201
|
Wu S, Zhou L, Zhou Y, Wang H, Xiao J, Yan S, Wang Y. Diverse and unique viruses discovered in the surface water of the East China Sea. BMC Genomics 2020; 21:441. [PMID: 32590932 PMCID: PMC7318539 DOI: 10.1186/s12864-020-06861-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 06/22/2020] [Indexed: 11/23/2022] Open
Abstract
Background Viruses are the most abundant biological entities on earth and play import roles in marine biogeochemical cycles. Here, viral communities in the surface water of the East China Sea (ECS) were collected from three representative regions of Yangshan Harbor (YSH), Gouqi Island (GQI), and the Yangtze River Estuary (YRE) and explored primarily through epifluorescence microscopy (EM), transmission electron microscopy (TEM), and metagenomics analysis. Results The virus-like particles (VLPs) in the surface water of the ECS were measured to be 106 to 107 VLPs/ml. Most of the isolated viral particles possessed a head-and-tail structure, but VLPs with unique morphotypes that had never before been observed in the realm of viruses were also found. The sequences related to known viruses in GenBank accounted for 21.1–22.8% of the viromic datasets from YSH, GQI, and YRE. In total, 1029 viral species were identified in the surface waters of the ECS. Among them, tailed phages turn out to make up the majority of viral communities, however a small number of Phycodnaviridae or Mimiviridae related sequences were also detected. The diversity of viruses did not appear to be a big difference among these three aquatic environments but their relative abundance was geographically variable. For example, the Pelagibacter phage HTVC010P accounted for 50.4% of the identified viral species in GQI, but only 9.1% in YSH and 11.7% in YRE. Sequences, almost identical to those of uncultured marine thaumarchaeal dsDNA viruses and magroviruses that infect Marine Group II Euryarchaeota, were confidently detected in the ECS viromes. The predominant classes of virome ORFs with functional annotations that were found were those involved in viral biogenesis. Virus-host connections, inferred from CRISPR spacer-protospacer mapping, implied newly discovered infection relationships in response to arms race between them. Conclusions Together, both identified viruses and unknown viral assemblages observed in this study were indicative of the complex viral community composition found in the ECS. This finding fills a major gap in the dark world of oceanic viruses of China and additionally contributes to the better understanding of global marine viral diversity, composition, and distribution.
Collapse
Affiliation(s)
- Shuang Wu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Liang Zhou
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yifan Zhou
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Hongming Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jinzhou Xiao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Shuling Yan
- Institute of Biochemistry and Molecular Cell Biology, University of Göttingen, Göttingen, Germany
| | - Yongjie Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China. .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China. .,Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China.
| |
Collapse
|
202
|
Wang W, Ren J, Tang K, Dart E, Ignacio-Espinoza JC, Fuhrman JA, Braun J, Sun F, Ahlgren NA. A network-based integrated framework for predicting virus-prokaryote interactions. NAR Genom Bioinform 2020; 2:lqaa044. [PMID: 32626849 PMCID: PMC7324143 DOI: 10.1093/nargab/lqaa044] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 03/12/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
Metagenomic sequencing has greatly enhanced the discovery of viral genomic sequences; however, it remains challenging to identify the host(s) of these new viruses. We developed VirHostMatcher-Net, a flexible, network-based, Markov random field framework for predicting virus–prokaryote interactions using multiple, integrated features: CRISPR sequences and alignment-free similarity measures (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$s_2^*$\end{document} and WIsH). Evaluation of this method on a benchmark set of 1462 known virus–prokaryote pairs yielded host prediction accuracy of 59% and 86% at the genus and phylum levels, representing 16–27% and 6–10% improvement, respectively, over previous single-feature prediction approaches. We applied our host prediction tool to crAssphage, a human gut phage, and two metagenomic virus datasets: marine viruses and viral contigs recovered from globally distributed, diverse habitats. Host predictions were frequently consistent with those of previous studies, but more importantly, this new tool made many more confident predictions than previous tools, up to nearly 3-fold more (n > 27 000), greatly expanding the diversity of known virus–host interactions.
Collapse
Affiliation(s)
- Weili Wang
- Quantitative and Computational Biology Program, University of Southern California, Los Angeles, CA 90089, USA
| | - Jie Ren
- Quantitative and Computational Biology Program, University of Southern California, Los Angeles, CA 90089, USA
| | - Kujin Tang
- Quantitative and Computational Biology Program, University of Southern California, Los Angeles, CA 90089, USA
| | - Emily Dart
- Biology Department, Clark University, Worcester, MA 01610, USA
| | | | - Jed A Fuhrman
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Jonathan Braun
- Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Fengzhu Sun
- Quantitative and Computational Biology Program, University of Southern California, Los Angeles, CA 90089, USA
| | | |
Collapse
|
203
|
Abstract
Wastewater is a rich source of microbial life and contains bacteria, viruses, and other microbes found in human waste as well as environmental runoff sources. As part of an effort to characterize the New York City wastewater metagenome, we profiled the viral community of sewage samples across all five boroughs of NYC and found that local sampling sites have unique sets of viruses. We focused on bacteriophages, or viruses of bacteria, to understand how they may influence the microbial ecology of this system. We identified several new clusters of phages and successfully associated them with bacterial hosts, providing insight into virus-host interactions in urban wastewater. This study provides a first look into the viral communities present across the wastewater system in NYC and points to their functional importance in this environment. Bacteriophages are abundant members of all microbiomes studied to date, influencing microbial communities through interactions with their bacterial hosts. Despite their functional importance and ubiquity, phages have been underexplored in urban environments compared to their bacterial counterparts. We profiled the viral communities in New York City (NYC) wastewater using metagenomic data collected in November 2014 from 14 wastewater treatment plants. We show that phages accounted for the largest viral component of the sewage samples and that specific virus communities were associated with local environmental conditions within boroughs. The vast majority of the virus sequences had no homology matches in public databases, forming an average of 1,700 unique virus clusters (putative genera). These new clusters contribute to elucidating the overwhelming proportion of data that frequently goes unidentified in viral metagenomic studies. We assigned potential hosts to these phages, which appear to infect a wide range of bacterial genera, often outside their presumed host. We determined that infection networks form a modular-nested pattern, indicating that phages include a range of host specificities, from generalists to specialists, with most interactions organized into distinct groups. We identified genes in viral contigs involved in carbon and sulfur cycling, suggesting functional importance of viruses in circulating pathways and gene functions in the wastewater environment. In addition, we identified virophage genes as well as a nearly complete novel virophage genome. These findings provide an understanding of phage abundance and diversity in NYC wastewater, previously uncharacterized, and further examine geographic patterns of phage-host association in urban environments. IMPORTANCE Wastewater is a rich source of microbial life and contains bacteria, viruses, and other microbes found in human waste as well as environmental runoff sources. As part of an effort to characterize the New York City wastewater metagenome, we profiled the viral community of sewage samples across all five boroughs of NYC and found that local sampling sites have unique sets of viruses. We focused on bacteriophages, or viruses of bacteria, to understand how they may influence the microbial ecology of this system. We identified several new clusters of phages and successfully associated them with bacterial hosts, providing insight into virus-host interactions in urban wastewater. This study provides a first look into the viral communities present across the wastewater system in NYC and points to their functional importance in this environment.
Collapse
|
204
|
Zhong ZP, Rapp JZ, Wainaina JM, Solonenko NE, Maughan H, Carpenter SD, Cooper ZS, Jang HB, Bolduc B, Deming JW, Sullivan MB. Viral Ecogenomics of Arctic Cryopeg Brine and Sea Ice. mSystems 2020; 5:e00246-20. [PMID: 32546670 PMCID: PMC7300359 DOI: 10.1128/msystems.00246-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/24/2020] [Indexed: 01/09/2023] Open
Abstract
Arctic regions, which are changing rapidly as they warm 2 to 3 times faster than the global average, still retain microbial habitats that serve as natural laboratories for understanding mechanisms of microbial adaptation to extreme conditions. Seawater-derived brines within both sea ice (sea-ice brine) and ancient layers of permafrost (cryopeg brine) support diverse microbes adapted to subzero temperatures and high salinities, yet little is known about viruses in these extreme environments, which, if analogous to other systems, could play important evolutionary and ecosystem roles. Here, we characterized viral communities and their functions in samples of cryopeg brine, sea-ice brine, and melted sea ice. Viral abundance was high in cryopeg brine (1.2 × 108 ml-1) and much lower in sea-ice brine (1.3 × 105 to 2.1 × 105 ml-1), which roughly paralleled the differences in cell concentrations in these samples. Five low-input, quantitative viral metagenomes were sequenced to yield 476 viral populations (i.e., species level; ≥10 kb), only 12% of which could be assigned taxonomy by traditional database approaches, indicating a high degree of novelty. Additional analyses revealed that these viruses: (i) formed communities that differed between sample type and vertically with sea-ice depth; (ii) infected hosts that dominated these extreme ecosystems, including Marinobacter, Glaciecola, and Colwellia; and (iii) encoded fatty acid desaturase (FAD) genes that likely helped their hosts overcome cold and salt stress during infection, as well as mediated horizontal gene transfer of FAD genes between microbes. Together, these findings contribute to understanding viral abundances and communities and how viruses impact their microbial hosts in subzero brines and sea ice.IMPORTANCE This study explores viral community structure and function in remote and extreme Arctic environments, including subzero brines within marine layers of permafrost and sea ice, using a modern viral ecogenomics toolkit for the first time. In addition to providing foundational data sets for these climate-threatened habitats, we found evidence that the viruses had habitat specificity, infected dominant microbial hosts, encoded host-derived metabolic genes, and mediated horizontal gene transfer among hosts. These results advance our understanding of the virosphere and how viruses influence extreme ecosystems. More broadly, the evidence that virally mediated gene transfers may be limited by host range in these extreme habitats contributes to a mechanistic understanding of genetic exchange among microbes under stressful conditions in other systems.
Collapse
Affiliation(s)
- Zhi-Ping Zhong
- Byrd Polar and Climate Research Center, The Ohio State University, Columbus, Ohio, USA
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Josephine Z Rapp
- School of Oceanography, University of Washington, Seattle, Washington, USA
| | - James M Wainaina
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | | | | | - Shelly D Carpenter
- School of Oceanography, University of Washington, Seattle, Washington, USA
| | - Zachary S Cooper
- School of Oceanography, University of Washington, Seattle, Washington, USA
| | - Ho Bin Jang
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Benjamin Bolduc
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Jody W Deming
- School of Oceanography, University of Washington, Seattle, Washington, USA
| | - Matthew B Sullivan
- Byrd Polar and Climate Research Center, The Ohio State University, Columbus, Ohio, USA
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
205
|
Gao SM, Schippers A, Chen N, Yuan Y, Zhang MM, Li Q, Liao B, Shu WS, Huang LN. Depth-related variability in viral communities in highly stratified sulfidic mine tailings. MICROBIOME 2020; 8:89. [PMID: 32517753 PMCID: PMC7285708 DOI: 10.1186/s40168-020-00848-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 04/27/2020] [Indexed: 05/15/2023]
Abstract
BACKGROUND Recent studies have significantly expanded our knowledge of viral diversity and functions in the environment. Exploring the ecological relationships between viruses, hosts, and the environment is a crucial first step towards a deeper understanding of the complex and dynamic interplays among them. RESULTS Here, we obtained extensive 16S rRNA gene amplicon, metagenomics sequencing, and geochemical datasets from different depths of two highly stratified sulfidic mine tailings cores with steep geochemical gradients especially pH, and explored how variations in viral community composition and functions were coupled to the co-existing prokaryotic assemblages and the varying environmental conditions. Our data showed that many viruses in the mine tailings represented novel genera, based on gene-sharing networks. Siphoviridae, Podoviridae, and Myoviridae dominated the classified viruses in the surface tailings and deeper layers. Both viral richness and normalized coverage increased with depth in the tailings cores and were significantly correlated with geochemical properties, for example, pH. Viral richness was also coupled to prokaryotic richness (Pearson's r = 0.65, P = 0.032). The enrichment of prophages in the surface mine tailings suggested a preference of lysogenic viral lifestyle in more acidic conditions. Community-wide comparative analyses clearly showed that viruses in the surface tailings encoded genes mostly with unknown functions while viruses in the deeper layers contained genes mainly annotated as conventional functions related to metabolism and structure. Notably, significantly abundant assimilatory sulfate reduction genes were identified from the deeper tailings layers and they were widespread in viruses predicted to infect diverse bacterial phyla. CONCLUSIONS Overall, our results revealed a depth-related distribution of viral populations in the extreme and heterogeneous tailings system. The viruses may interact with diverse hosts and dynamic environmental conditions and likely play a role in the functioning of microbial community and modulate sulfur cycles in situ. Video Abstract.
Collapse
Affiliation(s)
- Shao-Ming Gao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 People’s Republic of China
| | - Axel Schippers
- Resource Geochemistry, Federal Institute for Geosciences and Natural Resources (BGR), Stilleweg 2, 30655 Hannover, Germany
| | - Nan Chen
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 People’s Republic of China
| | - Yang Yuan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 People’s Republic of China
| | - Miao-Miao Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 People’s Republic of China
| | - Qi Li
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 People’s Republic of China
| | - Bin Liao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 People’s Republic of China
| | - Wen-Sheng Shu
- School of Life Sciences, South China Normal University, Guangzhou, 510631 People’s Republic of China
| | - Li-Nan Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 People’s Republic of China
| |
Collapse
|
206
|
Rose R, Golosova O, Sukhomlinov D, Tiunov A, Prosperi M. Flexible design of multiple metagenomics classification pipelines with UGENE. Bioinformatics 2020; 35:1963-1965. [PMID: 30358807 DOI: 10.1093/bioinformatics/bty901] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/24/2018] [Accepted: 10/24/2018] [Indexed: 11/14/2022] Open
Abstract
SUMMARY UGENE is a free, open-source, cross-platform bioinformatics software. UGENE deploys pre-defined pipelines and a flexible instrument to design new workflows and visually build multi-step analytics pipelines. The new UGENE v.1.31 release offers graphical, user-friendly wrapping of a number of popular command-line metagenomics classification programs (Kraken, CLARK, DIAMOND), combinable serially and in parallel through the workflow designer, with multiple, customizable reference databases. Ensemble classification voting is available through the WEVOTE algorithm, with augmented output in the form of detailed table reports. Pre-built workflows (which include all steps from data cleaning to summaries) are included with the installation and a tutorial is available on the UGENE website. Further expansion with multiple visualization tools for reports is planned. AVAILABILITY AND IMPLEMENTATION UGENE is available at http://ugene.net/, implemented in C++ and Qt, and released under GNU General Public License (GPL) version 2.
