201
|
Bai S, Liu J, Chang C, Zhang L, Maekawa T, Wang Q, Xiao W, Liu Y, Chai J, Takken FLW, Schulze-Lefert P, Shen QH. Structure-function analysis of barley NLR immune receptor MLA10 reveals its cell compartment specific activity in cell death and disease resistance. PLoS Pathog 2012; 8:e1002752. [PMID: 22685408 PMCID: PMC3369952 DOI: 10.1371/journal.ppat.1002752] [Citation(s) in RCA: 199] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 04/30/2012] [Indexed: 11/18/2022] Open
Abstract
Plant intracellular immune receptors comprise a large number of multi-domain proteins resembling animal NOD-like receptors (NLRs). Plant NLRs typically recognize isolate-specific pathogen-derived effectors, encoded by avirulence (AVR) genes, and trigger defense responses often associated with localized host cell death. The barley MLA gene is polymorphic in nature and encodes NLRs of the coiled-coil (CC)-NB-LRR type that each detects a cognate isolate-specific effector of the barley powdery mildew fungus. We report the systematic analyses of MLA10 activity in disease resistance and cell death signaling in barley and Nicotiana benthamiana. MLA10 CC domain-triggered cell death is regulated by highly conserved motifs in the CC and the NB-ARC domains and by the C-terminal LRR of the receptor. Enforced MLA10 subcellular localization, by tagging with a nuclear localization sequence (NLS) or a nuclear export sequence (NES), shows that MLA10 activity in cell death signaling is suppressed in the nucleus but enhanced in the cytoplasm. By contrast, nuclear localized MLA10 is sufficient to mediate disease resistance against powdery mildew fungus. MLA10 retention in the cytoplasm was achieved through attachment of a glucocorticoid receptor hormone-binding domain (GR), by which we reinforced the role of cytoplasmic MLA10 in cell death signaling. Together with our data showing an essential and sufficient nuclear MLA10 activity in disease resistance, this suggests a bifurcation of MLA10-triggered cell death and disease resistance signaling in a compartment-dependent manner.
Collapse
Affiliation(s)
- Shiwei Bai
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Jie Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Cheng Chang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Ling Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Takaki Maekawa
- Department of Plant Microbe Interactions, Max-Planck Institut Pflanzenzüchtungsforschung, Cologne, Germany
| | - Qiuyun Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Wenkai Xiao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yule Liu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Jijie Chai
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Frank L. W. Takken
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Centre for BioSystem Genomics, Wageningen, The Netherlands
| | - Paul Schulze-Lefert
- Department of Plant Microbe Interactions, Max-Planck Institut Pflanzenzüchtungsforschung, Cologne, Germany
| | - Qian-Hua Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
202
|
Xue JY, Wang Y, Wu P, Wang Q, Yang LT, Pan XH, Wang B, Chen JQ. A primary survey on bryophyte species reveals two novel classes of nucleotide-binding site (NBS) genes. PLoS One 2012; 7:e36700. [PMID: 22615795 PMCID: PMC3352924 DOI: 10.1371/journal.pone.0036700] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Accepted: 04/05/2012] [Indexed: 11/18/2022] Open
Abstract
Due to their potential roles in pathogen defense, genes encoding nucleotide-binding site (NBS) domain have been particularly surveyed in many angiosperm genomes. Two typical classes were found: one is the TIR-NBS-LRR (TNL) class and the other is the CC-NBS-LRR (CNL) class. It is seldom known, however, what kind of NBS-encoding genes are mainly present in other plant groups, especially the most ancient groups of land plants, that is, bryophytes. To fill this gap of knowledge, in this study, we mainly focused on two bryophyte species: the moss Physcomitrella patens and the liverwort Marchantia polymorpha, to survey their NBS-encoding genes. Surprisingly, two novel classes of NBS-encoding genes were discovered. The first novel class is identified from the P. patens genome and a typical member of this class has a protein kinase (PK) domain at the N-terminus and a LRR domain at the C-terminus, forming a complete structure of PK-NBS-LRR (PNL), reminiscent of TNL and CNL classes in angiosperms. The second class is found from the liverwort genome and a typical member of this class possesses an α/β-hydrolase domain at the N-terminus and also a LRR domain at the C-terminus (Hydrolase-NBS-LRR, HNL). Analysis on intron positions and phases also confirmed the novelty of HNL and PNL classes, as reflected by their specific intron locations or phase characteristics. Phylogenetic analysis covering all four classes of NBS-encoding genes revealed a closer relationship among the HNL, PNL and TNL classes, suggesting the CNL class having a more divergent status from the others. The presence of specific introns highlights the chimerical structures of HNL, PNL and TNL genes, and implies their possible origin via exon-shuffling during the quick lineage separation processes of early land plants.
Collapse
Affiliation(s)
- Jia-Yu Xue
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu Province, China
| | - Yue Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu Province, China
| | - Ping Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu Province, China
| | - Qiang Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu Province, China
| | - Le-Tian Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu Province, China
| | - Xiao-Han Pan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu Province, China
| | - Bin Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu Province, China
| | - Jian-Qun Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu Province, China
| |
Collapse
|
203
|
Weßling R, Schmidt SM, Micali CO, Knaust F, Reinhardt R, Neumann U, Ver Loren van Themaat E, Panstruga R. Transcriptome analysis of enriched Golovinomyces orontii haustoria by deep 454 pyrosequencing. Fungal Genet Biol 2012; 49:470-82. [PMID: 22521876 DOI: 10.1016/j.fgb.2012.04.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 03/30/2012] [Accepted: 04/03/2012] [Indexed: 12/24/2022]
Abstract
Powdery mildews are phytopathogenic ascomycetes that have an obligate biotrophic lifestyle and establish intimate relationships with their plant hosts. A crucial aspect of this plant-fungus interaction is the formation of specialized fungal infection structures termed haustoria. Although located within the cell boundaries of plant epidermal cells, haustoria remain separated from the plant cytoplasm by a host plasma membrane derivative, the extrahaustorial membrane. Haustoria are thought to represent pivotal sites of nutrient uptake and effector protein delivery. We enriched haustorial complexes from Arabidopsis thaliana plants infected with the powdery mildew fungus Golovinomyces orontii and performed in-depth transcriptome analysis by 454-based pyrosequencing of haustorial cDNAs. We assembled 7077 expressed sequence tag (EST) contigs with greater than 5-fold average coverage and analyzed these with regard to the respective predicted protein functions. We found that transcripts coding for gene products with roles in protein turnover, detoxification of reactive oxygen species and fungal pathogenesis are abundant in the haustorial EST contigs, while surprisingly transcripts encoding presumptive nutrient transporters were not highly represented in the haustorial cDNA library. A substantial proportion (∼38%) of transcripts coding for predicted secreted proteins comprises effector candidates. Our data provide valuable insights into the transcriptome of the key infection structure of a model obligate biotrophic phytopathogen.
Collapse
Affiliation(s)
- Ralf Weßling
- Max-Planck-Institute for Plant Breeding Research, Department of Plant-Microbe Interactions, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | | | | | | | | | | | | | | |
Collapse
|
204
|
Berkey R, Bendigeri D, Xiao S. Sphingolipids and plant defense/disease: the "death" connection and beyond. FRONTIERS IN PLANT SCIENCE 2012; 3:68. [PMID: 22639658 PMCID: PMC3355615 DOI: 10.3389/fpls.2012.00068] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 03/22/2012] [Indexed: 05/19/2023]
Abstract
Sphingolipids comprise a major class of structural materials and lipid signaling molecules in all eukaryotic cells. Over the past two decades, there has been a phenomenal growth in the study of sphingolipids (i.e., sphingobiology) at an average rate of ∼1000 research articles per year. Sphingolipid studies in plants, though accounting for only a small fraction (∼6%) of the total number of publications, have also enjoyed proportionally rapid growth in the past decade. Concomitant with the growth of sphingobiology, there has also been tremendous progress in our understanding of the molecular mechanisms of plant innate immunity. In this review, we (i) cross examine and analyze the major findings that establish and strengthen the intimate connections between sphingolipid metabolism and plant programmed cell death (PCD) associated with plant defense or disease; (ii) highlight and compare key bioactive sphingolipids involved in the regulation of plant PCD and possibly defense; (iii) discuss the potential role of sphingolipids in polarized membrane/protein trafficking and formation of lipid rafts as subdomains of cell membranes in relation to plant defense; and (iv) where possible, attempt to identify potential parallels for immunity-related mechanisms involving sphingolipids across kingdoms.
Collapse
Affiliation(s)
- Robert Berkey
- Institute for Bioscience and Biotechnology Research, University of MarylandRockville, MD, USA
- Department of Plant Sciences and Landscape Architecture, University of MarylandCollege Park, MD, USA
| | - Dipti Bendigeri
- Institute for Bioscience and Biotechnology Research, University of MarylandRockville, MD, USA
- Department of Plant Sciences and Landscape Architecture, University of MarylandCollege Park, MD, USA
| | - Shunyuan Xiao
- Institute for Bioscience and Biotechnology Research, University of MarylandRockville, MD, USA
- Department of Plant Sciences and Landscape Architecture, University of MarylandCollege Park, MD, USA
| |
Collapse
|
205
|
Pan H, Liu S, Tang D. HPR1, a component of the THO/TREX complex, plays an important role in disease resistance and senescence in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:831-843. [PMID: 22035198 DOI: 10.1111/j.1365-313x.2011.04835.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
ENHANCED DISEASE RESISTANCE 1 (EDR1) is a negative regulator of powdery mildew resistance, cell death and ethylene-induced senescence. To identify components involved in EDR1 signaling, we performed a forward genetic screen for edr1 suppressors. In this screen, we identified the hpr1-4 mutation, which partially suppresses edr1-mediated resistance to the powdery mildew pathogen Golovinomyces cichoracearum and mildew-induced cell death. However, the hpr1-4 mutation enhanced the ethylene-induced senescence phenotype of edr1. The hpr1-4 single mutant displayed enhanced susceptibility to the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 and the oomycete pathogen Hyaloperonospora arabidopsidis Noco2. Arabidopsis HPR1 encodes a homolog of human HPR1, a component of the conserved THO/transcription export (THO/TREX) complex that is required for mRNA export in yeast and humans. HPR1 is expressed in various organs and throughout all developmental stages. HPR1 localizes to the nucleus, and, significantly, mRNA export is compromised in the hpr1-4 mutant. Taken together, these data demonstrate that HPR1 plays an important role in disease resistance in plants, and that the THO/TREX complex is functionally conserved among plants, yeast and humans. Our data indicate a general link between mRNA export, defense responses and ethylene signaling in plants.
