-α/β production in lung tissues and was eliminated from the host in a relatively short period of time. Additionally, this virus induced high-titer neutralizing antibodies against the WT WSN, A/Puerto Rico/8/1934 (PR8), or A/California/04/2009 (CA04) viruses and provided 100% protection against the WT WSN virus. Thus, we found that the replication of the NS1 R38A/K41A virus was limited in IFN-competent cells and mice. We also presented a promising IFN-deficient system, involving a RIG-I-knockout 293T cell line to package the IFN-sensitive vaccine virus and a stable Vero cell line expressing NS1 to propagate the IFN-sensitive vaccine virus. The IFN-deficient system is applicable for the manufacture of IFN-sensitive vaccine virus.
Collapse
Affiliation(s)
- Can Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenhui Fan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jing Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Weinan Zheng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shuang Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Limin Yang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Di Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Wenjun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lei Sun
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
207
|
Gog JR, Lever AML, Skittrall JP. A new method for detecting signal regions in ordered sequences of real numbers, and application to viral genomic data. PLoS One 2018; 13:e0195763. [PMID: 29652903 PMCID: PMC5898753 DOI: 10.1371/journal.pone.0195763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/28/2018] [Indexed: 01/13/2023] Open
Abstract
We present a fast, robust and parsimonious approach to detecting signals in an ordered sequence of numbers. Our motivation is in seeking a suitable method to take a sequence of scores corresponding to properties of positions in virus genomes, and find outlying regions of low scores. Suitable statistical methods without using complex models or making many assumptions are surprisingly lacking. We resolve this by developing a method that detects regions of low score within sequences of real numbers. The method makes no assumptions a priori about the length of such a region; it gives the explicit location of the region and scores it statistically. It does not use detailed mechanistic models so the method is fast and will be useful in a wide range of applications. We present our approach in detail, and test it on simulated sequences. We show that it is robust to a wide range of signal morphologies, and that it is able to capture multiple signals in the same sequence. Finally we apply it to viral genomic data to identify regions of evolutionary conservation within influenza and rotavirus.
Collapse
Affiliation(s)
- Julia R. Gog
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| | - Andrew M. L. Lever
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Medicine, National University of Singapore, Singapore, Singapore
| | - Jordan P. Skittrall
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| |
Collapse
|
208
|
Cheng J, Zhang C, Tao J, Li B, Shi Y, Liu H. Effects of the S42 residue of the H1N1 swine influenza virus NS1 protein on interferon responses and virus replication. Virol J 2018; 15:57. [PMID: 29587786 PMCID: PMC5870223 DOI: 10.1186/s12985-018-0971-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 03/21/2018] [Indexed: 01/02/2023] Open
Abstract
Background The influenza A virus non-structural protein 1 (NS1) is a multifunctional protein that plays an important role in virus replication, virulence and inhibition of the host antiviral immune response. In the avian influenza virus or human influenza virus, specific amino acids of NS1 have been shown to be important for the virus to antagonize host antiviral defenses and promote viral replication. However, little research has been reported regarding the swine influenza virus (SIV) NS1 protein. Methods To study the effects of the key amino acids of NS1, we rescued NS1 mutants (S42P, D92E, and S42P/D92E) of the A/swine/Shanghai/3/2014(H1N1) strain and compared their replication ability and cytokine production as well as the intracellular localization in cultured cells. Results We found that the S42P and D92E mutation displayed no changes on NS1 nuclear localization. The S42P (but not D92E) mutation suppressed protein synthesis and reduced virus growth properties, and there was an inability to antagonize host cell interferon production and IRF3 activation, which led to high levels of IFN-α and IFN-β production. Conclusion We conclude that the S42 residue of the NS1 of the A/swine/Shanghai/3/2014(H1N1) strain is the key amino acid in regulating the host IFN response by blocking the activation of IRF3 and thus facilitates virus replication.
Collapse
Affiliation(s)
- Jinghua Cheng
- Department of Animal Infectious Disease, Institute of Animal Science & Veterinary Medicine, Shanghai Academy of Agricultural Science, No. 2901 Beidi Road, Minhang District, Shanghai, People's Republic of China
| | - Chunling Zhang
- Department of Animal Infectious Disease, Institute of Animal Science & Veterinary Medicine, Shanghai Academy of Agricultural Science, No. 2901 Beidi Road, Minhang District, Shanghai, People's Republic of China
| | - Jie Tao
- Department of Animal Infectious Disease, Institute of Animal Science & Veterinary Medicine, Shanghai Academy of Agricultural Science, No. 2901 Beidi Road, Minhang District, Shanghai, People's Republic of China
| | - Benqiang Li
- Department of Animal Infectious Disease, Institute of Animal Science & Veterinary Medicine, Shanghai Academy of Agricultural Science, No. 2901 Beidi Road, Minhang District, Shanghai, People's Republic of China
| | - Ying Shi
- Department of Animal Infectious Disease, Institute of Animal Science & Veterinary Medicine, Shanghai Academy of Agricultural Science, No. 2901 Beidi Road, Minhang District, Shanghai, People's Republic of China
| | - Huili Liu
- Department of Animal Infectious Disease, Institute of Animal Science & Veterinary Medicine, Shanghai Academy of Agricultural Science, No. 2901 Beidi Road, Minhang District, Shanghai, People's Republic of China.
| |
Collapse
|
209
|
Trapp S, Soubieux D, Lidove A, Esnault E, Lion A, Guillory V, Wacquiez A, Kut E, Quéré P, Larcher T, Ledevin M, Nadan V, Camus-Bouclainville C, Marc D. Major contribution of the RNA-binding domain of NS1 in the pathogenicity and replication potential of an avian H7N1 influenza virus in chickens. Virol J 2018; 15:55. [PMID: 29587792 PMCID: PMC5870492 DOI: 10.1186/s12985-018-0960-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/11/2018] [Indexed: 11/10/2022] Open
Abstract
Background Non-structural protein NS1 of influenza A viruses harbours several determinants of pathogenicity and host-range. However it is still unclear to what extent each of its two structured domains (i.e. RNA-binding domain, RBD, and effector domain, ED) contribute to its various activities. Methods To evaluate the respective contributions of the two domains, we genetically engineered two variants of an H7N1 low pathogenicity avian influenza virus harbouring amino-acid substitutions that impair the functionality of either domain. The RBD- and ED-mutant viruses were compared to their wt- counterpart in vivo and in vitro, notably in chicken infection and avian cell culture models. Results The double substitution R38A-K41A in the RBD dramatically reduced the pathogenicity and replication potential of the virus, whereas the substitution A149V that was considered to abrogate the IFN-antagonistic activity of the effector domain entailed much less effects. While all three viruses initiated the viral life cycle in avian cells, replication of the R38A-K41A virus was severely impaired. This defect was associated with a delayed synthesis of nucleoprotein NP and a reduced accumulation of NS1, which was found to reach a concentration of about 30 micromol.L− 1 in wt-infected cells at 8 h post-infection. When overexpressed in avian lung epithelial cells, both the wt-NS1 and 3841AA-NS1, but not the A149V-NS1, reduced the poly(I:C)-induced activation of the IFN-sensitive chicken Mx promoter. Unexpectedly, the R38A-K41A substitution in the recombinant RBD did not alter its in vitro affinity for a model dsRNA. When overexpressed in avian cells, both the wt- and A149V-NS1s, as well as the individually expressed wt-RBD to a lesser extent, enhanced the activity of the reconstituted viral RNA-polymerase in a minireplicon assay. Conclusions Collectively, our data emphasized the critical importance and essential role of the RNA-binding domain in essential steps of the virus replication cycle, notably expression and translation of viral mRNAs.
Collapse
Affiliation(s)
- Sascha Trapp
- Equipe PIA, UMR1282-ISP Infectiologie et Santé Publique, INRA, 37380, Nouzilly, France.,UMR1282 Infectiologie et Santé Publique, Université de Tours, F-37000, Tours, France
| | - Denis Soubieux
- Equipe PIA, UMR1282-ISP Infectiologie et Santé Publique, INRA, 37380, Nouzilly, France.,UMR1282 Infectiologie et Santé Publique, Université de Tours, F-37000, Tours, France
| | - Alexandra Lidove
- Equipe PIA, UMR1282-ISP Infectiologie et Santé Publique, INRA, 37380, Nouzilly, France.,UMR1282 Infectiologie et Santé Publique, Université de Tours, F-37000, Tours, France
| | - Evelyne Esnault
- Equipe PIA, UMR1282-ISP Infectiologie et Santé Publique, INRA, 37380, Nouzilly, France.,UMR1282 Infectiologie et Santé Publique, Université de Tours, F-37000, Tours, France
| | - Adrien Lion
- Equipe PIA, UMR1282-ISP Infectiologie et Santé Publique, INRA, 37380, Nouzilly, France.,UMR1282 Infectiologie et Santé Publique, Université de Tours, F-37000, Tours, France
| | - Vanaique Guillory
- Equipe PIA, UMR1282-ISP Infectiologie et Santé Publique, INRA, 37380, Nouzilly, France.,UMR1282 Infectiologie et Santé Publique, Université de Tours, F-37000, Tours, France
| | - Alan Wacquiez
- Equipe PIA, UMR1282-ISP Infectiologie et Santé Publique, INRA, 37380, Nouzilly, France.,UMR1282 Infectiologie et Santé Publique, Université de Tours, F-37000, Tours, France
| | - Emmanuel Kut
- Equipe PIA, UMR1282-ISP Infectiologie et Santé Publique, INRA, 37380, Nouzilly, France.,UMR1282 Infectiologie et Santé Publique, Université de Tours, F-37000, Tours, France
| | - Pascale Quéré
- Equipe PIA, UMR1282-ISP Infectiologie et Santé Publique, INRA, 37380, Nouzilly, France.,UMR1282 Infectiologie et Santé Publique, Université de Tours, F-37000, Tours, France
| | - Thibaut Larcher
- INRA UMR 703, APEX, Oniris-La Chantrerie, F-44307, Nantes, France.,LUNAM Université, École Nationale Vétérinaire, agro-alimentaire et de l'alimentation Nantes-Atlantique (Oniris), Nantes, France
| | - Mireille Ledevin
- INRA UMR 703, APEX, Oniris-La Chantrerie, F-44307, Nantes, France.,LUNAM Université, École Nationale Vétérinaire, agro-alimentaire et de l'alimentation Nantes-Atlantique (Oniris), Nantes, France
| | - Virginie Nadan
- Centre de Biophysique Moléculaire, CNRS, Orléans, France
| | | | - Daniel Marc
- Equipe PIA, UMR1282-ISP Infectiologie et Santé Publique, INRA, 37380, Nouzilly, France. .,UMR1282 Infectiologie et Santé Publique, Université de Tours, F-37000, Tours, France.
| |
Collapse
|
210
|
Chrzastek K, Lee DH, Gharaibeh S, Zsak A, Kapczynski DR. Characterization of H9N2 avian influenza viruses from the Middle East demonstrates heterogeneity at amino acid position 226 in the hemagglutinin and potential for transmission to mammals. Virology 2018. [PMID: 29524835 DOI: 10.1016/j.virol.2018.02.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Next-generation sequencing (NGS) technologies are a valuable tool to monitor changes in viral genomes and determine the genetic heterogeneity of viruses. In this study, NGS was applied to clinical poultry samples from Jordan to detect eleven H9N2 low pathogenic avian influenza viruses (LPAIV). All of the viruses tested belonged to Middle East A genetic group of G1 lineage. Deep sequencing demonstrated a high degree of heterogeneity of glutamine and leucine residues at position 226 in the hemagglutinin (HA) gene, which increases specificity to either avian or mammalian-type receptors. Moreover, additional amino acid changes in PB1, PA, M1, M2, and NS1 were identified among the viruses tested. Compared to single gene amplification, application of NGS for surveillance and characterization of H9N2 LPAIV provides a complete genetic profile of emerging isolates and better understanding of the potential of zoonotic transmissions to mammals.