Collapse
|
207
|
Moon K, Jeon JH, Kang I, Park KS, Lee K, Cha CJ, Lee SH, Cho JC. Freshwater viral metagenome reveals novel and functional phage-borne antibiotic resistance genes. MICROBIOME 2020; 8:75. [PMID: 32482165 PMCID: PMC7265639 DOI: 10.1186/s40168-020-00863-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/11/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND Antibiotic resistance developed by bacteria is a significant threat to global health. Antibiotic resistance genes (ARGs) spread across different bacterial populations through multiple dissemination routes, including horizontal gene transfer mediated by bacteriophages. ARGs carried by bacteriophages are considered especially threatening due to their prolonged persistence in the environment, fast replication rates, and ability to infect diverse bacterial hosts. Several studies employing qPCR and viral metagenomics have shown that viral fraction and viral sequence reads in clinical and environmental samples carry many ARGs. However, only a few ARGs have been found in viral contigs assembled from metagenome reads, with most of these genes lacking effective antibiotic resistance phenotypes. Owing to the wide application of viral metagenomics, nevertheless, different classes of ARGs are being continuously found in viral metagenomes acquired from diverse environments. As such, the presence and functionality of ARGs encoded by bacteriophages remain up for debate. RESULTS We evaluated ARGs excavated from viral contigs recovered from urban surface water viral metagenome data. In virome reads and contigs, diverse ARGs, including polymyxin resistance genes, multidrug efflux proteins, and β-lactamases, were identified. In particular, when a lenient threshold of e value of ≤ 1 × e-5 and query coverage of ≥ 60% were employed in the Resfams database, the novel β-lactamases blaHRV-1 and blaHRVM-1 were found. These genes had unique sequences, forming distinct clades of class A and subclass B3 β-lactamases, respectively. Minimum inhibitory concentration analyses for E. coli strains harboring blaHRV-1 and blaHRVM-1 and catalytic kinetics of purified HRV-1 and HRVM-1 showed reduced susceptibility to penicillin, narrow- and extended-spectrum cephalosporins, and carbapenems. These genes were also found in bacterial metagenomes, indicating that they were harbored by actively infecting phages. CONCLUSION Our results showed that viruses in the environment carry as-yet-unreported functional ARGs, albeit in small quantities. We thereby suggest that environmental bacteriophages could be reservoirs of widely variable, unknown ARGs that could be disseminated via virus-host interactions. Video abstract.
Collapse
Affiliation(s)
- Kira Moon
- Department of Biological Sciences, Inha University, Incheon, 22212, Republic of Korea
| | - Jeong Ho Jeon
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggi-do, 17058, Republic of Korea
| | - Ilnam Kang
- Department of Biological Sciences, Inha University, Incheon, 22212, Republic of Korea
| | - Kwang Seung Park
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggi-do, 17058, Republic of Korea
| | - Kihyun Lee
- Department of Systems Biotechnology and Center for Antibiotic Resistome, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Chang-Jun Cha
- Department of Systems Biotechnology and Center for Antibiotic Resistome, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Sang Hee Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggi-do, 17058, Republic of Korea.
| | - Jang-Cheon Cho
- Department of Biological Sciences, Inha University, Incheon, 22212, Republic of Korea.
| |
Collapse
|
208
|
Ibarbalz FM, Henry N, Brandão MC, Martini S, Busseni G, Byrne H, Coelho LP, Endo H, Gasol JM, Gregory AC, Mahé F, Rigonato J, Royo-Llonch M, Salazar G, Sanz-Sáez I, Scalco E, Soviadan D, Zayed AA, Zingone A, Labadie K, Ferland J, Marec C, Kandels S, Picheral M, Dimier C, Poulain J, Pisarev S, Carmichael M, Pesant S, Babin M, Boss E, Iudicone D, Jaillon O, Acinas SG, Ogata H, Pelletier E, Stemmann L, Sullivan MB, Sunagawa S, Bopp L, de Vargas C, Karp-Boss L, Wincker P, Lombard F, Bowler C, Zinger L. Global Trends in Marine Plankton Diversity across Kingdoms of Life. Cell 2020; 179:1084-1097.e21. [PMID: 31730851 PMCID: PMC6912166 DOI: 10.1016/j.cell.2019.10.008] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/22/2019] [Accepted: 10/07/2019] [Indexed: 12/31/2022]
Abstract
The ocean is home to myriad small planktonic organisms that underpin the functioning of marine ecosystems. However, their spatial patterns of diversity and the underlying drivers remain poorly known, precluding projections of their responses to global changes. Here we investigate the latitudinal gradients and global predictors of plankton diversity across archaea, bacteria, eukaryotes, and major virus clades using both molecular and imaging data from Tara Oceans. We show a decline of diversity for most planktonic groups toward the poles, mainly driven by decreasing ocean temperatures. Projections into the future suggest that severe warming of the surface ocean by the end of the 21st century could lead to tropicalization of the diversity of most planktonic groups in temperate and polar regions. These changes may have multiple consequences for marine ecosystem functioning and services and are expected to be particularly significant in key areas for carbon sequestration, fisheries, and marine conservation. Video Abstract
Most epipelagic planktonic groups exhibit a poleward decline of diversity No latitudinal diversity gradient was observed below the photic zone Temperature emerges as the best predictor of epipelagic plankton diversity Global warming may increase plankton diversity, particularly at high latitudes
Collapse
Affiliation(s)
- Federico M Ibarbalz
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005 Paris, France
| | - Nicolas Henry
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR 7144, 29680 Roscoff, France; Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France
| | - Manoela C Brandão
- Sorbonne Université, CNRS, UMR 7093, Institut de la Mer de Villefranche-sur-Mer, Laboratoire d'Océanographie de Villefranche, 06230 Villefranche-sur-Mer, France
| | - Séverine Martini
- Sorbonne Université, CNRS, UMR 7093, Institut de la Mer de Villefranche-sur-Mer, Laboratoire d'Océanographie de Villefranche, 06230 Villefranche-sur-Mer, France
| | - Greta Busseni
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Hannah Byrne
- Department of Earth and Planetary Sciences, Harvard University, 20 Oxford St., Cambridge, MA 02138, USA
| | - Luis Pedro Coelho
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Hisashi Endo
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Josep M Gasol
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM)-CSIC, Pg. Marítim de la Barceloneta, 37-49 Barcelona E08003, Spain; Centre for Marine Ecosystems Research, Edith Cowan University, Joondalup, WA, Australia
| | - Ann C Gregory
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
| | - Frédéric Mahé
- CIRAD, UMR BGPI, 34398, Montpellier, France; BGPI, Université Montpellier, CIRAD, IRD, Montpellier SupAgro, Montpellier, France
| | - Janaina Rigonato
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l'Énergie Atomique (CEA), CNRS, Université Évry, Université Paris-Saclay, Évry, France
| | - Marta Royo-Llonch
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM)-CSIC, Pg. Marítim de la Barceloneta, 37-49 Barcelona E08003, Spain
| | - Guillem Salazar
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Isabel Sanz-Sáez
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM)-CSIC, Pg. Marítim de la Barceloneta, 37-49 Barcelona E08003, Spain
| | - Eleonora Scalco
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Dodji Soviadan
- Sorbonne Université, CNRS, UMR 7093, Institut de la Mer de Villefranche-sur-Mer, Laboratoire d'Océanographie de Villefranche, 06230 Villefranche-sur-Mer, France
| | - Ahmed A Zayed
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
| | - Adriana Zingone
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Karine Labadie
- Genoscope, Institut de Biologie François-Jacob, Commissariat à l'Énergie Atomique (CEA), Université Paris-Saclay, Évry, France
| | - Joannie Ferland
- Takuvik Joint International Laboratory (UMI3376), Université Laval (Canada) - CNRS (France), Université Laval, Québec, QC G1V 0A6, Canada
| | - Claudie Marec
- Takuvik Joint International Laboratory (UMI3376), Université Laval (Canada) - CNRS (France), Université Laval, Québec, QC G1V 0A6, Canada
| | - Stefanie Kandels
- Structural and Computational Biology, European Molecular Biology Laboratory, Meyerhofstr. 1, 69117 Heidelberg, Germany; Directors' Research European Molecular Biology Laboratory, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Marc Picheral
- Sorbonne Université, CNRS, UMR 7093, Institut de la Mer de Villefranche-sur-Mer, Laboratoire d'Océanographie de Villefranche, 06230 Villefranche-sur-Mer, France
| | - Céline Dimier
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005 Paris, France; Sorbonne Université, CNRS, UMR 7093, Institut de la Mer de Villefranche-sur-Mer, Laboratoire d'Océanographie de Villefranche, 06230 Villefranche-sur-Mer, France
| | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l'Énergie Atomique (CEA), CNRS, Université Évry, Université Paris-Saclay, Évry, France
| | - Sergey Pisarev
- Shirshov Institute of Oceanology of the Russian Academy of Sciences, 36 Nakhimovsky Prosp., 117997 Moscow, Russia
| | - Margaux Carmichael
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR 7144, 29680 Roscoff, France
| | - Stéphane Pesant
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany; PANGAEA, Data Publisher for Earth and Environmental Science, University of Bremen, Bremen, Germany
| | | | - Marcel Babin
- Takuvik Joint International Laboratory (UMI3376), Université Laval (Canada) - CNRS (France), Université Laval, Québec, QC G1V 0A6, Canada
| | - Emmanuel Boss
- School of Marine Sciences, University of Maine, Orono, ME, USA
| | - Daniele Iudicone
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Olivier Jaillon
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France; Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l'Énergie Atomique (CEA), CNRS, Université Évry, Université Paris-Saclay, Évry, France
| | - Silvia G Acinas
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM)-CSIC, Pg. Marítim de la Barceloneta, 37-49 Barcelona E08003, Spain
| | - Hiroyuki Ogata
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Eric Pelletier
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France; Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l'Énergie Atomique (CEA), CNRS, Université Évry, Université Paris-Saclay, Évry, France
| | - Lars Stemmann
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France; Sorbonne Université, CNRS, UMR 7093, Institut de la Mer de Villefranche-sur-Mer, Laboratoire d'Océanographie de Villefranche, 06230 Villefranche-sur-Mer, France
| | - Matthew B Sullivan
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA; Department of Civil, Environmental and Geodetic Engineering, Ohio State University, Columbus, OH 43210, USA; Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH, USA
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Laurent Bopp
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France; LMD/IPSL, ENS, PSL Research University, École Polytechnique, Sorbonne Université, CNRS, Paris, France
| | - Colomban de Vargas
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR 7144, 29680 Roscoff, France; Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France
| | - Lee Karp-Boss
- School of Marine Sciences, University of Maine, Orono, ME, USA
| | - Patrick Wincker
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France; Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l'Énergie Atomique (CEA), CNRS, Université Évry, Université Paris-Saclay, Évry, France
| | - Fabien Lombard
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France; Sorbonne Université, CNRS, UMR 7093, Institut de la Mer de Villefranche-sur-Mer, Laboratoire d'Océanographie de Villefranche, 06230 Villefranche-sur-Mer, France
| | - Chris Bowler
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005 Paris, France; Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France.
| | - Lucie Zinger
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005 Paris, France.
| |
Collapse
|
209
|
Abstract
The Arctic is warming at an accelerating pace, and the rise in temperature has increasing impacts on the Arctic biome. Lakes are integrators of their surroundings and thus excellent sentinels of environmental change. Despite their importance in the regulation of key microbial processes, viruses remain largely uncharacterized in Arctic lacustrine environments. We sampled a highly stratified meromictic lake near the northern limit of the Canadian High Arctic, a region in rapid transition due to climate change. We found that the different layers of the lake harbored viral communities that were strikingly dissimilar and highly divergent from known viruses. Viruses were more abundant in the deepest part of the lake containing ancient Arctic Ocean seawater that was trapped during glacial retreat and were genomically unlike any viruses previously described. This research demonstrates the complexity and novelty of viral communities in an environment that is vulnerable to ongoing perturbation. High-latitude, perennially stratified (meromictic) lakes are likely to be especially vulnerable to climate warming because of the importance of ice in maintaining their water column structure and associated distribution of microbial communities. This study aimed to characterize viral abundance, diversity, and distribution in a meromictic lake of marine origin on the far northern coast of Ellesmere Island, in the Canadian High Arctic. We collected triplicate samples for double-stranded DNA (dsDNA) viromics from five depths that encompassed the major features of the lake, as determined by limnological profiling of the water column. Viral abundance and virus-to-prokaryote ratios were highest at greater depths, while bacterial and cyanobacterial counts were greatest in the surface waters. The viral communities from each zone of the lake defined by salinity, temperature, and dissolved oxygen concentrations were markedly distinct, suggesting that there was little exchange of viral types among lake strata. Ten viral assembled genomes were obtained from our libraries, and these also segregated with depth. This well-defined structure of viral communities was consistent with that of potential hosts. Viruses from the monimolimnion, a deep layer of ancient Arctic Ocean seawater, were more diverse and relatively abundant, with few similarities to available viral sequences. The Lake A viral communities also differed from published records from the Arctic Ocean and meromictic Ace Lake in Antarctica. This first characterization of viral diversity from this sentinel environment underscores the microbial richness and complexity of an ecosystem type that is increasingly exposed to major perturbations in the fast-changing Arctic. IMPORTANCE The Arctic is warming at an accelerating pace, and the rise in temperature has increasing impacts on the Arctic biome. Lakes are integrators of their surroundings and thus excellent sentinels of environmental change. Despite their importance in the regulation of key microbial processes, viruses remain largely uncharacterized in Arctic lacustrine environments. We sampled a highly stratified meromictic lake near the northern limit of the Canadian High Arctic, a region in rapid transition due to climate change. We found that the different layers of the lake harbored viral communities that were strikingly dissimilar and highly divergent from known viruses. Viruses were more abundant in the deepest part of the lake containing ancient Arctic Ocean seawater that was trapped during glacial retreat and were genomically unlike any viruses previously described. This research demonstrates the complexity and novelty of viral communities in an environment that is vulnerable to ongoing perturbation.
Collapse
|
210
|
Sunagawa S, Acinas SG, Bork P, Bowler C, Eveillard D, Gorsky G, Guidi L, Iudicone D, Karsenti E, Lombard F, Ogata H, Pesant S, Sullivan MB, Wincker P, de Vargas C. Tara Oceans: towards global ocean ecosystems biology. Nat Rev Microbiol 2020; 18:428-445. [PMID: 32398798 DOI: 10.1038/s41579-020-0364-5] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2020] [Indexed: 12/14/2022]
Abstract
A planetary-scale understanding of the ocean ecosystem, particularly in light of climate change, is crucial. Here, we review the work of Tara Oceans, an international, multidisciplinary project to assess the complexity of ocean life across comprehensive taxonomic and spatial scales. Using a modified sailing boat, the team sampled plankton at 210 globally distributed sites at depths down to 1,000 m. We describe publicly available resources of molecular, morphological and environmental data, and discuss how an ecosystems biology approach has expanded our understanding of plankton diversity and ecology in the ocean as a planetary, interconnected ecosystem. These efforts illustrate how global-scale concepts and data can help to integrate biological complexity into models and serve as a baseline for assessing ecosystem changes and the future habitability of our planet in the Anthropocene epoch.
Collapse
Affiliation(s)
- Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zürich, Switzerland.
| | - Silvia G Acinas
- Department of Marine Biology and Oceanography, Institute of Marine Sciences-CSIC, Barcelona, Spain
| | - Peer Bork
- Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg, Germany.,Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Chris Bowler
- Institut de Biologie de l'ENS, Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.,Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France
| | | | - Damien Eveillard
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France.,Université de Nantes, CNRS, UMR6004, LS2N, Nantes, France
| | - Gabriel Gorsky
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France.,Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, Villefranche-sur-Mer, France
| | - Lionel Guidi
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France.,Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, Villefranche-sur-Mer, France
| | | | - Eric Karsenti
- Institut de Biologie de l'ENS, Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.,Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France.,Directors' Research, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Fabien Lombard
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France.,Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, Villefranche-sur-Mer, France
| | - Hiroyuki Ogata
- Institute for Chemical Research, Kyoto University, Kyoto, Japan
| | - Stephane Pesant
- PANGAEA, University of Bremen, Bremen, Germany.,MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, Columbus, OH, USA.,Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Patrick Wincker
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France.,Génomique Métabolique, Genoscope, Institut de Biologie Francois Jacob, Commissariat à l'Énergie Atomique, CNRS, Université Evry, Université Paris-Saclay, Evry, France
| | - Colomban de Vargas
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France. .,Sorbonne Université and CNRS, UMR 7144 (AD2M), ECOMAP, Station Biologique de Roscoff, Roscoff, France.
| |
Collapse
|
211
|
Luo E, Eppley JM, Romano AE, Mende DR, DeLong EF. Double-stranded DNA virioplankton dynamics and reproductive strategies in the oligotrophic open ocean water column. THE ISME JOURNAL 2020; 14:1304-1315. [PMID: 32060418 PMCID: PMC7174320 DOI: 10.1038/s41396-020-0604-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 12/17/2019] [Accepted: 01/30/2020] [Indexed: 12/11/2022]
Abstract
Microbial communities are critical to ecosystem dynamics and biogeochemical cycling in the open oceans. Viruses are essential elements of these communities, influencing the productivity, diversity, and evolution of cellular hosts. To further explore the natural history and ecology of open-ocean viruses, we surveyed the spatiotemporal dynamics of double-stranded DNA (dsDNA) viruses in both virioplankton and bacterioplankton size fractions in the North Pacific Subtropical Gyre, one of the largest biomes on the planet. Assembly and clustering of viral genomes revealed a peak in virioplankton diversity at the base of the euphotic zone, where virus populations and host species richness both reached their maxima. Simultaneous characterization of both extracellular and intracellular viruses suggested depth-specific reproductive strategies. In particular, analyses indicated elevated lytic interactions in the mixed layer, more temporally variable temperate phage interactions at the base of the euphotic zone, and increased lysogeny in the mesopelagic ocean. Furthermore, the depth variability of auxiliary metabolic genes suggested habitat-specific strategies for viral influence on light-energy, nitrogen, and phosphorus acquisition during host infection. Most virus populations were temporally persistent over several years in this environment at the 95% nucleic acid identity level. In total, our analyses revealed variable distributional patterns and diverse reproductive and metabolic strategies of virus populations in the open-ocean water column.