Collapse
Affiliation(s)
- Huairong Pan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | | | | |
Collapse
|
206
|
Jorgensen TH. The effect of environmental heterogeneity on RPW8-mediated resistance to powdery mildews in Arabidopsis thaliana. ANNALS OF BOTANY 2012; 109:833-42. [PMID: 22234559 PMCID: PMC3286285 DOI: 10.1093/aob/mcr320] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 11/25/2011] [Indexed: 05/28/2023]
Abstract
BACKGROUND AND AIMS The biotic and abiotic environment of interacting hosts and parasites may vary considerably over small spatial and temporal scales. It is essential to understand how different environments affect host disease resistance because this determines frequency of disease and, importantly, heterogeneous environments can retard direct selection and potentially maintain genetic variation for resistance in natural populations. METHODS The effect of different temperatures and soil nutrient conditions on the outcome of infection by a pathogen was quantified in Arabidopsis thaliana. Expression levels of a gene conferring resistance to powdery mildews, RPW8, were compared with levels of disease to test a possible mechanism behind variation in resistance. KEY RESULTS Most host genotypes changed from susceptible to resistant across environments with the ranking of genotypes differing between treatments. Transcription levels of RPW8 increased after infection and varied between environments, but there was no tight association between transcription and resistance levels. CONCLUSIONS There is a strong potential for a heterogeneous environment to change the resistance capacity of A. thaliana genotypes and hence the direction and magnitude of selection in the presence of the pathogen. Possible causative links between resistance gene expression and disease resistance are discussed in light of the present results on RPW8.
Collapse
Affiliation(s)
- Tove H Jorgensen
- School of Biological Sciences, University of East Anglia, Norwich Research Park, UK.
| |
Collapse
|
207
|
Hückelhoven R, Panstruga R. Cell biology of the plant-powdery mildew interaction. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:738-46. [PMID: 21924669 DOI: 10.1016/j.pbi.2011.08.002] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 08/09/2011] [Accepted: 08/17/2011] [Indexed: 05/08/2023]
Abstract
Powdery mildew fungi represent a paradigm for obligate biotrophic parasites, which only propagate in long-lasting intimate interactions with living host cells. These highly specialized phytopathogens induce re-organization of host cell architecture and physiology for their own demands. This probably includes the corruption of basal host cellular functions for successful fungal pathogenesis. Recent studies revealed secretory processes by both interaction partners as key incidents of the combat at the plant-fungus interface. The analysis of cellular events during plant-powdery mildew interactions may not only lead to a better understanding of plant pathological features, but may also foster novel discoveries in the area of plant cell biology.
Collapse
Affiliation(s)
- Ralph Hückelhoven
- Lehrstuhl für Phytopathologie, Technische Universität München, Emil-Ramann-Straße 2, 85350 Freising-Weihenstephan, Germany
| | | |
Collapse
|
208
|
Collier SM, Hamel LP, Moffett P. Cell death mediated by the N-terminal domains of a unique and highly conserved class of NB-LRR protein. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:918-31. [PMID: 21501087 DOI: 10.1094/mpmi-03-11-0050] [Citation(s) in RCA: 243] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Plant genomes encode large numbers of nucleotide-binding, leucine-rich repeat (NB-LRR) proteins, many of which are active in pathogen detection and defense response induction. NB-LRR proteins fall into two broad classes: those with a Toll and interleukin-1 receptor (TIR) domain at their N-terminus and those with a coiled-coil (CC) domain at the N-terminus. Within CC-NB-LRR-encoding genes, one basal clade is distinguished by having CC domains resembling the Arabidopsis thaliana RPW8 protein, which we refer to as CCR domains. Here, we show that CCR-NB-LRR-encoding genes are present in the genomes of all higher plants surveyed, and that they comprise two distinct subgroups: one typified by the Nicotiana benthamiana N-required gene 1 (NRG1) protein and the other typified by the Arabidopsis activated disease resistance gene 1 (ADR1) protein. We further report that, in contrast to CC-NB-LRR proteins, the CCR domains of both NRG1- and ADR1-like proteins are sufficient for the induction of defense responses, and that this activity appears to be SGT1-independent. Additionally, we report the apparent absence of both NRG1 homologs and TIR-NB-LRR-encoding genes from the dicot Aquilegia coerulea and the dicotyledonous order Lamiales as well as from monocotyledonous species. This strong correlation in occurrence is suggestive of a functional relationship between these two classes of NB-LRR proteins.
Collapse
Affiliation(s)
- Sarah M Collier
- Boyce Thompson Institute for Plant Research, Department of Plant Breeding & Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
209
|
Staal J, Dixelius C. RLM3, a potential adaptor between specific TIR-NB-LRR receptors and DZC proteins. Commun Integr Biol 2011; 1:59-61. [PMID: 19513199 DOI: 10.4161/cib.1.1.6394] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Accepted: 06/05/2008] [Indexed: 11/19/2022] Open
Abstract
In our recent paper, we identified a TIR encoding gene, which is required for resistance against a broad range of necrotrophic fungi. Here we present this finding in a broader perspective and discuss the unique features of this gene which might explain its role as a general regulator of resistance responses against a class of pathogens that have previously not been associated to the classical resistance (R) gene type of defense.
Collapse
Affiliation(s)
- Jens Staal
- Department of Molecular Biomedical Research; Unit for Molecular Signal Transduction in Inflammation; VIB; Ghent, Belgium
| | | |
Collapse
|
210
|
Rietz S, Stamm A, Malonek S, Wagner S, Becker D, Medina-Escobar N, Corina Vlot A, Feys BJ, Niefind K, Parker JE. Different roles of Enhanced Disease Susceptibility1 (EDS1) bound to and dissociated from Phytoalexin Deficient4 (PAD4) in Arabidopsis immunity. THE NEW PHYTOLOGIST 2011; 191:107-119. [PMID: 21434927 DOI: 10.1111/j.1469-8137.2011.03675.x] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
• Enhanced Disease Susceptibility1 (EDS1) is an important regulator of plant basal and receptor-triggered immunity. Arabidopsis EDS1 interacts with two related proteins, Phytoalexin Deficient4 (PAD4) and Senescence Associated Gene101 (SAG101), whose combined activities are essential for defense signaling. The different sizes and intracellular distributions of EDS1-PAD4 and EDS1-SAG101 complexes in Arabidopsis leaf tissues suggest that they perform nonredundant functions. • The nature and biological relevance of EDS1 interactions with PAD4 and SAG101 were explored using yeast three-hybrid assays, in vitro analysis of recombinant proteins purified from Escherichia coli, and characterization of Arabidopsis transgenic plants expressing an eds1 mutant (eds1(L262P) ) protein which no longer binds PAD4 but retains interaction with SAG101. • EDS1 forms molecularly distinct complexes with PAD4 or SAG101 without additional plant factors. Loss of interaction with EDS1 reduces PAD4 post-transcriptional accumulation, consistent with the EDS1 physical association stabilizing PAD4. The dissociated forms of EDS1 and PAD4 are fully competent in signaling receptor-triggered localized cell death at infection foci. By contrast, an EDS1-PAD4 complex is necessary for basal resistance involving transcriptional up-regulation of PAD4 itself and mobilization of salicylic acid defenses. • Different EDS1 and PAD4 molecular configurations have distinct and separable functions in the plant innate immune response.
Collapse
Affiliation(s)
- Steffen Rietz
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl von Linné Weg 10, 50829 Köln, Germany
| | - Anika Stamm
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl von Linné Weg 10, 50829 Köln, Germany
| | - Stefan Malonek
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl von Linné Weg 10, 50829 Köln, Germany
| | - Stephan Wagner
- University of Cologne, Institute of Biochemistry, Zülpicher Strasse 47, 50674 Köln, Germany
| | - Dieter Becker
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl von Linné Weg 10, 50829 Köln, Germany
| | - Nieves Medina-Escobar
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl von Linné Weg 10, 50829 Köln, Germany
| | - A Corina Vlot
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl von Linné Weg 10, 50829 Köln, Germany
| | - Bart J Feys
- Imperial College London, Department of Biological Sciences, South Kensington Campus, London SW7 2AZ, UK
| | - Karsten Niefind
- University of Cologne, Institute of Biochemistry, Zülpicher Strasse 47, 50674 Köln, Germany
| | - Jane E Parker
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl von Linné Weg 10, 50829 Köln, Germany
| |
Collapse
|
211
|
Nie H, Wu Y, Yao C, Tang D. Suppression of edr2-mediated powdery mildew resistance, cell death and ethylene-induced senescence by mutations in ALD1 in Arabidopsis. J Genet Genomics 2011; 38:137-48. [DOI: 10.1016/j.jgg.2011.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 03/02/2011] [Accepted: 03/03/2011] [Indexed: 10/18/2022]
|
212
|
Wen Y, Wang W, Feng J, Luo MC, Tsuda K, Katagiri F, Bauchan G, Xiao S. Identification and utilization of a sow thistle powdery mildew as a poorly adapted pathogen to dissect post-invasion non-host resistance mechanisms in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:2117-29. [PMID: 21193574 PMCID: PMC3060691 DOI: 10.1093/jxb/erq406] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 11/16/2010] [Accepted: 11/18/2010] [Indexed: 05/19/2023]
Abstract
To better dissect non-host resistance against haustorium-forming powdery mildew pathogens, a sow thistle powdery mildew isolate designated Golovinomyces cichoracearum UMSG1 that has largely overcome penetration resistance but is invariably stopped by post-invasion non-host resistance of Arabidopsis thaliana was identified. The post-invasion non-host resistance is mainly manifested as the formation of a callosic encasement of the haustorial complex (EHC) and hypersensitive response (HR), which appears to be controlled by both salicylic acid (SA)-dependent and SA-independent defence pathways, as supported by the susceptibility of the pad4/sid2 double mutant to the pathogen. While the broad-spectrum resistance protein RPW8.2 enhances post-penetration resistance against G. cichoracearum UCSC1, a well-adapted powdery mildew pathogen, RPW8.2, is dispensable for post-penetration resistance against G. cichoracearum UMSG1, and its specific targeting to the extrahaustorial membrane is physically blocked by the EHC, resulting in HR cell death. Taken together, the present work suggests an evolutionary scenario for the Arabidopsis-powdery mildew interaction: EHC formation is a conserved subcellular defence evolved in plants against haustorial invasion; well-adapted powdery mildew has evolved the ability to suppress EHC formation for parasitic growth and reproduction; RPW8.2 has evolved to enhance EHC formation, thereby conferring haustorium-targeted, broad-spectrum resistance at the post-invasion stage.