Collapse
Affiliation(s)
- Klaudia Chrzastek
- US National Poultry Research Center, Agricultural Research Service, US Department of Agriculture, 934 College Station Road, Athens, GA, 30605, USA
| | - Dong-Hun Lee
- US National Poultry Research Center, Agricultural Research Service, US Department of Agriculture, 934 College Station Road, Athens, GA, 30605, USA
| | - Saad Gharaibeh
- Department of Pathology and Public Health, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Aniko Zsak
- US National Poultry Research Center, Agricultural Research Service, US Department of Agriculture, 934 College Station Road, Athens, GA, 30605, USA
| | - Darrell R Kapczynski
- US National Poultry Research Center, Agricultural Research Service, US Department of Agriculture, 934 College Station Road, Athens, GA, 30605, USA
| |
Collapse
|
211
|
Hashem AM, Azhar EI, Shalhoub S, Abujamel TS, Othman NA, Al Zahrani AB, Abdullah HM, Al-Alawi MM, Sindi AA. Genetic characterization and diversity of circulating influenza A/H1N1pdm09 viruses isolated in Jeddah, Saudi Arabia between 2014 and 2015. Arch Virol 2018; 163:1219-1230. [PMID: 29396684 DOI: 10.1007/s00705-018-3732-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 12/19/2017] [Indexed: 12/28/2022]
Abstract
The emerged influenza A/H1N1pdm09 viruses have replaced the previously circulating seasonal H1N1 viruses. The close antigenic properties of these viruses to the 1918 H1N1 pandemic viruses and their post-pandemic evolution pattern could further enhance their adaptation and pathogenicity in humans representing a major public health threat. Given that data on the dynamics and evolution of these viruses in Saudi Arabia is sparse we investigated the genetic diversity of circulating influenza A/H1N1pdm09 viruses from Jeddah, Saudi Arabia, by analyzing 39 full genomes from isolates obtained between 2014-2015, from patients with varying symptoms. Phylogenetic analysis of all gene segments and concatenated genomes showed similar topologies and co-circulation of clades 6b, 6b.1 and 6b.2, with clade 6b.1 being the most predominate since 2015. Most viruses were more closely related to the vaccine strain (Michigan/45/2015) recommended for the 2017/2018 season, than to the California/07/2009 strain. Low sequence variability was observed in the haemagglutinin protein compared to the neuraminidase protein. Resistance to neuraminidase inhibitors was limited as only one isolate had the H275Y substitution. Interestingly, two isolates had short PA-X proteins of 206 amino acids compared to the 232 amino acid protein found in most influenza A/H1N1pdm09 viruses. Together, the co-circulation of several clades and the predominance of clade 6b.1, despite its low circulation in Asia in 2015, suggests multiple introductions most probably during the mass gathering events of Hajj and Umrah. Jeddah represents the main port of entry to the holy cities of Makkah and Al-Madinah, emphasizing the need for vigilant surveillance in the kingdom.
Collapse
MESH Headings
- Amino Acid Substitution
- Female
- Genetic Variation
- Genome, Viral
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Humans
- Influenza A Virus, H1N1 Subtype/classification
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/isolation & purification
- Influenza, Human/epidemiology
- Influenza, Human/transmission
- Influenza, Human/virology
- Male
- Nasopharynx/virology
- Neuraminidase/genetics
- Phylogeny
- RNA, Viral/genetics
- Saudi Arabia/epidemiology
- Seasons
- Sequence Analysis, DNA
- Viral Proteins/genetics
Collapse
Affiliation(s)
- Anwar M Hashem
- Special Infectious Agent Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia.
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia.
| | - Esam I Azhar
- Special Infectious Agent Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia.
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia.
| | - Sarah Shalhoub
- Division of Infectious Diseases, Department of Medicine, King Fahd Armed Forces Hospital, Jeddah, Kingdom of Saudi Arabia
| | - Turki S Abujamel
- Special Infectious Agent Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Norah A Othman
- Special Infectious Agent Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Abdulwahab B Al Zahrani
- Molecular Diagnostics Laboratory, King Fahd Armed Forces Hospital, Jeddah, Kingdom of Saudi Arabia
| | - Hanan M Abdullah
- Students' Research and Innovation Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Maha M Al-Alawi
- Special Infectious Agent Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
- Infection Control and Environmental Health Unit, Faculty of Medicine, King Abdulaziz University Hospital, Jeddah, Kingdom of Saudi Arabia
| | - Anees A Sindi
- Department of Anesthesia and Critical Care, Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
212
|
Oishi K, Yamayoshi S, Kawaoka Y. Identification of novel amino acid residues of influenza virus PA-X that are important for PA-X shutoff activity by using yeast. Virology 2018; 516:71-75. [PMID: 29331676 DOI: 10.1016/j.virol.2018.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/03/2018] [Accepted: 01/05/2018] [Indexed: 10/18/2022]
Abstract
The influenza A virus protein PA-X comprises an N-terminal PA region and a C-terminal PA-X-specific region. PA-X suppresses host gene expression, termed shutoff, via mRNA cleavage. Although the endonuclease active site in the N-terminal PA region of PA-X and basic amino acids in the C-terminal PA-X-specific region are known to be important for PA-X shutoff activity, other amino acids may also play a role. Here, we used yeast to identify novel amino acids of PA-X that are important for PA-X shutoff activity. Unlike wild-type PA-X, most PA-X mutants predominantly localized in the cytoplasm, indicating that these mutations decreased the shutoff activity of PA-X by affecting PA-X translocation to the nucleus. Mapping of the identified amino acids onto the N-terminal structure of PA revealed that some of them likely contribute to the formation of the endonuclease active site of PA.
Collapse
Affiliation(s)
- Kohei Oishi
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Seiya Yamayoshi
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, WI 53711, United States; Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| |
Collapse
|
213
|
Abstract
Influenza viruses use an RNA-dependent RNA polymerase (RdRp) to transcribe and replicate their segmented negative-stranded RNA genomes. The influenza A virus RdRp consists of a heterotrimeric complex of the proteins PB1, PB2, and PA. The RdRp is associated with the incoming influenza A viral RNA (vRNA) genome bound by the viral nucleoprotein (NP), in complexes called viral ribonucleoproteins, vRNPs. During the viral replication cycle, the RdRp snatches capped primers from nascent host mRNAs to carry out primary viral transcription. Viral mRNA translation produces new copies of the RdRp subunits and NP, which are required to stabilize and encapsidate complementary copies of the genome (cRNAs), forming cRNPs. These cRNPs then use the cRNAs to make new vRNAs, which are encapsidated into new vRNPs. Secondary transcription by new vRNPs results in further viral mRNAs and an increase of the viral protein load in the cell. The activities of the RdRp (mRNA, cRNA, and vRNA synthesis) in the influenza virus replication cycle can be measured on several levels, ranging from assessment of the accumulation of RNA products in virus-infected cells, through in situ reconstitution of the RdRp from cloned cDNAs, to in vitro biochemical assays that allow the dissection of individual functions of the RdRp enzyme. Here we describe these assays and point out the advantages and drawbacks of each.
Collapse
Affiliation(s)
| | - Jason S Long
- Faculty of Medicine, Division of Infectious Disease, Imperial College London, London, UK
| | - Wendy S Barclay
- Faculty of Medicine, Division of Infectious Disease, Imperial College London, London, UK.
| |
Collapse
|
214
|
Krammer F, Smith GJD, Fouchier RAM, Peiris M, Kedzierska K, Doherty PC, Palese P, Shaw ML, Treanor J, Webster RG, García-Sastre A. Influenza. Nat Rev Dis Primers 2018; 4:3. [PMID: 29955068 PMCID: PMC7097467 DOI: 10.1038/s41572-018-0002-y] [Citation(s) in RCA: 953] [Impact Index Per Article: 136.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Influenza is an infectious respiratory disease that, in humans, is caused by influenza A and influenza B viruses. Typically characterized by annual seasonal epidemics, sporadic pandemic outbreaks involve influenza A virus strains of zoonotic origin. The WHO estimates that annual epidemics of influenza result in ~1 billion infections, 3–5 million cases of severe illness and 300,000–500,000 deaths. The severity of pandemic influenza depends on multiple factors, including the virulence of the pandemic virus strain and the level of pre-existing immunity. The most severe influenza pandemic, in 1918, resulted in >40 million deaths worldwide. Influenza vaccines are formulated every year to match the circulating strains, as they evolve antigenically owing to antigenic drift. Nevertheless, vaccine efficacy is not optimal and is dramatically low in the case of an antigenic mismatch between the vaccine and the circulating virus strain. Antiviral agents that target the influenza virus enzyme neuraminidase have been developed for prophylaxis and therapy. However, the use of these antivirals is still limited. Emerging approaches to combat influenza include the development of universal influenza virus vaccines that provide protection against antigenically distant influenza viruses, but these vaccines need to be tested in clinical trials to ascertain their effectiveness.
Collapse
Affiliation(s)
- Florian Krammer
- 0000 0001 0670 2351grid.59734.3cDepartment of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Gavin J. D. Smith
- 0000 0001 2180 6431grid.4280.eDuke–NUS Medical School, Singapore, Singapore ,0000 0004 1936 7961grid.26009.3dDuke Global Health Institute, Duke University, Durham, NC USA
| | - Ron A. M. Fouchier
- 000000040459992Xgrid.5645.2Department of Viroscience, Erasmus MC, Rotterdam, Netherlands
| | - Malik Peiris
- 0000000121742757grid.194645.bWHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China ,0000000121742757grid.194645.bCenter of Influenza Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
| | - Katherine Kedzierska
- 0000 0001 2179 088Xgrid.1008.9Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia
| | - Peter C. Doherty
- 0000 0001 2179 088Xgrid.1008.9Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia ,0000 0001 0224 711Xgrid.240871.8Department of Immunology, St Jude Children’s Research Hospital, Memphis, TN USA
| | - Peter Palese
- 0000 0001 0670 2351grid.59734.3cDepartment of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY USA ,0000 0001 0670 2351grid.59734.3cDivision of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Megan L. Shaw
- 0000 0001 0670 2351grid.59734.3cDepartment of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - John Treanor
- 0000 0004 1936 9166grid.412750.5Division of Infectious Diseases, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY USA
| | - Robert G. Webster
- 0000 0001 0224 711Xgrid.240871.8Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, TN USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
215
|
Quintas A, Pérez-Núñez D, Sánchez EG, Nogal ML, Hentze MW, Castelló A, Revilla Y. Characterization of the African Swine Fever Virus Decapping Enzyme during Infection. J Virol 2017; 91:e00990-17. [PMID: 29021398 PMCID: PMC5709586 DOI: 10.1128/jvi.00990-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 10/03/2017] [Indexed: 01/13/2023] Open
Abstract
African swine fever virus (ASFV) infection is characterized by a progressive decrease in cellular protein synthesis with a concomitant increase in viral protein synthesis, though the mechanism by which the virus achieves this is still unknown. Decrease of cellular mRNA is observed during ASFV infection, suggesting that inhibition of cellular proteins is due to an active mRNA degradation process. ASFV carries a gene (Ba71V D250R/Malawi g5R) that encodes a decapping protein (ASFV-DP) that has a Nudix hydrolase motif and decapping activity in vitro Here, we show that ASFV-DP was expressed from early times and accumulated throughout the infection with a subcellular localization typical of the endoplasmic reticulum, colocalizing with the cap structure and interacting with the ribosomal protein L23a. ASFV-DP was capable of interaction with poly(A) RNA in cultured cells, primarily mediated by the N-terminal region of the protein. ASFV-DP also interacted with viral and cellular RNAs in the context of infection, and its overexpression in infected cells resulted in decreased levels of both types of transcripts. This study points to ASFV-DP as a viral decapping enzyme involved in both the degradation of cellular mRNA and the regulation of viral transcripts.IMPORTANCE Virulent ASFV strains cause a highly infectious and lethal disease in domestic pigs for which there is no vaccine. Since 2007, an outbreak in the Caucasus region has spread to Russia, jeopardizing the European pig population and making it essential to deepen knowledge about the virus. Here, we demonstrate that ASFV-DP is a novel RNA-binding protein implicated in the regulation of mRNA metabolism during infection, making it a good target for vaccine development.
