201
|
de la Calle-Fabregat C, Rodríguez-Ubreva J, Ciudad L, Ramírez J, Celis R, Azuaga AB, Cuervo A, Graell E, Pérez-García C, Díaz-Torné C, Salvador G, Gómez-Puerta JA, Haro I, Sanmartí R, Cañete JD, Ballestar E. The synovial and blood monocyte DNA methylomes mirror prognosis, evolution and treatment in early arthritis. JCI Insight 2022; 7:158783. [PMID: 35324478 PMCID: PMC9090240 DOI: 10.1172/jci.insight.158783] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/23/2022] [Indexed: 11/17/2022] Open
Abstract
Identifying predictive biomarkers at early stages of inflammatory arthritis is crucial for starting appropriate therapies to avoid poor outcomes. Monocytes (MOs) and macrophages, largely associated with arthritis, are contributors and sensors of inflammation through epigenetic modifications. In this study, we investigated associations between clinical features and DNA methylation in blood and synovial fluid (SF) MOs in a prospective cohort of patients with early inflammatory arthritis. DNA methylation profiles of undifferentiated arthritis (UA) blood MOs exhibited marked alterations in comparison with those from healthy donors. We identified additional differences both in blood and SF MOs after comparing patients with UA grouped by their future outcomes, i.e., good versus poor. Patient profiles in subsequent visits revealed a reversion toward a healthy level in both groups, those requiring disease-modifying antirheumatic drugs and those who remitted spontaneously. Changes in disease activity between visits also affected DNA methylation, which was partially concomitant in the SF of UA and in blood MOs of patients with rheumatoid arthritis. Epigenetic similarities between arthritis types allow a common prediction of disease activity. Our results constitute a resource of DNA methylation–based biomarkers of poor prognosis, disease activity, and treatment efficacy for the personalized clinical management of early inflammatory arthritis.
Collapse
Affiliation(s)
| | - Javier Rodríguez-Ubreva
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), Badalona, Barcelona, Spain
| | - Laura Ciudad
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), Badalona, Barcelona, Spain
| | - Julio Ramírez
- Rheumatology Department, Hospital Clinic and IDIBAPS, Barcelona, Spain
| | - Raquel Celis
- Rheumatology Department, Hospital Clinic and IDIBAPS, Barcelona, Spain
| | - Ana B Azuaga
- Rheumatology Department, Hospital Clinic and IDIBAPS, Barcelona, Spain
| | - Andrea Cuervo
- Rheumatology Department, Hospital Clinic and IDIBAPS, Barcelona, Spain
| | - Eduard Graell
- Rheumatology Department, Hospital Universitari Parc Taulí, Sabadell, Spain
| | | | - César Díaz-Torné
- Servei de Reumatologia, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Georgina Salvador
- Rheumatology Department, Hospital Universitari Mútua de Terrassa, Barcelona, Spain
| | | | - Isabel Haro
- Unit of Synthesis and Biomedical Applications of Peptides, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Raimon Sanmartí
- Rheumatology Department, Hospital Clinic and IDIBAPS, Barcelona, Spain
| | - Juan D Cañete
- Rheumatology Department, Hospital Clinic and IDIBAPS, Barcelona, Spain
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), Badalona, Barcelona, Spain
| |
Collapse
|
202
|
Muyle AM, Seymour DK, Lv Y, Huettel B, Gaut BS. Gene-body methylation in plants: mechanisms, functions and important implications for understanding evolutionary processes. Genome Biol Evol 2022; 14:6550137. [PMID: 35298639 PMCID: PMC8995044 DOI: 10.1093/gbe/evac038] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Gene body methylation (gbM) is an epigenetic mark where gene exons are methylated in the CG context only, as opposed to CHG and CHH contexts (where H stands for A, C, or T). CG methylation is transmitted transgenerationally in plants, opening the possibility that gbM may be shaped by adaptation. This presupposes, however, that gbM has a function that affects phenotype, which has been a topic of debate in the literature. Here, we review our current knowledge of gbM in plants. We start by presenting the well-elucidated mechanisms of plant gbM establishment and maintenance. We then review more controversial topics: the evolution of gbM and the potential selective pressures that act on it. Finally, we discuss the potential functions of gbM that may affect organismal phenotypes: gene expression stabilization and upregulation, inhibition of aberrant transcription (reverse and internal), prevention of aberrant intron retention, and protection against TE insertions. To bolster the review of these topics, we include novel analyses to assess the effect of gbM on transcripts. Overall, a growing body of literature finds that gbM correlates with levels and patterns of gene expression. It is not clear, however, if this is a causal relationship. Altogether, functional work suggests that the effects of gbM, if any, must be relatively small, but there is nonetheless evidence that it is shaped by natural selection. We conclude by discussing the potential adaptive character of gbM and its implications for an updated view of the mechanisms of adaptation in plants.
Collapse
Affiliation(s)
| | | | - Yuanda Lv
- Provincial Key Laboratory of Agrobiology, Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Bruno Huettel
- Max Planck Genome Centre Cologne, Max Planck Institute for Plant Breeding, Cologne, Germany
| | | |
Collapse
|
203
|
Huang M, Zhang Y, Wang Y, Xie J, Cheng J, Fu Y, Jiang D, Yu X, Li B. Active DNA demethylation regulates MAMP-triggered immune priming in Arabidopsis. J Genet Genomics 2022; 49:796-809. [DOI: 10.1016/j.jgg.2022.02.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 12/13/2022]
|
204
|
Farooq A, Trøen G, Delabie J, Wang J. Integrating whole genome sequencing, methylation, gene expression, topological associated domain information in regulatory mutation prediction: a study of follicular lymphoma. Comput Struct Biotechnol J 2022; 20:1726-1742. [PMID: 35495111 PMCID: PMC9024376 DOI: 10.1016/j.csbj.2022.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
A major challenge in human genetics is of the analysis of the interplay between genetic and epigenetic factors in a multifactorial disease like cancer. Here, a novel methodology is proposed to investigate genome-wide regulatory mechanisms in cancer, as studied with the example of follicular Lymphoma (FL). In a first phase, a new machine-learning method is designed to identify Differentially Methylated Regions (DMRs) by computing six attributes. In a second phase, an integrative data analysis method is developed to study regulatory mutations in FL, by considering differential methylation information together with DNA sequence variation, differential gene expression, 3D organization of genome (e.g., topologically associated domains), and enriched biological pathways. Resulting mutation block-gene pairs are further ranked to find out the significant ones. By this approach, BCL2 and BCL6 were identified as top-ranking FL-related genes with several mutation blocks and DMRs acting on their regulatory regions. Two additional genes, CDCA4 and CTSO, were also found in top rank with significant DNA sequence variation and differential methylation in neighboring areas, pointing towards their potential use as biomarkers for FL. This work combines both genomic and epigenomic information to investigate genome-wide gene regulatory mechanisms in cancer and contribute to devising novel treatment strategies.
Collapse
|
205
|
Multi-omic characterization of genome-wide abnormal DNA methylation reveals diagnostic and prognostic markers for esophageal squamous-cell carcinoma. Signal Transduct Target Ther 2022; 7:53. [PMID: 35210398 PMCID: PMC8873499 DOI: 10.1038/s41392-022-00873-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 11/23/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023] Open
Abstract
This study investigates aberrant DNA methylations as potential diagnosis and prognosis markers for esophageal squamous-cell carcinoma (ESCC), which if diagnosed at advanced stages has <30% five-year survival rate. Comparing genome-wide methylation sites of 91 ESCC and matched adjacent normal tissues, we identified 35,577 differentially methylated CpG sites (DMCs) and characterized their distribution patterns. Integrating whole-genome DNA and RNA-sequencing data of the same samples, we found multiple dysregulated transcription factors and ESCC-specific genomic correlates of identified DMCs. Using featured DMCs, we developed a 12-marker diagnostic panel with high accuracy in our dataset and the TCGA ESCC dataset, and a 4-marker prognostic panel distinguishing high-risk patients. In-vitro experiments validated the functions of 4 marker host genes. Together these results provide additional evidence for the important roles of aberrant DNA methylations in ESCC development and progression. Our DMC-based diagnostic and prognostic panels have potential values for clinical care of ESCC, laying foundations for developing targeted methylation assays for future non-invasive cancer detection methods.
Collapse
|
206
|
Argaez-Sosa AA, Rodas-Junco BA, Carrillo-Cocom LM, Rojas-Herrera RA, Coral-Sosa A, Aguilar-Ayala FJ, Aguilar-Pérez D, Nic-Can GI. Higher Expression of DNA (de)methylation-Related Genes Reduces Adipogenicity in Dental Pulp Stem Cells. Front Cell Dev Biol 2022; 10:791667. [PMID: 35281092 PMCID: PMC8907981 DOI: 10.3389/fcell.2022.791667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/08/2022] [Indexed: 12/17/2022] Open
Abstract
Obesity is a significant health concern that has reached alarming proportions worldwide. The overconsumption of high-energy foods may cause metabolic dysfunction and promote the generation of new adipocytes by contributing to several obesity-related diseases. Such concerns demand a deeper understanding of the origin of adipocytes if we want to develop new therapeutic approaches. Recent findings indicate that adipocyte development is facilitated by tight epigenetic reprogramming, which is required to activate the gene program to change the fate of mesenchymal stem cells (MSCs) into mature adipocytes. Like adipose tissue, different tissues are also potential sources of adipocyte-generating MSCs, so it is interesting to explore whether the epigenetic mechanisms of adipogenic differentiation vary from one depot to another. To investigate how DNA methylation (an epigenetic mark that plays an essential role in controlling transcription and cellular differentiation) contributes to adipogenic potential, dental pulp stem cells (DPSCs) and periodontal ligament stem cells (PLSCs) were analyzed during adipogenic differentiation in vitro. Here, we show that the capacity to differentiate from DPSCs or PLSCs to adipocytes may be associated with the expression pattern of DNA methylation-related genes acquired during the induction of the adipogenic program. Our study provides insights into the details of DNA methylation during the adipogenic determination of dental stem cells, which can be a starting point to identify the factors that affect the differentiation of these cells and provide new strategies to regulate differentiation and adipocyte expansion.