Collapse
Affiliation(s)
- Yingqiang Wen
- College of Horticulture and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- Institute for Bioscience and Biotechnology Research, University of Maryland, Shady Grove, Maryland, USA
| | - Wenming Wang
- Institute for Bioscience and Biotechnology Research, University of Maryland, Shady Grove, Maryland, USA
- Department of Plant Sciences and Landscape Architecture, University of Maryland, College Park, Maryland, USA
| | - Jiayue Feng
- College of Horticulture and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- Institute for Bioscience and Biotechnology Research, University of Maryland, Shady Grove, Maryland, USA
| | - Ming-Cheng Luo
- Department of Plant Sciences, University of California, Davis, California, USA
| | - Kenichi Tsuda
- Department of Plant Biology, University of Minnesota, St Paul, Minnesota, USA
| | - Fumiaki Katagiri
- Department of Plant Biology, University of Minnesota, St Paul, Minnesota, USA
| | - Gary Bauchan
- Electron and Confocal Microscopy Unit, USDA-ARS, Beltsville, Maryland, USA
| | - Shunyuan Xiao
- Institute for Bioscience and Biotechnology Research, University of Maryland, Shady Grove, Maryland, USA
- Department of Plant Sciences and Landscape Architecture, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
213
|
Zheng HQ, Zhang Q, Li HX, Lin SZ, An XM, Zhang ZY. Over-expression of the triploid white poplar PtDrl01 gene in tobacco enhances resistance to tobacco mosaic virus. PLANT BIOLOGY (STUTTGART, GERMANY) 2011; 13:145-53. [PMID: 21143735 DOI: 10.1111/j.1438-8677.2010.00327.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A full-length cDNA, designated as the Populus tomentosa disease resistance-like 01 (PtDrl01) gene, was isolated from triploid white poplar [(Populus tomentosa × P. bolleana) × P. tomentosa]. The protein thought to be produced by the PtDrl01 gene contains a nuclear localisation sequence (NLS), a toll/interleukin-1 receptor (TIR) homologue region, a nucleotide binding site (NBS) and a leucine-rich repeat (LRR) domain. The protein also exhibits a considerable degree of homology to N-like resistance proteins. Real-time quantitative RT-PCR analysis revealed that expression of the PtDrl01 gene in triploid white poplar leaves could be induced by two defence signalling molecules: methyl jasmonate (MeJA) and salicylic acid (SA). Over-expression of the PtDrl01 gene in transgenic tobacco induced enhanced resistance to tobacco mosaic virus (TMV). Long-term resistance from the PtDrl01 gene to TMV infection was also observed in transgenic tobacco plants. Additionally, over-expression of the PtDrl01 gene resulted in transcriptional changes in genes expressing pathogenesis-related proteins in transgenic tobacco under non-stress conditions. These data strongly suggest that the PtDrl01 gene is involved in plant defence responses to pathogen infection.
Collapse
Affiliation(s)
- H-Q Zheng
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding of Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
| | | | | | | | | | | |
Collapse
|
214
|
Laine AL, Burdon JJ, Dodds PN, Thrall PH. Spatial variation in disease resistance: from molecules to metapopulations. THE JOURNAL OF ECOLOGY 2011; 99:96-112. [PMID: 21243068 PMCID: PMC3020101 DOI: 10.1111/j.1365-2745.2010.01738.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Variation in disease resistance is a widespread phenomenon in wild plant-pathogen associations. Here, we review current literature on natural plant-pathogen associations to determine how diversity in disease resistance is distributed at different hierarchical levels - within host individuals, within host populations, among host populations at the metapopulation scale and at larger regional scales.We find diversity in resistance across all spatial scales examined. Furthermore, variability seems to be the best counter-defence of plants against their rapidly evolving pathogens. We find that higher diversity of resistance phenotypes also results in higher levels of resistance at the population level.Overall, we find that wild plant populations are more likely to be susceptible than resistant to their pathogens. However, the degree of resistance differs strikingly depending on the origin of the pathogen strains used in experimental inoculation studies. Plant populations are on average 16% more resistant to allopatric pathogen strains than they are to strains that occur within the same population (48 % vs. 32 % respectively).Pathogen dispersal mode affects levels of resistance in natural plant populations with lowest levels detected for hosts of airborne pathogens and highest for waterborne pathogens.Detailed analysis of two model systems, Linum marginale infected by Melampsora lini, and Plantago lanceolata infected by Podosphaera plantaginis, show that the amount of variation in disease resistance declines towards higher spatial scales as we move from individual hosts to metapopulations, but evaluation of multiple spatial scales is needed to fully capture the structure of disease resistance.Synthesis: Variation in disease resistance is ubiquitous in wild plant-pathogen associations. While the debate over whether the resistance structure of plant populations is determined by pathogen-imposed selection versus non-adaptive processes remains unresolved, we do report examples of pathogen-imposed selection on host resistance. Here we highlight the importance of measuring resistance across multiple spatial scales, and of using sympatric strains when looking for signs of coevolution in wild plant-pathogen interactions.
Collapse
Affiliation(s)
- Anna-Liisa Laine
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia
- Metapopulation Research Group, Department of Biosciences, PO Box 65, FI-00014, University of Helsinki, Finland
| | - Jeremy J. Burdon
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia
| | - Peter N. Dodds
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia
| | - Peter H. Thrall
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia
| |
Collapse
|
215
|
Laluk K, Mengiste T. Necrotroph attacks on plants: wanton destruction or covert extortion? THE ARABIDOPSIS BOOK 2010; 8:e0136. [PMID: 22303261 PMCID: PMC3244965 DOI: 10.1199/tab.0136] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Necrotrophic pathogens cause major pre- and post-harvest diseases in numerous agronomic and horticultural crops inflicting significant economic losses. In contrast to biotrophs, obligate plant parasites that infect and feed on living cells, necrotrophs promote the destruction of host cells to feed on their contents. This difference underpins the divergent pathogenesis strategies and plant immune responses to biotrophic and necrotrophic infections. This chapter focuses on Arabidopsis immunity to necrotrophic pathogens. The strategies of infection, virulence and suppression of host defenses recruited by necrotrophs and the variation in host resistance mechanisms are highlighted. The multiplicity of intraspecific virulence factors and species diversity in necrotrophic organisms corresponds to variations in host resistance strategies. Resistance to host-specific necrotophs is monogenic whereas defense against broad host necrotrophs is complex, requiring the involvement of many genes and pathways for full resistance. Mechanisms and components of immunity such as the role of plant hormones, secondary metabolites, and pathogenesis proteins are presented. We will discuss the current state of knowledge of Arabidopsis immune responses to necrotrophic pathogens, the interactions of these responses with other defense pathways, and contemplate on the directions of future research.
Collapse
Affiliation(s)
- Kristin Laluk
- Purdue University, Department of Botany and Plant Pathology, 915 W. State Street, West Lafayette, IN 47907
- Address correspondence to
and
| | - Tesfaye Mengiste
- Purdue University, Department of Botany and Plant Pathology, 915 W. State Street, West Lafayette, IN 47907
- Address correspondence to
and
| |
Collapse
|
216
|
Wang W, Berkey R, Wen Y, Xiao S. Accurate and adequate spatiotemporal expression and localization of RPW8.2 is key to activation of resistance at the host-pathogen interface. PLANT SIGNALING & BEHAVIOR 2010; 5:1002-5. [PMID: 20864817 PMCID: PMC3115180 DOI: 10.4161/psb.5.8.12230] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Numerous fungal and oomycete pathogens penetrate the plant cell wall and extract nutrition from the host cells by a feeding structure called the haustorium. We recently revealed that the Arabidopsis resistance protein RPW8.2 is specifically targeted to the extrahaustorial membrane (EHM) for activation of haustorium-targeted resistance to powdery mildew pathogens. Consistent with its EHM-localization, RPW8.2 contains a putative transmembrane (TM) domain at its N-terminus. Here, we show that translational fusion of YFP to the N-terminus of RPW8.2 results in localization of YFP-RPW8.2 to both the plasma membrane and the EHM, and loss of RPW8.2's defense function. We also show that deletion of the TM domain results in mis-localization of the RPW8.2-YFP fusion protein and extremely low levels of accumulation. These results indicate that an intact N-terminal TM domain is necessary for EHM-specific localization and defense function of RPW8.2. In addition, we show that when expressed from the strong constitutive 35S viral promoter, RPW8.2 accumulates at low levels in the EHM insufficient to activate resistance, highlighting the importance of stronger spatiotemporal expression of RPW8.2 from its native promoter. Taken together, our results indicate that accurate and adequate spatiotemporal expression and localization of RPW8.2 is key to activation of resistance at the host-pathogen interface.
Collapse
Affiliation(s)
- Wenming Wang
- Institute for Bioscience and Biotechnology Research; University of Maryland; Shady Grove, MD USA
| | - Robert Berkey
- Institute for Bioscience and Biotechnology Research; University of Maryland; Shady Grove, MD USA
| | - Yingqiang Wen
- Institute for Bioscience and Biotechnology Research; University of Maryland; Shady Grove, MD USA
| | - Shunyuan Xiao
- Institute for Bioscience and Biotechnology Research; University of Maryland; Shady Grove, MD USA
- Department of Plant Sciences and Landscape Architecture; University of Maryland; College Park, MD USA
| |
Collapse
|
217
|
Shi X, Wang J, Bao Y, Li P, Xie L, Huang J, Zhang H. Identification of the quantitative trait loci in japonica rice landrace Heikezijing responsible for broad-spectrum resistance to rice blast. PHYTOPATHOLOGY 2010; 100:822-9. [PMID: 20626286 DOI: 10.1094/phyto-100-8-0822] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Rice blast is one of the most devastating diseases affecting rice production worldwide. One japonica landrace, Heikezijing, from the Taihu Lake area in China, has been reported to be highly resistant to most of the rice blast isolates collected from China and Japan. To effectively dissect the inheritance of its resistance, a population of recombinant inbred lines (RILs) (F(2:8)) was constructed from a cross between Heikezijing and Suyunuo, a blast-susceptible cultivar. Nineteen blast isolates from China and Japan were inoculated into 166 RILs and their parents, and 22 quantitative trait loci (QTLs) conferring resistance to these isolates were identified and mapped onto rice chromosomes 1, 7, 9, 11, and 12. Most of the QTLs conferred race-specific resistance to blast. Some QTLs, such as qtl11-5-5, conferred resistance to two or more isolates. One blast-resistant gene cluster, including qtl11-2-2, qtl11-3-1, qtl11-4-1, qtl11-5-5, qtl11-6-1, qtl11-7-5, qtl11-8-2, qtl11-9-2, qtl11-10-4, and qtl11-11-1, was found on the long arm of chromosome 11 in the japonica landrace. These loci offered effective resistance toward as many as 17 isolates, including 16 isolates from seven Chinese race groups and 1 isolate from Japan. The results from this study suggest that the Heikezijing landrace involves a number of genes that are associated with broad-spectrum resistance to rice blast.
Collapse
Affiliation(s)
- Xiaoliang Shi
- National Key Laboratory of Crop Genetics & Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | |
Collapse
|
218
|
Jung S, Cho I, Sosinski B, Abbott A, Main D. Comparative genomic sequence analysis of strawberry and other rosids reveals significant microsynteny. BMC Res Notes 2010; 3:168. [PMID: 20565715 PMCID: PMC2893199 DOI: 10.1186/1756-0500-3-168] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 06/16/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fragaria belongs to the Rosaceae, an economically important family that includes a number of important fruit producing genera such as Malus and Prunus. Using genomic sequences from 50 Fragaria fosmids, we have examined the microsynteny between Fragaria and other plant models. RESULTS In more than half of the strawberry fosmids, we found syntenic regions that are conserved in Populus, Vitis, Medicago and/or Arabidopsis with Populus containing the greatest number of syntenic regions with Fragaria. The longest syntenic region was between LG VIII of the poplar genome and the strawberry fosmid 72E18, where seven out of twelve predicted genes were collinear. We also observed an unexpectedly high level of conserved synteny between Fragaria (rosid I) and Vitis (basal rosid). One of the strawberry fosmids, 34E24, contained a cluster of R gene analogs (RGAs) with NBS and LRR domains. We detected clusters of RGAs with high sequence similarity to those in 34E24 in all the genomes compared. In the phylogenetic tree we have generated, all the NBS-LRR genes grouped together with Arabidopsis CNL-A type NBS-LRR genes. The Fragaria RGA grouped together with those of Vitis and Populus in the phylogenetic tree. CONCLUSIONS Our analysis shows considerable microsynteny between Fragaria and other plant genomes such as Populus, Medicago, Vitis, and Arabidopsis to a lesser degree. We also detected a cluster of NBS-LRR type genes that are conserved in all the genomes compared.