Collapse
Affiliation(s)
- Ana Quintas
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Universidad Autónoma de Madrid, Madrid, Spain
| | - Daniel Pérez-Núñez
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Universidad Autónoma de Madrid, Madrid, Spain
| | - Elena G Sánchez
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Universidad Autónoma de Madrid, Madrid, Spain
| | - Maria L Nogal
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Alfredo Castelló
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Yolanda Revilla
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
216
|
Chen L, Wang C, Luo J, Su W, Li M, Zhao N, Lyu W, Attaran H, He Y, Ding H, He H. Histone Deacetylase 1 Plays an Acetylation-Independent Role in Influenza A Virus Replication. Front Immunol 2017; 8:1757. [PMID: 29312300 PMCID: PMC5733105 DOI: 10.3389/fimmu.2017.01757] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/27/2017] [Indexed: 12/21/2022] Open
Abstract
Influenza A viruses (IAVs) take advantage of the host acetylation system for their own benefit. Whether the nucleoprotein (NP) of IAVs undergoes acetylation and the interaction between the NP and the class I histone deacetylases (HDACs) were largely unknown. Here, we showed that the NP protein of IAV interacted with HDAC1, which downregulated the acetylation level of NP. Using mass spectrometry, we identified lysine 103 as an acetylation site of the NP. Compared with wild-type protein, two K103 NP mutants, K103A and K103R, enhanced replication efficiency of the recombinant viruses in vitro. We further demonstrated that HDAC1 facilitated viral replication via two paths: promoting the nuclear retention of NP and inhibiting TBK1-IRF3 pathway. Our results lead to a new mechanism for regulating NP acetylation, indicating that HDAC1 may be a possible target for antiviral drugs.
Collapse
Affiliation(s)
- Lin Chen
- National Research Center for Wildlife Born Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Chengmin Wang
- National Research Center for Wildlife Born Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jing Luo
- National Research Center for Wildlife Born Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wen Su
- National Research Center for Wildlife Born Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Meng Li
- National Research Center for Wildlife Born Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Na Zhao
- National Research Center for Wildlife Born Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Wenting Lyu
- National Research Center for Wildlife Born Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Hamidreza Attaran
- National Research Center for Wildlife Born Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yapeng He
- National Research Center for Wildlife Born Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hua Ding
- Department of Infectious Diseases, Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Hongxuan He
- National Research Center for Wildlife Born Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
217
|
Influenza A Virus M2 Protein: Roles from Ingress to Egress. Int J Mol Sci 2017; 18:ijms18122649. [PMID: 29215568 PMCID: PMC5751251 DOI: 10.3390/ijms18122649] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 11/17/2022] Open
Abstract
Influenza A virus (IAV) matrix protein 2 (M2) is among the smallest bona fide, hence extensively studied, ion channel proteins. The M2 ion channel activity is not only essential for virus replication, but also involved in modulation of cellular homeostasis in a variety of ways. It is also the target for ion channel inhibitors, i.e., anti-influenza drugs. Thus far, several studies have been conducted to elucidate its biophysical characteristics, structure-function relationships of the ion channel, and the M2-host interactome. In this review, we discuss M2 protein synthesis and assembly into an ion channel, its roles in IAV replication, and the pathophysiological impact on the host cell.
Collapse
|
218
|
|
219
|
Harwig A, Landick R, Berkhout B. The Battle of RNA Synthesis: Virus versus Host. Viruses 2017; 9:v9100309. [PMID: 29065472 PMCID: PMC5691660 DOI: 10.3390/v9100309] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/19/2017] [Accepted: 10/20/2017] [Indexed: 12/13/2022] Open
Abstract
Transcription control is the foundation of gene regulation. Whereas a cell is fully equipped for this task, viruses often depend on the host to supply tools for their transcription program. Over the course of evolution and adaptation, viruses have found diverse ways to optimally exploit cellular host processes such as transcription to their own benefit. Just as cells are increasingly understood to employ nascent RNAs in transcription regulation, recent discoveries are revealing how viruses use nascent RNAs to benefit their own gene expression. In this review, we first outline the two different transcription programs used by viruses, i.e., transcription (DNA-dependent) and RNA-dependent RNA synthesis. Subsequently, we use the distinct stages (initiation, elongation, termination) to describe the latest insights into nascent RNA-mediated regulation in the context of each relevant stage.
Collapse
Affiliation(s)
- Alex Harwig
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
220
|
Dinan AM, Atkins JF, Firth AE. ASXL gain-of-function truncation mutants: defective and dysregulated forms of a natural ribosomal frameshifting product? Biol Direct 2017; 12:24. [PMID: 29037253 PMCID: PMC5644247 DOI: 10.1186/s13062-017-0195-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/04/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Programmed ribosomal frameshifting (PRF) is a gene expression mechanism which enables the translation of two N-terminally coincident, C-terminally distinct protein products from a single mRNA. Many viruses utilize PRF to control or regulate gene expression, but very few phylogenetically conserved examples are known in vertebrate genes. Additional sex combs-like (ASXL) genes 1 and 2 encode important epigenetic and transcriptional regulatory proteins that control the expression of homeotic genes during key developmental stages. Here we describe an ~150-codon overlapping ORF (termed TF) in ASXL1 and ASXL2 that, with few exceptions, is conserved throughout vertebrates. RESULTS Conservation of the TF ORF, strong suppression of synonymous site variation in the overlap region, and the completely conserved presence of an EH[N/S]Y motif (a known binding site for Host Cell Factor-1, HCF-1, an epigenetic regulatory factor), all indicate that TF is a protein-coding sequence. A highly conserved UCC_UUU_CGU sequence (identical to the known site of +1 ribosomal frameshifting for influenza virus PA-X expression) occurs at the 5' end of the region of enhanced synonymous site conservation in ASXL1. Similarly, a highly conserved RG_GUC_UCU sequence (identical to a known site of -2 ribosomal frameshifting for arterivirus nsp2TF expression) occurs at the 5' end of the region of enhanced synonymous site conservation in ASXL2. CONCLUSIONS Due to a lack of appropriate splice forms, or initiation sites, the most plausible mechanism for translation of the ASXL1 and 2 TF regions is ribosomal frameshifting, resulting in a transframe fusion of the N-terminal half of ASXL1 or 2 to the TF product, termed ASXL-TF. Truncation or frameshift mutants of ASXL are linked to myeloid malignancies and genetic diseases, such as Bohring-Opitz syndrome, likely at least in part as a result of gain-of-function or dominant-negative effects. Our hypothesis now indicates that these disease-associated mutant forms represent overexpressed defective versions of ASXL-TF. REVIEWERS This article was reviewed by Laurence Hurst and Eugene Koonin.
Collapse
Affiliation(s)
- Adam M Dinan
- Department of Pathology, Division of Virology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - John F Atkins
- School of Biochemistry and Cell Biology, University College Cork, T12 YT57, Cork, Ireland.,Department of Human Genetics, University of Utah, Salt Lake City, UT, 84112, USA
| | - Andrew E Firth
- Department of Pathology, Division of Virology, University of Cambridge, Cambridge, CB2 1QP, UK.
| |
Collapse
|
221
|
Wang X, Wang X, Jia Y, Wang C, Tang Q, Han Q, Xiao S, Yang Z. Coadministration of Recombinant Adenovirus Expressing GM-CSF with Inactivated H5N1 Avian Influenza Vaccine Increased the Immune Responses and Protective Efficacy Against a Wild Bird Source of H5N1 Challenge. J Interferon Cytokine Res 2017; 37:467-473. [PMID: 29028432 DOI: 10.1089/jir.2017.0043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Wild birds play a key role in the spread of avian influenza virus (AIV). There is a continual urgent requirement for AIV vaccines to address the ongoing genetic changes of AIV. In the current study, we trialed a novel AIV vaccine against the wild bird source of H5N1 type AIV with recombinant adenovirus expressing granulocyte monocyte colony-stimulating factor (GM-CSF) as an adjuvant. A total of 150-day-old commercial chicks, with AIV-maternal-derived antibody, were divided into 6 groups. The primary vaccination was performed at day 14 followed by a subsequent boosting and intramuscular challenge on day 28 and 42, respectively. Recombinant GM-CSF (rGM-CSF) expressed by adenovirus, named as rAd-GM-CSF, raised the hemagglutination inhibition (HI) titers (log2) against AIV from 7.0 (vaccinate with inactivated vaccine alone) to 8.4 after booster immunization. Moreover, the rGM-CSF addition markedly increased the expression of interferon-γ, interleukin-4, and major histocompatibility complex-II in the lungs, compared with those immunized with inactivated vaccine alone on day 29, that is, 18 h post booster immunization. Following challenge, chicks inoculated with the inactivated AIV vaccine and rAd-GM-CSF together exhibited mild clinical signs and 62% survivals compared to 33% in the group immunized with inactivated AIV vaccine alone. Higher level of HI titers, immune related molecule expressions, and protection ratio demonstrates a good potential of rGM-CSF in improving humoral and cell mediated immune responses of inactivated AIV vaccines.
Collapse
Affiliation(s)
- Xiangwei Wang
- Department of Avian Disease, College of Veterinary Medicine, Northwest A&F University , Yangling, People's Republic of China
| | - Xinglong Wang
- Department of Avian Disease, College of Veterinary Medicine, Northwest A&F University , Yangling, People's Republic of China
| | - Yanqing Jia
- Department of Avian Disease, College of Veterinary Medicine, Northwest A&F University , Yangling, People's Republic of China
| | - Chongyang Wang
- Department of Avian Disease, College of Veterinary Medicine, Northwest A&F University , Yangling, People's Republic of China
| | - Qiuxia Tang
- Department of Avian Disease, College of Veterinary Medicine, Northwest A&F University , Yangling, People's Republic of China
| | - Qingsong Han
- Department of Avian Disease, College of Veterinary Medicine, Northwest A&F University , Yangling, People's Republic of China
| | - Sa Xiao
- Department of Avian Disease, College of Veterinary Medicine, Northwest A&F University , Yangling, People's Republic of China
| | - Zengqi Yang
- Department of Avian Disease, College of Veterinary Medicine, Northwest A&F University , Yangling, People's Republic of China
| |
Collapse
|
222
|
Klingen TR, Reimering S, Guzmán CA, McHardy AC. In Silico Vaccine Strain Prediction for Human Influenza Viruses. Trends Microbiol 2017; 26:119-131. [PMID: 29032900 DOI: 10.1016/j.tim.2017.09.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/21/2017] [Accepted: 09/06/2017] [Indexed: 02/02/2023]
Abstract
Vaccines preventing seasonal influenza infections save many lives every year; however, due to rapid viral evolution, they have to be updated frequently to remain effective. To identify appropriate vaccine strains, the World Health Organization (WHO) operates a global program that continually generates and interprets surveillance data. Over the past decade, sophisticated computational techniques, drawing from multiple theoretical disciplines, have been developed that predict viral lineages rising to predominance, assess their suitability as vaccine strains, link genetic to antigenic alterations, as well as integrate and visualize genetic, epidemiological, structural, and antigenic data. These could form the basis of an objective and reproducible vaccine strain-selection procedure utilizing the complex, large-scale data types from surveillance. To this end, computational techniques should already be incorporated into the vaccine-selection process in an independent, parallel track, and their performance continuously evaluated.