Collapse
Affiliation(s)
- Adaylu A. Argaez-Sosa
- Facultad de Ingeniería Química, Campus de Ciencias Exactas e Ingeniería, Universidad Autónoma de Yucatán, Mérida, Mexico
| | - Beatriz A. Rodas-Junco
- Laboratorio Translacional de Células Troncales, Facultad de Odontología, Universidad Autónoma de Yucatán, Mérida, Mexico
- CONACYT-Facultad de Ingeniería Química, Campus de Ciencias Exactas e Ingeniería, Universidad Autónoma de Yucatán, Mérida, Mexico
| | - Leydi M. Carrillo-Cocom
- Facultad de Ingeniería Química, Campus de Ciencias Exactas e Ingeniería, Universidad Autónoma de Yucatán, Mérida, Mexico
| | - Rafael A. Rojas-Herrera
- Facultad de Ingeniería Química, Campus de Ciencias Exactas e Ingeniería, Universidad Autónoma de Yucatán, Mérida, Mexico
| | - Abel Coral-Sosa
- Facultad de Ingeniería Química, Campus de Ciencias Exactas e Ingeniería, Universidad Autónoma de Yucatán, Mérida, Mexico
| | - Fernando J. Aguilar-Ayala
- Laboratorio Translacional de Células Troncales, Facultad de Odontología, Universidad Autónoma de Yucatán, Mérida, Mexico
| | - David Aguilar-Pérez
- Laboratorio Translacional de Células Troncales, Facultad de Odontología, Universidad Autónoma de Yucatán, Mérida, Mexico
| | - Geovanny I. Nic-Can
- Laboratorio Translacional de Células Troncales, Facultad de Odontología, Universidad Autónoma de Yucatán, Mérida, Mexico
- CONACYT-Facultad de Ingeniería Química, Campus de Ciencias Exactas e Ingeniería, Universidad Autónoma de Yucatán, Mérida, Mexico
- *Correspondence: Geovanny I. Nic-Can, ,
| |
Collapse
|
207
|
Tian Q, Zou J, Tang J, Liang L, Cao X, Fan S. scMelody: An Enhanced Consensus-Based Clustering Model for Single-Cell Methylation Data by Reconstructing Cell-to-Cell Similarity. Front Bioeng Biotechnol 2022; 10:842019. [PMID: 35284424 PMCID: PMC8905497 DOI: 10.3389/fbioe.2022.842019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Single-cell DNA methylation sequencing technology has brought new perspectives to investigate epigenetic heterogeneity, supporting a need for computational methods to cluster cells based on single-cell methylation profiles. Although several methods have been developed, most of them cluster cells based on single (dis)similarity measures, failing to capture complete cell heterogeneity and resulting in locally optimal solutions. Here, we present scMelody, which utilizes an enhanced consensus-based clustering model to reconstruct cell-to-cell methylation similarity patterns and identifies cell subpopulations with the leveraged information from multiple basic similarity measures. Besides, benefitted from the reconstructed cell-to-cell similarity measure, scMelody could conveniently leverage the clustering validation criteria to determine the optimal number of clusters. Assessments on distinct real datasets showed that scMelody accurately recapitulated methylation subpopulations and outperformed existing methods in terms of both cluster partitions and the number of clusters. Moreover, when benchmarking the clustering stability of scMelody on a variety of synthetic datasets, it achieved significant clustering performance gains over existing methods and robustly maintained its clustering accuracy over a wide range of number of cells, number of clusters and CpG dropout proportions. Finally, the real case studies demonstrated the capability of scMelody to assess known cell types and uncover novel cell clusters.
Collapse
Affiliation(s)
- Qi Tian
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Jianxiao Zou
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, China
- Intelligent Terminal Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, China
| | - Jianxiong Tang
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Liang Liang
- Cancer Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaohong Cao
- Department of Geriatric Endocrinology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Shicai Fan
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, China
- Intelligent Terminal Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, China
- *Correspondence: Shicai Fan,
| |
Collapse
|
208
|
Du C, Liu X, Li M, Zhao Y, Li J, Wen Z, Liu M, Yang M, Fu B, Wei M. Analysis of 5-Methylcytosine Regulators and DNA Methylation-Driven Genes in Colon Cancer. Front Cell Dev Biol 2022; 9:657092. [PMID: 35174154 PMCID: PMC8842075 DOI: 10.3389/fcell.2021.657092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 12/17/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Epigenetic-driven events are important molecular mechanisms of carcinogenesis. The 5-methylcytosine (5mC) regulators play important roles in the methylation-driven gene expression. However, the effect of the 5mC regulators on the oncogenic pathways in colon cancer (CC) remains unclear. Also, the clinical value of such epigenetic-driven events needs further research. Methods: The transcriptome and matching epigenetic data were obtained from The Cancer Genome Atlas dataset. The gene set variation analysis identified the oncogenic pathways adjusted by 5mC regulators. The “edgeR” and “methylmix” package identified the differential expression genes of DNA methylation-driven genes. The correlation between 5mC regulators or transcription factors and shortlisted genes was investigated by calculating the Spearman's rank correlation coefficient. Among them, the genes related to diagnosis were screened out based on differential gene expression in extracellular vesicles (EVs) by the “limma” package and histology by immunohistochemistry. Then, a risk signature was constructed by fitting the generalized linear model and validated by the receiver operating characteristic curve. Results: MYC targets pathway and phosphatidylinositol-3-kinase–AKT–mammalian target of rapamycin signaling pathway were identified as the hallmark-related pathways associated with 5mC regulators. Also, the P53 pathway was subject to the influence of regulators' expression. A five methylation-driven gene signature (FIRRE, MYBL2, TGFBI, AXIN2, and SLC35D3) was developed as the biomarker for CC diagnosis. Meanwhile, those genes positively related to 5mC regulators and interacted with their relevant or transcription factors. Conclusion: In general, 5mC regulators are positively related to each other and DNA methylation-driven genes, with the relationship of multiple active and inhibitory pathways related to cancer. Meanwhile, the signature (FIRRE, MYBL2, TGFBI, AXIN2, and SLC35D3) can prefigure prospective diagnosis in CC.
Collapse
Affiliation(s)
- Cheng Du
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - XinLi Liu
- Department of Digestive Oncology, Cancer Hospital of China Medical University, Shenyang, China
| | - Mingwei Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Yi Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Jie Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Zhikang Wen
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Min Liu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Meina Yang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Boshi Fu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| |
Collapse
|
209
|
Wen YX, Wang JY, Zhu HH, Han GH, Huang RN, Huang L, Hong YG, Zheng SJ, Yang JL, Chen WW. Potential Role of Domains Rearranged Methyltransferase7 in Starch and Chlorophyll Metabolism to Regulate Leaf Senescence in Tomato. FRONTIERS IN PLANT SCIENCE 2022; 13:836015. [PMID: 35211145 PMCID: PMC8860812 DOI: 10.3389/fpls.2022.836015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Deoxyribonucleic acid (DNA) methylation is an important epigenetic mark involved in diverse biological processes. Here, we report the critical function of tomato (Solanum lycopersicum) Domains Rearranged Methyltransferase7 (SlDRM7) in plant growth and development, especially in leaf interveinal chlorosis and senescence. Using a hairpin RNA-mediated RNA interference (RNAi), we generated SlDRM7-RNAi lines and observed pleiotropic developmental defects including small and interveinal chlorosis leaves. Combined analyses of whole genome bisulfite sequence (WGBS) and RNA-seq revealed that silencing of SlDRM7 caused alterations in both methylation levels and transcript levels of 289 genes, which are involved in chlorophyll synthesis, photosynthesis, and starch degradation. Furthermore, the photosynthetic capacity decreased in SlDRM7-RNAi lines, consistent with the reduced chlorophyll content and repression of genes involved in chlorophyll biosynthesis, photosystem, and photosynthesis. In contrast, starch granules were highly accumulated in chloroplasts of SlDRM7-RNAi lines and associated with lowered expression of genes in the starch degradation pathway. In addition, SlDRM7 was activated by aging- and dark-induced senescence. Collectively, these results demonstrate that SlDRM7 acts as an epi-regulator to modulate the expression of genes related to starch and chlorophyll metabolism, thereby affecting leaf chlorosis and senescence in tomatoes.