Collapse
Affiliation(s)
- Sook Jung
- Department of Horticulture and Landscape Architecture, Washington State University, Pullman, WA 99164, USA.
| | | | | | | | | |
Collapse
|
219
|
Stergiopoulos I, van den Burg HA, Ökmen B, Beenen HG, van Liere S, Kema GHJ, de Wit PJGM. Tomato Cf resistance proteins mediate recognition of cognate homologous effectors from fungi pathogenic on dicots and monocots. Proc Natl Acad Sci U S A 2010; 107:7610-5. [PMID: 20368413 PMCID: PMC2867746 DOI: 10.1073/pnas.1002910107] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Most fungal effectors characterized so far are species-specific and facilitate virulence on a particular host plant. During infection of its host tomato, Cladosporium fulvum secretes effectors that function as virulence factors in the absence of cognate Cf resistance proteins and induce effector-triggered immunity in their presence. Here we show that homologs of the C. fulvum Avr4 and Ecp2 effectors are present in other pathogenic fungi of the Dothideomycete class, including Mycosphaerella fijiensis, the causal agent of black Sigatoka disease of banana. We demonstrate that the Avr4 homolog of M. fijiensis is a functional ortholog of C. fulvum Avr4 that protects fungal cell walls against hydrolysis by plant chitinases through binding to chitin and, despite the low overall sequence homology, triggers a Cf-4-mediated hypersensitive response (HR) in tomato. Furthermore, three homologs of C. fulvum Ecp2 are found in M. fijiensis, one of which induces different levels of necrosis or HR in tomato lines that lack or contain a putative cognate Cf-Ecp2 protein, respectively. In contrast to Avr4, which acts as a defensive virulence factor, M. fijiensis Ecp2 likely promotes virulence by interacting with a putative host target causing host cell necrosis, whereas Cf-Ecp2 could possibly guard the virulence target of Ecp2 and trigger a Cf-Ecp2-mediated HR. Overall our data suggest that Avr4 and Ecp2 represent core effectors that are collectively recognized by single cognate Cf-proteins. Transfer of these Cf genes to plant species that are attacked by fungi containing these cognate core effectors provides unique ways for breeding disease-resistant crops.
Collapse
Affiliation(s)
- Ioannis Stergiopoulos
- Laboratory of Phytopathology, Wageningen University and Research Centre, 6708 PB, Wageningen, The Netherlands
| | - Harrold A. van den Burg
- Laboratory of Phytopathology, Wageningen University and Research Centre, 6708 PB, Wageningen, The Netherlands
- Centre for BioSystems Genomics, 6700 AB, Wageningen, The Netherlands; and
| | - Bilal Ökmen
- Laboratory of Phytopathology, Wageningen University and Research Centre, 6708 PB, Wageningen, The Netherlands
| | - Henriek G. Beenen
- Laboratory of Phytopathology, Wageningen University and Research Centre, 6708 PB, Wageningen, The Netherlands
| | - Sabine van Liere
- Laboratory of Phytopathology, Wageningen University and Research Centre, 6708 PB, Wageningen, The Netherlands
| | - Gert H. J. Kema
- Plant Research International BV, 6700 AA, Wageningen, The Netherlands
| | - Pierre J. G. M. de Wit
- Laboratory of Phytopathology, Wageningen University and Research Centre, 6708 PB, Wageningen, The Netherlands
- Centre for BioSystems Genomics, 6700 AB, Wageningen, The Netherlands; and
| |
Collapse
|
220
|
Borhan MH, Holub EB, Kindrachuk C, Omidi M, Bozorgmanesh-Frad G, Rimmer SR. WRR4, a broad-spectrum TIR-NB-LRR gene from Arabidopsis thaliana that confers white rust resistance in transgenic oilseed Brassica crops. MOLECULAR PLANT PATHOLOGY 2010; 11:283-91. [PMID: 20447277 PMCID: PMC6640464 DOI: 10.1111/j.1364-3703.2009.00599.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
White blister rust caused by Albugo candida (Pers.) Kuntze is a common and often devastating disease of oilseed and vegetable brassica crops worldwide. Physiological races of the parasite have been described, including races 2, 7 and 9 from Brassica juncea, B. rapa and B. oleracea, respectively, and race 4 from Capsella bursa-pastoris (the type host). A gene named WRR4 has been characterized recently from polygenic resistance in the wild brassica relative Arabidopsis thaliana (accession Columbia) that confers broad-spectrum white rust resistance (WRR) to all four of the above Al. candida races. This gene encodes a TIR-NB-LRR (Toll-like/interleukin-1 receptor-nucleotide binding-leucine-rich repeat) protein which, as with other known functional members in this subclass of intracellular receptor-like proteins, requires the expression of the lipase-like defence regulator, enhanced disease susceptibility 1 (EDS1). Thus, we used RNA interference-mediated suppression of EDS1 in a white rust-resistant breeding line of B. napus (transformed with a construct designed from the A. thaliana EDS1 gene) to determine whether defence signalling via EDS1 is functionally intact in this oilseed brassica. The eds1-suppressed lines were fully susceptible following inoculation with either race 2 or 7 isolates of Al. candida. We then transformed white rust-susceptible cultivars of B. juncea (susceptible to race 2) and B. napus (susceptible to race 7) with the WRR4 gene from A. thaliana. The WRR4-transformed lines were resistant to the corresponding Al. candida race for each host species. The combined data indicate that WRR4 could potentially provide a novel source of white rust resistance in oilseed and vegetable brassica crops.
Collapse
Affiliation(s)
- Mohammad Hossein Borhan
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, SK, Canada, S7N 0X2.
| | | | | | | | | | | |
Collapse
|
221
|
Yang X, Wang W, Coleman M, Orgil U, Feng J, Ma X, Ferl R, Turner JG, Xiao S. Arabidopsis 14-3-3 lambda is a positive regulator of RPW8-mediated disease resistance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 60:539-50. [PMID: 19624472 DOI: 10.1111/j.1365-313x.2009.03978.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The RPW8 locus from Arabidopsis thaliana Ms-0 includes two functional paralogous genes (RPW8.1 and RPW8.2) and confers broad-spectrum resistance via the salicylic acid-dependent signaling pathway to the biotrophic fungal pathogens Golovinomyces spp. that cause powdery mildew diseases on multiple plant species. To identify proteins involved in regulation of the RPW8 protein function, a yeast two-hybrid screen was performed using RPW8.2 as bait. The 14-3-3 isoform lambda (designated GF14lambda) was identified as a potential RPW8.2 interactor. The RPW8.2-GF14lambda interaction was specific and engaged the C-terminal domain of RPW8.2, which was confirmed by pulldown assays. The physiological impact of the interaction was revealed by knocking down GF14lambda by T-DNA insertion, which compromised basal and RPW8-mediated resistance to powdery mildew. In addition, over-expression of GF14lambda resulted in hypersensitive response-like cell death and enhanced resistance to powdery mildew via the salicylic acid-dependent signaling pathway. The results from this study suggest that GF14lambda may positively regulate the RPW8.2 resistance function and play a role in enhancing basal resistance in Arabidopsis.
Collapse
Affiliation(s)
- Xiaohua Yang
- Center for Biosystems Research, University of Maryland Biotechnology Institute, Rockville, MD 20850, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
222
|
Jiang F, Zhao J, Zhou L, Guo W, Zhang T. Molecular mapping of Verticillium wilt resistance QTL clustered on chromosomes D7 and D9 in upland cotton. ACTA ACUST UNITED AC 2009; 52:872-84. [PMID: 19802747 DOI: 10.1007/s11427-009-0110-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2008] [Accepted: 03/10/2009] [Indexed: 11/24/2022]
Abstract
Verticillium wilt is a destructive disease with international consequences for cotton production. Breeding broad-spectrum resistant cultivars is considered to be one of the most effective means for reducing crop losses. A resistant cotton cultivar, 60182, was crossed with a susceptible cultivar, Junmian 1, to identify markers for Verticillium resistance genes and validate the mode of its inheritance. Genetic segregation analysis for Verticillium wilt resistance was evaluated based upon infected leaf percentage in the seedling stage using major gene-polygene mixed inheritance models and joint analysis of P(1), P(2), F(1), B(1), B(2) and F(2) populations obtained from the cultivar cross. We found that resistance of upland cotton cultivar 60182 to isolates BP2, VD8 and T9, and their isoconcentration mixture was controlled by two major genes with additive-dominance-epistatic effects, and the inheritance of the major gene was dominant. Furthermore, a genetic linkage map was constructed using F(2) segregating population and resistance phenotypic data were obtained using F(2:3) families inoculated with different isolates and detected in different developmental stages. The genetic linkage map with 139 loci was comprised of 31 linkage groups covering 1165 cM, with an average distance of 8.38 cM between two markers, or 25.89% of the cotton genome length. From 60182, we found 4 QTL on chromosome D7 and 4 QTL on D9 for BP2, 5 QTL on D7 and 9 QTL on D9 for VD8, 4 QTL on D7 and 5 QTL on D9 for T9 and 3 QTL on D7 and 7 QTL on D7 for mixed pathogens. The QTL mapping results revealed that QTL clusters with high contribution rates were screened simultaneously on chromosomes D9 and D7 by multiple interval mapping (CIM), whether from resistance phenotypic data from different developmental stages or for different isolates. The result is consistent with the genetic model of two major genes in 60182 and suggests broad-spectrum resistance to both defoliating isolates of V. dahliae and nondefoliating isolates. The markers associated with resistance QTL may facilitate the use of Verticillium wilt resistance genes in improving breeding programs for cotton.
Collapse
Affiliation(s)
- Feng Jiang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | |
Collapse
|
223
|
Collier SM, Moffett P. NB-LRRs work a "bait and switch" on pathogens. TRENDS IN PLANT SCIENCE 2009; 14:521-9. [PMID: 19720556 DOI: 10.1016/j.tplants.2009.08.001] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 07/27/2009] [Accepted: 08/03/2009] [Indexed: 05/21/2023]
Abstract
Plant genomes encode large numbers of highly variable nucleotide binding leucine-rich repeat (NB-LRR) disease resistance proteins. These proteins have been studied extensively to understand their evolution and the molecular basis of their function. Multiple studies indicate that the C-terminal LRR domain plays a pivotal role in defining pathogen recognition specificity. However, a growing body of evidence suggests that the N-termini of NB-LRR proteins also function in pathogen recognition. To formulate a framework that can explain the underlying principles governing NB-LRR function while accommodating findings from different experimental systems, we present a "bait and switch" model. This model proposes a two-step recognition process involving interactions with both cellular cofactors (bait) and the LRR domain, which in turn activates the molecular switch leading to disease resistance.