Collapse
Affiliation(s)
- Thorsten R Klingen
- Department for Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Braunschweig, Germany; Co-first authors
| | - Susanne Reimering
- Department for Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Braunschweig, Germany; Co-first authors
| | - Carlos A Guzmán
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany; German Centre for Infection Research (DZIF)
| | - Alice C McHardy
- Department for Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Braunschweig, Germany; German Centre for Infection Research (DZIF).
| |
Collapse
|
223
|
Muller M, Glaunsinger BA. Nuclease escape elements protect messenger RNA against cleavage by multiple viral endonucleases. PLoS Pathog 2017; 13:e1006593. [PMID: 28841715 PMCID: PMC5589255 DOI: 10.1371/journal.ppat.1006593] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 09/07/2017] [Accepted: 08/21/2017] [Indexed: 02/06/2023] Open
Abstract
During lytic Kaposi’s sarcoma-associated herpesvirus (KSHV) infection, the viral endonu- clease SOX promotes widespread degradation of cytoplasmic messenger RNA (mRNA). However, select mRNAs, including the transcript encoding interleukin-6 (IL-6), escape SOX-induced cleavage. IL-6 escape is mediated through a 3’ UTR RNA regulatory element that overrides the SOX targeting mechanism. Here, we reveal that this protective RNA element functions to broadly restrict cleavage by a range of homologous and non-homologous viral endonucleases. However, it does not impede cleavage by cellular endonucleases. The IL-6 protective sequence may be representative of a larger class of nuclease escape elements, as we identified a similar protective element in the GADD45B mRNA. The IL-6 and GADD45B-derived elements display similarities in their sequence, putative structure, and several associated RNA binding proteins. However, the overall composition of their ribonucleoprotein complexes appears distinct, leading to differences in the breadth of nucleases restricted. These findings highlight how RNA elements can selectively control transcript abundance in the background of widespread virus-induced mRNA degradation. The ability of viruses to control the host gene expression environment is crucial to promote viral infection. Many viruses express factors that reduce host gene expression through widespread mRNA decay. However, some mRNAs escape this fate, like the transcript encoding the immunoregulatory cytokine IL-6 during KSHV infection. IL-6 escape relies on an RNA regulatory element located in its 3’UTR and involves the recruitment of a protective protein complex. Here, we show that this escape extends beyond KSHV to a variety of related and unrelated viral endonucleases. However, the IL-6 element does not protect against cellular endonucleases, revealing for the first time a virus-specific nuclease escape element. We identified a related escape element in the GADD45B mRNA, which displays several similarities with the IL-6 element. However, these elements assemble a largely distinct complex of proteins, leading to differences in the breadth of their protective capacity. Collectively, these findings reveal how a putative new class of RNA elements function to control RNA fate in the background of widespread mRNA degradation by viral endonucleases.
Collapse
Affiliation(s)
- Mandy Muller
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
| | - Britt A. Glaunsinger
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
- Department of Cell and Molecular Biology, University of California, Berkeley, California, United States of America
- Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
224
|
Bera BC, Virmani N, Kumar N, Anand T, Pavulraj S, Rash A, Elton D, Rash N, Bhatia S, Sood R, Singh RK, Tripathi BN. Genetic and codon usage bias analyses of polymerase genes of equine influenza virus and its relation to evolution. BMC Genomics 2017; 18:652. [PMID: 28830350 PMCID: PMC5568313 DOI: 10.1186/s12864-017-4063-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 08/15/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Equine influenza is a major health problem of equines worldwide. The polymerase genes of influenza virus have key roles in virus replication, transcription, transmission between hosts and pathogenesis. Hence, the comprehensive genetic and codon usage bias of polymerase genes of equine influenza virus (EIV) were analyzed to elucidate the genetic and evolutionary relationships in a novel perspective. RESULTS The group - specific consensus amino acid substitutions were identified in all polymerase genes of EIVs that led to divergence of EIVs into various clades. The consistent amino acid changes were also detected in the Florida clade 2 EIVs circulating in Europe and Asia since 2007. To study the codon usage patterns, a total of 281,324 codons of polymerase genes of EIV H3N8 isolates from 1963 to 2015 were systemically analyzed. The polymerase genes of EIVs exhibit a weak codon usage bias. The ENc-GC3s and Neutrality plots indicated that natural selection is the major influencing factor of codon usage bias, and that the impact of mutation pressure is comparatively minor. The methods for estimating host imposed translation pressure suggested that the polymerase acidic (PA) gene seems to be under less translational pressure compared to polymerase basic 1 (PB1) and polymerase basic 2 (PB2) genes. The multivariate statistical analysis of polymerase genes divided EIVs into four evolutionary diverged clusters - Pre-divergent, Eurasian, Florida sub-lineage 1 and 2. CONCLUSIONS Various lineage specific amino acid substitutions observed in all polymerase genes of EIVs and especially, clade 2 EIVs underwent major variations which led to the emergence of a phylogenetically distinct group of EIVs originating from Richmond/1/07. The codon usage bias was low in all the polymerase genes of EIVs that was influenced by the multiple factors such as the nucleotide compositions, mutation pressure, aromaticity and hydropathicity. However, natural selection was the major influencing factor in defining the codon usage patterns and evolution of polymerase genes of EIVs.
Collapse
Affiliation(s)
- Bidhan Ch Bera
- National Research Centre on Equines, Sirsa Road, Hisar, Haryana, India
| | - Nitin Virmani
- National Research Centre on Equines, Sirsa Road, Hisar, Haryana, India.
| | - Naveen Kumar
- National Institute of High Security Animal Diseases, Hathai Kheda Dam Road, Anand Nagar, Bhopal, Madhya Pradesh, India
| | - Taruna Anand
- National Research Centre on Equines, Sirsa Road, Hisar, Haryana, India
| | - S Pavulraj
- National Research Centre on Equines, Sirsa Road, Hisar, Haryana, India
| | - Adam Rash
- Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, CB8 7UU, UK
| | - Debra Elton
- Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, CB8 7UU, UK
| | - Nicola Rash
- Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, CB8 7UU, UK
| | - Sandeep Bhatia
- National Institute of High Security Animal Diseases, Hathai Kheda Dam Road, Anand Nagar, Bhopal, Madhya Pradesh, India
| | - Richa Sood
- National Institute of High Security Animal Diseases, Hathai Kheda Dam Road, Anand Nagar, Bhopal, Madhya Pradesh, India
| | - Raj Kumar Singh
- Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | | |
Collapse
|
225
|
Interplay of PA-X and NS1 Proteins in Replication and Pathogenesis of a Temperature-Sensitive 2009 Pandemic H1N1 Influenza A Virus. J Virol 2017. [PMID: 28637750 DOI: 10.1128/jvi.00720-17] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Influenza A viruses (IAVs) cause seasonal epidemics and occasional pandemics, representing a serious public health concern. It has been described that one mechanism used by some IAV strains to escape the host innate immune responses and modulate virus pathogenicity involves the ability of the PA-X and NS1 proteins to inhibit the host protein synthesis in infected cells. It was reported that for the 2009 pandemic H1N1 IAV (pH1N1) only the PA-X protein had this inhibiting capability, while the NS1 protein did not. In this work, we have evaluated, for the first time, the combined effect of PA-X- and NS1-mediated inhibition of general gene expression on virus pathogenesis, using a temperature-sensitive, live-attenuated 2009 pandemic H1N1 IAV (pH1N1 LAIV). We found that viruses containing PA-X and NS1 proteins that simultaneously have (PAWT+/NS1MUT+) or do not have (PAMUT-/NS1WT-) the ability to block host gene expression showed reduced pathogenicity in vivo However, a virus where the ability to inhibit host protein expression was switched between PA-X and NS1 (PAMUT-/NS1MUT+) presented pathogenicity similar to that of a virus containing both wild-type proteins (PAWT+/NS1WT-). Our findings suggest that inhibition of host protein expression is subject to a strict balance, which can determine the successful progression of IAV infection. Importantly, knowledge obtained from our studies could be used for the development of new and more effective vaccine approaches against IAV.IMPORTANCE Influenza A viruses (IAVs) are one of the most common causes of respiratory infections in humans, resulting in thousands of deaths annually. Furthermore, IAVs can cause unpredictable pandemics of great consequence when viruses not previously circulating in humans are introduced into humans. The defense machinery provided by the host innate immune system limits IAV replication; however, to counteract host antiviral activities, IAVs have developed different inhibition mechanisms, including prevention of host gene expression mediated by the viral PA-X and NS1 proteins. Here, we provide evidence demonstrating that optimal control of host protein synthesis by IAV PA-X and/or NS1 proteins is required for efficient IAV replication in the host. Moreover, we demonstrate the feasibility of genetically controlling the ability of IAV PA-X and NS1 proteins to inhibit host immune responses, providing an approach to develop more effective vaccines to combat disease caused by this important respiratory pathogen.
Collapse
|
226
|
Evolution of Influenza A Virus by Mutation and Re-Assortment. Int J Mol Sci 2017; 18:ijms18081650. [PMID: 28783091 PMCID: PMC5578040 DOI: 10.3390/ijms18081650] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 12/13/2022] Open
Abstract
Influenza A virus (IAV), a highly infectious respiratory pathogen, has continued to be a significant threat to global public health. To complete their life cycle, influenza viruses have evolved multiple strategies to interact with a host. A large number of studies have revealed that the evolution of influenza A virus is mainly mediated through the mutation of the virus itself and the re-assortment of viral genomes derived from various strains. The evolution of influenza A virus through these mechanisms causes worldwide annual epidemics and occasional pandemics. Importantly, influenza A virus can evolve from an animal infected pathogen to a human infected pathogen. The highly pathogenic influenza virus has resulted in stupendous economic losses due to its morbidity and mortality both in human and animals. Influenza viruses fall into a category of viruses that can cause zoonotic infection with stable adaptation to human, leading to sustained horizontal transmission. The rapid mutations of influenza A virus result in the loss of vaccine optimal efficacy, and challenge the complete eradication of the virus. In this review, we highlight the current understanding of influenza A virus evolution caused by the mutation and re-assortment of viral genomes. In addition, we discuss the specific mechanisms by which the virus evolves.
Collapse
|
227
|
Abolnik C, Olivier A, Reynolds C, Henry D, Cumming G, Rauff D, Romito M, Petty D, Falch C. Susceptibility and Status of Avian Influenza in Ostriches. Avian Dis 2017; 60:286-95. [PMID: 27309069 DOI: 10.1637/11110-042815-reg] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The extensive nature of ostrich farming production systems bears the continual risk of point introductions of avian influenza virus (AIV) from wild birds, but immune status, management, population density, and other causes of stress in ostriches are the ultimate determinants of the severity of the disease in this species. From January 2012 to December 2014, more than 70 incidents of AIV in ostriches were reported in South Africa. These included H5N2 and H7N1 low pathogenicity avian influenza (LPAI) in 2012, H7N7 LPAI in 2013, and H5N2 LPAI in 2014. To resolve the molecular epidemiology in South Africa, the entire South African viral repository from ostriches and wild birds from 1991 to 2013 (n = 42) was resequenced by next-generation sequencing technology to obtain complete genomes for comparison. The phylogenetic results were supplemented with serological data for ostriches from 2012 to 2014, and AIV-detection data from surveillance of 17 762 wild birds sampled over the same period. Phylogenetic evidence pointed to wild birds, e.g., African sacred ibis (Threskiornis aethiopicus), in the dissemination of H7N1 LPAI to ostriches in the Eastern and Western Cape provinces during 2012, in separate incidents that could not be epidemiologically linked. In contrast, the H7N7 LPAI outbreaks in 2013 that were restricted to the Western Cape Province appear to have originated from a single-point introduction from wild birds. Two H5N2 viruses detected in ostriches in 2012 were determined to be LPAI strains that were new introductions, epidemiologically unrelated to the 2011 highly pathogenic avian influenza (HPAI) outbreaks. Seventeen of 27 (63%) ostrich viruses contained the polymerase basic 2 (PB2) E627K marker, and 2 of the ostrich isolates that lacked E627K contained the compensatory Q591K mutation, whereas a third virus had a D701N mutation. Ostriches maintain a low upper- to midtracheal temperature as part of their adaptive physiology for desert survival, which may explain the selection in ratites for E627K or its compensatory mutations-markers that facilitate AIV replication at lower temperatures. An AIV prevalence of 5.6% in wild birds was recorded between 2012 and 2014, considerably higher than AIV prevalence for the southern African region of 2.5%-3.6% reported in the period 2007-2009. Serological prevalence of AI in ostriches was 3.7%, 3.6%, and 6.1% for 2012, 2013, and 2014, respectively. An annual seasonal dip in incidence was evident around March/April (late summer/autumn), with peaks around July/August (mid to late winter). H5, H6, H7, and unidentified serotypes were present at varying levels over the 3-yr period.