Collapse
Affiliation(s)
- Yu Xin Wen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jia Yi Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Hui Hui Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Guang Hao Han
- Research Centre for Plant RNA Signaling and Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Ru Nan Huang
- Research Centre for Plant RNA Signaling and Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Li Huang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Yi Guo Hong
- Research Centre for Plant RNA Signaling and Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Shao Jian Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jian Li Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Wei Wei Chen
- Research Centre for Plant RNA Signaling and Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
210
|
Malaab M, Renaud L, Takamura N, Zimmerman KD, da Silveira WA, Ramos PS, Haddad S, Peters-Golden M, Penke LR, Wolf BJ, Hardiman G, Langefeld CD, Medsger TA, Feghali-Bostwick CA. Antifibrotic factor KLF4 is repressed by the miR-10/TFAP2A/TBX5 axis in dermal fibroblasts: insights from twins discordant for systemic sclerosis. Ann Rheum Dis 2022; 81:268-277. [PMID: 34750102 PMCID: PMC8758541 DOI: 10.1136/annrheumdis-2021-221050] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/29/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVES Systemic sclerosis (SSc) is a complex disease of unknown aetiology in which inflammation and fibrosis lead to multiple organ damage. There is currently no effective therapy that can halt the progression of fibrosis or reverse it, thus studies that provide novel insights into disease pathogenesis and identify novel potential therapeutic targets are critically needed. METHODS We used global gene expression and genome-wide DNA methylation analyses of dermal fibroblasts (dFBs) from a unique cohort of twins discordant for SSc to identify molecular features of this pathology. We validated the findings using in vitro, ex vivo and in vivo models. RESULTS Our results revealed distinct differentially expressed and methylated genes, including several transcription factors involved in stem cell differentiation and developmental programmes (KLF4, TBX5, TFAP2A and homeobox genes) and the microRNAs miR-10a and miR-10b which target several of these deregulated genes. We show that KLF4 expression is reduced in SSc dFBs and its expression is repressed by TBX5 and TFAP2A. We also show that KLF4 is antifibrotic, and its conditional knockout in fibroblasts promotes a fibrotic phenotype. CONCLUSIONS Our data support a role for epigenetic dysregulation in mediating SSc susceptibility in dFBs, illustrating the intricate interplay between CpG methylation, miRNAs and transcription factors in SSc pathogenesis, and highlighting the potential for future use of epigenetic modifiers as therapies.
Collapse
Affiliation(s)
- Maya Malaab
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ludivine Renaud
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Naoko Takamura
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Kip D. Zimmerman
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA,Center for Public Health Genomics, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Willian A. da Silveira
- School of Biological Sciences, Institute for Global Food Security, Queens University Belfast, Belfast, Northern Ireland, UK
| | - Paula S. Ramos
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA,Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | - Marc Peters-Golden
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Loka R. Penke
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Bethany J. Wolf
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Gary Hardiman
- School of Biological Sciences, Institute for Global Food Security, Queens University Belfast, Belfast, Northern Ireland, UK,Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Carl D. Langefeld
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA,Center for Public Health Genomics, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Thomas A. Medsger
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Carol A. Feghali-Bostwick
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA,Corresponding author: Dr. Carol A. Feghali-Bostwick, Division of Rheumatology & Immunology, Department of Medicine, Medical University of South Carolina, 96 Jonathan Lucas Street, MSC637, Charleston, SC 29425.
| |
Collapse
|
211
|
Swift J, Greenham K, Ecker JR, Coruzzi GM, McClung CR. The biology of time: dynamic responses of cell types to developmental, circadian and environmental cues. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:764-778. [PMID: 34797944 PMCID: PMC9215356 DOI: 10.1111/tpj.15589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 05/26/2023]
Abstract
As sessile organisms, plants are finely tuned to respond dynamically to developmental, circadian and environmental cues. Genome-wide studies investigating these types of cues have uncovered the intrinsically different ways they can impact gene expression over time. Recent advances in single-cell sequencing and time-based bioinformatic algorithms are now beginning to reveal the dynamics of these time-based responses within individual cells and plant tissues. Here, we review what these techniques have revealed about the spatiotemporal nature of gene regulation, paying particular attention to the three distinct ways in which plant tissues are time sensitive. (i) First, we discuss how studying plant cell identity can reveal developmental trajectories hidden in pseudotime. (ii) Next, we present evidence that indicates that plant cell types keep their own local time through tissue-specific regulation of the circadian clock. (iii) Finally, we review what determines the speed of environmental signaling responses, and how they can be contingent on developmental and circadian time. By these means, this review sheds light on how these different scales of time-based responses can act with tissue and cell-type specificity to elicit changes in whole plant systems.
Collapse
Affiliation(s)
- Joseph Swift
- Plant Biology Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Kathleen Greenham
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, MN 55108, USA
| | - Joseph R. Ecker
- Plant Biology Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Gloria M. Coruzzi
- Department of Biology, Center for Genomics and Systems Biology, New York University, NY, USA
| | | |
Collapse
|
212
|
He S, Yu S, Feng Y, He L, Liu L, Effah CY, Wu Y. A digital immuno-PCR assay for simultaneous determination of 5-methylcytosine and 5-hydroxymethylcytosine in human serum. Anal Chim Acta 2022; 1192:339321. [DOI: 10.1016/j.aca.2021.339321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/11/2021] [Accepted: 11/23/2021] [Indexed: 11/29/2022]
|
213
|
Kaplan G, Xu H, Abreu K, Feng J. DNA Epigenetics in Addiction Susceptibility. Front Genet 2022; 13:806685. [PMID: 35145550 PMCID: PMC8821887 DOI: 10.3389/fgene.2022.806685] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/06/2022] [Indexed: 12/22/2022] Open
Abstract
Addiction is a chronically relapsing neuropsychiatric disease that occurs in some, but not all, individuals who use substances of abuse. Relatively little is known about the mechanisms which contribute to individual differences in susceptibility to addiction. Neural gene expression regulation underlies the pathogenesis of addiction, which is mediated by epigenetic mechanisms, such as DNA modifications. A growing body of work has demonstrated distinct DNA epigenetic signatures in brain reward regions that may be associated with addiction susceptibility. Furthermore, factors that influence addiction susceptibility are also known to have a DNA epigenetic basis. In the present review, we discuss the notion that addiction susceptibility has an underlying DNA epigenetic basis. We focus on major phenotypes of addiction susceptibility and review evidence of cell type-specific, time dependent, and sex biased effects of drug use. We highlight the role of DNA epigenetics in these diverse processes and propose its contribution to addiction susceptibility differences. Given the prevalence and lack of effective treatments for addiction, elucidating the DNA epigenetic mechanism of addiction vulnerability may represent an expeditious approach to relieving the addiction disease burden.
Collapse
|
214
|
Rodríguez-Campuzano AG, Hernández-Kelly LC, Ortega A. DNA Methylation-Dependent Gene Expression Regulation of Glutamate Transporters in Cultured Radial Glial Cells. Mol Neurobiol 2022; 59:1912-1924. [PMID: 35032319 DOI: 10.1007/s12035-022-02746-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/11/2022] [Indexed: 11/26/2022]
Abstract
Exposure to xenobiotics has a significant impact in brain physiology that could be liked to an excitotoxic process induced by a massive release of the main excitatory neurotransmitter, L-glutamate. Overstimulation of extra-synaptic glutamate receptors, mainly of the N-methyl-D-aspartate subtype leads to a disturbance of intracellular calcium homeostasis that is critically involved in neuronal death. Hence, glutamate extracellular levels are tightly regulated through its uptake by glial glutamate transporters. It has been observed that glutamate regulates its own removal, both in the short-time frame via a transporter-mediated decrease in the uptake, and in the long-term through the transcriptional control of its gene expression, a process mediated by glutamate receptors that involves the Ca2+/diacylglycerol-dependent protein kinase and the transcription factor Ying Yang 1. Taking into consideration that this transcription factor is a member of the Polycomb complex and thus, part of repressive and activating chromatin remodeling factors, it might direct the interaction of DNA methyltransferases or dioxygenases of methylated cytosines to their target sequences. Here we explored the role of dynamic DNA methylation in the expression and function of glial glutamate transporters. To this end, we used the well-characterized models of primary cultures of chick cerebellar Bergmann glia cells and a human retina-derived Müller glia cell line. A time and dose-dependent increase in global DNA methylation was evident upon glutamate exposure. Under hypomethylation conditions, the glial glutamate transporter protein levels and uptake activity were increased. These results favor the notion that a dynamic DNA methylation program triggered by glutamate in glial cells modulates one of its major functions: glutamate removal.
Collapse
Affiliation(s)
- Ada G Rodríguez-Campuzano
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, Zacatenco Ciudad de México, 07360, México
| | - Luisa C Hernández-Kelly
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, Zacatenco Ciudad de México, 07360, México
| | - Arturo Ortega
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, Zacatenco Ciudad de México, 07360, México.
| |
Collapse
|
215
|
Zhou M, Coruh C, Xu G, Martins LM, Bourbousse C, Lambolez A, Law JA. The CLASSY family controls tissue-specific DNA methylation patterns in Arabidopsis. Nat Commun 2022; 13:244. [PMID: 35017514 PMCID: PMC8752594 DOI: 10.1038/s41467-021-27690-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022] Open
Abstract
DNA methylation shapes the epigenetic landscape of the genome, plays critical roles in regulating gene expression, and ensures transposon silencing. As is evidenced by the numerous defects associated with aberrant DNA methylation landscapes, establishing proper tissue-specific methylation patterns is critical. Yet, how such differences arise remains a largely open question in both plants and animals. Here we demonstrate that CLASSY1-4 (CLSY1-4), four locus-specific regulators of DNA methylation, also control tissue-specific methylation patterns, with the most striking pattern observed in ovules where CLSY3 and CLSY4 control DNA methylation at loci with a highly conserved DNA motif. On a more global scale, we demonstrate that specific clsy mutants are sufficient to shift the epigenetic landscape between tissues. Together, these findings reveal substantial epigenetic diversity between tissues and assign these changes to specific CLSY proteins, elucidating how locus-specific targeting combined with tissue-specific expression enables the CLSYs to generate epigenetic diversity during plant development. CLASSY (CLSY) proteins regulate DNA methylation at specific loci in the Arabidopsis genome. Here the authors show that the CLSYs also control tissue-specific DNA methylation, including at siren loci in ovules, and that the lack of an individual CLSYs can shift the epigenetic landscape between tissues.
