201
|
Lane SW, Williams DA, Watt FM. Modulating the stem cell niche for tissue regeneration. Nat Biotechnol 2014; 32:795-803. [PMID: 25093887 PMCID: PMC4422171 DOI: 10.1038/nbt.2978] [Citation(s) in RCA: 389] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 07/06/2014] [Indexed: 02/06/2023]
Abstract
The field of regenerative medicine holds considerable promise for treating diseases that are currently intractable. Although many researchers are adopting the strategy of cell transplantation for tissue repair, an alternative approach to therapy is to manipulate the stem cell microenvironment, or niche, to facilitate repair by endogenous stem cells. The niche is highly dynamic, with multiple opportunities for intervention. These include administration of small molecules, biologics or biomaterials that target specific aspects of the niche, such as cell-cell and cell-extracellular matrix interactions, to stimulate expansion or differentiation of stem cells, or to cause reversion of differentiated cells to stem cells. Nevertheless, there are several challenges in targeting the niche therapeutically, not least that of achieving specificity of delivery and responses. We envisage that successful treatments in regenerative medicine will involve different combinations of factors to target stem cells and niche cells, applied at different times to effect recovery according to the dynamics of stem cell-niche interactions.
Collapse
Affiliation(s)
- Steven W Lane
- Division of Immunology, QIMR Berghofer Medical Research Institute, Royal Brisbane Hospital, Herston, Queensland, Australia
| | - David A Williams
- 1] Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA. [2] Harvard Stem Cell Institute, Boston, Massachusetts, USA
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, Great Maze Pond, London, UK
| |
Collapse
|
202
|
Franz S, Ciatipis M, Pfeifer K, Kierdorf B, Sandner B, Bogdahn U, Blesch A, Winner B, Weidner N. Thoracic rat spinal cord contusion injury induces remote spinal gliogenesis but not neurogenesis or gliogenesis in the brain. PLoS One 2014; 9:e102896. [PMID: 25050623 PMCID: PMC4106835 DOI: 10.1371/journal.pone.0102896] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 06/24/2014] [Indexed: 12/16/2022] Open
Abstract
After spinal cord injury, transected axons fail to regenerate, yet significant, spontaneous functional improvement can be observed over time. Distinct central nervous system regions retain the capacity to generate new neurons and glia from an endogenous pool of progenitor cells and to compensate neural cell loss following certain lesions. The aim of the present study was to investigate whether endogenous cell replacement (neurogenesis or gliogenesis) in the brain (subventricular zone, SVZ; corpus callosum, CC; hippocampus, HC; and motor cortex, MC) or cervical spinal cord might represent a structural correlate for spontaneous locomotor recovery after a thoracic spinal cord injury. Adult Fischer 344 rats received severe contusion injuries (200 kDyn) of the mid-thoracic spinal cord using an Infinite Horizon Impactor. Uninjured rats served as controls. From 4 to 14 days post-injury, both groups received injections of bromodeoxyuridine (BrdU) to label dividing cells. Over the course of six weeks post-injury, spontaneous recovery of locomotor function occurred. Survival of newly generated cells was unaltered in the SVZ, HC, CC, and the MC. Neurogenesis, as determined by identification and quantification of doublecortin immunoreactive neuroblasts or BrdU/neuronal nuclear antigen double positive newly generated neurons, was not present in non-neurogenic regions (MC, CC, and cervical spinal cord) and unaltered in neurogenic regions (dentate gyrus and SVZ) of the brain. The lack of neuronal replacement in the brain and spinal cord after spinal cord injury precludes any relevance for spontaneous recovery of locomotor function. Gliogenesis was increased in the cervical spinal cord remote from the injury site, however, is unlikely to contribute to functional improvement.