Collapse
Affiliation(s)
- Celia Abolnik
- A Poultry Section, Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa
| | - Adriaan Olivier
- B Klein Karoo International Research Laboratory, Oudtshoorn 6625, South Africa
| | - Chevonne Reynolds
- C Percy FitzPatrick Institute of African Ornithology, DST/NRF Centre of Excellence, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Dominic Henry
- C Percy FitzPatrick Institute of African Ornithology, DST/NRF Centre of Excellence, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Graeme Cumming
- C Percy FitzPatrick Institute of African Ornithology, DST/NRF Centre of Excellence, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Dionne Rauff
- D Deltamune (Pty.) Ltd., Lyttleton, Pretoria 0157, South Africa
| | - Marco Romito
- E Agricultural Research Council-Onderstepoort Veterinary Institute, Old Soutpan Road, Onderstepoort 0110, South Africa
| | - Deryn Petty
- F Veterinary Services, Gauteng Department of Agriculture and Rural Development, Johannesburg 2000, South Africa
| | - Claudia Falch
- G Deltamune (Pty.) Ltd., Oudtshoorn 6625, South Africa
| |
Collapse
|
228
|
Chen L, Wang C, Luo J, Li M, Liu H, Zhao N, Huang J, Zhu X, Ma G, Yuan G, He H. Amino Acid Substitution K470R in the Nucleoprotein Increases the Virulence of H5N1 Influenza A Virus in Mammals. Front Microbiol 2017; 8:1308. [PMID: 28744280 PMCID: PMC5504190 DOI: 10.3389/fmicb.2017.01308] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/28/2017] [Indexed: 12/21/2022] Open
Abstract
H5N1 is a highly pathogenic influenza A virus (IAV) and poses a major threat to the public health. The nucleoprotein (NP) has a multiple functions during the viral life cycle, however, the precise role of NP mutants in viral replication and pathogenicity is not completely understood. Here, we attempted to identify five residues in NP that may contribute to viral replication or pathogenicity. Of these, K227R, K229R, and K470R viruses were successfully rescued by reverse genetic, but the K91R and K198R viruses were not viable. A mini-genome assay demonstrated that the NP mutations K91R and K198R significantly decreased the polymerase activity. Moreover, these two mutations resulted in disrupted cellular localization in mammalian cells. Importantly, mutation at position 470 of NP significantly increased its virulence in vitro and in vivo. These findings demonstrated that the NP protein plays a major role in influenza virulence and pathogenicity, which adds to the knowledge of IAV virulence determinants and may benefit IAV surveillance.
Collapse
Affiliation(s)
- Lin Chen
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of SciencesBeijing, China.,University of the Chinese Academy of SciencesBeijing, China
| | - Chengmin Wang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of SciencesBeijing, China
| | - Jing Luo
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of SciencesBeijing, China
| | - Meng Li
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of SciencesBeijing, China.,University of the Chinese Academy of SciencesBeijing, China
| | - Huimin Liu
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of SciencesBeijing, China.,University of the Chinese Academy of SciencesBeijing, China
| | - Na Zhao
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of SciencesBeijing, China.,University of the Chinese Academy of SciencesBeijing, China
| | - Jingjing Huang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of SciencesBeijing, China
| | - Xili Zhu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of ScienceBeijing, China
| | - Guoyao Ma
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of SciencesBeijing, China.,University of the Chinese Academy of SciencesBeijing, China
| | - Guohui Yuan
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of SciencesBeijing, China
| | - Hongxuan He
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of SciencesBeijing, China
| |
Collapse
|
229
|
Daidoji T, Watanabe Y, Arai Y, Kajikawa J, Hirose R, Nakaya T. Unique Infectious Strategy of H5N1 Avian Influenza Virus Is Governed by the Acid-Destabilized Property of Hemagglutinin. Viral Immunol 2017; 30:398-407. [PMID: 28654310 DOI: 10.1089/vim.2017.0020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Highly pathogenic avian influenza (HPAI) H5N1 virus emerged in 1997 as a zoonotic disease in Hong Kong. It has since spread to Asia and Europe and is a serious threat to both the poultry industry and human health. For effective surveillance and possible prevention/control of HPAI H5N1 viruses, it is necessary to understand the molecular mechanism underlying HPAI H5N1 pathogenesis. The hemagglutinin (HA) protein of influenza A viruses (IAVs) is one of the major determinants of host adaptation, transmissibility, and viral virulence. The main function of the HA protein is to facilitate viral entry and viral genome release within host cells before infection. To achieve viral infection, IAVs belonging to different subtypes or strains induce viral-cell membrane fusion at different endosomal pH levels after internalization through endocytosis. However, host-specific endosomal pH also affects induction of membrane fusion followed by infection. The HA protein of HPAI H5N1 has a higher pH threshold for membrane fusion than the HA protein of classical avian influenza viruses. Although this particular property of HA (which governs viral infection) is prone to deactivation in the avian intestine or in an ambient environment, it facilitates efficient infection of host cells, resulting in a broad host tropism, regardless of the pH in the host endosome. Accumulated knowledge, together with further research, about the HA-governed mechanism underlying HPAI H5N1 virulence (i.e., receptor tropism and pH-dependent viral-cell membrane fusion) will be helpful for developing effective surveillance strategies and for prevention/control of HPAI H5N1 infection.
Collapse
Affiliation(s)
- Tomo Daidoji
- 1 Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine , Kyoto, Japan
| | - Yohei Watanabe
- 1 Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine , Kyoto, Japan
| | - Yasuha Arai
- 1 Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine , Kyoto, Japan .,2 Department of Viral Infection, Research Institute for Microbial Diseases, Osaka University , Osaka, Japan
| | - Junichi Kajikawa
- 1 Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine , Kyoto, Japan
| | - Ryohei Hirose
- 1 Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine , Kyoto, Japan .,3 Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine , Kyoto, Japan
| | - Takaaki Nakaya
- 1 Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine , Kyoto, Japan
| |
Collapse
|
230
|
Leymarie O, Meyer L, Tafforeau L, Lotteau V, Costa BD, Delmas B, Chevalier C, Le Goffic R. Influenza virus protein PB1-F2 interacts with CALCOCO2 (NDP52) to modulate innate immune response. J Gen Virol 2017; 98:1196-1208. [PMID: 28613140 DOI: 10.1099/jgv.0.000782] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
PB1-F2 is a viral protein encoded by influenza A viruses (IAVs). PB1-F2 is implicated in virulence by triggering immune cell apoptosis and enhancing inflammation. To obtain an insight into the molecular mechanisms of PB1-F2-mediated virulence, we used the yeast two-hybrid approach to find new PB1-F2 cellular interactors. This allowed us to identify calcium-binding and coiled-coil domain 2 (CALCOCO2, also known as NDP52) as a binding partner of PB1-F2. Binding of PB1-F2 to CALCOCO2 was confirmed by pull-down. Surface plasmon resonance binding experiments enabled us to estimate the dissociation constant (Kd) of the two partners to be around 20 nM. Using bioinformatics tools, we designed a CALCOCO2 interaction map based on previous knowledge and showed a strong connection between this protein and the type I interferon production pathways and the I-κB kinase/NF-κB signalling pathway. NF-κB reporter assays in which CALCOCO2, MAVS and PB1-F2 were co-expressed showed a cooperation of these three proteins to increase the inflammatory response. By contrast, PB1-F2 inhibits the TBK1-dependent activation of an ISRE reporter plasmid. We also demonstrated that the signal transducer TRAF6 is implicated in the enhancement of NF-κB activity mediated by PB1-F2/CALCOCO2 binding. Altogether, this report provides evidence of an interaction link between PB1-F2 and human proteins, and allows a better understanding of the involvement of PB1-F2 in the pathologic process mediated by IAV.
Collapse
Affiliation(s)
- Olivier Leymarie
- VIM, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Léa Meyer
- VIM, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Lionel Tafforeau
- IMAP Team, Inserm Unit 851, 21, Av. T. Garnier, 69007 Lyon, France.,Present address: Laboratory of Cellular Biology, Research Institute for Biosciences, University of Mons-UMONS, Belgium
| | - Vincent Lotteau
- INSERM U1111, Lyon, France.,CIRI, Centre de Recherche en Infectiologie, Lyon, France.,Université de Lyon, France
| | - Bruno Da Costa
- VIM, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Bernard Delmas
- VIM, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | | | - Ronan Le Goffic
- VIM, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| |
Collapse
|
231
|
Friedman N, Drori Y, Pando R, Glatman-Freedman A, Sefty H, Bassal R, Stein Y, Shohat T, Mendelson E, Hindiyeh M, Mandelboim M. A(H1N1)pdm09 influenza infection: vaccine inefficiency. Oncotarget 2017; 8:32856-32863. [PMID: 28415629 PMCID: PMC5464833 DOI: 10.18632/oncotarget.16459] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/14/2017] [Indexed: 12/30/2022] Open
Abstract
The last influenza pandemic, caused by the swine A(H1N1)pdm09 influenza virus, began in North America at 2009. Since then, the World Health Organization (WHO) recommended integration of the swine-based virus A/California/07/2009 strain in yearly vaccinations. Yet, infections with A(H1N1)pdm09 have continued in subsequent years. The reasons for this are currently unknown. During the 2015-2016 influenza season, we noted an increased prevalence of A(H1N1)pdm09 influenza virus infection in Israel. Our phylogenetic analysis indicated that the circulating A(H1N1)pdm09 strains belonged to 6B.1 and 6B.2 clades and differed from the vaccinating strain, with approximately 18 amino acid differences found between the circulating strains and the immunizing A/California/07/2009 strain. Hemmaglutination inhibition (HI) assays demonstrated higher antibodies titer against the A/California/07/2009 vaccinating strain as compared to the circulating Israeli strains. We thus suggest that the current vaccination was not sufficiently effective and propose inclusion of the current circulating A(H1N1)pdm09 influenza viruses in the annual vaccine composition.
Collapse
Affiliation(s)
- Nehemya Friedman
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Ramat-Gan, Israel
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Yaron Drori
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Ramat-Gan, Israel
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Rakefet Pando
- The Israel Center for Disease Control, Israel Ministry of Health, Tel-Hashomer, Israel
| | - Aharona Glatman-Freedman
- The Israel Center for Disease Control, Israel Ministry of Health, Tel-Hashomer, Israel
- Departments of Pediatrics and Family and Community Medicine, Valhalla, New York, USA
| | - Hanna Sefty
- The Israel Center for Disease Control, Israel Ministry of Health, Tel-Hashomer, Israel
| | - Ravit Bassal
- The Israel Center for Disease Control, Israel Ministry of Health, Tel-Hashomer, Israel
| | - Yaniv Stein
- The Israel Center for Disease Control, Israel Ministry of Health, Tel-Hashomer, Israel
| | - Tamy Shohat
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- The Israel Center for Disease Control, Israel Ministry of Health, Tel-Hashomer, Israel
| | - Ella Mendelson
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Ramat-Gan, Israel
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Musa Hindiyeh
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Ramat-Gan, Israel
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Michal Mandelboim
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Ramat-Gan, Israel
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
232
|
PA-X protein decreases replication and pathogenicity of swine influenza virus in cultured cells and mouse models. Vet Microbiol 2017. [PMID: 28622865 DOI: 10.1016/j.vetmic.2017.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Swine influenza viruses have been circulating in pigs throughout world and might be potential threats to human health. PA-X protein is a newly discovered protein produced from the PA gene by ribosomal frameshifting and the effects of PA-X on the 1918 H1N1, the pandemic 2009 H1N1, the highly pathogenic avian H5N1 and the avian H9N2 influenza viruses have been reported. However, the role of PA-X in the pathogenesis of swine influenza virus is still unknown. In this study, we rescued the H1N1 wild-type (WT) classical swine influenza virus (A/Swine/Guangdong/1/2011 (H1N1)) and H1N1 PA-X deficient virus containing mutations at the frameshift motif, and compared their replication properties and pathogenicity of swine influenza virus in vitro and in vivo. Our results show that the expression of PA-X inhibits virus replication and polymerase activity in cultured cells and decreases virulence in mouse models. Therefore, our study demonstrates that PA-X protein acts as a negative virulence regulator for classical H1N1 swine influenza virus and decreases virulence by inhibiting viral replication and polymerase activity, deepening our understanding of the pathogenesis of swine influenza virus.