Collapse
Affiliation(s)
- Elaine Luo
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawaii, Honolulu, HI, 96822, USA
| | - John M Eppley
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawaii, Honolulu, HI, 96822, USA
| | - Anna E Romano
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawaii, Honolulu, HI, 96822, USA
| | - Daniel R Mende
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawaii, Honolulu, HI, 96822, USA
| | - Edward F DeLong
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawaii, Honolulu, HI, 96822, USA.
| |
Collapse
|
212
|
Tominaga K, Morimoto D, Nishimura Y, Ogata H, Yoshida T. In silico Prediction of Virus-Host Interactions for Marine Bacteroidetes With the Use of Metagenome-Assembled Genomes. Front Microbiol 2020; 11:738. [PMID: 32411107 PMCID: PMC7198788 DOI: 10.3389/fmicb.2020.00738] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/30/2020] [Indexed: 12/11/2022] Open
Abstract
Bacteroidetes is one of the most abundant heterotrophic bacterial taxa in the ocean and play crucial roles in recycling phytoplankton-derived organic matter. Viruses of Bacteroidetes are also expected to have an important role in the regulation of host communities. However, knowledge on marine Bacteroidetes viruses is biased toward cultured viruses from a few species, mainly fish pathogens or Bacteroidetes not abundant in marine environments. In this study, we investigated the recently reported 1,811 marine viral genomes to identify putative Bacteroidetes viruses using various in silico host prediction techniques. Notably, we used microbial metagenome-assembled genomes (MAGs) to augment the marine Bacteroidetes reference genomic data. The examined viral genomes and MAGs were derived from simultaneously collected samples. Using nucleotide sequence similarity-based host prediction methods, we detected 31 putative Bacteroidetes viral genomes. The MAG-based method substantially enhanced the predictions (26 viruses) when compared with the method that is solely based on the reference genomes from NCBI RefSeq (7 viruses). Previously unrecognized genus-level groups of Bacteroidetes viruses were detected only by the MAG-based method. We also developed a host prediction method based on the proportion of Bacteroidetes homologs in viral genomes, which detected 321 putative Bacteroidetes virus genomes including 81 that were newly recognized as Bacteroidetes virus genomes. The majority of putative Bacteroidetes viruses were detected based on the proportion of Bacteroidetes homologs in both RefSeq and MAGs; however, some were detected in only one of the two datasets. Putative Bacteroidetes virus lineages included not only relatives of known viruses but also those phylogenetically distant from the cultured viruses, such as marine Far-T4 like viruses known to be widespread in aquatic environments. Our MAG and protein homology-based host prediction approaches enhanced the existing knowledge on the diversity of Bacteroidetes viruses and their potential interaction with their hosts in marine environments.
Collapse
Affiliation(s)
- Kento Tominaga
- Laboratory of Marine Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Daichi Morimoto
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yosuke Nishimura
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| | - Hiroyuki Ogata
- Chemical Life Science, Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Japan
| | - Takashi Yoshida
- Laboratory of Marine Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
213
|
Coming-of-Age Characterization of Soil Viruses: A User’s Guide to Virus Isolation, Detection within Metagenomes, and Viromics. SOIL SYSTEMS 2020. [DOI: 10.3390/soilsystems4020023] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The study of soil viruses, though not new, has languished relative to the study of marine viruses. This is particularly due to challenges associated with separating virions from harboring soils. Generally, three approaches to analyzing soil viruses have been employed: (1) Isolation, to characterize virus genotypes and phenotypes, the primary method used prior to the start of the 21st century. (2) Metagenomics, which has revealed a vast diversity of viruses while also allowing insights into viral community ecology, although with limitations due to DNA from cellular organisms obscuring viral DNA. (3) Viromics (targeted metagenomics of virus-like-particles), which has provided a more focused development of ‘virus-sequence-to-ecology’ pipelines, a result of separation of presumptive virions from cellular organisms prior to DNA extraction. This separation permits greater sequencing emphasis on virus DNA and thereby more targeted molecular and ecological characterization of viruses. Employing viromics to characterize soil systems presents new challenges, however. Ones that only recently are being addressed. Here we provide a guide to implementing these three approaches to studying environmental viruses, highlighting benefits, difficulties, and potential contamination, all toward fostering greater focus on viruses in the study of soil ecology.
Collapse
|
214
|
Beaurepaire A, Piot N, Doublet V, Antunez K, Campbell E, Chantawannakul P, Chejanovsky N, Gajda A, Heerman M, Panziera D, Smagghe G, Yañez O, de Miranda JR, Dalmon A. Diversity and Global Distribution of Viruses of the Western Honey Bee, Apis mellifera. INSECTS 2020; 11:E239. [PMID: 32290327 PMCID: PMC7240362 DOI: 10.3390/insects11040239] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 12/31/2022]
Abstract
In the past centuries, viruses have benefited from globalization to spread across the globe, infecting new host species and populations. A growing number of viruses have been documented in the western honey bee, Apis mellifera. Several of these contribute significantly to honey bee colony losses. This review synthetizes the knowledge of the diversity and distribution of honey-bee-infecting viruses, including recent data from high-throughput sequencing (HTS). After presenting the diversity of viruses and their corresponding symptoms, we surveyed the scientific literature for the prevalence of these pathogens across the globe. The geographical distribution shows that the most prevalent viruses (deformed wing virus, sacbrood virus, black queen cell virus and acute paralysis complex) are also the most widely distributed. We discuss the ecological drivers that influence the distribution of these pathogens in worldwide honey bee populations. Besides the natural transmission routes and the resulting temporal dynamics, global trade contributes to their dissemination. As recent evidence shows that these viruses are often multihost pathogens, their spread is a risk for both the beekeeping industry and the pollination services provided by managed and wild pollinators.
Collapse
Affiliation(s)
- Alexis Beaurepaire
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, 3003 Bern, Switzerland;
- Agroscope, Swiss Bee Research Center, 3003 Bern, Switzerland
- UR Abeilles et Environnement, INRAE, 84914 Avignon, France;
| | - Niels Piot
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (N.P.); (G.S.)
| | - Vincent Doublet
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, 86069 Ulm, Germany;
| | - Karina Antunez
- Department of Microbiology, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay;
| | - Ewan Campbell
- Centre for Genome Enabled Biology and Medicine, University of Aberdeen, Aberdeen AB24 3FX, UK;
| | - Panuwan Chantawannakul
- Environmental Science Research Center (ESRC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Bee Protection Laboratory (BeeP), Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nor Chejanovsky
- Entomology Department, Institute of Plant Protection, The Volcani Center, Rishon Lezion, Tel Aviv 5025001, Israel;
| | - Anna Gajda
- Laboratory of Bee Diseases, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland;
| | | | - Delphine Panziera
- Institute of Biology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany;
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (N.P.); (G.S.)
| | - Orlando Yañez
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, 3003 Bern, Switzerland;
- Agroscope, Swiss Bee Research Center, 3003 Bern, Switzerland
| | - Joachim R. de Miranda
- Department of Ecology, Swedish University of Agricultural Sciences, 750-07 Uppsala, Sweden;
| | - Anne Dalmon
- UR Abeilles et Environnement, INRAE, 84914 Avignon, France;
| |
Collapse
|
215
|
Inoue K, Tsunoda SP, Singh M, Tomida S, Hososhima S, Konno M, Nakamura R, Watanabe H, Bulzu PA, Banciu HL, Andrei AŞ, Uchihashi T, Ghai R, Béjà O, Kandori H. Schizorhodopsins: A family of rhodopsins from Asgard archaea that function as light-driven inward H + pumps. SCIENCE ADVANCES 2020; 6:eaaz2441. [PMID: 32300653 PMCID: PMC7148096 DOI: 10.1126/sciadv.aaz2441] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/17/2020] [Indexed: 05/05/2023]
Abstract
Schizorhodopsins (SzRs), a rhodopsin family first identified in Asgard archaea, the archaeal group closest to eukaryotes, are present at a phylogenetically intermediate position between typical microbial rhodopsins and heliorhodopsins. However, the biological function and molecular properties of SzRs have not been reported. Here, SzRs from Asgardarchaeota and from a yet unknown microorganism are expressed in Escherichia coli and mammalian cells, and ion transport assays and patch clamp analyses are used to demonstrate SzR as a novel type of light-driven inward H+ pump. The mutation of a cytoplasmic glutamate inhibited inward H+ transport, suggesting that it functions as a cytoplasmic H+ acceptor. The function, trimeric structure, and H+ transport mechanism of SzR are similar to that of xenorhodopsin (XeR), a light-driven inward H+ pumping microbial rhodopsins, implying that they evolved convergently. The inward H+ pump function of SzR provides new insight into the photobiological life cycle of the Asgardarchaeota.
Collapse
Affiliation(s)
- Keiichi Inoue
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- Corresponding author. (K.I.); (H.K.)
| | - Satoshi P. Tsunoda
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Manish Singh
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Sahoko Tomida
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Shoko Hososhima
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Masae Konno
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Ryoko Nakamura
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Hiroki Watanabe
- Exploratory Research Center on Life and Living Systems, Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Department of Physics, Nagoya University, Nagoya 464-8602, Japan
| | - Paul-Adrian Bulzu
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Horia L. Banciu
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Adrian-Ştefan Andrei
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic
| | - Takayuki Uchihashi
- Exploratory Research Center on Life and Living Systems, Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Department of Physics, Nagoya University, Nagoya 464-8602, Japan
| | - Rohit Ghai
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic
| | - Oded Béjà
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
- Corresponding author. (K.I.); (H.K.)
| |
Collapse
|
216
|
Transcriptome reconstruction and functional analysis of eukaryotic marine plankton communities via high-throughput metagenomics and metatranscriptomics. Genome Res 2020; 30:647-659. [PMID: 32205368 PMCID: PMC7197479 DOI: 10.1101/gr.253070.119] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 03/18/2020] [Indexed: 11/25/2022]
Abstract
Large-scale metagenomic and metatranscriptomic data analyses are often restricted by their gene-centric approach, limiting the ability to understand organismal and community biology. De novo assembly of large and mosaic eukaryotic genomes from complex meta-omics data remains a challenging task, especially in comparison with more straightforward bacterial and archaeal systems. Here, we use a transcriptome reconstruction method based on clustering co-abundant genes across a series of metagenomic samples. We investigated the co-abundance patterns of ∼37 million eukaryotic unigenes across 365 metagenomic samples collected during the Tara Oceans expeditions to assess the diversity and functional profiles of marine plankton. We identified ∼12,000 co-abundant gene groups (CAGs), encompassing ∼7 million unigenes, including 924 metagenomics-based transcriptomes (MGTs, CAGs larger than 500 unigenes). We demonstrated the biological validity of the MGT collection by comparing individual MGTs with available references. We identified several key eukaryotic organisms involved in dimethylsulfoniopropionate (DMSP) biosynthesis and catabolism in different oceanic provinces, thus demonstrating the potential of the MGT collection to provide functional insights on eukaryotic plankton. We established the ability of the MGT approach to capture interspecies associations through the analysis of a nitrogen-fixing haptophyte-cyanobacterial symbiotic association. This MGT collection provides a valuable resource for analyses of eukaryotic plankton in the open ocean by giving access to the genomic content and functional potential of many ecologically relevant eukaryotic species.
Collapse
|
217
|
Ecological Assembly Processes Are Coordinated between Bacterial and Viral Communities in Fractured Shale Ecosystems. mSystems 2020; 5:5/2/e00098-20. [PMID: 32184367 PMCID: PMC7380583 DOI: 10.1128/msystems.00098-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Interactions between viral communities and their microbial hosts have been the subject of many recent studies in a wide range of ecosystems. The degree of coordination between ecological assembly processes influencing viral and microbial communities, however, has been explored to a much lesser degree. By using a combined null modeling approach, this study investigated the ecological assembly processes influencing both viral and microbial community structure within hydraulically fractured shale environments. Among other results, significant relationships between the structuring processes affecting both the viral and microbial community were observed, indicating that ecological assembly might be coordinated between these communities despite differing selective pressures. Within this deep subsurface ecosystem, these results reveal a potentially important balance of ecological dynamics that must be maintained to enable long-term microbial community persistence. More broadly, this relationship begins to provide insight into the development of communities across trophic levels. The ecological drivers that concurrently act upon both a virus and its host and that drive community assembly are poorly understood despite known interactions between viral populations and their microbial hosts. Hydraulically fractured shale environments provide access to a closed ecosystem in the deep subsurface where constrained microbial and viral community assembly processes can be examined. Here, we used metagenomic analyses of time-resolved-produced fluid samples from two wells in the Appalachian Basin to track viral and host dynamics and to investigate community assembly processes. Hypersaline conditions within these ecosystems should drive microbial community structure to a similar configuration through time in response to common osmotic stress. However, viral predation appears to counterbalance this potentially strong homogeneous selection and pushes the microbial community toward undominated assembly. In comparison, while the viral community was also influenced by substantial undominated processes, it assembled, in part, due to homogeneous selection. When the overall assembly processes acting upon both these communities were directly compared with each other, a significant relationship was revealed, suggesting an association between microbial and viral community development despite differing selective pressures. These results reveal a potentially important balance of ecological dynamics that must be in maintained within this deep subsurface ecosystem in order for the microbial community to persist over extended time periods. More broadly, this relationship begins to provide knowledge underlying metacommunity development across trophic levels. IMPORTANCE Interactions between viral communities and their microbial hosts have been the subject of many recent studies in a wide range of ecosystems. The degree of coordination between ecological assembly processes influencing viral and microbial communities, however, has been explored to a much lesser degree. By using a combined null modeling approach, this study investigated the ecological assembly processes influencing both viral and microbial community structure within hydraulically fractured shale environments. Among other results, significant relationships between the structuring processes affecting both the viral and microbial community were observed, indicating that ecological assembly might be coordinated between these communities despite differing selective pressures. Within this deep subsurface ecosystem, these results reveal a potentially important balance of ecological dynamics that must be maintained to enable long-term microbial community persistence. More broadly, this relationship begins to provide insight into the development of communities across trophic levels.