Collapse
Affiliation(s)
- Sarah M Collier
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
| | | |
Collapse
|
224
|
Wang W, Wen Y, Berkey R, Xiao S. Specific targeting of the Arabidopsis resistance protein RPW8.2 to the interfacial membrane encasing the fungal Haustorium renders broad-spectrum resistance to powdery mildew. THE PLANT CELL 2009; 21:2898-913. [PMID: 19749153 PMCID: PMC2768920 DOI: 10.1105/tpc.109.067587] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 07/27/2009] [Accepted: 08/25/2009] [Indexed: 05/18/2023]
Abstract
Powdery mildew fungal pathogens penetrate the plant cell wall and develop a feeding structure called the haustorium to steal photosynthetate from the host cell. Here, we report that the broad-spectrum mildew resistance protein RPW8.2 from Arabidopsis thaliana is induced and specifically targeted to the extrahaustorial membrane (EHM), an enigmatic interfacial membrane believed to be derived from the host cell plasma membrane. There, RPW8.2 activates a salicylic acid (SA) signaling-dependent defense strategy that concomitantly enhances the encasement of the haustorial complex and onsite accumulation of H(2)O(2), presumably for constraining the haustorium while reducing oxidative damage to the host cell. Targeting of RPW8.2 to the EHM, however, is SA independent and requires function of the actin cytoskeleton. Natural mutations that impair either defense activation or EHM targeting of RPW8.2 compromise the efficacy of RPW8.2-mediated resistance. Thus, the interception of haustoria is key for RPW8-mediated broad-spectrum mildew resistance.
Collapse
|
225
|
Jorgensen TH, Emerson BC. RPW8 and resistance to powdery mildew pathogens in natural populations of Arabidopsis lyrata. THE NEW PHYTOLOGIST 2009; 182:984-993. [PMID: 19383106 DOI: 10.1111/j.1469-8137.2009.02787.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
It is not clear to what extent the orthologues of genes that are adaptively important in one species also contribute to adaptive variation in others. Here, we examine Arabidopsis lyrata to assess the functional and evolutionary significance of natural variation in an orthologue of the gene RPW8 known to be a major determinant of powdery mildew resistance in Arabidopsis thaliana. We assessed the sequence variation at RPW8 and the associated resistance reaction in populations of A. lyrata ssp. petraea. Neutrality tests were performed to understand the importance of local adaptation in maintaining variation at the locus. Highly truncated RPW8 proteins were frequent in all populations and were associated with an increased risk of susceptibility. Haplotypes encoding full-length proteins were highly significantly associated with resistance. There were no signatures of selection at the species-wide level, but some evidence for positive selection in two populations. RPW8 in A. lyrata appears to have a role in powdery mildew resistance, similar to its orthologue in A. thaliana. Unlike A. thaliana, A. lyrata contains a genetic component that can act independently of RPW8 to confer resistance to powdery mildew pathogens. Infrequent local selective sweeps may favour different alleles in different populations, and thereby contribute to the maintenance of species-wide variation at the locus.
Collapse
Affiliation(s)
- T H Jorgensen
- Centre for Ecology, Evolution and Conservation, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - B C Emerson
- Centre for Ecology, Evolution and Conservation, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
226
|
Porter BW, Paidi M, Ming R, Alam M, Nishijima WT, Zhu YJ. Genome-wide analysis of Carica papaya reveals a small NBS resistance gene family. Mol Genet Genomics 2009; 281:609-26. [PMID: 19263082 DOI: 10.1007/s00438-009-0434-x] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Accepted: 02/04/2009] [Indexed: 12/11/2022]
Abstract
The majority of plant disease resistance proteins identified to date belong to a limited number of structural classes, of which those containing nucleotide-binding site (NBS) motifs are the most common. This study provides a detailed analysis of the NBS-encoding genes of the fifth sequenced angiosperm, Carica papaya. Despite having a significantly larger genome than Arabidopsis thaliana, papaya has fewer NBS genes. Nevertheless, papaya maintains genes belonging to both Toll/interleukin-1 receptor (TIR) and non-TIR subclasses. Papaya's NBS gene family shares most similarity with Vitis vinifera homologs, but seven non-TIR members with distinct motif sequence represent a novel subgroup. Transcript splice variants and adjacent genes encoding resistance-associated proteins may provide functional compensation for the apparent scarcity of NBS class resistance genes. Looking forward, the papaya NBS gene family is uniquely small in size but structurally diverse, making it suitable for functional studies aimed at a broader understanding of plant resistance genes.
Collapse
Affiliation(s)
- Brad W Porter
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA.
| | | | | | | | | | | |
Collapse
|
227
|
Chandran D, Tai YC, Hather G, Dewdney J, Denoux C, Burgess DG, Ausubel FM, Speed TP, Wildermuth MC. Temporal global expression data reveal known and novel salicylate-impacted processes and regulators mediating powdery mildew growth and reproduction on Arabidopsis. PLANT PHYSIOLOGY 2009; 149:1435-51. [PMID: 19176722 PMCID: PMC2649394 DOI: 10.1104/pp.108.132985] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 01/23/2009] [Indexed: 05/20/2023]
Abstract
Salicylic acid (SA) is a critical mediator of plant innate immunity. It plays an important role in limiting the growth and reproduction of the virulent powdery mildew (PM) Golovinomyces orontii on Arabidopsis (Arabidopsis thaliana). To investigate this later phase of the PM interaction and the role played by SA, we performed replicated global expression profiling for wild-type and SA biosynthetic mutant isochorismate synthase1 (ics1) Arabidopsis from 0 to 7 d after infection. We found that ICS1-impacted genes constitute 3.8% of profiled genes, with known molecular markers of Arabidopsis defense ranked very highly by the multivariate empirical Bayes statistic (T(2) statistic). Functional analyses of T(2)-selected genes identified statistically significant PM-impacted processes, including photosynthesis, cell wall modification, and alkaloid metabolism, that are ICS1 independent. ICS1-impacted processes include redox, vacuolar transport/secretion, and signaling. Our data also support a role for ICS1 (SA) in iron and calcium homeostasis and identify components of SA cross talk with other phytohormones. Through our analysis, 39 novel PM-impacted transcriptional regulators were identified. Insertion mutants in one of these regulators, PUX2 (for plant ubiquitin regulatory X domain-containing protein 2), results in significantly reduced reproduction of the PM in a cell death-independent manner. Although little is known about PUX2, PUX1 acts as a negative regulator of Arabidopsis CDC48, an essential AAA-ATPase chaperone that mediates diverse cellular activities, including homotypic fusion of endoplasmic reticulum and Golgi membranes, endoplasmic reticulum-associated protein degradation, cell cycle progression, and apoptosis. Future work will elucidate the functional role of the novel regulator PUX2 in PM resistance.
Collapse
Affiliation(s)
- Divya Chandran
- Department of Plant and Microbial Biology , University of California, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
228
|
JORGENSEN TH, EMERSON BC. Functional variation in a disease resistance gene in populations ofArabidopsis thaliana. Mol Ecol 2008; 17:4912-23. [DOI: 10.1111/j.1365-294x.2008.03960.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
229
|
Pelegrini PB, Murad AM, Silva LP, Dos Santos RCP, Costa FT, Tagliari PD, Bloch C, Noronha EF, Miller RNG, Franco OL. Identification of a novel storage glycine-rich peptide from guava (Psidium guajava) seeds with activity against Gram-negative bacteria. Peptides 2008; 29:1271-9. [PMID: 18448201 DOI: 10.1016/j.peptides.2008.03.013] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 02/23/2008] [Accepted: 03/11/2008] [Indexed: 11/24/2022]
Abstract
Bacterial pathogens cause an expressive negative impact worldwide on human health, with ever increasing treatment costs. A significant rise in resistance to commercial antibiotics has been observed in pathogenic bacteria responsible for urinary and gastro-intestinal infections. Towards the development of novel approaches to control such common infections, a number of defense peptides with antibacterial activities have been characterized. In this report, the peptide Pg-AMP1 was isolated from guava seeds (Psidium guajava) and purified using a Red-Sepharose Cl-6B affinity column followed by a reversed-phase HPLC (Vydac C18-TP). Pg-AMP1 showed no inhibitory activity against fungi, but resulted in a clear growth reduction in Klebsiella sp. and Proteus sp., which are the principal pathogens involved in urinary and gastro-intestinal hospital infections. SDS-PAGE and mass spectrometry (MALDI-ToF) characterized Pg-AMP1 a monomer with a molecular mass of 6029.34Da and small quantities of a homodimer. Amino acid sequencing revealed clear identity to the plant glycine-rich protein family, with Pg-AMP1 the first such protein with activity towards Gram-negative bacteria. Furthermore, Pg-AMP1 showed a 3D structural homology to an enterotoxin from Escherichia coli, and other antibacterial proteins, revealing that it might act by formation of a dimer. Pg-AMP1 shows potential, in a near future, to contribute to development of novel antibiotics from natural sources.
Collapse
Affiliation(s)
- Patricia B Pelegrini
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
230
|
Yang S, Zhang X, Yue JX, Tian D, Chen JQ. Recent duplications dominate NBS-encoding gene expansion in two woody species. Mol Genet Genomics 2008; 280:187-98. [PMID: 18563445 DOI: 10.1007/s00438-008-0355-0] [Citation(s) in RCA: 298] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Accepted: 06/01/2008] [Indexed: 11/26/2022]
Abstract
Most disease resistance genes in plants encode NBS-LRR proteins. However, in woody species, little is known about the evolutionary history of these genes. Here, we identified 459 and 330 respective NBS-LRRs in grapevine and poplar genomes. We subsequently investigated protein motif composition, phylogenetic relationships and physical locations. We found significant excesses of recent duplications in perennial species, compared with those of annuals, represented by rice and Arabidopsis. Consequently, we observed higher nucleotide identity among paralogs and a higher percentage of NBS-encoding genes positioned in numerous clusters in the grapevine and poplar. These results suggested that recent tandem duplication played a major role in NBS-encoding gene expansion in perennial species. These duplication events, together with a higher probability of recombination revealed in this study, could compensate for the longer generation time in woody perennial species e.g. duplication and recombination could serve to generate novel resistance specificities. In addition, we observed extensive species-specific expansion in TIR-NBS-encoding genes. Non-TIR-NBS-encoding genes were poly- or paraphyletic, i.e. genes from three or more plant species were nested in different clades, suggesting different evolutionary patterns between these two gene types.