Collapse
|
233
|
Xu G, Zhang X, Liu Q, Bing G, Hu Z, Sun H, Xiong X, Jiang M, He Q, Wang Y, Pu J, Guo X, Yang H, Liu J, Sun Y. PA-X protein contributes to virulence of triple-reassortant H1N2 influenza virus by suppressing early immune responses in swine. Virology 2017; 508:45-53. [PMID: 28494344 DOI: 10.1016/j.virol.2017.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/03/2017] [Accepted: 05/04/2017] [Indexed: 12/22/2022]
Abstract
Previous studies have identified a functional role of PA-X for influenza viruses in mice and avian species; however, its role in swine remains unknown. Toward this, we constructed PA-X deficient virus (Sw-FS) in the background of a Triple-reassortment (TR) H1N2 swine influenza virus (SIV) to assess the impact of PA-X in viral virulence in pigs. Expression of PA-X in TR H1N2 SIV enhanced viral replication and host protein synthesis shutoff, and inhibited the mRNA levels of type I IFNs and proinflammatory cytokines in porcine cells. A delay of proinflammatory responses was observed in lungs of pigs infected by wild type SIV (Sw-WT) compared to Sw-FS. Furthermore, Sw-WT virus replicated and transmitted more efficiently than Sw-FS in pigs. These results highlight the importance of PA-X in the moderation of virulence and immune responses of TR SIV in swine, which indicated that PA-X is a pro-virulence factor in TR SIV in pigs.
Collapse
Affiliation(s)
- Guanlong Xu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China; China Institute of Veterinary Drug Control, Beijing, China
| | - Xuxiao Zhang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Qinfang Liu
- Department of Avian Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Guoxia Bing
- China Animal Disease Control Center, Beijing, China
| | - Zhe Hu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Honglei Sun
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Xin Xiong
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Ming Jiang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Qiming He
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Yu Wang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Juan Pu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Xin Guo
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Hanchun Yang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Jinhua Liu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Yipeng Sun
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China.
| |
Collapse
|
234
|
Myaing MZ, Jumat MR, Huong TN, Tan BH, Sugrue RJ. Truncated forms of the PA protein containing only the C-terminal domains are associated with the ribonucleoprotein complex within H1N1 influenza virus particles. J Gen Virol 2017; 98:906-921. [PMID: 28141511 DOI: 10.1099/jgv.0.000721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We have examined the expression profile of the influenza virus PA protein in pH1N1/2009 virus-infected cells. Immunoblotting analysis of virus-infected MDCK cells revealed the presence of full-length PA protein from 8 h post-infection, together with the simultaneous appearance of PA protein species of approximately 50, 35/39 and 20/25 kDa (collectively referred to as PA*). PA* was also detected in H1N1/WSN-virus-infected cells, indicating that its presence was not virus-specific, and it was also observed in virus-infected A549 and chick embryo fibroblast (CEF) cells, indicating that its presence was not cell-type-specific. PA* was detected in cells expressing the recombinant PA protein, indicating that the PA* formation occurred in the absence of virus infection. These data collectively indicated that PA* formation is an intrinsic property of PA gene expression. The association of PA* with purified influenza virus particles was demonstrated by immunoblotting, and a protease protection assay provided evidence that PA* was packaged into virus particles. The ribonucleoprotein (RNP) complex was isolated from purified influenza virus particles using glycerol gradient centrifugation, which demonstrated that PA* was associated with the RNP complex. To the best of our knowledge, this is the first report to demonstrate that PA protein species containing only segments of the C-terminal domain form during influenza virus infection. Furthermore, these truncated PA protein species are subsequently packaged into virus particles as part of the functional RNP complex.
Collapse
Affiliation(s)
- Myint Zu Myaing
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Muhammad Raihan Jumat
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Tra Nguyen Huong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Boon Huan Tan
- Detection and Diagnostics Laboratory, DSO National Laboratories, 27 Medical Drive, Singapore 117510, Singapore
| | - Richard J Sugrue
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
235
|
Gao Z, Hu J, Liang Y, Yang Q, Yan K, Liu D, Wang X, Gu M, Liu X, Hu S, Hu Z, Liu H, Liu W, Chen S, Peng D, Jiao XA, Liu X. Generation and Comprehensive Analysis of Host Cell Interactome of the PA Protein of the Highly Pathogenic H5N1 Avian Influenza Virus in Mammalian Cells. Front Microbiol 2017; 8:739. [PMID: 28503168 PMCID: PMC5408021 DOI: 10.3389/fmicb.2017.00739] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/10/2017] [Indexed: 12/26/2022] Open
Abstract
Accumulating data have identified the important roles of PA protein in replication and pathogenicity of influenza A virus (IAV). Identification of host factors that interact with the PA protein may accelerate our understanding of IAV pathogenesis. In this study, using immunoprecipitation assay combined with liquid chromatography-tandem mass spectrometry, we identified 278 human cellular proteins that might interact with PA of H5N1 IAV. Gene Ontology annotation revealed that the identified proteins are highly associated with viral translation and replication. Further KEGG pathway analysis of the interactome profile highlighted cellular pathways associated with translation, infectious disease, and signal transduction. In addition, Diseases and Functions analysis suggested that these cellular proteins are highly related with Organismal Injury and Abnormalities and Cell Death and Survival. Moreover, two cellular proteins (nucleolin and eukaryotic translation elongation factor 1-alpha 1) identified both in this study and others were further validated to interact with PA using co-immunoprecipitation and co-localization assays. Therefore, this study presented the interactome data of H5N1 IAV PA protein in human cells which may provide novel cellular target proteins for elucidating the potential molecular functions of PA in regulating the lifecycle of IAV in human cells.
Collapse
Affiliation(s)
- Zhao Gao
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou UniversityYangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou UniversityYangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China
| | - Yanyan Liang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou UniversityYangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China
| | - Qian Yang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou UniversityYangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China
| | - Kun Yan
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou UniversityYangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China
| | - Dong Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou UniversityYangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou UniversityYangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China
| | - Min Gu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou UniversityYangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou UniversityYangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou UniversityYangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China
| | - Zenglei Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou UniversityYangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China
| | - Huimou Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou UniversityYangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China
| | - Wenbo Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou UniversityYangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China
| | - Sujuan Chen
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou UniversityYangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China
| | - Daxin Peng
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou UniversityYangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China
| | - Xin-An Jiao
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou UniversityYangzhou, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou UniversityYangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China
| |
Collapse
|
236
|
Cheng YY, Yang SR, Wang YT, Lin YH, Chen CJ. Amino Acid Residues 68-71 Contribute to Influenza A Virus PB1-F2 Protein Stability and Functions. Front Microbiol 2017; 8:692. [PMID: 28484439 PMCID: PMC5399091 DOI: 10.3389/fmicb.2017.00692] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 04/04/2017] [Indexed: 11/13/2022] Open
Abstract
Influenza A virus PB1-F2, encoding a multi-functional protein, is regarded as a virulent gene. Variation in expression pattern and protein stability among PB1-F2 proteins derived from different strains may explain why PB1-F2 functions in a strain- and cell type-specific manner. Because the protein stability of PB1-F2 affects its biological functions, we looked for sequences important for this property. By comparing variants and chimeric of PB1-F2 proteins from A/Hong Kong/156/1997 (H5N1) and A/Puerto Rico/8/1934 (H1N1), we identified amino acid residues 68-71 affect its protein stability. PB1-F2 with T68, Q69, D70, and S71 has a shorter protein half-life than its I68, L69, V70, and F71 counterpart. This is likely to do with proteasome-mediated degradation. Swapping amino acids 68-71 between two proteins reversed not only the length of protein half-life and sensitivity to MG132, but also subcellular localization and interferon antagonization. Our data suggested that composition of amino acids 68-71, which regulates protein stability and therefore its functions, can be a major factor determining strain-specificity of PB1-F2.
Collapse
Affiliation(s)
- Yi-Ying Cheng
- Institute of Microbiology and Immunology, National Yang-Ming UniversityTaipei, Taiwan.,Program in Molecular Medicine, National Yang-Ming University and Academia SinicaTaipei, Taiwan
| | - Shih-Rang Yang
- Institute of Microbiology and Immunology, National Yang-Ming UniversityTaipei, Taiwan
| | - Ying-Ting Wang
- Institute of Microbiology and Immunology, National Yang-Ming UniversityTaipei, Taiwan
| | - Yu-Hsin Lin
- Institute of Microbiology and Immunology, National Yang-Ming UniversityTaipei, Taiwan
| | - Chi-Ju Chen
- Institute of Microbiology and Immunology, National Yang-Ming UniversityTaipei, Taiwan
| |
Collapse
|
237
|
Yin C, Yau SST. A coevolution analysis for identifying protein-protein interactions by Fourier transform. PLoS One 2017; 12:e0174862. [PMID: 28430779 PMCID: PMC5400233 DOI: 10.1371/journal.pone.0174862] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 03/16/2017] [Indexed: 12/29/2022] Open
Abstract
Protein-protein interactions (PPIs) play key roles in life processes, such as signal transduction, transcription regulations, and immune response, etc. Identification of PPIs enables better understanding of the functional networks within a cell. Common experimental methods for identifying PPIs are time consuming and expensive. However, recent developments in computational approaches for inferring PPIs from protein sequences based on coevolution theory avoid these problems. In the coevolution theory model, interacted proteins may show coevolutionary mutations and have similar phylogenetic trees. The existing coevolution methods depend on multiple sequence alignments (MSA); however, the MSA-based coevolution methods often produce high false positive interactions. In this paper, we present a computational method using an alignment-free approach to accurately detect PPIs and reduce false positives. In the method, protein sequences are numerically represented by biochemical properties of amino acids, which reflect the structural and functional differences of proteins. Fourier transform is applied to the numerical representation of protein sequences to capture the dissimilarities of protein sequences in biophysical context. The method is assessed for predicting PPIs in Ebola virus. The results indicate strong coevolution between the protein pairs (NP-VP24, NP-VP30, NP-VP40, VP24-VP30, VP24-VP40, and VP30-VP40). The method is also validated for PPIs in influenza and E.coli genomes. Since our method can reduce false positive and increase the specificity of PPI prediction, it offers an effective tool to understand mechanisms of disease pathogens and find potential targets for drug design. The Python programs in this study are available to public at URL (https://github.com/cyinbox/PPI).
Collapse
Affiliation(s)
- Changchuan Yin
- Department of Mathematics, Statistics and Computer Science, The University of Illinois at Chicago, Chicago, IL 60607-7045, United States of America
| | - Stephen S. -T. Yau
- Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
238
|
Lateral Organization of Influenza Virus Proteins in the Budozone Region of the Plasma Membrane. J Virol 2017; 91:JVI.02104-16. [PMID: 28202765 DOI: 10.1128/jvi.02104-16] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/12/2017] [Indexed: 12/24/2022] Open
Abstract
Influenza virus assembles and buds at the plasma membrane of virus-infected cells. The viral proteins assemble at the same site on the plasma membrane for budding to occur. This involves a complex web of interactions among viral proteins. Some proteins, like hemagglutinin (HA), NA, and M2, are integral membrane proteins. M1 is peripherally membrane associated, whereas NP associates with viral RNA to form an RNP complex that associates with the cytoplasmic face of the plasma membrane. Furthermore, HA and NP have been shown to be concentrated in cholesterol-rich membrane raft domains, whereas M2, although containing a cholesterol binding motif, is not raft associated. Here we identify viral proteins in planar sheets of plasma membrane using immunogold staining. The distribution of these proteins was examined individually and pairwise by using the Ripley K function, a type of nearest-neighbor analysis. Individually, HA, NA, M1, M2, and NP were shown to self-associate in or on the plasma membrane. HA and M2 are strongly coclustered in the plasma membrane; however, in the case of NA and M2, clustering depends upon the expression system used. Despite both proteins being raft resident, HA and NA occupy distinct but adjacent membrane domains. M2 and M1 strongly cocluster, but the association of M1 with HA or NA is dependent upon the means of expression. The presence of HA and NP at the site of budding depends upon the coexpression of other viral proteins. Similarly, M2 and NP occupy separate compartments, but an association can be bridged by the coexpression of M1.IMPORTANCE The complement of influenza virus proteins necessary for the budding of progeny virions needs to accumulate at budozones. This is complicated by HA and NA residing in lipid raft-like domains, whereas M2, although an integral membrane protein, is not raft associated. Other necessary protein components such as M1 and NP are peripherally associated with the membrane. Our data define spatial relationships between viral proteins in the plasma membrane. Some proteins, such as HA and M2, inherently cocluster within the membrane, although M2 is found mostly at the periphery of regions of HA, consistent with the proposed role of M2 in scission at the end of budding. The association between some pairs of influenza virus proteins, such as M2 and NP, appears to be brokered by additional influenza virus proteins, in this case M1. HA and NA, while raft associated, reside in distinct domains, reflecting their distributions in the viral membrane.