Collapse
Affiliation(s)
- Ming Zhou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.,Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, 92037, USA
| | - Ceyda Coruh
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, 92037, USA
| | - Guanghui Xu
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, 92037, USA
| | - Laura M Martins
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, 92037, USA
| | - Clara Bourbousse
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, 92037, USA.,Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Université Paris, 75005, Paris, France
| | - Alice Lambolez
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, 92037, USA.,RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.,Department of Biological Sciences, Faculty of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyō-ku, Tōkyō, 113-8654, Japan
| | - Julie A Law
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, 92037, USA. .,Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
216
|
Reverdatto S, Prasad A, Belrose JL, Zhang X, Sammons MA, Gibbs KM, Szaro BG. Developmental and Injury-induced Changes in DNA Methylation in Regenerative versus Non-regenerative Regions of the Vertebrate Central Nervous System. BMC Genomics 2022; 23:2. [PMID: 34979916 PMCID: PMC8725369 DOI: 10.1186/s12864-021-08247-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/09/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Because some of its CNS neurons (e.g., retinal ganglion cells after optic nerve crush (ONC)) regenerate axons throughout life, whereas others (e.g., hindbrain neurons after spinal cord injury (SCI)) lose this capacity as tadpoles metamorphose into frogs, the South African claw-toed frog, Xenopus laevis, offers unique opportunities for exploring differences between regenerative and non-regenerative responses to CNS injury within the same organism. An earlier, three-way RNA-seq study (frog ONC eye, tadpole SCI hindbrain, frog SCI hindbrain) identified genes that regulate chromatin accessibility among those that were differentially expressed in regenerative vs non-regenerative CNS [11]. The current study used whole genome bisulfite sequencing (WGBS) of DNA collected from these same animals at the peak period of axon regeneration to study the extent to which DNA methylation could potentially underlie differences in chromatin accessibility between regenerative and non-regenerative CNS. RESULTS Consistent with the hypothesis that DNA of regenerative CNS is more accessible than that of non-regenerative CNS, DNA from both the regenerative tadpole hindbrain and frog eye was less methylated than that of the non-regenerative frog hindbrain. Also, consistent with observations of CNS injury in mammals, DNA methylation in non-regenerative frog hindbrain decreased after SCI. However, contrary to expectations that the level of DNA methylation would decrease even further with axotomy in regenerative CNS, DNA methylation in these regions instead increased with injury. Injury-induced differences in CpG methylation in regenerative CNS became especially enriched in gene promoter regions, whereas non-CpG methylation differences were more evenly distributed across promoter regions, intergenic, and intragenic regions. In non-regenerative CNS, tissue-related (i.e., regenerative vs. non-regenerative CNS) and injury-induced decreases in promoter region CpG methylation were significantly correlated with increased RNA expression, but the injury-induced, increased CpG methylation seen in regenerative CNS across promoter regions was not, suggesting it was associated with increased rather than decreased chromatin accessibility. This hypothesis received support from observations that in regenerative CNS, many genes exhibiting increased, injury-induced, promoter-associated CpG-methylation also exhibited increased RNA expression and association with histone markers for active promoters and enhancers. DNA immunoprecipitation for 5hmC in optic nerve regeneration found that the promoter-associated increases seen in CpG methylation were distinct from those exhibiting changes in 5hmC. CONCLUSIONS Although seemingly paradoxical, the increased injury-associated DNA methylation seen in regenerative CNS has many parallels in stem cells and cancer. Thus, these axotomy-induced changes in DNA methylation in regenerative CNS provide evidence for a novel epigenetic state favoring successful over unsuccessful CNS axon regeneration. The datasets described in this study should help lay the foundations for future studies of the molecular and cellular mechanisms involved. The insights gained should, in turn, help point the way to novel therapeutic approaches for treating CNS injury in mammals.
Collapse
Affiliation(s)
- Sergei Reverdatto
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, 12222, USA
- Center for Neuroscience Research, University at Albany, State University of New York, Albany, NY, 12222, USA
- RNA Institute, University at Albany, State University of New York, Albany, NY, 12222, USA
| | - Aparna Prasad
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, 12222, USA
- Center for Neuroscience Research, University at Albany, State University of New York, Albany, NY, 12222, USA
- RNA Institute, University at Albany, State University of New York, Albany, NY, 12222, USA
| | - Jamie L Belrose
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, 12222, USA
- Center for Neuroscience Research, University at Albany, State University of New York, Albany, NY, 12222, USA
| | - Xiang Zhang
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Morgan A Sammons
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, 12222, USA
- RNA Institute, University at Albany, State University of New York, Albany, NY, 12222, USA
| | - Kurt M Gibbs
- Department of Biology & Chemistry, Morehead State University, Morehead, KY, 40351, USA
| | - Ben G Szaro
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, 12222, USA.
- Center for Neuroscience Research, University at Albany, State University of New York, Albany, NY, 12222, USA.
- RNA Institute, University at Albany, State University of New York, Albany, NY, 12222, USA.
| |
Collapse
|
217
|
Català-Moll F, Ferreté-Bonastre AG, Godoy-Tena G, Morante-Palacios O, Ciudad L, Barberà L, Fondelli F, Martínez-Cáceres EM, Rodríguez-Ubreva J, Li T, Ballestar E. Vitamin D receptor, STAT3, and TET2 cooperate to establish tolerogenesis. Cell Rep 2022; 38:110244. [DOI: 10.1016/j.celrep.2021.110244] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/27/2021] [Accepted: 12/20/2021] [Indexed: 12/21/2022] Open
|
218
|
Matsumoto S, Tateishi-Karimata H, Sugimoto N. DNA methylation is regulated by both the stability and topology of G-quadruplex. Chem Commun (Camb) 2022; 58:12459-12462. [DOI: 10.1039/d2cc04383a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The methylation reaction was regulated by not only the stability of G4 but also the topology of G4.
Collapse
Affiliation(s)
- Saki Matsumoto
- FIBER (Frontier Institute for Biomolecular Engineering Research), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Hisae Tateishi-Karimata
- FIBER (Frontier Institute for Biomolecular Engineering Research), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Naoki Sugimoto
- FIBER (Frontier Institute for Biomolecular Engineering Research), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
- FIRST (Graduate School of Frontiers of Innovative Research in Science and Technology), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|
219
|
Xie NB, Wang M, Ji TT, Guo X, Ding JH, Yuan BF, Feng YQ. Bisulfite-free and single-nucleotide resolution sequencing of DNA epigenetic modification of 5-hydroxymethylcytosine by engineered deaminase. Chem Sci 2022; 13:7046-7056. [PMID: 35774177 PMCID: PMC9200132 DOI: 10.1039/d2sc01052f] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/23/2022] [Indexed: 11/21/2022] Open
Abstract
The discovery of 5-hydroxymethylcytosine (5hmC) in mammalian genomes is a landmark in epigenomics study. Similar to 5-methylcytosine (5mC), 5hmC is viewed a critical epigenetic modification. Deciphering the functions of 5hmC...