Collapse
Affiliation(s)
- Steffen Franz
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Mareva Ciatipis
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Kathrin Pfeifer
- Department of Neurology, University of Regensburg, Regensburg, Germany
| | - Birthe Kierdorf
- Department of Neurology, University of Regensburg, Regensburg, Germany
| | - Beatrice Sandner
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Ulrich Bogdahn
- Department of Neurology, University of Regensburg, Regensburg, Germany
| | - Armin Blesch
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Beate Winner
- IZKF Junior Group III and BMBF Research Group Neuroscience, Interdisciplinary Center for Clinical Research, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University-Erlangen-Nürnberg, Erlangen, Germany
| | - Norbert Weidner
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
203
|
Gabr H, El-Kheir WA, Farghali HAMA, Ismail ZMK, Zickri MB, El Maadawi ZM, Kishk NA, Sabaawy HE. Intrathecal Transplantation of Autologous Adherent Bone Marrow Cells Induces Functional Neurological Recovery in a Canine Model of Spinal Cord Injury. Cell Transplant 2014; 24:1813-27. [PMID: 25199146 DOI: 10.3727/096368914x683025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Spinal cord injury (SCI) results in demyelination of surviving axons, loss of oligodendrocytes, and impairment of motor and sensory functions. We have developed a clinical strategy of cell therapy for SCI through the use of autologous bone marrow cells for transplantation to augment remyelination and enhance neurological repair. In a preclinical large mammalian model of SCI, experimental dogs were subjected to a clipping contusion of the spinal cord. Two weeks after the injury, GFP-labeled autologous minimally manipulated adherent bone marrow cells (ABMCs) were transplanted intrathecally to investigate the safety and efficacy of autologous ABMC therapy. The effects of ABMC transplantation in dogs with SCI were determined using functional neurological scoring, and the integration of ABMCs into the injured cords was determined using histopathological and immunohistochemical investigations and electron microscopic analyses of sections from control and transplanted spinal cords. Our data demonstrate the presence of GFP-labeled cells in the injured spinal cord for up to 16 weeks after transplantation in the subacute SCI stage. GFP-labeled cells homed to the site of injury and were detected around white matter tracts and surviving axons. ABMC therapy in the canine SCI model enhanced remyelination and augmented neural regeneration, resulting in improved neurological functions. Therefore, autologous ABMC therapy appears to be a safe and promising therapy for spinal cord injuries.
Collapse
Affiliation(s)
- Hala Gabr
- Department of Hematology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | | | | | | | | | | | | |
Collapse
|
204
|
Astrocyte activation is suppressed in both normal and injured brain by FGF signaling. Proc Natl Acad Sci U S A 2014; 111:E2987-95. [PMID: 25002516 DOI: 10.1073/pnas.1320401111] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In the brain, astrocytes are multifunctional cells that react to insults and contain damage. However, excessive or sustained reactive astrocytes can be deleterious to functional recovery or contribute to chronic inflammation and neuronal dysfunction. Therefore, astrocyte activation in response to damage is likely to be tightly regulated. Although factors that activate astrocytes have been identified, whether factors also exist that maintain astrocytes as nonreactive or reestablish their nonreactive state after containing damage remains unclear. By using loss- and gain-of-function genetic approaches, we show that, in the unperturbed adult neocortex, FGF signaling is required in astrocytes to maintain their nonreactive state. Similarly, after injury, FGF signaling delays the response of astrocytes and accelerates their deactivation. In addition, disrupting astrocytic FGF receptors results in reduced scar size without affecting neuronal survival. Overall, this study reveals that the activation of astrocytes in the normal and injured neocortex is not only regulated by proinflammatory factors, but also by factors such as FGFs that suppress activation, providing alternative therapeutic targets.
Collapse
|
205
|
Butti E, Cusimano M, Bacigaluppi M, Martino G. Neurogenic and non-neurogenic functions of endogenous neural stem cells. Front Neurosci 2014; 8:92. [PMID: 24808821 PMCID: PMC4010760 DOI: 10.3389/fnins.2014.00092] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 04/09/2014] [Indexed: 12/27/2022] Open
Abstract
Adult neurogenesis is a lifelong process that occurs in two main neurogenic niches of the brain, namely in the subventricular zone (SVZ) of the lateral ventricles and in the subgranular zone (SGZ) of the dentate gyrus (DG) in the hippocampus. In the 1960s, studies on adult neurogenesis have been hampered by the lack of established phenotypic markers. The precise tracing of neural stem/progenitor cells (NPCs) was therefore, not properly feasible. After the (partial) identification of those markers, it was the lack of specific tools that hindered a proper experimental elimination and tracing of those cells to demonstrate their terminal fate and commitment. Nowadays, irradiation, cytotoxic drugs as well as genetic tracing/ablation procedures have moved the field forward and increased our understanding of neurogenesis processes in both physiological and pathological conditions. Newly formed NPC progeny from the SVZ can replace granule cells in the olfactory bulbs of rodents, thus contributing to orchestrate sophisticated odor behavior. SGZ-derived new granule cells, instead, integrate within the DG where they play an essential role in memory functions. Furthermore, converging evidence claim that endogenous NPCs not only exert neurogenic functions, but might also have non-neurogenic homeostatic functions by the release of different types of neuroprotective molecules. Remarkably, these non-neurogenic homeostatic functions seem to be necessary, both in healthy and diseased conditions, for example for preventing or limiting tissue damage. In this review, we will discuss the neurogenic and the non-neurogenic functions of adult NPCs both in physiological and pathological conditions.