Collapse
|
239
|
Genotype-Specific Evolution of Hepatitis E Virus. J Virol 2017; 91:JVI.02241-16. [PMID: 28202767 DOI: 10.1128/jvi.02241-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/31/2017] [Indexed: 12/20/2022] Open
Abstract
Hepatitis E virus (HEV) is the most common cause of acute viral hepatitis globally. HEV comprises four genotypes with different geographic distributions and host ranges. We utilize this natural case-control study for investigating the evolution of zoonotic viruses compared to single-host viruses, using 244 near-full-length HEV genomes. Genome-wide estimates of the ratio of nonsynonymous to synonymous evolutionary changes (dN/dS ratio) located a region of overlapping reading frames, which is subject to positive selection in genotypes 3 and 4. The open reading frames (ORFs) involved have functions related to host-pathogen interaction, so genotype-specific evolution of these regions may reflect their fitness. Bayesian inference of evolutionary rates shows that genotypes 3 and 4 have significantly higher rates than genotype 1 across all ORFs. Reconstruction of the phylogenies of zoonotic genotypes demonstrates significant intermingling of isolates between hosts. We speculate that the genotype-specific differences may result from cyclical adaptation to different hosts in genotypes 3 and 4.IMPORTANCE Hepatitis E virus (HEV) is increasingly recognized as a pathogen that affects both the developing and the developed world. While most often clinically mild, HEV can be severe or fatal in certain demographics, such as expectant mothers. Like many other viral pathogens, HEV has been classified into several distinct genotypes. We show that most of the HEV genome is evolutionarily constrained. One locus of positive selection is unusual in that it encodes two distinct protein products. We are the first to detect positive selection in this overlap region. Genotype 1, which infects humans only, appears to be evolving differently from genotypes 3 and 4, which infect multiple species, possibly because genotypes 3 and 4 are unable to achieve the same fitness due to repeated host jumps.
Collapse
|
240
|
Zhang S, Wang R, Su H, Wang B, Sizhu S, Lei Z, Jin M, Chen H, Cao J, Zhou H. Sus scrofa miR-204 and miR-4331 Negatively Regulate Swine H1N1/2009 Influenza A Virus Replication by Targeting Viral HA and NS, Respectively. Int J Mol Sci 2017; 18:ijms18040749. [PMID: 28368362 PMCID: PMC5412334 DOI: 10.3390/ijms18040749] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 03/23/2017] [Accepted: 03/29/2017] [Indexed: 01/06/2023] Open
Abstract
The prevalence of swine pandemic H1N1/2009 influenza A virus (SIV-H1N1/2009) in pigs has the potential to generate novel reassortant viruses, posing a great threat to human health. Cellular microRNAs (miRNAs) have been proven as promising small molecules for regulating influenza A virus replication by directly targeting viral genomic RNA. In this study, we predicted potential Sus scrofa (ssc-, swine) miRNAs targeting the genomic RNA of SIV-H1N1/2009 by RegRNA 2.0, and identified ssc-miR-204 and ssc-miR-4331 to target viral HA and NS respectively through dual-luciferase reporter assays. The messenger RNA (mRNA) levels of viral HA and NS were significantly suppressed when newborn pig trachea (NPTr) cells respectively overexpressed ssc-miR-204 and ssc-miR-4331 and were infected with SIV-H1N1/2009, whereas the suppression effect could be restored when respectively decreasing endogenous ssc-miR-204 and ssc-miR-4331 with inhibitors. Because of the importance of viral HA and NS in the life cycle of influenza A virus, ssc-miR-204 and ssc-miR-4331 exhibited an inhibition effect on SIV-H1N1/2009 replication. The antiviral effect was sequence-specific of SIV-H1N1/2009, for the target sites in HA and NS of H5N1 or H9N2 influenza A virus were not conserved. Furthermore, SIV-H1N1/2009 infection reversely downregulated the expression of ssc-miR-204 and ssc-miR-4331, which might facilitate the virus replication in the host. In summary, this work will provide us some important clues for controlling the prevalence of SIV-H1N1/2009 in pig populations.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Blotting, Western
- Cells, Cultured
- Gene Expression Regulation, Viral
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/metabolism
- Host-Pathogen Interactions/genetics
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/physiology
- Luciferases/genetics
- Luciferases/metabolism
- MicroRNAs/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sus scrofa
- Trachea/cytology
- Trachea/metabolism
- Trachea/virology
- Viral Nonstructural Proteins/genetics
- Viral Nonstructural Proteins/metabolism
- Virus Replication/genetics
Collapse
Affiliation(s)
- Shishuo Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Ruifang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Huijuan Su
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Biaoxiong Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Suolang Sizhu
- Department of Animal Science, Tibet Agricultural and Animal Husbandry College, Linzhi 860000, China.
| | - Zhixin Lei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| | - Jiyue Cao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hongbo Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| |
Collapse
|
241
|
Single nucleoprotein residue determines influenza A virus sensitivity to an intertypic suppression mechanism. Virology 2017; 506:99-109. [PMID: 28371631 DOI: 10.1016/j.virol.2017.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 03/26/2017] [Accepted: 03/27/2017] [Indexed: 10/19/2022]
Abstract
Several mechanisms underlying intertypic interference between co-infecting influenza types A and B viruses (IAV and IBV) have been proposed. We have recently described one in which IBV's nucleoprotein (BNP) sequestered IAV's nucleoprotein (ANP) and suppressed IAV polymerase and growth. However, its anti-IAV capacity and limitations have not been fully explored. Here, we showed that BNP's inhibitory effect was more potent toward a wide array of avian IAVs, whereas human IAVs revealed moderate resistance. BNP sensitivity was largely determined by ANP's residue 343 at the NP oligomerization interface. An avian IAV polymerase carrying an NP-V343L mutation switched from being highly BNP-sensitive to moderately BNP-resistant, and vice versa for a human IAV polymerase carrying a reverse mutation. To highlight its capacity, we demonstrated that the polymerases of highly-pathogenic H5N1 and the pandemic 2009 (H1N1) strains are strongly inhibited by BNP. Our work provides insights into lineage-specific sensitivity to BNP-mediated intertypic interference.
Collapse
|
242
|
Wei L, Zhao X, Wang R, Fu Y, Chai B, Liang A. Expression of a MORN repeat protein from Euplotes octocarinatus requires a +1 programmed ribosomal frameshifting. Biosci Biotechnol Biochem 2017; 81:1327-1334. [PMID: 28317463 DOI: 10.1080/09168451.2017.1301804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Analysis of transcriptome revealed that a membrane occupation and recognition nexus (MORN) repeat protein-encoding gene of Euplotes octocarinatus (Eo-morn-9-31) was a candidate for programmed +1 ribosomal frameshifting (+1 PRF). In this study, a dual-luciferase assay was performed to detect its expression. The result showed that the MORN repeat protein (Eo-MORN-9-31) could be produced by the +1 PRF event during the process of translation in yeast and the frameshifting efficiency was about 4-5%. We further confirmed its reality by western blot and mass spectrometry. This study provided experimental evidence indicating that the expression of the Eo-MORN-9-31 of E. octocarinatus required the +1 PRF.
Collapse
Affiliation(s)
- Lili Wei
- a Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology , Shanxi University , Taiyuan , China
| | - Xuemei Zhao
- a Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology , Shanxi University , Taiyuan , China
| | - Ruanlin Wang
- a Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology , Shanxi University , Taiyuan , China
| | - Yuejun Fu
- a Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology , Shanxi University , Taiyuan , China
| | - Baofeng Chai
- a Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology , Shanxi University , Taiyuan , China
| | - Aihua Liang
- a Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology , Shanxi University , Taiyuan , China
| |
Collapse
|
243
|
Pyle JD, Keeling PJ, Nibert ML. Amalga-like virus infecting Antonospora locustae, a microsporidian pathogen of grasshoppers, plus related viruses associated with other arthropods. Virus Res 2017; 233:95-104. [PMID: 28267607 DOI: 10.1016/j.virusres.2017.02.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/18/2017] [Accepted: 02/21/2017] [Indexed: 12/16/2022]
Abstract
A previously reported Expressed Sequence Tag (EST) library from spores of microsporidian Antonospora locustae includes a number of clones with sequence similarities to plant amalgaviruses. Reexamining the sequence accessions from that library, we found additional such clones, contributing to a 3247-nt contig that approximates the length of an amalga-like virus genome. Using A. locustae spores stored from that previous study, and new ones obtained from the same source, we newly visualized the putative dsRNA genome of this virus and obtained amplicons yielding a 3387-nt complete genome sequence. Phylogenetic analyses suggested it as prototype strain of a new genus in family Amalgaviridae. The genome contains two partially overlapping long ORFs, with downstream ORF2 in the +1 frame relative to ORF1 and a proposed motif for +1 ribosomal frameshifting in the region of overlap. Subsequent database searches using the predicted fusion protein sequence of this new amalga-like virus identified related sequences in the transcriptome of a basal hexapod, the springtail species Tetrodontophora bielanensis. We speculate that this second new amalga-like virus (contig length, 3475 nt) likely also derived from a microsporidian, or related organism, which was associated with the springtail specimens at the time of sampling for transcriptome analysis. Other findings of interest include evidence that the ORF1 translation products of these two new amalga-like viruses contain a central region of predicted α-helical coiled coil, as recently reported for plant amalgaviruses, and transcriptome-based evidence for another new amalga-like virus in the transcriptome of another basal hexapod, the two-pronged bristletail species Campodea augens.
Collapse
Affiliation(s)
- Jesse D Pyle
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Harvard Ph.D. Program in Virology, Division of Medical Sciences, Harvard University, Boston, MA 02115, USA
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Max L Nibert
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Harvard Ph.D. Program in Virology, Division of Medical Sciences, Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
244
|
Vidic J, Manzano M, Chang CM, Jaffrezic-Renault N. Advanced biosensors for detection of pathogens related to livestock and poultry. Vet Res 2017; 48:11. [PMID: 28222780 PMCID: PMC5320782 DOI: 10.1186/s13567-017-0418-5] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/23/2017] [Indexed: 01/01/2023] Open
Abstract
Infectious animal diseases caused by pathogenic microorganisms such as bacteria and viruses threaten the health and well-being of wildlife, livestock, and human populations, limit productivity and increase significantly economic losses to each sector. The pathogen detection is an important step for the diagnostics, successful treatment of animal infection diseases and control management in farms and field conditions. Current techniques employed to diagnose pathogens in livestock and poultry include classical plate-based methods and conventional biochemical methods as enzyme-linked immunosorbent assays (ELISA). These methods are time-consuming and frequently incapable to distinguish between low and highly pathogenic strains. Molecular techniques such as polymerase chain reaction (PCR) and real time PCR (RT-PCR) have also been proposed to be used to diagnose and identify relevant infectious disease in animals. However these DNA-based methodologies need isolated genetic materials and sophisticated instruments, being not suitable for in field analysis. Consequently, there is strong interest for developing new swift point-of-care biosensing systems for early detection of animal diseases with high sensitivity and specificity. In this review, we provide an overview of the innovative biosensing systems that can be applied for livestock pathogen detection. Different sensing strategies based on DNA receptors, glycan, aptamers and antibodies are presented. Besides devices still at development level some are validated according to standards of the World Organization for Animal Health and are commercially available. Especially, paper-based platforms proposed as an affordable, rapid and easy to perform sensing systems for implementation in field condition are included in this review.