Collapse
|
218
|
Focardi A, Ostrowski M, Goossen K, Brown MV, Paulsen I. Investigating the Diversity of Marine Bacteriophage in Contrasting Water Masses Associated with the East Australian Current (EAC) System. Viruses 2020; 12:E317. [PMID: 32188136 PMCID: PMC7150976 DOI: 10.3390/v12030317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 12/13/2022] Open
Abstract
Virus- and bacteriophage-induced mortality can have a significant impact on marine productivity and alter the flux of nutrients in marine microbial food-webs. Viral mediated horizontal gene transfer can also influence host fitness and community composition. However, there are very few studies of marine viral diversity in the Southern Hemisphere, which hampers our ability to fully understand the complex interplay of biotic and abiotic factors that shape microbial communities. We carried out the first genetic study of bacteriophage communities within a dynamic western boundary current (WBC) system, the east Australian current (EAC). Virus DNA sequences were extracted from 63 assembled metagenomes and six metaviromes obtained from various depths at 24 different locations. More than 1700 bacteriophage genomic fragments (>9 kbps) were recovered from the assembled sequences. Bacteriophage diversity displayed distinct depth and regional patterns. There were clear differences in the bacteriophage populations associated with the EAC and Tasman Sea euphotic zones, at both the taxonomic and functional level. In contrast, bathypelagic phages were similar across the two oceanic regions. These data provide the first characterisation of viral diversity across a dynamic western boundary current, which is an emerging model for studying the response of microbial communities to climate change.
Collapse
Affiliation(s)
- Amaranta Focardi
- Department of Molecular Sciences, Macquarie University, 4 Wally’s Walk, Sydney, NSW 2109, Australia;
| | - Martin Ostrowski
- Climate Change Cluster, University of Technology Sydney, 123 Broadway, Sydney, NSW 2007, Australia;
| | - Kirianne Goossen
- CSIRO Oceans and Atmosphere, Castray Esplanade, Hobart, TAS 7001, Australia (M.V.B.)
| | - Mark V. Brown
- CSIRO Oceans and Atmosphere, Castray Esplanade, Hobart, TAS 7001, Australia (M.V.B.)
- School of Environmental and Life Sciences, University of Newcastle, University Dr, Callaghan, NSW 2308, Australia
| | - Ian Paulsen
- Department of Molecular Sciences, Macquarie University, 4 Wally’s Walk, Sydney, NSW 2109, Australia;
| |
Collapse
|
219
|
Jo J, Oh J, Park C. Microbial community analysis using high-throughput sequencing technology: a beginner's guide for microbiologists. J Microbiol 2020; 58:176-192. [PMID: 32108314 DOI: 10.1007/s12275-020-9525-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/11/2019] [Accepted: 12/16/2019] [Indexed: 12/19/2022]
Abstract
Microbial communities present in diverse environments from deep seas to human body niches play significant roles in the complex ecosystem and human health. Characterizing their structural and functional diversities is indispensable, and many approaches, such as microscopic observation, DNA fingerprinting, and PCR-based marker gene analysis, have been successfully applied to identify microorganisms. Since the revolutionary improvement of DNA sequencing technologies, direct and high-throughput analysis of genomic DNA from a whole environmental community without prior cultivation has become the mainstream approach, overcoming the constraints of the classical approaches. Here, we first briefly review the history of environmental DNA analysis applications with a focus on profiling the taxonomic composition and functional potentials of microbial communities. To this end, we aim to introduce the shotgun metagenomic sequencing (SMS) approach, which is used for the untargeted ("shotgun") sequencing of all ("meta") microbial genomes ("genomic") present in a sample. SMS data analyses are performed in silico using various software programs; however, in silico analysis is typically regarded as a burden on wet-lab experimental microbiologists. Therefore, in this review, we present microbiologists who are unfamiliar with in silico analyses with a basic and practical SMS data analysis protocol. This protocol covers all the bioinformatics processes of the SMS analysis in terms of data preprocessing, taxonomic profiling, functional annotation, and visualization.
Collapse
Affiliation(s)
- Jihoon Jo
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jooseong Oh
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Chungoo Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
220
|
Beaulaurier J, Luo E, Eppley JM, Uyl PD, Dai X, Burger A, Turner DJ, Pendelton M, Juul S, Harrington E, DeLong EF. Assembly-free single-molecule sequencing recovers complete virus genomes from natural microbial communities. Genome Res 2020; 30:437-446. [PMID: 32075851 PMCID: PMC7111524 DOI: 10.1101/gr.251686.119] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 02/13/2020] [Indexed: 12/20/2022]
Abstract
Viruses are the most abundant biological entities on Earth and play key roles in host ecology, evolution, and horizontal gene transfer. Despite recent progress in viral metagenomics, the inherent genetic complexity of virus populations still poses technical difficulties for recovering complete virus genomes from natural assemblages. To address these challenges, we developed an assembly-free, single-molecule nanopore sequencing approach, enabling direct recovery of complete virus genome sequences from environmental samples. Our method yielded thousands of full-length, high-quality draft virus genome sequences that were not recovered using standard short-read assembly approaches. Additionally, our analyses discriminated between populations whose genomes had identical direct terminal repeats versus those with circularly permuted repeats at their termini, thus providing new insight into native virus reproduction and genome packaging. Novel DNA sequences were discovered, whose repeat structures, gene contents, and concatemer lengths suggest they are phage-inducible chromosomal islands, which are packaged as concatemers in phage particles, with lengths that match the size ranges of co-occurring phage genomes. Our new virus sequencing strategy can provide previously unavailable information about the genome structures, population biology, and ecology of naturally occurring viruses and viral parasites.
Collapse
Affiliation(s)
- John Beaulaurier
- Oxford Nanopore Technologies Incorporated, San Francisco, California 94080, USA
| | - Elaine Luo
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawaii, Honolulu, Hawaii 96822, USA
| | - John M Eppley
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawaii, Honolulu, Hawaii 96822, USA
| | - Paul Den Uyl
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawaii, Honolulu, Hawaii 96822, USA
| | - Xiaoguang Dai
- Oxford Nanopore Technologies Incorporated, New York, New York 10013, USA
| | - Andrew Burger
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawaii, Honolulu, Hawaii 96822, USA
| | - Daniel J Turner
- Oxford Nanopore Technologies Limited, Oxford, OX4 4DQ, United Kingdom
| | - Matthew Pendelton
- Oxford Nanopore Technologies Incorporated, New York, New York 10013, USA
| | - Sissel Juul
- Oxford Nanopore Technologies Incorporated, New York, New York 10013, USA
| | - Eoghan Harrington
- Oxford Nanopore Technologies Incorporated, New York, New York 10013, USA
| | - Edward F DeLong
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawaii, Honolulu, Hawaii 96822, USA
| |
Collapse
|
221
|
Qin W, Song P, Lin G, Huang Y, Wang L, Zhou X, Li S, Zhang T. Gut Microbiota Plasticity Influences the Adaptability of Wild and Domestic Animals in Co-inhabited Areas. Front Microbiol 2020; 11:125. [PMID: 32117147 PMCID: PMC7018712 DOI: 10.3389/fmicb.2020.00125] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 01/20/2020] [Indexed: 12/23/2022] Open
Abstract
Due to the increased economic demand for livestock, the number of livestock is increasing. Because of human interference, the survival of wild animals is threatened in the face of competition, particularly in co-inhabited grazing pastures. This may lead to differences in the adaptability between wild and domestic animals, as well as nutritional deficiencies in wild animals. The gut microbiota is closely associated with host health, nutrition, and adaptability. However, the gut microbiota diversity and functions in domestic and wild animals in co-inhabited areas are unclear. To reveal the adaptability of wild and domestic animals in co-inhabited areas based on gut microbiota, we assessed the gut microbiota diversity. This study was based on the V3–V4 region of 16S rRNA and gut microbiota functions according to the metagenome analysis of fresh fecal samples in wild goitered gazelles (Gazella subgutturosa) and domestic sheep (Ovis aries) in the Qaidam Basin. The wild and domestic species showed significant differences in alpha- and beta-diversities. Specifically, the alpha-diversity was lower in goitered gazelles. We speculated that the nutritional and habitat status of the goitered gazelles were worse. The gut microbiota functions in the gazelles were enriched in metabolism and cellular processes based on the KEGG database. In summary, we reasoned that gut microbiota can improve the adaptability of goitered gazelles through energy maintenance by the functions of gut microbiota in the face of nutritional deficiencies. These findings highlight the importance of gut microbiota diversity to improve the adaptability of goitered gazelles, laying a foundation for the conservation of wild goitered gazelles. In addition, we further provide management suggestions for domestic sheep in co-inhabited grazing pastures.
Collapse
Affiliation(s)
- Wen Qin
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Pengfei Song
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Gonghua Lin
- School of Life Sciences, Jinggangshan University, Ji'an, China
| | - YanGan Huang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Lei Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | | | - Shengqing Li
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Tongzuo Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
| |
Collapse
|
222
|
Dion MB, Oechslin F, Moineau S. Phage diversity, genomics and phylogeny. Nat Rev Microbiol 2020; 18:125-138. [PMID: 32015529 DOI: 10.1038/s41579-019-0311-5] [Citation(s) in RCA: 400] [Impact Index Per Article: 100.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2019] [Indexed: 12/23/2022]
Abstract
Recent advances in viral metagenomics have enabled the rapid discovery of an unprecedented catalogue of phages in numerous environments, from the human gut to the deep ocean. Although these advances have expanded our understanding of phage genomic diversity, they also revealed that we have only scratched the surface in the discovery of novel viruses. Yet, despite the remarkable diversity of phages at the nucleotide sequence level, the structural proteins that form viral particles show strong similarities and conservation. Phages are uniquely interconnected from an evolutionary perspective and undergo multiple events of genetic exchange in response to the selective pressure of their hosts, which drives their diversity. In this Review, we explore phage diversity at the structural, genomic and community levels as well as the complex evolutionary relationships between phages, moulded by the mosaicity of their genomes.
Collapse
Affiliation(s)
- Moïra B Dion
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Québec, Canada.,Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Québec, Canada
| | - Frank Oechslin
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Québec, Canada.,Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Québec, Canada
| | - Sylvain Moineau
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Québec, Canada. .,Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Québec, Canada. .,Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, Québec City, Québec, Canada.
| |
Collapse
|
223
|
Pérez-Losada M, Arenas M, Galán JC, Bracho MA, Hillung J, García-González N, González-Candelas F. High-throughput sequencing (HTS) for the analysis of viral populations. INFECTION GENETICS AND EVOLUTION 2020; 80:104208. [PMID: 32001386 DOI: 10.1016/j.meegid.2020.104208] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/21/2020] [Accepted: 01/24/2020] [Indexed: 12/12/2022]
Abstract
The development of High-Throughput Sequencing (HTS) technologies is having a major impact on the genomic analysis of viral populations. Current HTS platforms can capture nucleic acid variation across millions of genes for both selected amplicons and full viral genomes. HTS has already facilitated the discovery of new viruses, hinted new taxonomic classifications and provided a deeper and broader understanding of their diversity, population and genetic structure. Hence, HTS has already replaced standard Sanger sequencing in basic and applied research fields, but the next step is its implementation as a routine technology for the analysis of viruses in clinical settings. The most likely application of this implementation will be the analysis of viral genomics, because the huge population sizes, high mutation rates and very fast replacement of viral populations have demonstrated the limited information obtained with Sanger technology. In this review, we describe new technologies and provide guidelines for the high-throughput sequencing and genetic and evolutionary analyses of viral populations and metaviromes, including software applications. With the development of new HTS technologies, new and refurbished molecular and bioinformatic tools are also constantly being developed to process and integrate HTS data. These allow assembling viral genomes and inferring viral population diversity and dynamics. Finally, we also present several applications of these approaches to the analysis of viral clinical samples including transmission clusters and outbreak characterization.
Collapse
Affiliation(s)
- Marcos Pérez-Losada
- Computational Biology Institute, Milken Institute School of Public Health, George Washington University, Washington, DC, USA; CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão 4485-661, Portugal
| | - Miguel Arenas
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Vigo, Spain; Biomedical Research Center (CINBIO), University of Vigo, 36310 Vigo, Spain.
| | - Juan Carlos Galán
- Microbiology Service, Hospital Ramón y Cajal, Madrid, Spain; CIBER in Epidemiology and Public Health, Spain.
| | - Mª Alma Bracho
- CIBER in Epidemiology and Public Health, Spain; Joint Research Unit "Infection and Public Health" FISABIO-University of Valencia, Valencia, Spain.
| | - Julia Hillung
- Joint Research Unit "Infection and Public Health" FISABIO-University of Valencia, Valencia, Spain; Institute for Integrative Systems Biology (I2SysBio), CSIC-University of Valencia, Valencia, Spain.
| | - Neris García-González
- Joint Research Unit "Infection and Public Health" FISABIO-University of Valencia, Valencia, Spain; Institute for Integrative Systems Biology (I2SysBio), CSIC-University of Valencia, Valencia, Spain.
| | - Fernando González-Candelas
- CIBER in Epidemiology and Public Health, Spain; Joint Research Unit "Infection and Public Health" FISABIO-University of Valencia, Valencia, Spain; Institute for Integrative Systems Biology (I2SysBio), CSIC-University of Valencia, Valencia, Spain.
| |
Collapse
|
224
|
An Uncultivated Virus Infecting a Nanoarchaeal Parasite in the Hot Springs of Yellowstone National Park. J Virol 2020; 94:JVI.01213-19. [PMID: 31666377 DOI: 10.1128/jvi.01213-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/10/2019] [Indexed: 12/20/2022] Open
Abstract
The Nanoarchaeota are small cells with reduced genomes that are found attached to and dependent on a second archaeal cell for their growth and replication. Initially found in marine hydrothermal environments and subsequently in terrestrial geothermal hot springs, the Nanoarchaeota species that have been described are obligate ectobionts, each with a different host species. However, no viruses had been described that infect the Nanoarchaeota. Here, we identify a virus infecting Nanoarchaeota by the use of a combination of viral metagenomic and bioinformatic approaches. This virus, tentatively named Nanoarchaeota Virus 1 (NAV1), consists of a 35.6-kb circular DNA genome coding for 52 proteins. We further demonstrate that this virus is broadly distributed among Yellowstone National Park hot springs. NAV1 is one of the first examples of a virus infecting a single-celled organism that is itself an ectobiont of another single-celled organism.IMPORTANCE Here, we present evidence of the first virus found to infect Nanoarchaeota, a symbiotic archaean found in acidic hot springs of Yellowstone National Park, USA. Using culture-independent techniques, we provide the genome sequence and identify the archaeal host species of a novel virus, NAV1. NAV1 is the first example of a virus infecting an archaeal species that is itself an obligate symbiont and dependent on a second host organism for growth and cellular replication. On the basis of annotation of the NAV1 genome, we propose that this virus is the founding member of a new viral family, further demonstrating the remarkable genetic diversity of archaeal viruses.
Collapse
|
225
|
Leconte J, Benites LF, Vannier T, Wincker P, Piganeau G, Jaillon O. Genome Resolved Biogeography of Mamiellales. Genes (Basel) 2020; 11:E66. [PMID: 31936086 PMCID: PMC7016971 DOI: 10.3390/genes11010066] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/24/2019] [Accepted: 01/03/2020] [Indexed: 12/20/2022] Open
Abstract
Among marine phytoplankton, Mamiellales encompass several species from the genera Micromonas, Ostreococcus and Bathycoccus, which are important contributors to primary production. Previous studies based on single gene markers described their wide geographical distribution but led to discussion because of the uneven taxonomic resolution of the method. Here, we leverage genome sequences for six Mamiellales species, two from each genus Micromonas, Ostreococcus and Bathycoccus, to investigate their distribution across 133 stations sampled during the Tara Oceans expedition. Our study confirms the cosmopolitan distribution of Mamiellales and further suggests non-random distribution of species, with two triplets of co-occurring genomes associated with different temperatures: Ostreococcuslucimarinus, Bathycoccusprasinos and Micromonaspusilla were found in colder waters, whereas Ostreococcus spp. RCC809, Bathycoccus spp. TOSAG39-1 and Micromonascommoda were more abundant in warmer conditions. We also report the distribution of the two candidate mating-types of Ostreococcus for which the frequency of sexual reproduction was previously assumed to be very low. Indeed, both mating types were systematically detected together in agreement with either frequent sexual reproduction or the high prevalence of a diploid stage. Altogether, these analyses provide novel insights into Mamiellales' biogeography and raise novel testable hypotheses about their life cycle and ecology.