Collapse
Affiliation(s)
- Erica Butti
- Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute Milan, Italy
| | - Melania Cusimano
- Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute Milan, Italy
| | - Marco Bacigaluppi
- Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute Milan, Italy
| | - Gianvito Martino
- Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute Milan, Italy
| |
Collapse
|
206
|
Peruzzotti-Jametti L, Donegá M, Giusto E, Mallucci G, Marchetti B, Pluchino S. The role of the immune system in central nervous system plasticity after acute injury. Neuroscience 2014; 283:210-221. [PMID: 24785677 DOI: 10.1016/j.neuroscience.2014.04.036] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/21/2014] [Accepted: 04/21/2014] [Indexed: 01/21/2023]
Abstract
Acute brain injuries cause rapid cell death that activates bidirectional crosstalk between the injured brain and the immune system. In the acute phase, the damaged CNS activates resident and circulating immune cells via the local and systemic release of soluble mediators. This early immune activation is necessary to confine the injured tissue and foster the clearance of cellular debris, thus bringing the inflammatory reaction to a close. In the chronic phase, a sustained immune activation has been described in many CNS disorders, and the degree of this prolonged response has variable effects on spontaneous brain regenerative processes. The challenge for treating acute CNS damage is to understand how to optimally engage and modify these immune responses, thus providing new strategies that will compensate for tissue lost to injury. Herein we have reviewed the available information regarding the role and function of the innate and adaptive immune responses in influencing CNS plasticity during the acute and chronic phases of after injury. We have examined how CNS damage evolves along the activation of main cellular and molecular pathways that are associated with intrinsic repair, neuronal functional plasticity and facilitation of tissue reorganization.
Collapse
Affiliation(s)
| | - Matteo Donegá
- John van Geest Centre for Brain Repair, Dept of Clinical Neurosciences
| | - Elena Giusto
- John van Geest Centre for Brain Repair, Dept of Clinical Neurosciences
| | - Giulia Mallucci
- John van Geest Centre for Brain Repair, Dept of Clinical Neurosciences.,Department of Brain and Behavioural sciences, National Neurological Institute C. Mondino, 27100 Pavia, Italy
| | - Bianca Marchetti
- Department of Clinical and Molecular Biomedicine, Pharmacology Section, Medical School, University of Catania, 95125 Catania, Italy.,OASI Institute for Research and Care on Mental Retardation and Brain Aging, Neuropharmacology Section, 94018 Troina, Italy
| | - Stefano Pluchino
- John van Geest Centre for Brain Repair, Dept of Clinical Neurosciences.,NIHR Biomedical Research Centre.,Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, CB2 0PY, UK
| |
Collapse
|
207
|
Martino G, Butti E, Bacigaluppi M. Neurogenesis or non-neurogenesis: that is the question. J Clin Invest 2014; 124:970-3. [PMID: 24569367 DOI: 10.1172/jci74419] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Neural stem/precursor cells (NPCs) that reside within germinal niches of the adult CNS have more complex roles than previously expected. In addition to their well-documented neurogenic functions, emerging evidence indicates that NPCs exert non-neurogenic functions that contribute to the regulation and preservation of tissue homeostasis under both physiological and pathological conditions. In this issue of the JCI, Mohammad et al. found that DCs efficiently patrol the CNS only when the germinal niche of the subventricular zone functions properly. Indeed, DCs traveled from the ventricles along the rostral migratory stream to the olfactory bulb (a cervical lymph node access point) to dampen anti-CNS immune responses. The authors' findings further support a non-neurogenic role for NPCs in maintaining tissue homeostasis and promoting tissue protection in the adult brain.