Collapse
Affiliation(s)
- Sihai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biology, Nanjing University, Nanjing, China
| | | | | | | | | |
Collapse
|
231
|
Cooper AJ, Latunde-Dada AO, Woods-Tör A, Lynn J, Lucas JA, Crute IR, Holub EB. Basic compatibility of Albugo candida in Arabidopsis thaliana and Brassica juncea causes broad-spectrum suppression of innate immunity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:745-56. [PMID: 18624639 DOI: 10.1094/mpmi-21-6-0745] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A biotrophic parasite often depends on an intrinsic ability to suppress host defenses in a manner that will enable it to infect and successfully colonize a susceptible host. If the suppressed defenses otherwise would have been effective against alternative pathogens, it follows that primary infection by the "suppressive" biotroph potentially could enhance susceptibility of the host to secondary infection by avirulent pathogens. This phenomenon previously has been attributed to true fungi such as rust (basidiomycete) and powdery mildew (ascomycete) pathogens. In our study, we observed broad-spectrum suppression of host defense by the oomycete Albugo candida (white blister rust) in the wild crucifer Arabidopsis thaliana and a domesticated relative, Brassica juncea. A. candida subsp. arabidopsis suppressed the "runaway cell death" phenotype of the lesion mimic mutant lsd1 in Arabidopsis thaliana in a sustained manner even after subsequent inoculation with avirulent Hyaloperonospora arabidopsis (Arabidopsis thaliana downy mildew). In sequential inoculation experiments, we show that preinfection by virulent Albugo candida can suppress disease resistance in cotyledons to several downy mildew pathogens, including contrasting examples of genotype resistance to H. arabidopsis in Arabidopsis thaliana that differ in the R protein and modes of defense signaling used to confer the resistance; genotype specific resistance in B. juncea to H. parasitica (Brassica downy mildew; isolates derived from B. juncea); species level (nonhost) resistance in both crucifers to Bremia lactucae (lettuce downy mildew) and an isolate of the H. parasitica race derived from Brassica oleracea; and nonhost resistance in B. juncea to H. arabidopsis. Broad-spectrum powdery mildew resistance conferred by RPW8 also was suppressed in Arabidopsis thaliana to two morphotypes of Erysiphe spp. following pre-infection with A. candida subsp. arabidopsis.
Collapse
Affiliation(s)
- A J Cooper
- Warwick-HRI, University of Warwick, Wellesbourne, Warwickshire, CV35 9EF, U.K
| | | | | | | | | | | | | |
Collapse
|
232
|
Fabro G, Di Rienzo JA, Voigt CA, Savchenko T, Dehesh K, Somerville S, Alvarez ME. Genome-wide expression profiling Arabidopsis at the stage of Golovinomyces cichoracearum haustorium formation. PLANT PHYSIOLOGY 2008; 146:1421-39. [PMID: 18218973 PMCID: PMC2259087 DOI: 10.1104/pp.107.111286] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Accepted: 01/08/2008] [Indexed: 05/21/2023]
Abstract
Compatibility between plants and obligate biotrophic fungi requires fungal mechanisms for efficiently obtaining nutrients and counteracting plant defenses under conditions that are expected to induce changes in the host transcriptome. A key step in the proliferation of biotrophic fungi is haustorium differentiation. Here we analyzed global gene expression patterns in Arabidopsis thaliana leaves during the formation of haustoria by Golovinomyces cichoracearum. At this time, the endogenous levels of salicylic acid (SA) and jasmonic acid (JA) were found to be enhanced. The responses of wild-type, npr1-1, and jar1-1 plants were used to categorize the sensitivity of gene expression changes to NPR1 and JAR1, which are components of the SA and JA signaling pathways, respectively. We found that the infection process was the major source of variation, with 70 genes identified as having similarly altered expression patterns regardless of plant genotype. In addition, principal component analysis (PCA) identified genes responding both to infection and to lack of functional JAR1 (17 genes) or NPR1 (18 genes), indicating that the JA and SA signaling pathways function as secondary sources of variation. Participation of these genes in the SA or JA pathways had not been described previously. We found that some of these genes may be sensitive to the balance between the SA and JA pathways, representing novel markers for the elucidation of cross-talk points between these signaling cascades. Conserved putative regulatory motifs were found in the promoter regions of each subset of genes. Collectively, our results indicate that gene expression changes in response to infection by obligate biotrophic fungi may support fungal nutrition by promoting alterations in host metabolism. In addition, these studies provide novel markers for the characterization of defense pathways and susceptibility features under this infection condition.
Collapse
Affiliation(s)
- Georgina Fabro
- CIQUIBIC-CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | | | | | | | | | | |
Collapse
|
233
|
Rairdan GJ, Collier SM, Sacco MA, Baldwin TT, Boettrich T, Moffett P. The coiled-coil and nucleotide binding domains of the Potato Rx disease resistance protein function in pathogen recognition and signaling. THE PLANT CELL 2008; 20:739-51. [PMID: 18344282 PMCID: PMC2329922 DOI: 10.1105/tpc.107.056036] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 01/30/2008] [Accepted: 02/26/2008] [Indexed: 05/18/2023]
Abstract
Plant genomes encode large numbers of nucleotide binding and leucine-rich repeat (NB-LRR) proteins, some of which mediate the recognition of pathogen-encoded proteins. Following recognition, the initiation of a resistance response is thought to be mediated by the domains present at the N termini of NB-LRR proteins, either a Toll and Interleukin-1 Receptor or a coiled-coil (CC) domain. In order to understand the role of the CC domain in NB-LRR function, we have undertaken a systematic structure-function analysis of the CC domain of the potato (Solanum tuberosum) CC-NB-LRR protein Rx, which confers resistance to Potato virus X. We show that the highly conserved EDVID motif of the CC domain mediates an intramolecular interaction that is dependent on several domains within the rest of the Rx protein, including the NB and LRR domains. Other conserved and nonconserved regions of the CC domain mediate the interaction with the Ran GTPase-activating protein, RanGAP2, a protein required for Rx function. Furthermore, we show that the Rx NB domain is sufficient for inducing cell death typical of hypersensitive plant resistance responses. We describe a model of CC-NB-LRR function wherein the LRR and CC domains coregulate the signaling activity of the NB domain in a recognition-specific manner.
Collapse
|
234
|
|
235
|
Göllner K, Schweizer P, Bai Y, Panstruga R. Natural genetic resources of Arabidopsis thaliana reveal a high prevalence and unexpected phenotypic plasticity of RPW8-mediated powdery mildew resistance. THE NEW PHYTOLOGIST 2008; 177:725-742. [PMID: 18211475 DOI: 10.1111/j.1469-8137.2007.02339.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Here, an approach based on natural genetic variation was adopted to analyse powdery mildew resistance in Arabidopsis thaliana. Accessions resistant to multiple powdery mildew species were crossed with the susceptible Col-0 ecotype and inheritance of resistance was analysed. Histochemical staining was used to visualize archetypal plant defence responses such as callose deposition, hydrogen peroxide accumulation and host cell death in a subset of these ecotypes. In six accessions, resistance was likely of polygenic origin while 10 accessions exhibited evidence for a single recessively or semi-dominantly inherited resistance locus. Resistance in the latter accessions was mainly manifested at the terminal stage of the fungal life cycle by a failure of abundant conidiophore production. The resistance locus of several of these ecotypes was mapped to a genomic region containing the previously analysed atypical RPW8 powdery mildew resistance genes. Gene silencing revealed that members of the RPW8 locus were responsible for resistance to Golovinomyces orontii in seven accessions. These results suggest that broad-spectrum powdery mildew resistance in A. thaliana is predominantly of polygenic origin or based on RPW8 function. The findings shed new light on the natural variation of inheritance, phenotypic expression and pathogen range of RPW8-conditioned powdery mildew resistance.
Collapse
Affiliation(s)
- Katharina Göllner
- Max-Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions, Carl-von-Linné-Weg 10, 50829 Köln, Germany
| | - Patrick Schweizer
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Department of Cytogenetics and Transcriptome Analysis, Corrensstraße 3, 06466 Gatersleben, Germany
| | - Yuling Bai
- Laboratory of Plant Breeding, Plant Sciences Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | - Ralph Panstruga
- Max-Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions, Carl-von-Linné-Weg 10, 50829 Köln, Germany
| |
Collapse
|
236
|
Bai Y, Pavan S, Zheng Z, Zappel NF, Reinstädler A, Lotti C, De Giovanni C, Ricciardi L, Lindhout P, Visser R, Theres K, Panstruga R. Naturally occurring broad-spectrum powdery mildew resistance in a Central American tomato accession is caused by loss of mlo function. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:30-9. [PMID: 18052880 DOI: 10.1094/mpmi-21-1-0030] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The resistant cherry tomato (Solanum lycopersicum var. cerasiforme) line LC-95, derived from an accession collected in Ecuador, harbors a natural allele (ol-2) that confers broad-spectrum and recessively inherited resistance to powdery mildew (Oidium neolycopersici). As both the genetic and phytopathological characteristics of ol-2-mediated resistance are reminiscent of powdery mildew immunity conferred by loss-of-function mlo alleles in barley and Arabidopsis, we initiated a candidate-gene approach to clone Ol-2. A tomato Mlo gene (SlMlo1) with high sequence-relatedness to barley Mlo and Arabidopsis AtMLO2 mapped to the chromosomal region harboring the Ol-2 locus. Complementation experiments using transgenic tomato lines as well as virus-induced gene silencing assays suggested that loss of SlMlo1 function is responsible for powdery mildew resistance conferred by ol-2. In progeny of a cross between a resistant line bearing ol-2 and the susceptible tomato cultivar Moneymaker, a 19-bp deletion disrupting the SlMlo1 coding region cosegregated with resistance. This polymorphism results in a frameshift and, thus, a truncated nonfunctional SlMlo1 protein. Our findings reveal the second example of a natural mlo mutant that possibly arose post-domestication, suggesting that natural mlo alleles might be evolutionarily short-lived due to fitness costs related to loss of mlo function.
Collapse
Affiliation(s)
- Yuling Bai
- Laboratory of Plant Breeding, Plant Sciences Group, Wageningen University, Droevendaalsesteeg 1, Wageningen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
237
|
Ameline-Torregrosa C, Wang BB, O'Bleness MS, Deshpande S, Zhu H, Roe B, Young ND, Cannon SB. Identification and characterization of nucleotide-binding site-leucine-rich repeat genes in the model plant Medicago truncatula. PLANT PHYSIOLOGY 2008; 146:5-21. [PMID: 17981990 PMCID: PMC2230567 DOI: 10.1104/pp.107.104588] [Citation(s) in RCA: 198] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 10/19/2007] [Indexed: 05/18/2023]
Abstract
The nucleotide-binding site (NBS)-Leucine-rich repeat (LRR) gene family accounts for the largest number of known disease resistance genes, and is one of the largest gene families in plant genomes. We have identified 333 nonredundant NBS-LRRs in the current Medicago truncatula draft genome (Mt1.0), likely representing 400 to 500 NBS-LRRs in the full genome, or roughly 3 times the number present in Arabidopsis (Arabidopsis thaliana). Although many characteristics of the gene family are similar to those described on other plant genomes, several evolutionary features are particularly pronounced in M. truncatula, including a high degree of clustering, evidence of significant numbers of ectopic translocations from clusters to other parts of the genome, a small number of more evolutionarily stable NBS-LRRs, and numerous truncations and fusions leading to novel domain compositions. The gene family clearly has had a large impact on the structure of the genome, both through ectopic translocations (potentially, a means of seeding new NBS-LRR clusters), and through two extraordinarily large superclusters. Chromosome 6 encodes approximately 34% of all TIR-NBS-LRRs, while chromosome 3 encodes approximately 40% of all coiled-coil-NBS-LRRs. Almost all atypical domain combinations are in the TIR-NBS-LRR subfamily, with many occurring within one genomic cluster. This analysis shows the gene family not only is important functionally and agronomically, but also plays a structural role in the genome.