Collapse
Affiliation(s)
- Jade Leconte
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l′Énergie Atomique (CEA), CNRS, Université Évry, Université Paris-Saclay, 91057 Évry, France; (J.L.); (T.V.); (P.W.)
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France
| | - L. Felipe Benites
- Observatoire Océanologique, UMR 7232 Biologie Intégrative des Organismes Marins BIOM, CNRS, Sorbonne Université, F-66650 Banyuls-sur-Mer, France;
| | - Thomas Vannier
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l′Énergie Atomique (CEA), CNRS, Université Évry, Université Paris-Saclay, 91057 Évry, France; (J.L.); (T.V.); (P.W.)
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l′Énergie Atomique (CEA), CNRS, Université Évry, Université Paris-Saclay, 91057 Évry, France; (J.L.); (T.V.); (P.W.)
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France
| | - Gwenael Piganeau
- Observatoire Océanologique, UMR 7232 Biologie Intégrative des Organismes Marins BIOM, CNRS, Sorbonne Université, F-66650 Banyuls-sur-Mer, France;
| | - Olivier Jaillon
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l′Énergie Atomique (CEA), CNRS, Université Évry, Université Paris-Saclay, 91057 Évry, France; (J.L.); (T.V.); (P.W.)
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France
| |
Collapse
|
226
|
Abstract
Photosynthesis evolved in the ocean more than 2 billion years ago and is now performed by a wide range of evolutionarily distinct organisms, including both prokaryotes and eukaryotes. Our appreciation of their abundance, distributions, and contributions to primary production in the ocean has been increasing since they were first discovered in the seventeenth century and has now been enhanced by data emerging from the Tara Oceans project, which performed a comprehensive worldwide sampling of plankton in the upper layers of the ocean between 2009 and 2013. Largely using recent data from Tara Oceans, here we review the geographic distributions of phytoplankton in the global ocean and their diversity, abundance, and standing stock biomass. We also discuss how omics-based information can be incorporated into studies of photosynthesis in the ocean and show the likely importance of mixotrophs and photosymbionts.
Collapse
Affiliation(s)
- Juan José Pierella Karlusich
- Institut de Biologie de l'École Normale Supérieure (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université de Recherche Paris Sciences et Lettres (Université PSL), 75005 Paris, France;
| | - Federico M Ibarbalz
- Institut de Biologie de l'École Normale Supérieure (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université de Recherche Paris Sciences et Lettres (Université PSL), 75005 Paris, France;
| | - Chris Bowler
- Institut de Biologie de l'École Normale Supérieure (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université de Recherche Paris Sciences et Lettres (Université PSL), 75005 Paris, France;
| |
Collapse
|
227
|
Howard-Varona C, Lindback MM, Bastien GE, Solonenko N, Zayed AA, Jang H, Andreopoulos B, Brewer HM, Glavina Del Rio T, Adkins JN, Paul S, Sullivan MB, Duhaime MB. Phage-specific metabolic reprogramming of virocells. ISME JOURNAL 2020; 14:881-895. [PMID: 31896786 PMCID: PMC7082346 DOI: 10.1038/s41396-019-0580-z] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/25/2019] [Accepted: 12/17/2019] [Indexed: 12/22/2022]
Abstract
Ocean viruses are abundant and infect 20–40% of surface microbes. Infected cells, termed virocells, are thus a predominant microbial state. Yet, virocells and their ecosystem impacts are understudied, thus precluding their incorporation into ecosystem models. Here we investigated how unrelated bacterial viruses (phages) reprogram one host into contrasting virocells with different potential ecosystem footprints. We independently infected the marine Pseudoalteromonas bacterium with siphovirus PSA-HS2 and podovirus PSA-HP1. Time-resolved multi-omics unveiled drastically different metabolic reprogramming and resource requirements by each virocell, which were related to phage–host genomic complementarity and viral fitness. Namely, HS2 was more complementary to the host in nucleotides and amino acids, and fitter during infection than HP1. Functionally, HS2 virocells hardly differed from uninfected cells, with minimal host metabolism impacts. HS2 virocells repressed energy-consuming metabolisms, including motility and translation. Contrastingly, HP1 virocells substantially differed from uninfected cells. They repressed host transcription, responded to infection continuously, and drastically reprogrammed resource acquisition, central carbon and energy metabolisms. Ecologically, this work suggests that one cell, infected versus uninfected, can have immensely different metabolisms that affect the ecosystem differently. Finally, we relate phage–host genome complementarity, virocell metabolic reprogramming, and viral fitness in a conceptual model to guide incorporating viruses into ecosystem models.
Collapse
Affiliation(s)
- Cristina Howard-Varona
- Department of Microbiology, The Ohio State University, 484 W 12th Ave, Columbus, OH, 43210, USA
| | - Morgan M Lindback
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 North University Ave, Ann Arbor, MI, 48109, USA
| | - G Eric Bastien
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 North University Ave, Ann Arbor, MI, 48109, USA
| | - Natalie Solonenko
- Department of Microbiology, The Ohio State University, 484 W 12th Ave, Columbus, OH, 43210, USA
| | - Ahmed A Zayed
- Department of Microbiology, The Ohio State University, 484 W 12th Ave, Columbus, OH, 43210, USA
| | - HoBin Jang
- Department of Microbiology, The Ohio State University, 484 W 12th Ave, Columbus, OH, 43210, USA
| | - Bill Andreopoulos
- US Department of Energy Joint Genome Institute, 1800 Mitchell Dr #100, Walnut Creek, CA, 94598, USA
| | - Heather M Brewer
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory (PNNL), 902 Battelle Blvd, Richland, WA, 99354, USA
| | - Tijana Glavina Del Rio
- US Department of Energy Joint Genome Institute, 1800 Mitchell Dr #100, Walnut Creek, CA, 94598, USA
| | - Joshua N Adkins
- Biological Science Division, PNNL, 902 Battelle Blvd, Richland, WA, 99354, USA
| | - Subhadeep Paul
- Department of Statistics, The Ohio State University, 1958 Neil Ave, Columbus, OH, 43210, USA
| | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, 484 W 12th Ave, Columbus, OH, 43210, USA. .,Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, 2070 Neil Ave, Columbus, OH, 43210, USA. .,Center for RNA Biology, The Ohio State University, 484 W. 12th Ave, Columbus, OH, 43210, USA.
| | - Melissa B Duhaime
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 North University Ave, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
228
|
Kigerl KA, Zane K, Adams K, Sullivan MB, Popovich PG. The spinal cord-gut-immune axis as a master regulator of health and neurological function after spinal cord injury. Exp Neurol 2020; 323:113085. [PMID: 31654639 PMCID: PMC6918675 DOI: 10.1016/j.expneurol.2019.113085] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/24/2019] [Accepted: 10/18/2019] [Indexed: 12/13/2022]
Abstract
Most spinal cord injury (SCI) research programs focus only on the injured spinal cord with the goal of restoring locomotor function by overcoming mechanisms of cell death or axon regeneration failure. Given the importance of the spinal cord as a locomotor control center and the public perception that paralysis is the defining feature of SCI, this "spinal-centric" focus is logical. Unfortunately, such a focus likely will not yield new discoveries that reverse other devastating consequences of SCI including cardiovascular and metabolic disease, bladder/bowel dysfunction and infection. The current review considers how SCI changes the physiological interplay between the spinal cord, the gut and the immune system. A suspected culprit in causing many of the pathological manifestations of impaired spinal cord-gut-immune axis homeostasis is the gut microbiota. After SCI, the composition of the gut microbiota changes, creating a chronic state of gut "dysbiosis". To date, much of what we know about gut dysbiosis was learned from 16S-based taxonomic profiling studies that reveal changes in the composition and abundance of various bacteria. However, this approach has limitations and creates taxonomic "blindspots". Notably, only bacteria can be analyzed. Thus, in this review we also discuss how the application of emerging sequencing technologies can improve our understanding of how the broader ecosystem in the gut is affected by SCI. Specifically, metagenomics will provide researchers with a more comprehensive look at post-injury changes in the gut virome (and mycome). Metagenomics also allows changes in microbe population dynamics to be linked to specific microbial functions that can affect the development and progression of metabolic disease, immune dysfunction and affective disorders after SCI. As these new tools become more readily available and used across the research community, the development of an "ecogenomic" toolbox will facilitate an Eco-Systems Biology approach to study the complex interplay along the spinal cord-gut-immune axis after SCI.
Collapse
Affiliation(s)
- Kristina A Kigerl
- The Belford Center for Spinal Cord Injury, the Center for Brain and Spinal Cord Repair, Department of Neuroscience, Wexner Medical Center at The Ohio State University, USA
| | - Kylie Zane
- The Ohio State University College of Medicine, USA
| | - Kia Adams
- The Belford Center for Spinal Cord Injury, the Center for Brain and Spinal Cord Repair, Department of Neuroscience, Wexner Medical Center at The Ohio State University, USA
| | - Matthew B Sullivan
- Departments of Microbiology, Civil, Environmental and Geodetic Engineering at The Ohio State University, USA
| | - Phillip G Popovich
- The Belford Center for Spinal Cord Injury, the Center for Brain and Spinal Cord Repair, Department of Neuroscience, Wexner Medical Center at The Ohio State University, USA.
| |
Collapse
|
229
|
Coutinho FH, Edwards RA, Rodríguez-Valera F. Charting the diversity of uncultured viruses of Archaea and Bacteria. BMC Biol 2019. [PMID: 31884971 DOI: 10.1101/480491v1.full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Viruses of Archaea and Bacteria are among the most abundant and diverse biological entities on Earth. Unraveling their biodiversity has been challenging due to methodological limitations. Recent advances in culture-independent techniques, such as metagenomics, shed light on the unknown viral diversity, revealing thousands of new viral nucleotide sequences at an unprecedented scale. However, these novel sequences have not been properly classified and the evolutionary associations between them were not resolved. RESULTS Here, we performed phylogenomic analysis of nearly 200,000 viral nucleotide sequences to establish GL-UVAB: Genomic Lineages of Uncultured Viruses of Archaea and Bacteria. The pan-genome content of the identified lineages shed light on some of their infection strategies, potential to modulate host physiology, and mechanisms to escape host resistance systems. Furthermore, using GL-UVAB as a reference database for annotating metagenomes revealed elusive habitat distribution patterns of viral lineages and environmental drivers of community composition. CONCLUSIONS These findings provide insights about the genomic diversity and ecology of viruses of prokaryotes. The source code used in these analyses is freely available at https://sourceforge.net/projects/gluvab/.
Collapse
Affiliation(s)
- F H Coutinho
- Evolutionary Genomics Group, Departamento de Produccíon Vegetal y Microbiología, Universidad Miguel Hernández, Campus San Juan, San Juan, 03550, Alicante, Spain.
| | - R A Edwards
- Viral Information Institute, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92128, USA
| | - F Rodríguez-Valera
- Evolutionary Genomics Group, Departamento de Produccíon Vegetal y Microbiología, Universidad Miguel Hernández, Campus San Juan, San Juan, 03550, Alicante, Spain
| |
Collapse
|
230
|
Coutinho FH, Edwards RA, Rodríguez-Valera F. Charting the diversity of uncultured viruses of Archaea and Bacteria. BMC Biol 2019; 17:109. [PMID: 31884971 PMCID: PMC6936153 DOI: 10.1186/s12915-019-0723-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 11/13/2019] [Indexed: 12/21/2022] Open
Abstract
Background Viruses of Archaea and Bacteria are among the most abundant and diverse biological entities on Earth. Unraveling their biodiversity has been challenging due to methodological limitations. Recent advances in culture-independent techniques, such as metagenomics, shed light on the unknown viral diversity, revealing thousands of new viral nucleotide sequences at an unprecedented scale. However, these novel sequences have not been properly classified and the evolutionary associations between them were not resolved. Results Here, we performed phylogenomic analysis of nearly 200,000 viral nucleotide sequences to establish GL-UVAB: Genomic Lineages of Uncultured Viruses of Archaea and Bacteria. The pan-genome content of the identified lineages shed light on some of their infection strategies, potential to modulate host physiology, and mechanisms to escape host resistance systems. Furthermore, using GL-UVAB as a reference database for annotating metagenomes revealed elusive habitat distribution patterns of viral lineages and environmental drivers of community composition. Conclusions These findings provide insights about the genomic diversity and ecology of viruses of prokaryotes. The source code used in these analyses is freely available at https://sourceforge.net/projects/gluvab/.
Collapse
Affiliation(s)
- F H Coutinho
- Evolutionary Genomics Group, Departamento de Produccíon Vegetal y Microbiología, Universidad Miguel Hernández, Campus San Juan, San Juan, 03550, Alicante, Spain.
| | - R A Edwards
- Viral Information Institute, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92128, USA
| | - F Rodríguez-Valera
- Evolutionary Genomics Group, Departamento de Produccíon Vegetal y Microbiología, Universidad Miguel Hernández, Campus San Juan, San Juan, 03550, Alicante, Spain
| |
Collapse
|
231
|
Bekliz M, Brandani J, Bourquin M, Battin TJ, Peter H. Benchmarking protocols for the metagenomic analysis of stream biofilm viromes. PeerJ 2019; 7:e8187. [PMID: 31879573 PMCID: PMC6927355 DOI: 10.7717/peerj.8187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/11/2019] [Indexed: 12/17/2022] Open
Abstract
Viruses drive microbial diversity, function and evolution and influence important biogeochemical cycles in aquatic ecosystems. Despite their relevance, we currently lack an understanding of their potential impacts on stream biofilm structure and function. This is surprising given the critical role of biofilms for stream ecosystem processes. Currently, the study of viruses in stream biofilms is hindered by the lack of an optimized protocol for their extraction, concentration and purification. Here, we evaluate a range of methods to separate viral particles from stream biofilms, and to concentrate and purify them prior to DNA extraction and metagenome sequencing. Based on epifluorescence microscopy counts of viral-like particles (VLP) and DNA yields, we optimize a protocol including treatment with tetrasodium pyrophosphate and ultra-sonication to disintegrate biofilms, tangential-flow filtration to extract and concentrate VLP, followed by ultracentrifugation in a sucrose density gradient to isolate VLP from the biofilm slurry. Viromes derived from biofilms sampled from three different streams were dominated by Siphoviridae, Myoviridae and Podoviridae and provide first insights into the viral diversity of stream biofilms. Our protocol optimization provides an important step towards a better understanding of the ecological role of viruses in stream biofilms.