Collapse
Affiliation(s)
- Neng-Bin Xie
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 China
- School of Public Health, Wuhan University Wuhan 430071 China
| | - Min Wang
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 China
| | - Tong-Tong Ji
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 China
| | - Xia Guo
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 China
| | - Jiang-Hui Ding
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 China
| | - Bi-Feng Yuan
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 China
- School of Public Health, Wuhan University Wuhan 430071 China
- Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University Wuhan 430071 China
| | - Yu-Qi Feng
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 China
- School of Public Health, Wuhan University Wuhan 430071 China
| |
Collapse
|
220
|
Gracias F, Ruiz-Larrabeiti O, Vaňková Hausnerová V, Pohl R, Klepetářová B, Sýkorová V, Krásný L, Hocek M. Homologues of epigenetic pyrimidines: 5-alkyl-, 5-hydroxyalkyl and 5-acyluracil and -cytosine nucleotides: synthesis, enzymatic incorporation into DNA and effect on transcription with bacterial RNA polymerase. RSC Chem Biol 2022; 3:1069-1075. [PMID: 35975001 PMCID: PMC9347353 DOI: 10.1039/d2cb00133k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/23/2022] [Indexed: 12/17/2022] Open
Abstract
Homologues of natural epigenetic pyrimidine nucleosides and nucleotides were designed and synthesized. They included 5-ethyl-, 5-propyl-, 5-(1-hydroxyethyl)-, 5-(1-hydroxypropyl)- and 5-acetyl- and 5-propionylcytosine and -uracil 2′-deoxyribonucleosides and their corresponding 5′-O-triphosphates (dNXTPs). The epimers of 5-(1-hydroxyethyl)- and 5-(1-hydroxypropyl)pyrimidine nucleosides were separated and their absolute configuration was determined by a combination of X-ray and NMR analysis. The modified dNXTPs were used as substrates for PCR synthesis of modified DNA templates used for the study of transcription with bacterial RNA polymerase. Fundamental differences in transcription efficiency were observed, depending on the various modifications. The most notable effects included pronounced stimulation of transcription from 5-ethyluracil-bearing templates (200% transcription yield compared to natural thymine) and an enhancing effect of 5-acetylcytosine versus inhibiting effect of 5-acetyluracil. In summary, these results reveal that RNA polymerase copes with dramatically altered DNA structure and suggest that these nucleobases could potentially play roles as artificial epigenetic DNA nucleobases. Nucleotides derived from homologues of epigenetic pyrimidine bases were prepared and used for polymerase synthesis of modified DNA templates. Interesting effects of the substituents on PCR and transcription have been observed.![]()
Collapse
Affiliation(s)
- Filip Gracias
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000, Prague 6, Czech Republic
| | - Olatz Ruiz-Larrabeiti
- Lab. of Microbial Genetics and Gene Expression, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220, Prague 4, Czech Republic
| | - Viola Vaňková Hausnerová
- Lab. of Microbial Genetics and Gene Expression, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220, Prague 4, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000, Prague 6, Czech Republic
| | - Blanka Klepetářová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000, Prague 6, Czech Republic
| | - Veronika Sýkorová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000, Prague 6, Czech Republic
| | - Libor Krásný
- Lab. of Microbial Genetics and Gene Expression, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220, Prague 4, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000, Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, CZ-12843, Prague 2, Czech Republic
| |
Collapse
|
221
|
Shcherbak N, Suchkova I, Patkin E, Voznyuk I. DNA methylation in experimental ischemic brain injury. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:32-40. [DOI: 10.17116/jnevro202212208232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
222
|
DNA Methyltransferases and DNA Damage. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:349-361. [DOI: 10.1007/978-3-031-11454-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
223
|
Xiong J, Wang P, Shao WX, Li G, Ding JH, Xie NB, Wang M, Cheng QY, Xie C, Feng YQ, Ci W, Yuan BF. Genome-wide mapping of N4-methylcytosine at single-base resolution by APOBEC3A-mediated deamination sequencing. Chem Sci 2022; 13:9960-9972. [PMID: 36128236 PMCID: PMC9430668 DOI: 10.1039/d2sc02446b] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/04/2022] [Indexed: 12/15/2022] Open
Abstract
N4-methylcytosine (4mC) is a natural DNA modification occurring in thermophiles and plays important roles in restriction-modification (R-M) systems in bacterial genomes. However, the precise location and sequence context of 4mC in the whole genome are limited. In this study, we developed an APOBEC3A-mediated deamination sequencing (4mC-AMD-seq) method for genome-wide mapping of 4mC at single-base resolution. In the 4mC-AMD-seq method, cytosine and 5-methylcytosine (5mC) are deaminated by APOBEC3A (A3A) protein to generate uracil and thymine, both of which are read as thymine in sequencing, while 4mC is resistant to deamination and therefore read as cytosine. Thus, the readouts of cytosines from sequencing could manifest the original 4mC sites in genomes. With the 4mC-AMD-seq method, we achieved the genome-wide mapping of 4mC in Deinococcus radiodurans (D. radiodurans). In addition, we confirmed that 4mC, but not 5mC, was the major modification in the D. radiodurans genome. We identified 1586 4mC sites in the genome of D. radiodurans, among which 564 sites were located in the CCGCGG motif. The average methylation levels in the CCGCGG motif and non-CCGCGG sequence were 70.0% and 22.8%, respectively. We envision that the 4mC-AMD-seq method will facilitate the investigation of 4mC functions, including the 4mC-involved R-M systems, in uncharacterized but potentially useful strains. Genome-wide mapping of N4-methylcytosine (4mC) at single-base resolution with APOBEC3A-mediated deamination sequencing (4mC-AMD-seq).![]()
Collapse
Affiliation(s)
- Jun Xiong
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, School of Public Health, Wuhan University, Wuhan 430071, China
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
- Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ping Wang
- Key Laboratory of Genomics and Precision Medicine, China National Center for Bioinformation, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen-Xuan Shao
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, School of Public Health, Wuhan University, Wuhan 430071, China
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Gaojie Li
- Key Laboratory of Genomics and Precision Medicine, China National Center for Bioinformation, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiang-Hui Ding
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, School of Public Health, Wuhan University, Wuhan 430071, China
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Neng-Bin Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, School of Public Health, Wuhan University, Wuhan 430071, China
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Min Wang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, School of Public Health, Wuhan University, Wuhan 430071, China
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Qing-Yun Cheng
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, School of Public Health, Wuhan University, Wuhan 430071, China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, School of Public Health, Wuhan University, Wuhan 430071, China
- Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu-Qi Feng
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, School of Public Health, Wuhan University, Wuhan 430071, China
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Weimin Ci
- Key Laboratory of Genomics and Precision Medicine, China National Center for Bioinformation, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bi-Feng Yuan
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, School of Public Health, Wuhan University, Wuhan 430071, China
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
- Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, China
| |
Collapse
|
224
|
Dong Z, Wang Y, Yin D, Hang X, Pu L, Zhang J, Geng J, Chang L. Advanced techniques for gene heterogeneity research: Single‐cell sequencing and on‐chip gene analysis systems. VIEW 2022. [DOI: 10.1002/viw.20210011] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Zaizai Dong
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering Beihang University Beijing China
| | - Yu Wang
- Department of Laboratory Medicine State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University/Collaborative Innovation Center Chengdu China
| | - Dedong Yin
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering Beihang University Beijing China
| | - Xinxin Hang
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering Beihang University Beijing China
| | - Lei Pu
- Department of Laboratory Medicine State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University/Collaborative Innovation Center Chengdu China
| | - Jianfu Zhang
- Department of Laboratory Medicine State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University/Collaborative Innovation Center Chengdu China
| | - Jia Geng
- Department of Laboratory Medicine State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University/Collaborative Innovation Center Chengdu China
| | - Lingqian Chang
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering Beihang University Beijing China
| |
Collapse
|
225
|
Sallam M, Benotmane MA, Baatout S, Guns PJ, Aerts A. Radiation-induced cardiovascular disease: an overlooked role for DNA methylation? Epigenetics 2022; 17:59-80. [PMID: 33522387 PMCID: PMC8812767 DOI: 10.1080/15592294.2021.1873628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/27/2020] [Accepted: 01/04/2021] [Indexed: 11/25/2022] Open
Abstract
Radiotherapy in cancer treatment involves the use of ionizing radiation for cancer cell killing. Although radiotherapy has shown significant improvements on cancer recurrence and mortality, several radiation-induced adverse effects have been documented. Of these adverse effects, radiation-induced cardiovascular disease (CVD) is particularly prominent among patients receiving mediastinal radiotherapy, such as breast cancer and Hodgkin's lymphoma patients. A number of mechanisms of radiation-induced CVD pathogenesis have been proposed such as endothelial inflammatory activation, premature endothelial senescence, increased ROS and mitochondrial dysfunction. However, current research seems to point to a so-far unexamined and potentially novel involvement of epigenetics in radiation-induced CVD pathogenesis. Firstly, epigenetic mechanisms have been implicated in CVD pathophysiology. In addition, several studies have shown that ionizing radiation can cause epigenetic modifications, especially DNA methylation alterations. As a result, this review aims to provide a summary of the current literature linking DNA methylation to radiation-induced CVD and thereby explore DNA methylation as a possible contributor to radiation-induced CVD pathogenesis.
Collapse
Affiliation(s)
- Magy Sallam
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Laboratory of Physiopharmacology, University of Antwerp, Wilrijk, Belgium
| | - Mohammed Abderrafi Benotmane
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - Pieter-Jan Guns
- Laboratory of Physiopharmacology, University of Antwerp, Wilrijk, Belgium
| | - An Aerts
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| |
Collapse
|
226
|
Iftimovici A, Kebir O, Jiao C, He Q, Krebs MO, Chaumette B. Dysmaturational Longitudinal Epigenetic Aging During Transition to Psychosis. SCHIZOPHRENIA BULLETIN OPEN 2022; 3:sgac030. [PMID: 39144766 PMCID: PMC11206049 DOI: 10.1093/schizbullopen/sgac030] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Psychosis frequently occurs during adolescence and young adulthood, possibly as a result of gene-environment interactions, mediated by epigenetic mechanisms such as DNA methylation. Methylation patterns can be leveraged to predict epigenetic age in order to identify anomalies in aging trajectories that may be associated with the emergence of psychosis. Thus, epigenetic age may provide a measurable surrogate of psychotic risk or psychosis' emergence, and shed light on the neurodevelopmental model of psychosis. In this study, we present the first longitudinal analysis of epigenetic age trajectory during conversion to psychosis in a population at ultra-high-risk, with available genome-wide methylation DNA at two time points, at baseline and after one year of follow-up (N = 38 × 2). After predicting epigenetic age, we computed epigenetic age gap as the cross-sectional difference between real age and predicted age, and (longitudinal) epigenetic age acceleration as the derivative of predicted age with respect to time. At baseline, future converters were 2.7 years younger than nonconverters and this difference disappeared at follow-up, when some converted to psychosis. This is because during conversion to psychosis, the epigenetic age of converters accelerated by 2.8 years/year compared to nonconverters. This acceleration was robust with a strictly positive 95% confidence interval, and held its significance after adjustment for age, sex, and cannabis intake. The methylation sites most associated with aging were on genes also linked with schizophrenia and neurodevelopmental disorders. This accelerated age trajectory, following a previous deceleration, may therefore reflect dysmaturational processes.