Collapse
|
208
|
Lacroix S, Hamilton LK, Vaugeois A, Beaudoin S, Breault-Dugas C, Pineau I, Lévesque SA, Grégoire CA, Fernandes KJL. Central canal ependymal cells proliferate extensively in response to traumatic spinal cord injury but not demyelinating lesions. PLoS One 2014; 9:e85916. [PMID: 24475059 PMCID: PMC3903496 DOI: 10.1371/journal.pone.0085916] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 12/09/2013] [Indexed: 11/18/2022] Open
Abstract
The adult mammalian spinal cord has limited regenerative capacity in settings such as spinal cord injury (SCI) and multiple sclerosis (MS). Recent studies have revealed that ependymal cells lining the central canal possess latent neural stem cell potential, undergoing proliferation and multi-lineage differentiation following experimental SCI. To determine whether reactive ependymal cells are a realistic endogenous cell population to target in order to promote spinal cord repair, we assessed the spatiotemporal dynamics of ependymal cell proliferation for up to 35 days in three models of spinal pathologies: contusion SCI using the Infinite Horizon impactor, focal demyelination by intraspinal injection of lysophosphatidylcholine (LPC), and autoimmune-mediated multi-focal demyelination using the active experimental autoimmune encephalomyelitis (EAE) model of MS. Contusion SCI at the T9-10 thoracic level stimulated a robust, long-lasting and long-distance wave of ependymal proliferation that peaked at 3 days in the lesion segment, 14 days in the rostral segment, and was still detectable at the cervical level, where it peaked at 21 days. This proliferative wave was suppressed distal to the contusion. Unlike SCI, neither chemical- nor autoimmune-mediated demyelination triggered ependymal cell proliferation at any time point, despite the occurrence of demyelination (LPC and EAE), remyelination (LPC) and significant locomotor defects (EAE). Thus, traumatic SCI induces widespread and enduring activation of reactive ependymal cells, identifying them as a robust cell population to target for therapeutic manipulation after contusion; conversely, neither demyelination, remyelination nor autoimmunity appears sufficient to trigger proliferation of quiescent ependymal cells in models of MS-like demyelinating diseases.
Collapse
Affiliation(s)
- Steve Lacroix
- Centre de recherche du Centre hospitalier universitaire (CHU) de Québec – CHUL et Département de médicine moléculaire, Faculté de médecine, Université Laval, Québec, Canada
| | - Laura K. Hamilton
- Department of Neurosciences, Faculty of Medicine, Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), and Groupe de recherche sur le système nerveux central (GRSNC), Université de Montréal, Quebec, Canada
| | - Alexandre Vaugeois
- Department of Neurosciences, Faculty of Medicine, Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), and Groupe de recherche sur le système nerveux central (GRSNC), Université de Montréal, Quebec, Canada
| | - Stéfanny Beaudoin
- Department of Neurosciences, Faculty of Medicine, Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), and Groupe de recherche sur le système nerveux central (GRSNC), Université de Montréal, Quebec, Canada
| | - Christian Breault-Dugas
- Department of Neurosciences, Faculty of Medicine, Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), and Groupe de recherche sur le système nerveux central (GRSNC), Université de Montréal, Quebec, Canada
| | - Isabelle Pineau
- Centre de recherche du Centre hospitalier universitaire (CHU) de Québec – CHUL et Département de médicine moléculaire, Faculté de médecine, Université Laval, Québec, Canada
| | - Sébastien A. Lévesque
- Centre de recherche du Centre hospitalier universitaire (CHU) de Québec – CHUL et Département de médicine moléculaire, Faculté de médecine, Université Laval, Québec, Canada
| | - Catherine-Alexandra Grégoire
- Department of Neurosciences, Faculty of Medicine, Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), and Groupe de recherche sur le système nerveux central (GRSNC), Université de Montréal, Quebec, Canada
| | - Karl J. L. Fernandes
- Department of Neurosciences, Faculty of Medicine, Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), and Groupe de recherche sur le système nerveux central (GRSNC), Université de Montréal, Quebec, Canada
- * E-mail:
| |
Collapse
|
209
|
Functional regeneration beyond the glial scar. Exp Neurol 2014; 253:197-207. [PMID: 24424280 DOI: 10.1016/j.expneurol.2013.12.024] [Citation(s) in RCA: 486] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/18/2013] [Accepted: 12/24/2013] [Indexed: 12/14/2022]
Abstract
Astrocytes react to CNS injury by building a dense wall of filamentous processes around the lesion. Stromal cells quickly take up residence in the lesion core and synthesize connective tissue elements that contribute to fibrosis. Oligodendrocyte precursor cells proliferate within the lesion and entrap dystrophic axon tips. Here we review evidence that this aggregate scar acts as the major barrier to regeneration of axons after injury. We also consider several exciting new interventions that allow axons to regenerate beyond the glial scar, and discuss the implications of this work for the future of regeneration biology.
Collapse
|