Collapse
Affiliation(s)
- Meriem Bekliz
- Stream Biofilm and Ecosystem Research Laboratory, École Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Jade Brandani
- Stream Biofilm and Ecosystem Research Laboratory, École Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Massimo Bourquin
- Stream Biofilm and Ecosystem Research Laboratory, École Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Tom J. Battin
- Stream Biofilm and Ecosystem Research Laboratory, École Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Hannes Peter
- Stream Biofilm and Ecosystem Research Laboratory, École Polytechnique Federale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
232
|
Zhang Z, Chen F, Chu X, Zhang H, Luo H, Qin F, Zhai Z, Yang M, Sun J, Zhao Y. Diverse, Abundant, and Novel Viruses Infecting the Marine Roseobacter RCA Lineage. mSystems 2019; 4:e00494-19. [PMID: 31848303 PMCID: PMC6918029 DOI: 10.1128/msystems.00494-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/21/2019] [Indexed: 02/05/2023] Open
Abstract
Many major marine bacterial lineages such as SAR11, Prochlorococcus, SAR116, and several Roseobacter lineages have members that are abundant, relatively slow-growing, and genome streamlined. The isolation of phages that infect SAR11 and SAR116 have demonstrated the dominance of these phages in the marine virosphere. However, no phages have been isolated from bacteria in the Roseobacter RCA lineage, another abundant group of marine bacteria. In this study, seven RCA phages that infect three different RCA strains were isolated and characterized. All seven RCA phages belong to the Podoviridae family and have genome sizes ranging from 39.6 to 58.1 kb. Interestingly, three RCA phages (CRP-1, CRP-2, and CRP-3) show similar genomic content and architecture as SAR116 phage HMO-2011, which represents one of the most abundant known viral groups in the ocean. The high degree of homology among CRP-1, CRP-2, CRP-3, and HMO-2011 resulted in the contribution of RCA phages to the dominance of the HMO-2011-type group. CRP-4 and CRP-5 are similar to the Cobavirus group roseophages in terms of gene content and organization. The remaining two RCA phages, CRP-6 and CRP-7, show limited genomic similarity with known phages and represent two new phage groups. Metagenomic fragment recruitment analyses reveal that these RCA phage groups are much more abundant in the ocean than most existing marine roseophage groups. The characterization of these RCA phages has greatly expanded our understanding of the genomic diversity and evolution of marine roseophages and suggests the critical need for isolating phages from the abundant but "unculturable" bacteria.IMPORTANCE The RCA lineage of the marine Roseobacter group represents one of the slow-growing but dominant components of marine microbial communities. Although dozens of roseophages have been characterized, no phages infecting RCA strains have been reported. In this study, we reported on the first RCA phage genomes and investigated their distribution pattern and relative abundance in comparison with other important marine phage groups. Two of the four RCA phage groups were found closely related to previously reported SAR116 phage HMO-2011 and Cobavirus group roseophages, respectively. The remaining two groups are novel in the genome contents. Our study also revealed that RCA phages are widely distributed and exhibit high abundance in marine viromic data sets. Altogether, our findings have greatly broadened our understanding of RCA phages and emphasize the ecological and evolutionary importance of RCA phages in the marine virosphere.
Collapse
Affiliation(s)
- Zefeng Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Feng Chen
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, Maryland, USA
| | - Xiao Chu
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Hao Zhang
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Haiwei Luo
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Fang Qin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zhiqiang Zhai
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Mingyu Yang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jing Sun
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
| | - Yanlin Zhao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
233
|
Ignacio-Espinoza JC, Ahlgren NA, Fuhrman JA. Long-term stability and Red Queen-like strain dynamics in marine viruses. Nat Microbiol 2019; 5:265-271. [PMID: 31819214 DOI: 10.1038/s41564-019-0628-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 11/04/2019] [Indexed: 11/09/2022]
Abstract
Viruses that infect microorganisms dominate marine microbial communities numerically, with impacts ranging from host evolution to global biogeochemical cycles1,2. However, virus community dynamics, necessary for conceptual and mechanistic model development, remains difficult to assess. Here, we describe the long-term stability of a viral community by analysing the metagenomes of near-surface 0.02-0.2 μm samples from the San Pedro Ocean Time-series3 that were sampled monthly over 5 years. Of 19,907 assembled viral contigs (>5 kb, mean 15 kb), 97% were found in each sample (by >98% ID metagenomic read recruitment) to have relative abundances that ranged over seven orders of magnitude, with limited temporal reordering of rank abundances along with little change in richness. Seasonal variations in viral community composition were superimposed on the overall stability; maximum community similarity occurred at 12-month intervals. Despite the stability of viral genotypic clusters that had 98% sequence identity, viral sequences showed transient variations in single-nucleotide polymorphisms (SNPs) and constant turnover of minor population variants, each rising and falling over a few months, reminiscent of Red Queen dynamics4. The rise and fall of variants within populations, interpreted through the perspective of known virus-host interactions5, is consistent with the hypothesis that fluctuating selection acts on a microdiverse cloud of strains, and this succession is associated with ever-shifting virus-host defences and counterdefences. This results in long-term virus-host coexistence that is facilitated by perpetually changing minor variants.
Collapse
Affiliation(s)
| | - Nathan A Ahlgren
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA.,Department of Biology, Clark University, Worcester, MA, USA
| | - Jed A Fuhrman
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
234
|
Nadel O, Rozenberg A, Flores-Uribe J, Larom S, Schwarz R, Béjà O. An uncultured marine cyanophage encodes an active phycobilisome proteolysis adaptor protein NblA. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:848-854. [PMID: 31600852 DOI: 10.1111/1758-2229.12798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 10/07/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
Phycobilisomes (PBS) are large water-soluble membrane-associated complexes in cyanobacteria and some chloroplasts that serve as light-harvesting antennae for the photosynthetic apparatus. When deplete of nitrogen or sulphur, cyanobacteria readily degrade their phycobilisomes allowing the cell to replenish these vanishing nutrients. The key regulator in the degradation process is NblA, a small protein (∼6 kDa), which recruits proteases to the PBS. It was discovered previously that not only do cyanobacteria possess nblA genes but also that they are encoded by genomes of some freshwater cyanophages. A recent study, using assemblies from oceanic metagenomes, revealed genomes of a novel uncultured marine cyanophage lineage, representatives of which contain genes coding for the PBS degradation protein. Here, we examined the functionality of nblA-like genes from these marine cyanophages by testing them in a freshwater model cyanobacterial nblA knockout. One of the viral NblA variants could complement the non-bleaching phenotype and restore PBS degradation. Our findings reveal a functional NblA from a novel marine cyanophage lineage. Furthermore, we shed new light on the distribution of nblA genes in cyanobacteria and cyanophages.
Collapse
Affiliation(s)
- Omer Nadel
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Andrey Rozenberg
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - José Flores-Uribe
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Shirley Larom
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Rakefet Schwarz
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Oded Béjà
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| |
Collapse
|
235
|
Needham DM, Poirier C, Hehenberger E, Jiménez V, Swalwell JE, Santoro AE, Worden AZ. Targeted metagenomic recovery of four divergent viruses reveals shared and distinctive characteristics of giant viruses of marine eukaryotes. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190086. [PMID: 31587639 PMCID: PMC6792449 DOI: 10.1098/rstb.2019.0086] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2019] [Indexed: 12/12/2022] Open
Abstract
Giant viruses have remarkable genomic repertoires-blurring the line with cellular life-and act as top-down controls of eukaryotic plankton. However, to date only six cultured giant virus genomes are available from the pelagic ocean. We used at-sea flow cytometry with staining and sorting designed to target wild predatory eukaryotes, followed by DNA sequencing and assembly, to recover novel giant viruses from the Pacific Ocean. We retrieved four 'PacV' partial genomes that range from 421 to 1605 Kb, with 13 contigs on average, including the largest marine viral genomic assembly reported to date. Phylogenetic analyses indicate that three of the new viruses span a clade with deep-branching members of giant Mimiviridae, incorporating the Cafeteria roenbergensis virus, the uncultivated terrestrial Faunusvirus, one PacV from a choanoflagellate and two PacV with unclear hosts. The fourth virus, oPacV-421, is phylogenetically related to viruses that infect haptophyte algae. About half the predicted proteins in each PacV have no matches in NCBI nr (e-value < 10-5), totalling 1735 previously unknown proteins; the closest affiliations of the other proteins were evenly distributed across eukaryotes, prokaryotes and viruses of eukaryotes. The PacVs encode many translational proteins and two encode eukaryotic-like proteins from the Rh family of the ammonium transporter superfamily, likely influencing the uptake of nitrogen during infection. cPacV-1605 encodes a microbial viral rhodopsin (VirR) and the biosynthesis pathway for the required chromophore, the second finding of a choanoflagellate-associated virus that encodes these genes. In co-collected metatranscriptomes, 85% of cPacV-1605 genes were expressed, with capsids, heat shock proteins and proteases among the most highly expressed. Based on orthologue presence-absence patterns across the PacVs and other eukaryotic viruses, we posit the observed viral groupings are connected to host lifestyles as heterotrophs or phototrophs. This article is part of a discussion meeting issue 'Single cell ecology'.
Collapse
Affiliation(s)
- David M. Needham
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
| | - Camille Poirier
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
- Ocean EcoSystems Biology Unit, RD3, GEOMAR Helmholtz Centre for Ocean Research, Kiel, 24105, Germany
| | - Elisabeth Hehenberger
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
- Ocean EcoSystems Biology Unit, RD3, GEOMAR Helmholtz Centre for Ocean Research, Kiel, 24105, Germany
| | - Valeria Jiménez
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
| | - Jarred E. Swalwell
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
- School of Oceanography, University of Washington, Box 357940, Seattle, WA 98195, USA
| | - Alyson E. Santoro
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - Alexandra Z. Worden
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
- Ocean EcoSystems Biology Unit, RD3, GEOMAR Helmholtz Centre for Ocean Research, Kiel, 24105, Germany
| |
Collapse
|
236
|
Song K, Ren J, Sun F. Reads Binning Improves Alignment-Free Metagenome Comparison. Front Genet 2019; 10:1156. [PMID: 31824565 PMCID: PMC6881972 DOI: 10.3389/fgene.2019.01156] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 10/22/2019] [Indexed: 12/26/2022] Open
Abstract
Comparing metagenomic samples is a critical step in understanding the relationships among microbial communities. Recently, next-generation sequencing (NGS) technologies have produced a massive amount of short reads data for microbial communities from different environments. The assembly of these short reads can, however, be time-consuming and challenging. In addition, alignment-based methods for metagenome comparison are limited by incomplete genome and/or pathway databases. In contrast, alignment-free methods for metagenome comparison do not depend on the completeness of genome or pathway databases. Still, the existing alignment-free methods,d 2 S andd 2 * , which model k-tuple patterns using only one Markov chain for each sample, neglect the heterogeneity within metagenomic data wherein potentially thousands of types of microorganisms are sequenced. To address this imperfection ind 2 S andd 2 * , we organized NGS sequences into different reads bins and constructed several corresponding Markov models. Next, we modified the definition of our previous alignment-free methods,d 2 S andd 2 * , to make them more compatible with a scheme of analysis which uses the proposed reads bins. We then used two simulated and three real metagenomic datasets to test the effect of the k-tuple size and Markov orders of background sequences on the performance of these de novo alignment-free methods. For dependable comparison of metagenomic samples, our newly developed alignment-free methods with reads binning outperformed alignment-free methods without reads binning in detecting the relationship among microbial communities, including whether they form groups or change according to some environmental gradients.
Collapse
Affiliation(s)
- Kai Song
- School of Mathematics and Statistics, Qingdao University, Qingdao, China
| | - Jie Ren
- Quantitative and Computational Biology Program, University of Southern California, Los Angeles, CA, United States
| | - Fengzhu Sun
- Quantitative and Computational Biology Program, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
237
|
Okazaki Y, Nishimura Y, Yoshida T, Ogata H, Nakano SI. Genome-resolved viral and cellular metagenomes revealed potential key virus-host interactions in a deep freshwater lake. Environ Microbiol 2019; 21:4740-4754. [PMID: 31608575 DOI: 10.1111/1462-2920.14816] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 01/21/2023]
Abstract
Metagenomics has dramatically expanded the known virosphere, but freshwater viral diversity and their ecological interaction with hosts remain poorly understood. Here, we conducted a metagenomic exploration of planktonic dsDNA prokaryotic viruses by sequencing both virion (<0.22 μm) and cellular (0.22-5.0 μm) fractions collected spatiotemporally from a deep freshwater lake (Lake Biwa, Japan). This simultaneously reconstructed 183 complete (i.e., circular) viral genomes and 57 bacterioplankton metagenome-assembled genomes. Analysis of metagenomic read coverage revealed vertical partitioning of the viral community analogous to the vertically stratified bacterioplankton community. The hypolimnetic community was generally stable during stratification, but occasionally shifted abruptly, presumably due to lysogenic induction. Genes involved in assimilatory sulfate reduction were encoded in 20 (10.9%) viral genomes, including those of dominant viruses, and may aid viral propagation in sulfur-limited freshwater systems. Hosts were predicted for 40 (21.9%) viral genomes, encompassing 10 phyla (or classes of Proteobacteria) including ubiquitous freshwater bacterioplankton lineages (e.g., Ca. Fonsibacter and Ca. Nitrosoarchaeum). Comparison with viral genomes derived from published metagenomes revealed viral phylogeographic connectivity in geographically isolated habitats. Notably, analogous to their hosts, actinobacterial viruses were among the most diverse, ubiquitous and abundant viral groups in freshwater systems, with potential high lytic activity in surface waters.
Collapse
Affiliation(s)
- Yusuke Okazaki
- Center for Ecological Research, Kyoto University, 2-509-3 Hirano, Otsu, Shiga, 520-2113, Japan.,Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan
| | - Yosuke Nishimura
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, 606-8502, Japan.,Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.,Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, 277-8564, Japan
| | - Takashi Yoshida
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hiroyuki Ogata
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Shin-Ichi Nakano
- Center for Ecological Research, Kyoto University, 2-509-3 Hirano, Otsu, Shiga, 520-2113, Japan
| |
Collapse
|
238
|
A newly isolated roseophage represents a distinct member of Siphoviridae family. Virol J 2019; 16:128. [PMID: 31694663 PMCID: PMC6836515 DOI: 10.1186/s12985-019-1241-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 10/10/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Members of the Roseobacter lineage are a major group of marine heterotrophic bacteria because of their wide distribution, versatile lifestyles and important biogeochemical roles. Bacteriophages, the most abundant biological entities in the ocean, play important roles in shaping their hosts' population structures and mediating genetic exchange between hosts. However, our knowledge of roseophages (bacteriophages that infect Roseobacter) is far behind that of their host counterparts, partly reflecting the need to isolate and analyze the phages associated with this ecologically important bacterial clade. METHODS vB_DshS-R4C (R4C), a novel virulent roseophage that infects Dinoroseobacter shibae DFL12T, was isolated with the double-layer agar method. The phage morphology was visualized with transmission electron microscopy. We characterized R4C in-depth with a genomic analysis and investigated the distribution of the R4C genome in different environments with a metagenomic recruitment analysis. RESULTS The double-stranded DNA genome of R4C consists of 36,291 bp with a high GC content of 66.75%. It has 49 genes with low DNA and protein homologies to those of other known phages. Morphological and phylogenetic analyses suggested that R4C is a novel member of the family Siphoviridae and is most closely related to phages in the genus Cronusvirus. However, unlike the Cronusvirus phages, R4C encodes an integrase, implying its ability to establish a lysogenic life cycle. A terminal analysis shows that, like that of λ phage, the R4C genome utilize the 'cohesive ends' DNA-packaging mechanism. Significantly, homologues of the R4C genes are more prevalent in coastal areas than in the open ocean. CONCLUSIONS Information about this newly discovered phage extends our understanding of bacteriophage diversity, evolution, and their roles in different environments.