Collapse
Affiliation(s)
- Anton Iftimovici
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, GDR 3557-Institut de Psychiatrie, Pathophysiology of psychiatric disorders, Paris, France
- NeuroSpin, Atomic Energy Commission, Gif-sur Yvette, France
| | - Oussama Kebir
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, GDR 3557-Institut de Psychiatrie, Pathophysiology of psychiatric disorders, Paris, France
- GHU Paris Psychiatrie et Neurosciences, Pôle PEPIT, Paris, France
| | - Chuan Jiao
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, GDR 3557-Institut de Psychiatrie, Pathophysiology of psychiatric disorders, Paris, France
| | - Qin He
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, GDR 3557-Institut de Psychiatrie, Pathophysiology of psychiatric disorders, Paris, France
| | - Marie-Odile Krebs
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, GDR 3557-Institut de Psychiatrie, Pathophysiology of psychiatric disorders, Paris, France
- GHU Paris Psychiatrie et Neurosciences, Pôle PEPIT, Paris, France
| | - Boris Chaumette
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, GDR 3557-Institut de Psychiatrie, Pathophysiology of psychiatric disorders, Paris, France
- GHU Paris Psychiatrie et Neurosciences, Pôle PEPIT, Paris, France
- Department of Psychiatry, McGill University, Montréal, Québec, Canada
| |
Collapse
|
227
|
Thomson K, Game J, Karouta C, Morgan IG, Ashby R. Correlation between small-scale methylation changes and gene expression during the development of myopia. FASEB J 2021; 36:e22129. [PMID: 34958689 DOI: 10.1096/fj.202101487r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/07/2021] [Accepted: 12/16/2021] [Indexed: 12/11/2022]
Abstract
Visually induced changes in the expression of early growth response-1 (EGR1), FBJ osteosarcoma oncogene (FOS), and NGFI-A binding protein-2 (NAB2) appear to form a part of a retinal network fundamental to ocular growth regulation, and thus, the development of myopia (short-sightedness). However, it is unclear how environmental (visual) cues are translated into these molecular changes. One possibility is through epigenetic modifications such as DNA methylation, a known regulator of such processes. By sequencing bisulfite-converted DNA amplicons, this study examined whether changes in DNA methylation occur within specific regulatory and promoter regions of EGR1, FOS, and NAB2 during the periods of increased and decreased ocular growth in chicks. Visually induced changes in ocular growth rates were associated with single-point, but not large-scale, shifts in methylation levels within the investigated regions. Analysis of methylation pattern variability (entropy) demonstrated that the observed methylation changes are occurring within small subpopulations of retinal cells. This concurs with previous observations that EGR1 and FOS are differentially regulated at the peptide level within specific retinal cell types. Together, the findings of this study support a potential role for DNA methylation in the translation of external visual cues into molecular changes critical for ocular growth regulation and myopia development.
Collapse
Affiliation(s)
- Kate Thomson
- Centre for Research in Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
| | - Jeremy Game
- Centre for Research in Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
| | - Cindy Karouta
- Centre for Research in Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
| | - Ian G Morgan
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Regan Ashby
- Centre for Research in Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia.,Research School of Biology, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
228
|
Guo W, Ma H, Wang CZ, Wan JY, Yao H, Yuan CS. Epigenetic Studies of Chinese Herbal Medicine: Pleiotropic Role of DNA Methylation. Front Pharmacol 2021; 12:790321. [PMID: 34950039 PMCID: PMC8688941 DOI: 10.3389/fphar.2021.790321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/22/2021] [Indexed: 12/03/2022] Open
Abstract
Accumulating knowledge has been achieved on DNA methylation participating in numerous cellular processes and multiple human diseases; however, few studies have addressed the pleiotropic role of DNA methylation in Chinese herbal medicine (CHM). CHM has been used worldwide for the prevention and treatment of multiple diseases. Newly developed epigenetic techniques have brought great opportunities for the development of CHM. In this review, we summarize the DNA methylation studies and portray the pleiotropic role of DNA methylation in CHM. DNA methylation serves as a mediator participating in plant responses to environmental factors, and thus affecting CHM medicinal plants growth and bioactive compound biosynthesis which are vital for therapeutic effects. Furthermore, DNA methylation helps to uncover the pharmaceutical mechanisms of CHM formulae, herbs, and herbal-derived compounds. It also provides scientific validation for constitution theory and other essential issues of CHM. This newly developed field of DNA methylation is up-and-coming to address many complicated scientific questions of CHM; it thus not only promotes disease treatment but also facilitates health maintenance.
Collapse
Affiliation(s)
- Wenqian Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Han Ma
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chong-Zhi Wang
- Tang Center for Herbal Medicine Research, The University of Chicago, Chicago, IL, United States.,Department of Anesthesia and Critical Care, The University of Chicago, Chicago, IL, United States
| | - Jin-Yi Wan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Haiqiang Yao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research, The University of Chicago, Chicago, IL, United States.,Department of Anesthesia and Critical Care, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
229
|
Roberts JD, Vittinghoff E, Lu AT, Alonso A, Wang B, Sitlani CM, Mohammadi-Shemirani P, Fornage M, Kornej J, Brody JA, Arking DE, Lin H, Heckbert SR, Prokic I, Ghanbari M, Skanes AC, Bartz TM, Perez MV, Taylor KD, Lubitz SA, Ellinor PT, Lunetta KL, Pankow JS, Paré G, Sotoodehnia N, Benjamin EJ, Horvath S, Marcus GM. Epigenetic Age and the Risk of Incident Atrial Fibrillation. Circulation 2021; 144:1899-1911. [PMID: 34587750 PMCID: PMC8671333 DOI: 10.1161/circulationaha.121.056456] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/13/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND The most prominent risk factor for atrial fibrillation (AF) is chronological age; however, underlying mechanisms are unexplained. Algorithms using epigenetic modifications to the human genome effectively predict chronological age. Chronological and epigenetic predicted ages may diverge in a phenomenon referred to as epigenetic age acceleration (EAA), which may reflect accelerated biological aging. We sought to evaluate for associations between epigenetic age measures and incident AF. METHODS Measures for 4 epigenetic clocks (Horvath, Hannum, DNA methylation [DNAm] PhenoAge, and DNAm GrimAge) and an epigenetic predictor of PAI-1 (plasminogen activator inhibitor-1) levels (ie, DNAm PAI-1) were determined for study participants from 3 population-based cohort studies. Cox models evaluated for associations with incident AF and results were combined via random-effects meta-analyses. Two-sample summary-level Mendelian randomization analyses evaluated for associations between genetic instruments of the EAA measures and AF. RESULTS Among 5600 participants (mean age, 65.5 years; female, 60.1%; Black, 50.7%), there were 905 incident AF cases during a mean follow-up of 12.9 years. Unadjusted analyses revealed all 4 epigenetic clocks and the DNAm PAI-1 predictor were associated with statistically significant higher hazards of incident AF, though the magnitudes of their point estimates were smaller relative to the associations observed for chronological age. The pooled EAA estimates for each epigenetic measure, with the exception of Horvath EAA, were associated with incident AF in models adjusted for chronological age, race, sex, and smoking variables. After multivariable adjustment for additional known AF risk factors that could also potentially function as mediators, pooled EAA measures for 2 clocks remained statistically significant. Five-year increases in EAA measures for DNAm GrimAge and DNAm PhenoAge were associated with 19% (adjusted hazard ratio [HR], 1.19 [95% CI, 1.09-1.31]; P<0.01) and 15% (adjusted HR, 1.15 [95% CI, 1.05-1.25]; P<0.01) higher hazards of incident AF, respectively. Mendelian randomization analyses for the 5 EAA measures did not reveal statistically significant associations with AF. CONCLUSIONS Our study identified adjusted associations between EAA measures and incident AF, suggesting that biological aging plays an important role independent of chronological age, though a potential underlying causal relationship remains unclear. These aging processes may be modifiable and not constrained by the immutable factor of time.