Collapse
Affiliation(s)
- Carine Ameline-Torregrosa
- Laboratoire des Interactions Plantes Microorganismes, UMR CNRS-INRA 442-2594, 31326, Castanet Tolosan, France
| | | | | | | | | | | | | | | |
Collapse
|
238
|
Micali C, Göllner K, Humphry M, Consonni C, Panstruga R. The Powdery Mildew Disease of Arabidopsis: A Paradigm for the Interaction between Plants and Biotrophic Fungi. THE ARABIDOPSIS BOOK 2008; 6:e0115. [PMID: 22303240 PMCID: PMC3243333 DOI: 10.1199/tab.0115] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The powdery mildew diseases, caused by fungal species of the Erysiphales, have an important economic impact on a variety of plant species and have driven basic and applied research efforts in the field of phytopathology for many years. Although the first taxonomic reports on the Erysiphales date back to the 1850's, advances into the molecular biology of these fungal species have been hampered by their obligate biotrophic nature and difficulties associated with their cultivation and genetic manipulation in the laboratory. The discovery in the 1990's of a few species of powdery mildew fungi that cause disease on Arabidopsis has opened a new chapter in this research field. The great advantages of working with a model plant species have translated into remarkable progress in our understanding of these complex pathogens and their interaction with the plant host. Herein we summarize advances in the study of Arabidopsis-powdery mildew interactions and discuss their implications for the general field of plant pathology. We provide an overview of the life cycle of the pathogens on Arabidopsis and describe the structural and functional changes that occur during infection in the host and fungus in compatible and incompatible interactions, with special emphasis on defense signaling, resistance pathways, and compatibility factors. Finally, we discuss the future of powdery mildew research in anticipation of the sequencing of multiple powdery mildew genomes. The cumulative body of knowledge on powdery mildews of Arabidopsis provides a valuable tool for the study and understanding of disease associated with many other obligate biotrophic pathogen species.
Collapse
Affiliation(s)
- Cristina Micali
- Max-Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions, Carl-von-Linné-Weg 10, 50829 Köln, Germany
| | - Katharina Göllner
- Max-Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions, Carl-von-Linné-Weg 10, 50829 Köln, Germany
| | - Matt Humphry
- Max-Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions, Carl-von-Linné-Weg 10, 50829 Köln, Germany
| | - Chiara Consonni
- Max-Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions, Carl-von-Linné-Weg 10, 50829 Köln, Germany
| | - Ralph Panstruga
- Max-Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions, Carl-von-Linné-Weg 10, 50829 Köln, Germany
- Address correspondence to
| |
Collapse
|
239
|
Ameline-Torregrosa C, Cazaux M, Danesh D, Chardon F, Cannon SB, Esquerré-Tugayé MT, Dumas B, Young ND, Samac DA, Huguet T, Jacquet C. Genetic dissection of resistance to anthracnose and powdery mildew in Medicago truncatula. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:61-9. [PMID: 18052883 DOI: 10.1094/mpmi-21-1-0061] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Medicago truncatula was used to characterize resistance to anthracnose and powdery mildew caused by Colletotrichum trifolii and Erysiphe pisi, respectively. Two isolates of E. pisi (Ep-p from pea and Ep-a from alfalfa) and two races of C. trifolii (races 1 and 2) were used in this study. The A17 genotype was resistant and displayed a hypersensitive response after inoculation with either pathogen, while lines F83005.5 and DZA315.16 were susceptible to anthracnose and powdery mildew, respectively. To identify the genetic determinants underlying resistance in A17, two F7 recombinant inbred line (RIL) populations, LR4 (A17 x DZA315.16) and LR5 (A17 x F83005.5), were phenotyped with E. pisi isolates and C. trifolii races, respectively. Genetic analyses showed that i) resistance to anthracnose is governed mainly by a single major locus to both races, named Ct1 and located on the upper part of chromosome 4; and ii) resistance to powdery mildew involves three distinct loci, Epp1 on chromosome 4 and Epa1 and Epa2 on chromosome 5. The use of a consensus genetic map for the two RIL populations revealed that Ct1 and Epp1, although located in the same genome region, were clearly distinct. In silico analysis in this region identified the presence of several clusters of nucleotide binding site leucine-rich repeat genes. Many of these genes have atypical resistance gene analog structures and display differential expression patterns in distinct stress-related cDNA libraries.
Collapse
Affiliation(s)
- Carine Ameline-Torregrosa
- UMR 5546, Centre National de la Recherche Scientifique-UPS, Pôle de Biotechnologie Végétale, 24 Chemin Borde Rouge, 34326 Castanet-Tolosan, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
240
|
|
241
|
Eichmann R, Hückelhoven R. Accommodation of powdery mildew fungi in intact plant cells. JOURNAL OF PLANT PHYSIOLOGY 2008; 165:5-18. [PMID: 17602788 DOI: 10.1016/j.jplph.2007.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 05/08/2007] [Accepted: 05/09/2007] [Indexed: 05/10/2023]
Abstract
Parasitic powdery mildew fungi have to overcome basic resistance and manipulate host cells to establish a haustorium as a functional feeding organ in a host epidermal cell. Currently, it is of central interest how plant factors negatively regulate basal defense or whether they even support fungal development in compatible interactions. Additionally, creation of a metabolic sink in infected cells may involve host activity. Here, we review the current progress in understanding potential fungal targets for host reprogramming and nutrient acquisition.
Collapse
Affiliation(s)
- Ruth Eichmann
- Technical University of Munich, Chair of Phytopathology, Am Hochanger 2, D-85350 Freising, Germany.
| | | |
Collapse
|
242
|
Wang W, Devoto A, Turner JG, Xiao S. Expression of the membrane-associated resistance protein RPW8 enhances basal defense against biotrophic pathogens. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:966-76. [PMID: 17722700 DOI: 10.1094/mpmi-20-8-0966] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The powdery mildew resistance genes RPW8.1 and RPW8.2 from Arabidopsis differ from the other isolated plant resistance (R) genes in their predicted protein domains and their resistance spectrum. The two homologous RPW8 genes encode small proteins featuring a predicted amino-terminal transmembrane anchor domain and a coiled-coil domain and confer resistance to a broad spectrum of powdery mildews. Here, we show that Arabidopsis plants expressing the RPW8 genes have enhanced resistance to another biotrophic pathogen, Hyaloperonospora parasitica, raising the possibility that the RPW8 genes may function to enhance salicylic-acid-dependent basal defenses, rather than as powdery-mildew-specific R genes. When overexpressed from their native promoters, the RPW8 genes confer enhanced resistance to the Cauliflower mosaic virus, but render plants more susceptible to the necrotrophic fungal pathogens Alternaria and Botrytis spp. Furthermore, we show that the RPW8 proteins appear to be localized to the endomembrane system, overlapping with the endoplasmic reticulum-associated small GTPase SAR1, and accumulate to higher levels in response to application of exogenous salicylic acid, one of the signaling molecules of plant defense.
Collapse
Affiliation(s)
- Wenming Wang
- Center for Biosystems Research, University of Maryland Biotechnology Institute, Rockville 20850, USA
| | | | | | | |
Collapse
|
243
|
Orgil U, Araki H, Tangchaiburana S, Berkey R, Xiao S. Intraspecific genetic variations, fitness cost and benefit of RPW8, a disease resistance locus in Arabidopsis thaliana. Genetics 2007; 176:2317-33. [PMID: 17565954 PMCID: PMC1950634 DOI: 10.1534/genetics.107.070565] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The RPW8 locus of Arabidopsis thaliana confers broad-spectrum resistance to powdery mildew pathogens. In many A. thaliana accessions, this locus contains two homologous genes, RPW8.1 and RPW8.2. In some susceptible accessions, however, these two genes are replaced by HR4, a homolog of RPW8.1. Here, we show that RPW8.2 from A. lyrata conferred powdery mildew resistance in A. thaliana, suggesting that RPW8.2 might have gained the resistance function before the speciation of A. thaliana and A. lyrata. To investigate how RPW8 has been maintained in A. thaliana, we examined the nucleotide sequence polymorphisms in RPW8 from 51 A. thaliana accessions, related disease reaction phenotypes to the evolutionary history of RPW8.1 and RPW8.2, and identified mutations that confer phenotypic variations. The average nucleotide diversities were high at RPW8.1 and RPW8.2, showing no sign of selective sweep. Moreover, we found that expression of RPW8 incurs fitness benefits and costs on A. thaliana in the presence and absence of the pathogens, respectively. Our results suggest that polymorphisms at the RPW8 locus in A. thaliana may have been maintained by complex selective forces, including those from the fitness benefits and costs both associated with RPW8.
Collapse
Affiliation(s)
- Undral Orgil
- Center for Biosystems Research, University of Maryland Biotechnology Institute, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | | | | | | | | |
Collapse
|
244
|
Foster-Hartnett D, Danesh D, Peñuela S, Sharopova N, Endre G, Vandenbosch KA, Young ND, Samac DA. Molecular and cytological responses of Medicago truncatula to Erysiphe pisi. MOLECULAR PLANT PATHOLOGY 2007; 8:307-19. [PMID: 20507501 DOI: 10.1111/j.1364-3703.2007.00395.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
SUMMARY Powdery mildew is an economically important disease in a number of crop legumes; however, little is known about resistance to the disease in these species. To gain a better understanding of the genetics of resistance and plant responses to powdery mildew in legumes, we developed a pathosystem with Medicago truncatula and Erysiphe pisi. Screening accessions of M. truncatula identified genotypes that are highly susceptible, moderately resistant and highly resistant to the fungus. In the highly resistant genotype, fungal growth was arrested after appressorium development with no colony formation, while in the moderately resistant genotype a small number of colonies formed. Both resistant and moderately resistant genotypes produced hydrogen peroxide and fluorescent compounds at pathogen penetration sites, consistent with a hypersensitive response (HR), although the response was delayed in the moderately resistant genotype. Very little hydrogen peroxide or fluorescence was detected in the susceptible accession. Microarray analysis of E. pisi-induced early transcriptional changes detected 55 genes associated with the basal defence response that were similarly regulated in all three genotypes. These included pathogenesis-related genes and other genes involved in defence, signal transduction, senescence, cell wall metabolism and abiotic stress. Genes associated with the HR response included flavonoid pathway genes, and others involved in transport, transcription regulation and signal transduction. A total of 34 potentially novel unknown genes, including two legume-specific genes, were identified in both the basal response and the HR categories. Potential binding sites for two defence-related transcription regulators, Myb and Whirly, were identified in promoter regions of induced genes, and four novel motifs were found in promoter regions of genes repressed in the resistant interaction.