Collapse
|
239
|
Trends of Microdiversity Reveal Depth-Dependent Evolutionary Strategies of Viruses in the Mediterranean. mSystems 2019; 4:4/6/e00554-19. [PMID: 31690594 PMCID: PMC6832022 DOI: 10.1128/msystems.00554-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Viruses are extremely abundant and diverse biological entities that contribute to the functioning of marine ecosystems. Despite their recognized importance, few studies have addressed trends of mutation accumulation in marine viral communities across depth gradients. By investigating these trends, we show that mutation frequencies differ among viral genes according to their molecular functions, with the highest microdiversity occurring among proteins related to host metabolism, followed by structural proteins and, lastly, genome replication proteins. This is in agreement with evolutionary theory that postulates that housekeeping genes are under strong purifying selection. We also observed a positive association between depth and microdiversity. One exception to this trend was the host recognition proteins from the deep chlorophyll maximum, which displayed strikingly high microdiversity, which we hypothesize to be associated with intraspecies competition for hosts. Finally, our data allowed us to propose a theoretical model for viral microdiversity across the depth gradient. These discoveries are of special relevance because many of the viral genomic sequences discovered here were predicted to infect some of the most abundant bacteria in marine ecosystems, such as “Candidatus Pelagibacter,” Puniceispirillum, and Prochlorococcus. The evolutionary interactions between viruses and their prokaryotic hosts remain a little-known aspect of microbial evolution. Most studies on this topic were carried out in pure cultures that challenge one virus with one bacterial clone at a time, which is very removed from real-life situations. Few studies have addressed trends of microdiversity in marine viral communities throughout depth gradients. We analyzed metagenomes from both the cellular and viral fractions of Mediterranean seawater samples spanning the epipelagic to the bathypelagic zones at depths of 15, 45, 60, and 2,000 m during the summer stratification of the water column. We evaluated microdiversity patterns by measuring the accumulation of synonymous and nonsynonymous mutations in viral genes. Our results demonstrated clear depth-dependent trends in the frequency of polymorphic sites and nonsynonymous mutations among genes encoding metabolic, structural, and replication proteins. These differences were linked to changes in energy availability, host and viral densities, and the proportions of actively replicating viruses. We propose the hypothesis that in the energy-rich, high-host-density, euphotic depths, selection acts to favor diversity of the host recognition machinery to increase host range, while in energy-depleted aphotic waters, selection acts on viral replication fitness, enhancing diversity in auxiliary metabolic genes. IMPORTANCE Viruses are extremely abundant and diverse biological entities that contribute to the functioning of marine ecosystems. Despite their recognized importance, few studies have addressed trends of mutation accumulation in marine viral communities across depth gradients. By investigating these trends, we show that mutation frequencies differ among viral genes according to their molecular functions, with the highest microdiversity occurring among proteins related to host metabolism, followed by structural proteins and, lastly, genome replication proteins. This is in agreement with evolutionary theory that postulates that housekeeping genes are under strong purifying selection. We also observed a positive association between depth and microdiversity. One exception to this trend was the host recognition proteins from the deep chlorophyll maximum, which displayed strikingly high microdiversity, which we hypothesize to be associated with intraspecies competition for hosts. Finally, our data allowed us to propose a theoretical model for viral microdiversity across the depth gradient. These discoveries are of special relevance because many of the viral genomic sequences discovered here were predicted to infect some of the most abundant bacteria in marine ecosystems, such as “Candidatus Pelagibacter,” Puniceispirillum, and Prochlorococcus.
Collapse
|
240
|
Testa S, Berger S, Piccardi P, Oechslin F, Resch G, Mitri S. Spatial structure affects phage efficacy in infecting dual-strain biofilms of Pseudomonas aeruginosa. Commun Biol 2019; 2:405. [PMID: 31701033 PMCID: PMC6828766 DOI: 10.1038/s42003-019-0633-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/26/2019] [Indexed: 12/12/2022] Open
Abstract
Bacterial viruses, or phage, are key members of natural microbial communities. Yet much research on bacterial-phage interactions has been conducted in liquid cultures involving single bacterial strains. Here we explored how bacterial diversity affects the success of lytic phage in structured communities. We infected a sensitive Pseudomonas aeruginosa strain PAO1 with a lytic phage Pseudomonas 352 in the presence versus absence of an insensitive P. aeruginosa strain PA14, in liquid culture versus colonies on agar. We found that both in liquid and in colonies, inter-strain competition reduced resistance evolution in the susceptible strain and decreased phage population size. However, while all sensitive bacteria died in liquid, bacteria in colonies could remain sensitive yet escape phage infection, due mainly to reduced growth in colony centers. In sum, spatial structure can protect bacteria against phage infection, while the presence of competing strains reduces the evolution of resistance to phage.
Collapse
Affiliation(s)
- Samuele Testa
- Department of Fundamental Microbiology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Sarah Berger
- Department of Fundamental Microbiology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Philippe Piccardi
- Department of Fundamental Microbiology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Frank Oechslin
- Department of Fundamental Microbiology, University of Lausanne, CH-1015 Lausanne, Switzerland
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec City, QC Canada
| | - Grégory Resch
- Department of Fundamental Microbiology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Sara Mitri
- Department of Fundamental Microbiology, University of Lausanne, CH-1015 Lausanne, Switzerland
- Swiss Institute for Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
241
|
Wang Y, Shi Q, Yang P, Zhang C, Mortuza SM, Xue Z, Ning K, Zhang Y. Fueling ab initio folding with marine metagenomics enables structure and function predictions of new protein families. Genome Biol 2019; 20:229. [PMID: 31676016 PMCID: PMC6825341 DOI: 10.1186/s13059-019-1823-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 09/13/2019] [Indexed: 02/01/2023] Open
Abstract
INTRODUCTION The ocean microbiome represents one of the largest microbiomes and produces nearly half of the primary energy on the planet through photosynthesis or chemosynthesis. Using recent advances in marine genomics, we explore new applications of oceanic metagenomes for protein structure and function prediction. RESULTS By processing 1.3 TB of high-quality reads from the Tara Oceans data, we obtain 97 million non-redundant genes. Of the 5721 Pfam families that lack experimental structures, 2801 have at least one member associated with the oceanic metagenomics dataset. We apply C-QUARK, a deep-learning contact-guided ab initio structure prediction pipeline, to model 27 families, where 20 are predicted to have a reliable fold with estimated template modeling score (TM-score) at least 0.5. Detailed analyses reveal that the abundance of microbial genera in the ocean is highly correlated to the frequency of occurrence in the modeled Pfam families, suggesting the significant role of the Tara Oceans genomes in the contact-map prediction and subsequent ab initio folding simulations. Of interesting note, PF15461, which has a majority of members coming from ocean-related bacteria, is identified as an important photosynthetic protein by structure-based function annotations. The pipeline is extended to a set of 417 Pfam families, built on the combination of Tara with other metagenomics datasets, which results in 235 families with an estimated TM-score over 0.5. CONCLUSIONS These results demonstrate a new avenue to improve the capacity of protein structure and function modeling through marine metagenomics, especially for difficult proteins with few homologous sequences.
Collapse
Affiliation(s)
- Yan Wang
- College of Life Science and Technology and College of Software, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Qiang Shi
- College of Life Science and Technology and College of Software, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Pengshuo Yang
- College of Life Science and Technology and College of Software, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Chengxin Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - S M Mortuza
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Zhidong Xue
- College of Life Science and Technology and College of Software, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.
| | - Kang Ning
- College of Life Science and Technology and College of Software, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.
| | - Yang Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
242
|
Garmaeva S, Sinha T, Kurilshikov A, Fu J, Wijmenga C, Zhernakova A. Studying the gut virome in the metagenomic era: challenges and perspectives. BMC Biol 2019; 17:84. [PMID: 31660953 PMCID: PMC6819614 DOI: 10.1186/s12915-019-0704-y] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 09/22/2019] [Indexed: 12/12/2022] Open
Abstract
The human gut harbors a complex ecosystem of microorganisms, including bacteria and viruses. With the rise of next-generation sequencing technologies, we have seen a quantum leap in the study of human-gut-inhabiting bacteria, yet the viruses that infect these bacteria, known as bacteriophages, remain underexplored. In this review, we focus on what is known about the role of bacteriophages in human health and the technical challenges involved in studying the gut virome, of which they are a major component. Lastly, we discuss what can be learned from studies of bacteriophages in other ecosystems.
Collapse
Affiliation(s)
- Sanzhima Garmaeva
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Trishla Sinha
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Alexander Kurilshikov
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jingyuan Fu
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
243
|
Badel C, Erauso G, Gomez AL, Catchpole R, Gonnet M, Oberto J, Forterre P, Da Cunha V. The global distribution and evolutionary history of the pT26-2 archaeal plasmid family. Environ Microbiol 2019; 21:4685-4705. [PMID: 31503394 PMCID: PMC6972569 DOI: 10.1111/1462-2920.14800] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/08/2019] [Indexed: 12/25/2022]
Abstract
Although plasmids play an important role in biological evolution, the number of plasmid families well‐characterized in terms of geographical distribution and evolution remains limited, especially in archaea. Here, we describe the first systematic study of an archaeal plasmid family, the pT26‐2 plasmid family. The in‐depth analysis of the distribution, biogeography and host–plasmid co‐evolution patterns of 26 integrated and 3 extrachromosomal plasmids of this plasmid family shows that they are widespread in Thermococcales and Methanococcales isolated from around the globe but are restricted to these two orders. All members of the family share seven core genes but employ different integration and replication strategies. Phylogenetic analysis of the core genes and CRISPR spacer distribution suggests that plasmids of the pT26‐2 family evolved with their hosts independently in Thermococcales and Methanococcales, despite these hosts exhibiting similar geographic distribution. Remarkably, core genes are conserved even in integrated plasmids that have lost replication genes and/or replication origins suggesting that they may be beneficial for their hosts. We hypothesize that the core proteins encode for a novel type of DNA/protein transfer mechanism, explaining the widespread oceanic distribution of the pT26‐2 plasmid family.
Collapse
Affiliation(s)
- Catherine Badel
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Paris, France
| | - Gaël Erauso
- Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Université de Bretagne Occidentale (UBO, UEB), Institut Universitaire Européen de la Mer (IUEM) - UMR 6197, Plouzané, France.,Aix-Marseille Université, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, Marseille, France
| | - Annika L Gomez
- Département de Microbiologie, Institut Pasteur, Unité de Biologie Moléculaire du Gène chez les Extrêmophiles (BMGE), Paris, France
| | - Ryan Catchpole
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Paris, France
| | - Mathieu Gonnet
- Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Université de Bretagne Occidentale (UBO, UEB), Institut Universitaire Européen de la Mer (IUEM) - UMR 6197, Plouzané, France
| | - Jacques Oberto
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Paris, France
| | - Patrick Forterre
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Paris, France.,Département de Microbiologie, Institut Pasteur, Unité de Biologie Moléculaire du Gène chez les Extrêmophiles (BMGE), Paris, France
| | - Violette Da Cunha
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Paris, France.,Département de Microbiologie, Institut Pasteur, Unité de Biologie Moléculaire du Gène chez les Extrêmophiles (BMGE), Paris, France
| |
Collapse
|
244
|
Kavagutti VS, Andrei AŞ, Mehrshad M, Salcher MM, Ghai R. Phage-centric ecological interactions in aquatic ecosystems revealed through ultra-deep metagenomics. MICROBIOME 2019; 7:135. [PMID: 31630686 DOI: 10.1101/670067v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/24/2019] [Indexed: 05/22/2023]
Abstract
The persistent inertia in the ability to culture environmentally abundant microbes from aquatic ecosystems represents an obstacle in disentangling the complex web of ecological interactions spun by a diverse assortment of participants (pro- and eukaryotes and their viruses). In aquatic microbial communities, the numerically most abundant actors, the viruses, remain the most elusive, and especially in freshwaters their identities and ecology remain unknown. Here, using ultra-deep metagenomic sequencing from pelagic freshwater habitats, we recovered complete genomes of > 2000 phages, including small "miniphages" and large "megaphages" infecting iconic freshwater prokaryotic lineages. For instance, abundant freshwater Actinobacteria support infection by a very broad size range of phages (13-200 Kb). We describe many phages encoding genes that likely afford protection to their host from reactive oxygen species (ROS) in the aquatic environment and in the oxidative burst in protist phagolysosomes (phage-mediated ROS defense). Spatiotemporal abundance analyses of phage genomes revealed evanescence as the primary dynamic in upper water layers, where they displayed short-lived existences. In contrast, persistence was characteristic for the deeper layers where many identical phage genomes were recovered repeatedly. Phage and host abundances corresponded closely, with distinct populations displaying preferential distributions in different seasons and depths, closely mimicking overall stratification and mixis.
Collapse
Affiliation(s)
- Vinicius S Kavagutti
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Adrian-Ştefan Andrei
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Maliheh Mehrshad
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Michaela M Salcher
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
- Limnological Station, Institute of Plant and Microbial Biology, University of Zurich, Seestrasse 187, 8802, Kilchberg, Switzerland
| | - Rohit Ghai
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05, České Budějovice, Czech Republic.
| |
Collapse
|
245
|
Kavagutti VS, Andrei AŞ, Mehrshad M, Salcher MM, Ghai R. Phage-centric ecological interactions in aquatic ecosystems revealed through ultra-deep metagenomics. MICROBIOME 2019; 7:135. [PMID: 31630686 PMCID: PMC6802176 DOI: 10.1186/s40168-019-0752-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/24/2019] [Indexed: 05/20/2023]
Abstract
The persistent inertia in the ability to culture environmentally abundant microbes from aquatic ecosystems represents an obstacle in disentangling the complex web of ecological interactions spun by a diverse assortment of participants (pro- and eukaryotes and their viruses). In aquatic microbial communities, the numerically most abundant actors, the viruses, remain the most elusive, and especially in freshwaters their identities and ecology remain unknown. Here, using ultra-deep metagenomic sequencing from pelagic freshwater habitats, we recovered complete genomes of > 2000 phages, including small "miniphages" and large "megaphages" infecting iconic freshwater prokaryotic lineages. For instance, abundant freshwater Actinobacteria support infection by a very broad size range of phages (13-200 Kb). We describe many phages encoding genes that likely afford protection to their host from reactive oxygen species (ROS) in the aquatic environment and in the oxidative burst in protist phagolysosomes (phage-mediated ROS defense). Spatiotemporal abundance analyses of phage genomes revealed evanescence as the primary dynamic in upper water layers, where they displayed short-lived existences. In contrast, persistence was characteristic for the deeper layers where many identical phage genomes were recovered repeatedly. Phage and host abundances corresponded closely, with distinct populations displaying preferential distributions in different seasons and depths, closely mimicking overall stratification and mixis.
Collapse
Affiliation(s)
- Vinicius S Kavagutti
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Adrian-Ştefan Andrei
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Maliheh Mehrshad
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Michaela M Salcher
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
- Limnological Station, Institute of Plant and Microbial Biology, University of Zurich, Seestrasse 187, 8802, Kilchberg, Switzerland
| | - Rohit Ghai
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05, České Budějovice, Czech Republic.
| |
Collapse
|
246
|
Ruiz-Perez CA, Tsementzi D, Hatt JK, Sullivan MB, Konstantinidis KT. Prevalence of viral photosynthesis genes along a freshwater to saltwater transect in Southeast USA. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:672-689. [PMID: 31265211 DOI: 10.1111/1758-2229.12780] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 06/29/2019] [Indexed: 05/28/2023]
Abstract
Bacteriophages encode host-acquired functional genes known as auxiliary metabolic genes (AMGs). Photosynthesis AMGs are commonly found in marine cyanobacteria-infecting Myoviridae and Podoviridae cyanophages, but their ecology remains understudied in freshwater environments. To advance knowledge of this issue, we analysed viral metagenomes collected in the summertime for four years from five lakes and two estuarine locations interconnected by the Chattahoochee River, Southeast USA. Sequences representing ten different AMGs were recovered and found to be prevalent in all sites. Most freshwater AMGs were 10-fold less abundant than estuarine and marine AMGs and were encoded by novel Myoviridae and Podoviridae cyanophage genera. Notably, several of the corresponding viral genomes showed endemism to a specific province along the river. This translated into psbA gene phylogenetic clustering patterns that matched a marine vs. freshwater origin indicating that psbA may serve as a robust classification and source-tracking biomarker. Genomes classified in a novel viral lineage represented by isolate S-EIVl contained psbA, which is unprecedented for this lineage. Collectively, our findings indicated that the acquisition of photosynthesis AMGs is a widespread strategy used by cyanophages in aquatic ecosystems, and further indicated the existence of viral provinces in which certain viral species and/or genotypes are locally abundant.