Collapse
Affiliation(s)
- Jason D. Roberts
- Population Health Research Institute, McMaster University, and Hamilton Health Sciences, Hamilton, Ontario, Canada
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, Ontario, Canada
| | - Eric Vittinghoff
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA
| | - Ake T. Lu
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Alvaro Alonso
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Biqi Wang
- National Heart, Lung, and Blood Institute’s and Boston University’s Framingham Heart Study, Framingham, Massachusetts, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Colleen M. Sitlani
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Pedrum Mohammadi-Shemirani
- Department of Medical Sciences, McMaster University, Hamilton, Ontario, Canada
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton, Ontario, Canada
- Thrombosis and Atherosclerosis Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton, Ontario Canada
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Jelena Kornej
- National Heart, Lung, and Blood Institute’s and Boston University’s Framingham Heart Study, Framingham, Massachusetts, USA
- Section of Cardiovascular Medicine, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Jennifer A. Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Dan E. Arking
- McKusick-Nathans Institute, Department of Genetic Medicine, Baltimore, Maryland, USA
| | - Honghuang Lin
- National Heart, Lung, and Blood Institute’s and Boston University’s Framingham Heart Study, Framingham, Massachusetts, USA
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Susan R. Heckbert
- Cardiovascular Health Research Unit and Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Ivana Prokic
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Allan C. Skanes
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, Ontario, Canada
| | - Traci M. Bartz
- Cardiovascular Health Research Unit, Departments of Biostatistics and Medicine, University of Washington, Seattle, Washington, USA
| | - Marco V. Perez
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Kent D. Taylor
- Institute for Translational Genomics, The Lundquist Institute at Harbour-UCLA Medical Center, Torrance, California, USA
| | - Steven A. Lubitz
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Cardiac Arrhythmia Service, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Patrick T. Ellinor
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Cardiac Arrhythmia Service, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kathryn L. Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| | - James S. Pankow
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minnesota, USA
| | - Guillaume Paré
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton, Ontario, Canada
- Thrombosis and Atherosclerosis Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton, Ontario Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Division of Cardiology, Departments of Medicine and Epidemiology, University of Washington, Seattle, Washington, USA
| | - Emelia J. Benjamin
- National Heart, Lung, and Blood Institute’s and Boston University’s Framingham Heart Study, Framingham, Massachusetts, USA
- Section of Cardiovascular Medicine, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- Department of Biostatistics, School of Public Health, University of California Los Angeles, Los Angeles, California, USA
| | - Gregory M. Marcus
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
230
|
Morante-Palacios O, Ciudad L, Micheroli R, de la Calle-Fabregat C, Li T, Barbisan G, Houtman M, Edalat SG, Frank-Bertoncelj M, Ospelt C, Ballestar E. Coordinated glucocorticoid receptor and MAFB action induces tolerogenesis and epigenome remodeling in dendritic cells. Nucleic Acids Res 2021; 50:108-126. [PMID: 34893889 PMCID: PMC8754638 DOI: 10.1093/nar/gkab1182] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/08/2021] [Accepted: 11/16/2021] [Indexed: 12/15/2022] Open
Abstract
Glucocorticoids (GCs) exert potent anti-inflammatory effects in immune cells through the glucocorticoid receptor (GR). Dendritic cells (DCs), central actors for coordinating immune responses, acquire tolerogenic properties in response to GCs. Tolerogenic DCs (tolDCs) have emerged as a potential treatment for various inflammatory diseases. To date, the underlying cell type-specific regulatory mechanisms orchestrating GC-mediated acquisition of immunosuppressive properties remain poorly understood. In this study, we investigated the transcriptomic and epigenomic remodeling associated with differentiation to DCs in the presence of GCs. Our analysis demonstrates a major role of MAFB in this process, in synergy with GR. GR and MAFB both interact with methylcytosine dioxygenase TET2 and bind to genomic loci that undergo specific demethylation in tolDCs. We also show that the role of MAFB is more extensive, binding to thousands of genomic loci in tolDCs. Finally, MAFB knockdown erases the tolerogenic properties of tolDCs and reverts the specific DNA demethylation and gene upregulation. The preeminent role of MAFB is also demonstrated in vivo for myeloid cells from synovium in rheumatoid arthritis following GC treatment. Our results imply that, once directly activated by GR, MAFB plays a critical role in orchestrating the epigenomic and transcriptomic remodeling that define the tolerogenic phenotype.
Collapse
Affiliation(s)
- Octavio Morante-Palacios
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona, Spain.,Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Barcelona, Spain
| | - Laura Ciudad
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Raphael Micheroli
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Carlos de la Calle-Fabregat
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Tianlu Li
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Gisela Barbisan
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Miranda Houtman
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Sam G Edalat
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Mojca Frank-Bertoncelj
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Caroline Ospelt
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona, Spain.,Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Barcelona, Spain
| |
Collapse
|
231
|
Li Z, Sun G, Sun G, Cheng Y, Wu L, Wang Q, Lv C, Zhou Y, Xia Y, Tang W. Various Uses of PD1/PD-L1 Inhibitor in Oncology: Opportunities and Challenges. Front Oncol 2021; 11:771335. [PMID: 34869005 PMCID: PMC8635629 DOI: 10.3389/fonc.2021.771335] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/26/2021] [Indexed: 12/25/2022] Open
Abstract
The occurrence and development of cancer are closely related to the immune escape of tumor cells and immune tolerance. Unlike previous surgical, chemotherapy, radiotherapy and targeted therapy, tumor immunotherapy is a therapeutic strategy that uses various means to stimulate and enhance the immune function of the body, and ultimately achieves the goal of controlling tumor cells.With the in-depth understanding of tumor immune escape mechanism and tumor microenvironment, and the in-depth study of tumor immunotherapy, immune checkpoint inhibitors represented by Programmed Death 1/Programmed cell Death-Ligand 1(PD-1/PD-L1) inhibitors are becoming increasingly significant in cancer medication treatment. employ a variety of ways to avoid detection by the immune system, a single strategy is not more effective in overcoming tumor immune evasion and metastasis. Combining different immune agents or other drugs can effectively address situations where immunotherapy is not efficacious, thereby increasing the chances of success and alternative access to alternative immunotherapy. Immune combination therapies for cancer have become a hot topic in cancer treatment today. In this paper, several combination therapeutic modalities of PD1/PD-L1 inhibitors are systematically reviewed. Finally, an analysis and outlook are provided in the context of the recent advances in combination therapy with PD1/PD-L1 inhibitors and the pressing issues in this field.
Collapse
Affiliation(s)
- Zhitao Li
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Guoqiang Sun
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Guangshun Sun
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ye Cheng
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Liangliang Wu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qian Wang
- Research Unit Analytical Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Chengyu Lv
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yichan Zhou
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yongxiang Xia
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, China
| | - Weiwei Tang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, China
| |
Collapse
|
232
|
Anastasiadi D, Venney CJ, Bernatchez L, Wellenreuther M. Epigenetic inheritance and reproductive mode in plants and animals. Trends Ecol Evol 2021; 36:1124-1140. [PMID: 34489118 DOI: 10.1016/j.tree.2021.08.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 12/17/2022]
Abstract
Epigenetic inheritance is another piece of the puzzle of nongenetic inheritance, although the prevalence, sources, persistence, and phenotypic consequences of heritable epigenetic marks across taxa remain unclear. We systematically reviewed over 500 studies from the past 5 years to identify trends in the frequency of epigenetic inheritance due to differences in reproductive mode and germline development. Genetic, intrinsic (e.g., disease), and extrinsic (e.g., environmental) factors were identified as sources of epigenetic inheritance, with impacts on phenotype and adaptation depending on environmental predictability. Our review shows that multigenerational persistence of epigenomic patterns is common in both plants and animals, but also highlights many knowledge gaps that remain to be filled. We provide a framework to guide future studies towards understanding the generational persistence and eco-evolutionary significance of epigenomic patterns.
Collapse
Affiliation(s)
- Dafni Anastasiadi
- The New Zealand Institute for Plant and Food Research Ltd, Nelson Research Centre, 293 Akersten St, Nelson 7010, New Zealand
| | - Clare J Venney
- Institut de Biologie Intégrative des Systèmes (IBIS), Département de Biologie, Université Laval, 1030 Avenue de la Médecine, G1V 0A6, Québec, QC, Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative des Systèmes (IBIS), Département de Biologie, Université Laval, 1030 Avenue de la Médecine, G1V 0A6, Québec, QC, Canada
| | - Maren Wellenreuther
- The New Zealand Institute for Plant and Food Research Ltd, Nelson Research Centre, 293 Akersten St, Nelson 7010, New Zealand; School of Biological Sciences, The University of Auckland, 3A Symonds St, Auckland 1010, New Zealand.
| |
Collapse
|
233
|
Beetch M, Boycott C, Harandi-Zadeh S, Yang T, Martin BJE, Dixon-McDougall T, Ren K, Gacad A, Dupuis JH, Ullmer M, Lubecka K, Yada RY, Brown CJ, Howe LJ, Stefanska B. Pterostilbene leads to DNMT3B-mediated DNA methylation and silencing of OCT1-targeted oncogenes in breast cancer cells. J Nutr Biochem 2021; 98:108815. [PMID: 34242723 PMCID: PMC8819711 DOI: 10.1016/j.jnutbio.2021.108815] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 06/06/2021] [Accepted: 06/23/2021] [Indexed: 12/13/2022]
Abstract
Transcription factor (TF)-mediated regulation of genes is often disrupted during carcinogenesis. The DNA methylation state of TF-binding sites may dictate transcriptional activity of corresponding genes. Stilbenoid polyphenols, such as pterostilbene (PTS), have been shown to exert anticancer action by remodeling DNA methylation and gene expression. However, the mechanisms behind these effects still remain unclear. Here, the dynamics between oncogenic TF OCT1 binding and de novo DNA methyltransferase DNMT3B binding in PTS-treated MCF10CA1a invasive breast cancer cells has been explored. Using chromatin immunoprecipitation (ChIP) followed by next generation sequencing, we determined 47 gene regulatory regions with decreased OCT1 binding and enriched DNMT3B binding in response to PTS. Most of those genes were found to have oncogenic functions. We selected three candidates, PRKCA, TNNT2, and DANT2, for further mechanistic investigation taking into account PRKCA functional and regulatory connection with numerous cancer-driving processes and pathways, and some of the highest increase in DNMT3B occupancy within TNNT2 and DANT2 enhancers. PTS led to DNMT3B recruitment within PRKCA, TNNT2, and DANT2 at loci that also displayed reduced OCT1 binding. Substantial decrease in OCT1 with increased DNMT3B binding was accompanied by PRKCA promoter and TNNT2 and DANT2 enhancer hypermethylation, and gene silencing. Interestingly, DNA hypermethylation of the genes was not detected in response to PTS in DNMT3B-CRISPR knockout MCF10CA1a breast cancer cells. It indicates DNMT3B-dependent methylation of PRKCA, TNNT2, and DANT2 upon PTS. Our findings provide a better understanding of mechanistic players and their gene targets that possibly contribute to the anticancer action of stilbenoid polyphenols.