Collapse
Affiliation(s)
- Jasmina Vidic
- Virologie et Immunologie Moléculaires, UR892, INRA, Paris Saclay University, 78350 Jouy-en-Josas, France
| | - Marisa Manzano
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università di Udine, 33100 Udine, Italy
| | - Chung-Ming Chang
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao-Yuan, 33302 Taiwan
| | | |
Collapse
|
245
|
Hu S, Yin L, Mei S, Li J, Xu F, Sun H, Liu X, Cen S, Liang C, Li A, Guo F. BST-2 restricts IAV release and is countered by the viral M2 protein. Biochem J 2017; 474:715-730. [PMID: 28087685 DOI: 10.1042/bcj20160861] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 11/09/2016] [Accepted: 01/13/2017] [Indexed: 12/15/2022]
Abstract
BST-2 (tetherin, CD317, and HM1.24) is induced by interferon and restricts virus release by tethering the enveloped viruses to the cell surface. The effect of BST-2 on influenza A virus (IAV) infection has been inconclusive. In the present study, we report that BST-2 diminishes the production of IAV virus-like particles (VLPs) that are generated by viral neuraminidase and hemagglutinin proteins to a much greater degree than it inhibits the production of wild-type IAV particles. This relatively weaker inhibition of IAV is associated with reduction in BST-2 levels, which is caused by the M2 protein that interacts with BST-2 and leads to down-regulation of cell surface BST-2 via the proteasomal pathway. Similarly to the viral antagonist Vpu, M2 also rescues the production of human immunodeficiency virus-1 VLPs and IAV VLPs in the presence of BST-2. Replication of wild-type and the M2-deleted viruses were both inhibited by BST-2, with the M2-deleted IAV being more restricted. These data reveal one mechanism that IAV employs to counter restriction by BST-2.
Collapse
Affiliation(s)
- Siqi Hu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, PR China
| | - Lijuan Yin
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, PR China
| | - Shan Mei
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, PR China
| | - Jian Li
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, PR China
| | - Fengwen Xu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, PR China
| | - Hong Sun
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, PR China
| | - Xiaoman Liu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, PR China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, PR China
| | - Chen Liang
- McGill University AIDS Centre, Lady Davis Institute, Jewish General Hospital, Montreal H3T 1E2, Canada
| | - Ailing Li
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, PR China
| | - Fei Guo
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, PR China
| |
Collapse
|
246
|
Wu X, Wu X, Sun Q, Zhang C, Yang S, Li L, Jia Z. Progress of small molecular inhibitors in the development of anti-influenza virus agents. Am J Cancer Res 2017; 7:826-845. [PMID: 28382157 PMCID: PMC5381247 DOI: 10.7150/thno.17071] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/18/2016] [Indexed: 02/05/2023] Open
Abstract
The influenza pandemic is a major threat to human health, and highly aggressive strains such as H1N1, H5N1 and H7N9 have emphasized the need for therapeutic strategies to combat these pathogens. Influenza anti-viral agents, especially active small molecular inhibitors play important roles in controlling pandemics while vaccines are developed. Currently, only a few drugs, which function as influenza neuraminidase (NA) inhibitors and M2 ion channel protein inhibitors, are approved in clinical. However, the acquired resistance against current anti-influenza drugs and the emerging mutations of influenza virus itself remain the major challenging unmet medical needs for influenza treatment. It is highly desirable to identify novel anti-influenza agents. This paper reviews the progress of small molecular inhibitors act as antiviral agents, which include hemagglutinin (HA) inhibitors, RNA-dependent RNA polymerase (RdRp) inhibitors, NA inhibitors and M2 ion channel protein inhibitors etc. Moreover, we also summarize new, recently reported potential targets and discuss strategies for the development of new anti-influenza virus drugs.
Collapse
|
247
|
Davis AM, Ramirez J, Newcomb LL. Identification of influenza A nucleoprotein body domain residues essential for viral RNA expression expose antiviral target. Virol J 2017; 14:22. [PMID: 28173821 PMCID: PMC5294902 DOI: 10.1186/s12985-017-0694-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 01/30/2017] [Indexed: 11/10/2022] Open
Abstract
Background Influenza A virus is controlled with yearly vaccination while emerging global pandemics are kept at bay with antiviral medications. Unfortunately, influenza A viruses have emerged resistance to approved influenza antivirals. Accordingly, there is an urgent need for novel antivirals to combat emerging influenza A viruses resistant to current treatments. Conserved viral proteins are ideal targets because conserved protein domains are present in most, if not all, influenza subtypes, and are presumed less prone to evolve viable resistant versions. The threat of an antiviral resistant influenza pandemic justifies our study to identify and characterize antiviral targets within influenza proteins that are highly conserved. Influenza A nucleoprotein (NP) is highly conserved and plays essential roles throughout the viral lifecycle, including viral RNA synthesis. Methods Using NP crystal structure, we targeted accessible amino acids for substitution. To characterize the NP proteins, reconstituted viral ribonucleoproteins (vRNPs) were expressed in 293 T cells, RNA was isolated, and reverse transcription – quantitative PCR (RT-qPCR) was employed to assess viral RNA expressed from reconstituted vRNPs. Location was confirmed using cellular fractionation and western blot, along with observation of NP-GFP fusion proteins. Nucleic acid binding, oligomerization, and vRNP formation, were each assessed with native gel electrophoresis. Results Here we report characterization of an accessible and conserved five amino acid region within the NP body domain that plays a redundant but essential role in viral RNA synthesis. Our data demonstrate substitutions in this domain did not alter NP localization, oligomerization, or ability to bind nucleic acids, yet resulted in a defect in viral RNA expression. To define this region further, single and double amino acid substitutions were constructed and investigated. All NP single substitutions were functional, suggesting redundancy, yet different combinations of two amino acid substitutions resulted in a significant defect in RNA expression, confirming these accessible amino acids in the NP body domain play an important role in viral RNA synthesis. Conclusions The identified conserved and accessible NP body domain represents a viable antiviral target to counter influenza replication and this research will contribute to the well-informed design of novel therapies to combat emerging influenza viruses.
Collapse
Affiliation(s)
- Alicia M Davis
- Department of Biology, California State University San Bernardino, San Bernardino, CA, USA.,Present Address: Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA, USA
| | - Jose Ramirez
- Department of Biology, California State University San Bernardino, San Bernardino, CA, USA.,Present Address: Tufts University School of Medicine, Boston, MA, USA
| | - Laura L Newcomb
- Department of Biology, California State University San Bernardino, San Bernardino, CA, USA.
| |
Collapse
|
248
|
Zheng W, Cao S, Chen C, Li J, Zhang S, Jiang J, Niu Y, Fan W, Li Y, Bi Y, Gao GF, Sun L, Liu W. Threonine 80 phosphorylation of non-structural protein 1 regulates the replication of influenza A virus by reducing the binding affinity with RIG-I. Cell Microbiol 2017; 19:e12643. [PMID: 27376632 DOI: 10.1111/cmi.12643] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 06/30/2016] [Accepted: 06/30/2016] [Indexed: 11/29/2022]
Abstract
Influenza A virus evades host antiviral defense through hijacking innate immunity by its non-structural protein 1 (NS1). By using mass spectrometry, threonine 80 (T80) was identified as a novel phosphorylated residue in the NS1 of the influenza virus A/WSN/1933(H1N1). By generating recombinant influenza viruses encoding NS1 T80 mutants, the roles of this phosphorylation site were characterized during viral replication. The T80E (phosphomimetic) mutant attenuated virus replication, whereas the T80A (non-phosphorylatable) mutant did not. Similar phenotypes were observed for these mutants in a mouse model experiment. In further study, the T80E mutant decreased the binding capacity between NS1 and viral nucleoprotein (NP), leading to impaired viral ribonucleoprotein (vRNP)-mediated viral transcription. The T80E mutant was also unable to inhibit interferon (IFN) production by reducing the binding affinity between NS1 and retinoic acid-induced gene 1 protein (RIG-I), causing attenuation of virus replication. Taken together, the present study reveals that T80 phosphorylation of NS1 reduced influenza virus replication through controlling RIG-I-mediated IFN production and vRNP activity.
Collapse
Affiliation(s)
- Weinan Zheng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shuaishuai Cao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Can Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shuang Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jingwen Jiang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yange Niu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenhui Fan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yun Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
- Office of Director-General, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lei Sun
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wenjun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
249
|
Lee J, Yu H, Li Y, Ma J, Lang Y, Duff M, Henningson J, Liu Q, Li Y, Nagy A, Bawa B, Li Z, Tong G, Richt JA, Ma W. Impacts of different expressions of PA-X protein on 2009 pandemic H1N1 virus replication, pathogenicity and host immune responses. Virology 2017; 504:25-35. [PMID: 28142079 DOI: 10.1016/j.virol.2017.01.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 01/20/2017] [Accepted: 01/21/2017] [Indexed: 12/16/2022]
Abstract
Although several studies have investigated the functions of influenza PA-X, the impact of different expressions of PA-X protein including full-length, truncated or PA-X deficient forms on virus replication, pathogenicity and host response remains unclear. Herein, we generated two mutated viruses expressing a full-length or deficient PA-X protein based on the A/California/04/2009 (H1N1) virus that expresses a truncated PA-X to understand three different expressions of PA-X protein on virus replication, pathogenicity and host immune responses. The results showed that expression of either full-length or truncated PA-X protein enhanced viral replication and pathogenicity as well as reduced host innate immune response in mice by host shutoff activity when compared to the virus expressing the deficient PA-X form. Furthermore, the full-length PA-X expression exhibited a greater effect on virus pathogenicity than the truncated PA-X form. Our results provide novel insights of PA-X on viral replication, pathogenicity and host immune responses.
Collapse
Affiliation(s)
- Jinhwa Lee
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Hai Yu
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA; Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yonghai Li
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Jingjiao Ma
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Yuekun Lang
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Michael Duff
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Jamie Henningson
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Qinfang Liu
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA; Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yuhao Li
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Abdou Nagy
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Bhupinder Bawa
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Zejun Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Guangzhi Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Juergen A Richt
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Wenjun Ma
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
250
|
Pflug A, Lukarska M, Resa-Infante P, Reich S, Cusack S. Structural insights into RNA synthesis by the influenza virus transcription-replication machine. Virus Res 2017; 234:103-117. [PMID: 28115197 DOI: 10.1016/j.virusres.2017.01.013] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 12/31/2016] [Accepted: 01/13/2017] [Indexed: 12/22/2022]
Abstract
Influenza virus is a segmented, negative strand RNA virus with each genome segment being packaged in a distinct ribonucleoprotein particle (RNP). The RNP consists of the heterotrimeric viral RNA-dependent RNA polymerase bound to the conserved 5' and 3' ends of the genome segment (the viral promoter) with the rest of the viral RNA (vRNA) being covered by multiple copies of nucleoprotein. This review focusses on the new insights that recent crystal structures have given into the detailed molecular mechanisms by which the polymerase performs both transcription and replication of the vRNA genome. Promoter binding, in particular that of 5' end, is essential to allosterically activate all polymerase functions. Transcription is initiated by the hijacking of nascent, capped host transcripts by the process of 'cap-snatching', for which the viral polymerase makes an essential interaction with the C-terminal domain (CTD) of cellular RNA polymerase II. The structures allow a coherent mechanistic model of the subsequent cap-snatching, cap-dependent priming, elongation and self-polyadenylation steps of viral mRNA synthesis. During replication, the vRNA is copied without modification into complementary RNA (cRNA) which is packaged into cRNPs. A priming loop located in the polymerase active site is required for the unprimed synthesis of cRNA from vRNA, but is not required for cRNA to vRNA replication due to differences in the mode of initiation of RNA synthesis. Overall a picture emerges of influenza polymerase being a highly complex, flexible and dynamic machine. The challenge remains to understand in more detail how it functions within the RNP and how interacting host factors modulate its activity in the cellular context. Finally, these detailed insights have opened up new opportunities for structure-based antiviral drug design targeting multiple aspects of polymerase function.
Collapse
Affiliation(s)
- Alexander Pflug
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France
| | - Maria Lukarska
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France
| | - Patricia Resa-Infante
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France
| | - Stefan Reich
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France
| | - Stephen Cusack
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France.
| |
Collapse
|