Collapse
Affiliation(s)
- Carlos A Ruiz-Perez
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Despina Tsementzi
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Janet K Hatt
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Matthew B Sullivan
- Departments of Microbiology and Civil, Environmental and Geodetic Engineering, Ohio State University, Columbus, OH, USA
| | - Konstantinos T Konstantinidis
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Center for Bioinformatics and Computational Genomics, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
247
|
Castillo YM, Mangot J, Benites LF, Logares R, Kuronishi M, Ogata H, Jaillon O, Massana R, Sebastián M, Vaqué D. Assessing the viral content of uncultured picoeukaryotes in the global‐ocean by single cell genomics. Mol Ecol 2019; 28:4272-4289. [DOI: 10.1111/mec.15210] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 07/23/2019] [Accepted: 08/01/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Yaiza M. Castillo
- Department of Marine Biology and Oceanography Institute of Marine Sciences (ICM) CSIC Barcelona Spain
| | - Jean‐François Mangot
- Department of Marine Biology and Oceanography Institute of Marine Sciences (ICM) CSIC Barcelona Spain
| | - Luiz Felipe Benites
- Integrative Biology of Marine Organisms (BIOM) CNRS Oceanological Observatory of Banyuls Sorbonne University Banyuls‐sur‐Mer France
| | - Ramiro Logares
- Department of Marine Biology and Oceanography Institute of Marine Sciences (ICM) CSIC Barcelona Spain
| | - Megumi Kuronishi
- Bioinformatic Center Institute for Chemical Research Kyoto University Uji Japan
| | - Hiroyuki Ogata
- Bioinformatic Center Institute for Chemical Research Kyoto University Uji Japan
| | - Olivier Jaillon
- Génomique Métabolique Genoscope Institut de biologie François Jacob CEA CNRS Université d'Evry Université Paris‐Saclay Evry France
| | - Ramon Massana
- Department of Marine Biology and Oceanography Institute of Marine Sciences (ICM) CSIC Barcelona Spain
| | - Marta Sebastián
- Department of Marine Biology and Oceanography Institute of Marine Sciences (ICM) CSIC Barcelona Spain
- Institute of Oceanography and Global Change (IOCAG) University of Las Palmas de Gran Canaria Telde Spain
| | - Dolors Vaqué
- Department of Marine Biology and Oceanography Institute of Marine Sciences (ICM) CSIC Barcelona Spain
| |
Collapse
|
248
|
Planes S, Allemand D, Agostini S, Banaigs B, Boissin E, Boss E, Bourdin G, Bowler C, Douville E, Flores JM, Forcioli D, Furla P, Galand PE, Ghiglione JF, Gilson E, Lombard F, Moulin C, Pesant S, Poulain J, Reynaud S, Romac S, Sullivan MB, Sunagawa S, Thomas OP, Troublé R, de Vargas C, Vega Thurber R, Voolstra CR, Wincker P, Zoccola D. The Tara Pacific expedition-A pan-ecosystemic approach of the "-omics" complexity of coral reef holobionts across the Pacific Ocean. PLoS Biol 2019; 17:e3000483. [PMID: 31545807 PMCID: PMC6776362 DOI: 10.1371/journal.pbio.3000483] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/03/2019] [Indexed: 02/01/2023] Open
Abstract
Coral reefs are the most diverse habitats in the marine realm. Their productivity, structural complexity, and biodiversity critically depend on ecosystem services provided by corals that are threatened because of climate change effects-in particular, ocean warming and acidification. The coral holobiont is composed of the coral animal host, endosymbiotic dinoflagellates, associated viruses, bacteria, and other microeukaryotes. In particular, the mandatory photosymbiosis with microalgae of the family Symbiodiniaceae and its consequences on the evolution, physiology, and stress resilience of the coral holobiont have yet to be fully elucidated. The functioning of the holobiont as a whole is largely unknown, although bacteria and viruses are presumed to play roles in metabolic interactions, immunity, and stress tolerance. In the context of climate change and anthropogenic threats on coral reef ecosystems, the Tara Pacific project aims to provide a baseline of the "-omics" complexity of the coral holobiont and its ecosystem across the Pacific Ocean and for various oceanographically distinct defined areas. Inspired by the previous Tara Oceans expeditions, the Tara Pacific expedition (2016-2018) has applied a pan-ecosystemic approach on coral reefs throughout the Pacific Ocean, drawing an east-west transect from Panama to Papua New Guinea and a south-north transect from Australia to Japan, sampling corals throughout 32 island systems with local replicates. Tara Pacific has developed and applied state-of-the-art technologies in very-high-throughput genetic sequencing and molecular analysis to reveal the entire microbial and chemical diversity as well as functional traits associated with coral holobionts, together with various measures on environmental forcing. This ambitious project aims at revealing a massive amount of novel biodiversity, shedding light on the complex links between genomes, transcriptomes, metabolomes, organisms, and ecosystem functions in coral reefs and providing a reference of the biological state of modern coral reefs in the Anthropocene.
Collapse
Affiliation(s)
- Serge Planes
- Laboratoire d’Excellence “CORAIL,” PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, Perpignan Cedex, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans-GOSEE, Paris, France
- * E-mail:
| | - Denis Allemand
- Centre Scientifique de Monaco, Monte Carlo, Principality of Monaco
| | | | - Bernard Banaigs
- Laboratoire d’Excellence “CORAIL,” PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, Perpignan Cedex, France
| | - Emilie Boissin
- Laboratoire d’Excellence “CORAIL,” PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, Perpignan Cedex, France
| | - Emmanuel Boss
- School of Marine Sciences, University of Maine, Orono, Maine, United States of America
| | - Guillaume Bourdin
- School of Marine Sciences, University of Maine, Orono, Maine, United States of America
- Sorbonne Université, Institut de la Mer de Villefranche sur mer, Laboratoire d'Océanographie de Villefranche, Villefranche-sur-Mer, France
| | - Chris Bowler
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans-GOSEE, Paris, France
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Eric Douville
- Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
| | - J. Michel Flores
- Weizmann Institute of Science, Dept. Earth and Planetary Science, Rehovot, Israel
| | - Didier Forcioli
- Université Côte d'Azur-CNRS-INSERM, IRCAN, Medical School, Nice, France and Department of Medical Genetics, CHU of Nice, Nice, France
| | - Paola Furla
- Université Côte d'Azur-CNRS-INSERM, IRCAN, Medical School, Nice, France and Department of Medical Genetics, CHU of Nice, Nice, France
| | - Pierre E. Galand
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans-GOSEE, Paris, France
- Sorbonne Université, CNRS, Laboratoire d’Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, Banyuls sur mer, France
| | - Jean-François Ghiglione
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans-GOSEE, Paris, France
- Sorbonne Université Laboratoire d’Océanographie Microbienne LOMIC, UMR 7621, Observatoire Océanologique de Banyuls, Banyuls sur mer, France
| | - Eric Gilson
- Université Côte d'Azur-CNRS-INSERM, IRCAN, Medical School, Nice, France and Department of Medical Genetics, CHU of Nice, Nice, France
| | - Fabien Lombard
- Sorbonne Université, Institut de la Mer de Villefranche sur mer, Laboratoire d'Océanographie de Villefranche, Villefranche-sur-Mer, France
| | | | - Stephane Pesant
- PANGEA, Data Publisher for Earth and Environment Science, Bremen, Germany
- MARUM—Center for Marine Environmental Sciences, Universität Bremen, Bremen, Germany
| | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, Evry, France
| | | | - Sarah Romac
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans-GOSEE, Paris, France
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR 7144, ECOMAP, Roscoff, France
| | - Matthew B. Sullivan
- Departments of Microbiology and Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, Ohio, United States of America
| | - Shinichi Sunagawa
- Department of Biology and Swiss Institute of Bioinformatics, ETH Zürich, Zürich, Switzerland
| | - Olivier P. Thomas
- Marine Biodiscovery Laboratory, School of Chemistry and Ryan Institute, National University of Ireland, Galway (NUI Galway), Galway, Ireland
| | - Romain Troublé
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans-GOSEE, Paris, France
- La Fondation Tara Expéditions, “Base Tara” 11, Paris, France
| | - Colomban de Vargas
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans-GOSEE, Paris, France
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR 7144, ECOMAP, Roscoff, France
| | - Rebecca Vega Thurber
- Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America
| | | | - Patrick Wincker
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans-GOSEE, Paris, France
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, Evry, France
| | - Didier Zoccola
- Centre Scientifique de Monaco, Monte Carlo, Principality of Monaco
| | | |
Collapse
|
249
|
Cavicchioli R, Ripple WJ, Timmis KN, Azam F, Bakken LR, Baylis M, Behrenfeld MJ, Boetius A, Boyd PW, Classen AT, Crowther TW, Danovaro R, Foreman CM, Huisman J, Hutchins DA, Jansson JK, Karl DM, Koskella B, Mark Welch DB, Martiny JBH, Moran MA, Orphan VJ, Reay DS, Remais JV, Rich VI, Singh BK, Stein LY, Stewart FJ, Sullivan MB, van Oppen MJH, Weaver SC, Webb EA, Webster NS. Scientists' warning to humanity: microorganisms and climate change. Nat Rev Microbiol 2019; 17:569-586. [PMID: 31213707 PMCID: PMC7136171 DOI: 10.1038/s41579-019-0222-5] [Citation(s) in RCA: 673] [Impact Index Per Article: 134.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2019] [Indexed: 11/27/2022]
Abstract
In the Anthropocene, in which we now live, climate change is impacting most life on Earth. Microorganisms support the existence of all higher trophic life forms. To understand how humans and other life forms on Earth (including those we are yet to discover) can withstand anthropogenic climate change, it is vital to incorporate knowledge of the microbial 'unseen majority'. We must learn not just how microorganisms affect climate change (including production and consumption of greenhouse gases) but also how they will be affected by climate change and other human activities. This Consensus Statement documents the central role and global importance of microorganisms in climate change biology. It also puts humanity on notice that the impact of climate change will depend heavily on responses of microorganisms, which are essential for achieving an environmentally sustainable future.
Collapse
Affiliation(s)
- Ricardo Cavicchioli
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia.
| | - William J Ripple
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, USA
| | - Kenneth N Timmis
- Institute of Microbiology, Technical University Braunschweig, Braunschweig, Germany
| | - Farooq Azam
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Lars R Bakken
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Matthew Baylis
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Michael J Behrenfeld
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Antje Boetius
- Alfred Wegener Institute, Helmholtz Center for Marine and Polar Research, Bremerhaven, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Philip W Boyd
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - Aimée T Classen
- Rubenstein School of Environment and Natural Resources, and The Gund Institute for Environment, University of Vermont, Burlington, VT, USA
| | | | - Roberto Danovaro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
- Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Christine M Foreman
- Center for Biofilm Engineering, and Chemical and Biological Engineering Department, Montana State University, Bozeman, MT, USA
| | - Jef Huisman
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - David A Hutchins
- Department of Biological Sciences, Marine and Environmental Biology Section, University of Southern California, Los Angeles, CA, USA
| | - Janet K Jansson
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - David M Karl
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, School of Ocean and Earth Science & Technology, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Britt Koskella
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | | | - Jennifer B H Martiny
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, USA
| | - Mary Ann Moran
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | - Victoria J Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - David S Reay
- School of Geosciences, University of Edinburgh, Edinburgh, UK
| | - Justin V Remais
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Virginia I Rich
- Microbiology Department, and the Byrd Polar and Climate Research Center, The Ohio State University, Columbus, OH, USA
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, and Global Centre for Land-Based Innovation, Western Sydney University, Penrith, NSW, Australia
| | - Lisa Y Stein
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Frank J Stewart
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Matthew B Sullivan
- Department of Microbiology, and Department of Civil, Environmental and Geodetic Engineering, and the Byrd Polar and Climate Research Center, The Ohio State University, Columbus, OH, USA
| | - Madeleine J H van Oppen
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Scott C Weaver
- Department of Microbiology and Immunology, and Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Eric A Webb
- Department of Biological Sciences, Marine and Environmental Biology Section, University of Southern California, Los Angeles, CA, USA
| | - Nicole S Webster
- Australian Institute of Marine Science, Townsville, QLD, Australia
- Australian Centre for Ecogenomics, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
250
|
Genomic and Seasonal Variations among Aquatic Phages Infecting the Baltic Sea Gammaproteobacterium Rheinheimera sp. Strain BAL341. Appl Environ Microbiol 2019; 85:AEM.01003-19. [PMID: 31324626 PMCID: PMC6715854 DOI: 10.1128/aem.01003-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/10/2019] [Indexed: 12/25/2022] Open
Abstract
Phages are important in aquatic ecosystems as they influence their microbial hosts through lysis, gene transfer, transcriptional regulation, and expression of phage metabolic genes. Still, there is limited knowledge of how phages interact with their hosts, especially at fine scales. Here, a Rheinheimera phage-host system constituting highly similar phages infecting one host strain is presented. This relatively limited diversity has previously been seen only when smaller numbers of phages have been isolated and points toward ecological constraints affecting the Rheinheimera phage diversity. The variation of metabolic genes among the species points toward various fitness advantages, opening up possibilities for future hypothesis testing. Phage-host dynamics monitored over several years point toward recurring “kill-the-winner” oscillations and an ecological niche fulfilled by this system in the Baltic Sea. Identifying and quantifying ecological dynamics of such phage-host model systems in situ allow us to understand and study the influence of phages on aquatic ecosystems. Knowledge in aquatic virology has been greatly improved by culture-independent methods, yet there is still a critical need for isolating novel phages to identify the large proportion of “unknowns” that dominate metagenomes and for detailed analyses of phage-host interactions. Here, 54 phages infecting Rheinheimera sp. strain BAL341 (Gammaproteobacteria) were isolated from Baltic Sea seawater and characterized through genome content analysis and comparative genomics. The phages showed a myovirus-like morphology and belonged to a novel genus, for which we propose the name Barbavirus. All phages had similar genome sizes and numbers of genes (80 to 84 kb; 134 to 145 genes), and based on average nucleotide identity and genome BLAST distance phylogeny, the phages were divided into five species. The phages possessed several genes involved in metabolic processes and host signaling, such as genes encoding ribonucleotide reductase and thymidylate synthase, phoH, and mazG. One species had additional metabolic genes involved in pyridine nucleotide salvage, possibly providing a fitness advantage by further increasing the phages’ replication efficiency. Recruitment of viral metagenomic reads (25 Baltic Sea viral metagenomes from 2012 to 2015) to the phage genomes showed pronounced seasonal variations, with increased relative abundances of barba phages in August and September synchronized with peaks in host abundances, as shown by 16S rRNA gene amplicon sequencing. Overall, this study provides detailed information regarding genetic diversity, phage-host interactions, and temporal dynamics of an ecologically important aquatic phage-host system. IMPORTANCE Phages are important in aquatic ecosystems as they influence their microbial hosts through lysis, gene transfer, transcriptional regulation, and expression of phage metabolic genes. Still, there is limited knowledge of how phages interact with their hosts, especially at fine scales. Here, a Rheinheimera phage-host system constituting highly similar phages infecting one host strain is presented. This relatively limited diversity has previously been seen only when smaller numbers of phages have been isolated and points toward ecological constraints affecting the Rheinheimera phage diversity. The variation of metabolic genes among the species points toward various fitness advantages, opening up possibilities for future hypothesis testing. Phage-host dynamics monitored over several years point toward recurring “kill-the-winner” oscillations and an ecological niche fulfilled by this system in the Baltic Sea. Identifying and quantifying ecological dynamics of such phage-host model systems in situ allow us to understand and study the influence of phages on aquatic ecosystems.
Collapse
|