Collapse
Affiliation(s)
- Dawn Foster-Hartnett
- Department of Plant Pathology, University of Minnesota, 495 Borlaug Hall, St Paul, MN 55108, USA
| | | | | | | | | | | | | | | |
Collapse
|
245
|
Linde M, Hattendorf A, Kaufmann H, Debener T. Powdery mildew resistance in roses: QTL mapping in different environments using selective genotyping. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2006; 113:1081-92. [PMID: 16896710 DOI: 10.1007/s00122-006-0367-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Accepted: 07/07/2006] [Indexed: 05/03/2023]
Abstract
Podosphaera pannosa, the causal agent of rose powdery mildew, hampers the production of cut roses throughout the world. A major tool to control this disease is the use of resistant plant material. Single resistance genes, like Rpp1, may be overcome within a few years by high risk pathogens like powdery mildews. Durable resistance could be achieved using quantitative resistances. Here we describe mapping of QTLs for resistance to P. pannosa in six different environments (artificial and natural infections in the greenhouse over 3 years and natural infections in the field over 2 years). AFLPs, RGAs and other marker types were used to construct an integrated linkage map for the diploid population 97/7 containing 233 markers. In a selective genotyping procedure, marker segregation was analysed for 170 of the up to 270 phenotyped individuals. We identified seven linkage groups with an average length of 60 cM, corresponding to seven rose chromosomes in the haploid set. Using an LOD significance threshold of 3.9 we detected a total of 28 QTLs for the nine powdery mildew disease scores under analysis. Using the data from artificial inoculations with powdery mildew race 9, three resistance QTLs explaining about 84% of the variability were mapped. Twelve and 15 QTLs were detected for resistance to naturally occurring infections in the greenhouse and in the field, respectively, over several years.
Collapse
Affiliation(s)
- M Linde
- Department of Molecular Breeding, Institute of Plant Genetics, Hannover University, Herrenhäuser Street 2, 30419 Hannover, Germany.
| | | | | | | |
Collapse
|
246
|
Li J, Brader G, Kariola T, Palva ET. WRKY70 modulates the selection of signaling pathways in plant defense. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 46:477-91. [PMID: 16623907 DOI: 10.1111/j.1365-313x.2006.02712.x] [Citation(s) in RCA: 330] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Cross-talk between signal transduction pathways is a central feature of the tightly regulated plant defense signaling network. The potential synergism or antagonism between defense pathways is determined by recognition of the type of pathogen or pathogen-derived elicitor. Our studies have identified WRKY70 as a node of convergence for integrating salicylic acid (SA)- and jasmonic acid (JA)-mediated signaling events during plant response to bacterial pathogens. Here, we challenged transgenic plants altered in WRKY70 expression as well as WRKY70 knockout mutants of Arabidopsis with the fungal pathogens Alternaria brassicicola and Erysiphe cichoracearum to elucidate the role of WRKY70 in modulating the balance between distinct defense responses. Gain or loss of WRKY70 function causes opposite effects on JA-mediated resistance to A. brassicicola and the SA-mediated resistance to E. cichoracearum. While the up-regulation of WRKY70 caused enhanced resistance to E. cichoracearum, it compromised plant resistance to A. brassicicola. Conversely, down-regulation or insertional inactivation of WRKY70 impaired plant resistance to E. cichoracearum. Over-expression of WRKY70 resulted in the suppression of several JA responses including expression of a subset of JA- and A. brassicicola-responsive genes. We show that this WRKY70-controlled suppression of JA-signaling is partly executed by NPR1. The results indicate that WRKY70 has a pivotal role in determining the balance between SA-dependent and JA-dependent defense pathways.
Collapse
Affiliation(s)
- Jing Li
- Viikki Biocenter, Division of Genetics, Department of Biological and Environmental Sciences, Faculty of Biosciences, University of Helsinki, PO Box 56, FI-00014, Helsinki, Finland
| | | | | | | |
Collapse
|
247
|
Curto M, Camafeita E, Lopez JA, Maldonado AM, Rubiales D, Jorrín JV. A proteomic approach to study pea (Pisum sativum) responses to powdery mildew (Erysiphe pisi). Proteomics 2006; 6 Suppl 1:S163-74. [PMID: 16511815 DOI: 10.1002/pmic.200500396] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
As a global approach to gain a better understanding of the mechanisms involved in pea resistance to Erysiphe pisi, changes in the leaf proteome of two pea genotypes differing in their resistance phenotype were analyzed by a combination of 2-DE and MALDI-TOF/TOF MS. Leaf proteins from control non-inoculated and inoculated susceptible (Messire) and resistant (JI2480) plants were resolved by 2-DE, with IEF in the 5-8 pH range and SDS-PAGE on 12% gels. CBB-stained gels revealed the existence of quantitative and qualitative differences between extracts from: (i) non-inoculated leaves of both genotypes (77 spots); (ii) inoculated and non-inoculated Messire leaves (19 spots); and (iii) inoculated and non-inoculated JI2480 leaves (12 spots). Some of the differential spots have been identified, after MALDI-TOF/TOF analysis and database searching, as proteins belonging to several functional categories, including photosynthesis and carbon metabolism, energy production, stress and defense, protein synthesis and degradation and signal transduction. Results are discussed in terms of constitutive and induced elements involved in pea resistance against Erysiphe pisi.
Collapse
Affiliation(s)
- Miguel Curto
- Agricultural and Plant Biochemistry Research Group, Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Córdoba, Spain
| | | | | | | | | | | |
Collapse
|
248
|
Sun W, Dunning FM, Pfund C, Weingarten R, Bent AF. Within-species flagellin polymorphism in Xanthomonas campestris pv campestris and its impact on elicitation of Arabidopsis FLAGELLIN SENSING2-dependent defenses. THE PLANT CELL 2006; 18:764-79. [PMID: 16461584 PMCID: PMC1383648 DOI: 10.1105/tpc.105.037648] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Bacterial flagellins have been portrayed as a relatively invariant pathogen-associated molecular pattern. We have found within-species, within-pathovar variation for defense-eliciting activity of flagellins among Xanthomonas campestris pv campestris (Xcc) strains. Arabidopsis thaliana FLAGELLIN SENSING2 (FLS2), a transmembrane leucine-rich repeat kinase, confers flagellin responsiveness. The flg22 region was the only Xcc flagellin region responsible for detectable elicitation of Arabidopsis defense responses. A Val-43/Asp polymorphism determined the eliciting/noneliciting nature of Xcc flagellins (structural gene fliC). Arabidopsis detected flagellins carrying Asp-43 or Asn-43 but not Val-43 or Ala-43, and it responded minimally for Glu-43. Wild-type Xcc strains carrying nonrecognized flagellin were more virulent than those carrying a recognized flagellin when infiltrated into Arabidopsis leaf mesophyll, but this correlation was misleading. Isogenic Xcc fliC gene replacement strains expressing eliciting or noneliciting flagellins grew similarly, both in leaf mesophyll and in hydathode/vascular colonization assays. The plant FLS2 genotype also had no detectable effect on disease outcome when previously untreated plants were infected by Xcc. However, resistance against Xcc was enhanced if FLS2-dependent responses were elicited 1 d before Xcc infection. Prior immunization was not required for FLS2-dependent restriction of Pseudomonas syringae pv tomato. We conclude that plant immune systems do not uniformly detect all flagellins of a particular pathogen species and that Xcc can evade Arabidopsis FLS2-mediated defenses unless the FLS2 system has been activated by previous infections.
Collapse
Affiliation(s)
- Wenxian Sun
- Department of Plant Pathology, University of Wisconsin, Madison, Wisconsin 53705, USA
| | | | | | | | | |
Collapse
|
249
|
Qu S, Liu G, Zhou B, Bellizzi M, Zeng L, Dai L, Han B, Wang GL. The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics 2005; 172:1901-14. [PMID: 16387888 PMCID: PMC1456263 DOI: 10.1534/genetics.105.044891] [Citation(s) in RCA: 296] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The broad-spectrum rice blast resistance gene Pi9 was cloned using a map-based cloning strategy. Sequencing of a 76-kb bacterial artificial chromosome (BAC) contig spanning the Pi9 locus led to identification of six tandemly arranged resistance-like genes with a nucleotide-binding site (NBS) and leucine-rich repeats (LRRs) (Nbs1-Pi9-Nbs6-Pi9). Analysis of selected Pi9 deletion mutants and transformation of a 45-kb fragment from the BAC contig into the susceptible rice cultivar TP309 narrowed down Pi9 to the candidate genes Nbs2-Pi9 and Nbs3-Pi9. Disease evaluation of the transgenic lines carrying the individual candidate genes confirmed that Nbs2-Pi9 is the Pi9 gene. Sequence comparison analysis revealed that the six paralogs at the Pi9 locus belong to four classes and gene duplication might be one of the major evolutionary forces contributing to the formation of the NBS-LRR gene cluster. Semiquantitative reverse transcriptase (RT)-PCR analysis showed that Pi9 was constitutively expressed in the Pi9-resistant plants and was not induced by blast infection. The cloned Pi9 gene provides a starting point to elucidate the molecular basis of the broad-spectrum disease resistance and the evolutionary mechanisms of blast resistance gene clusters in rice.
Collapse
Affiliation(s)
- Shaohong Qu
- Department of Plant Pathology, Ohio State University, Columbus 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
250
|
Tang D, Ade J, Frye CA, Innes RW. Regulation of plant defense responses in Arabidopsis by EDR2, a PH and START domain-containing protein. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 44:245-57. [PMID: 16212604 PMCID: PMC1797612 DOI: 10.1111/j.1365-313x.2005.02523.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We have identified an Arabidopsis mutant that displays enhanced disease resistance (edr2) to the biotrophic powdery mildew pathogen Erysiphe cichoracearum. Inhibition of fungal growth on edr2 mutant leaves occurred at a late stage of the infection process and coincided with formation of necrotic lesions approximately 5 days after inoculation. Double-mutant analysis revealed that edr2-mediated resistance is suppressed by mutations that inhibit salicylic acid (SA)-induced defense signaling, including npr1, pad4 and sid2, demonstrating that edr2-mediated disease resistance is dependent on SA. However, edr2 showed normal responses to the bacterial pathogen Pseudomonas syringae pv. tomato strain DC3000. EDR2 appears to be constitutively transcribed in all tissues and organs and encodes a novel protein, consisting of a putative pleckstrin homology (PH) domain and a steroidogenic acute regulatory protein-related lipid-transfer (START) domain, and contains an N-terminal mitochondrial targeting sequence. The PH and START domains are implicated in lipid binding, suggesting that EDR2 may provide a link between lipid signaling and activation of programmed cell death mediated by mitochondria.
Collapse
Affiliation(s)
- Dingzhong Tang
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | | | | |
Collapse
|