Collapse
Affiliation(s)
- Megan Beetch
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - Cayla Boycott
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sadaf Harandi-Zadeh
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tony Yang
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - Benjamin J E Martin
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas Dixon-McDougall
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevin Ren
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - Allison Gacad
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - John H Dupuis
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - Melissa Ullmer
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Katarzyna Lubecka
- Department of Biomedical Chemistry, Medical University of Lodz, Lodz, Poland
| | - Rickey Y Yada
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - Carolyn J Brown
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - LeAnn J Howe
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Barbara Stefanska
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
234
|
Matsumoto S, Tateishi-Karimata H, Ohyama T, Sugimoto N. Effect of DNA modifications on the transition between canonical and non-canonical DNA structures in CpG islands during senescence. RSC Adv 2021; 11:37205-37217. [PMID: 35496393 PMCID: PMC9043837 DOI: 10.1039/d1ra07201c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/08/2021] [Indexed: 12/22/2022] Open
Abstract
Patterns and levels of DNA modifications play important roles in senescence. Two major epigenetic modifications of DNA, 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC), target CpG sites. Importantly, CpG concentrated regions, known as CpG islands, contain GC-rich sequences, which have the potential to fold into non-canonical DNA structures such as i-motifs and G-quadruplexes. In this study, we investigated the effect of 5mC and 5hmC modifications on the transition between a duplex, and i-motif and G-quadruplexes. To examine the transition, we firstly investigated the stability and structure of the i-motif and G-quadruplexes, considering the molecular environment in senescent cells. Analyses of their stability showed that the modifications did not drastically affect the stability. However, noteworthily, the modification can weaken the (de)stabilisation effect on G-quadruplexes caused by cosolute(s) and cations. Circular dichroism analyses indicated that the surrounding environments, including the molecular crowding and the type of cations such as K+ and Na+, regulate the topology of G-quadruplexes, while neither 5mC nor 5hmC had a drastic effect. On the other hand, the modifications changed the transition between duplexes and quadruplexes. Unmodified DNA preferred to fold into quadruplexes, whereas DNA with 5mC and 5hmC preferred to fold into duplexes in the absence of PEG200; on the other hand, DNA with or without modifications tended to fold into i-motifs under crowded conditions. Furthermore, an investigation of quadruplexes forming sequences in CpG islands, which are hyper- or hypomethylated during senescence, followed by gene ontology enrichment analysis for each gene group classified by the presence of quadruplexes, showed a difference in function between genes with and without quadruplexes in the CpG region. These results indicate that it is important to consider the effects of patterns and levels of DNA modifications on the transition between canonical and non-canonical DNA structures to understand gene regulation by epigenetic modification during senescence. The modification of DNA can regulate the transition between a duplex and quadruplexes during senescence responding to surrounding environments.![]()
Collapse
Affiliation(s)
- Saki Matsumoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University 7-1-20 Minatojima-minamimachi Kobe 650-0047 Japan
| | - Hisae Tateishi-Karimata
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University 7-1-20 Minatojima-minamimachi Kobe 650-0047 Japan
| | - Tatsuya Ohyama
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University 7-1-20 Minatojima-minamimachi Kobe 650-0047 Japan
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University 7-1-20 Minatojima-minamimachi Kobe 650-0047 Japan .,Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University 7-1-20 Minatojima-minamimachi Kobe 650-0047 Japan
| |
Collapse
|
235
|
Han Y, Zheleznyakova GY, Marincevic-Zuniga Y, Kakhki MP, Raine A, Needhamsen M, Jagodic M. Comparison of EM-seq and PBAT methylome library methods for low-input DNA. Epigenetics 2021; 17:1195-1204. [PMID: 34709110 PMCID: PMC9542412 DOI: 10.1080/15592294.2021.1997406] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
DNA methylation is the most studied epigenetic mark involved in regulation of gene expression. For low input samples, a limited number of methods for quantifying DNA methylation genome-wide has been evaluated. Here, we compared a series of input DNA amounts (1–10ng) from two methylome library preparation protocols, enzymatic methyl-seq (EM-seq) and post-bisulfite adaptor tagging (PBAT) adapted from single-cell PBAT. EM-seq takes advantage of enzymatic activity while PBAT relies on conventional bisulfite conversion for detection of DNA methylation. We found that both methods accurately quantified DNA methylation genome-wide. They produced expected distribution patterns around genomic features, high C-T transition efficiency at non-CpG sites and high correlation between input amounts. However, EM-seq performed better in regard to library and sequencing quality, i.e. EM-seq produced larger insert sizes, higher alignment rates and higher library complexity with lower duplication rate compared to PBAT. Moreover, EM-seq demonstrated higher CpG coverage, better CpG site overlap and higher consistency between input series. In summary, our data suggests that EM-seq overall performed better than PBAT in whole-genome methylation quantification of low input samples.
Collapse
Affiliation(s)
- Yanan Han
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Galina Yurevna Zheleznyakova
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Yanara Marincevic-Zuniga
- Department of Medical Sciences, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Majid Pahlevan Kakhki
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Amanda Raine
- Department of Medical Sciences, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Maria Needhamsen
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Maja Jagodic
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
236
|
Ma CJ, Li L, Shao WX, Ding JH, Cai XL, Lun ZR, Yuan BF, Feng YQ. An enzyme-mediated bioorthogonal labeling method for genome-wide mapping of 5-hydroxymethyluracil. Chem Sci 2021; 12:14126-14132. [PMID: 34760197 PMCID: PMC8565368 DOI: 10.1039/d1sc03812e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/03/2021] [Indexed: 12/29/2022] Open
Abstract
DNA 5-hydroxymethyluracil (5hmU) is a thymine modification existing in the genomes of various organisms. The post-replicative formation of 5hmU occurs via hydroxylation of thymine by ten-eleven translocation (TET) dioxygenases in mammals and J-binding proteins (JBPs) in protozoans, respectively. In addition, 5hmU can also be generated through oxidation of thymine by reactive oxygen species or deamination of 5hmC by cytidine deaminase. While the biological roles of 5hmU have not yet been fully explored, determining its genomic location will highly assist in elucidating its functions. Herein, we report a novel enzyme-mediated bioorthogonal labeling method for selective enrichment of 5hmU in genomes. 5hmU DNA kinase (5hmUDK) was utilized to selectively install an azide (N3) group or alkynyl group into the hydroxyl moiety of 5hmU followed by incorporation of the biotin linker through click chemistry, which enabled the capture of 5hmU-containing DNA fragments via streptavidin pull-down. The enriched fragments were applied to deep sequencing to determine the genomic distribution of 5hmU. With this established enzyme-mediated bioorthogonal labeling strategy, we achieved the genome-wide mapping of 5hmU in Trypanosoma brucei. The method described here will allow for a better understanding of the functional roles and dynamics of 5hmU in genomes.
Collapse
Affiliation(s)
- Cheng-Jie Ma
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 China
| | - Lin Li
- School of Pharmacy, Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Wen-Xuan Shao
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 China
| | - Jiang-Hui Ding
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 China
| | - Xiao-Li Cai
- Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Zhao-Rong Lun
- Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Bi-Feng Yuan
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 China .,School of Public Health, Wuhan University Wuhan 430071 China
| | - Yu-Qi Feng
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 China .,School of Public Health, Wuhan University Wuhan 430071 China
| |
Collapse
|
237
|
Longley MJ, Lee J, Jung J, Lohoff FW. Epigenetics of alcohol use disorder-A review of recent advances in DNA methylation profiling. Addict Biol 2021; 26:e13006. [PMID: 33538087 PMCID: PMC8596445 DOI: 10.1111/adb.13006] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 01/05/2021] [Accepted: 01/09/2021] [Indexed: 12/13/2022]
Abstract
Alcohol use disorder (AUD) is a major contributor to morbidity and mortality worldwide. Although there is a heritable component, the etiology of AUD is complex and can involve environmental exposures like trauma and can be associated with many different patterns of alcohol consumption. Epigenetic modifications, which can mediate the influence of genetic variants and environmental variables on gene expression, have emerged as an important area of AUD research. Over the past decade, the number of studies investigating AUD and DNA methylation, a form of epigenetic modification, has grown rapidly. Yet we are still far from understanding how DNA methylation contributes to or reflects aspects of AUD. In this paper, we reviewed studies of DNA methylation and AUD and discussed how the field has evolved. We found that global DNA and candidate DNA methylation studies did not produce replicable results. To assess whether findings of epigenome-wide association studies (EWAS) were replicated, we aggregated significant findings across studies and identified 184 genes and 15 gene ontological pathways that were differentially methylated in at least two studies and four genes and three gene ontological pathways that were differentially methylated in three studies. These genes and pathways repeatedly found enrichment of immune processes, which is in line with recent developments suggesting that the immune system may be altered in AUD. Finally, we assess the current limitations of studies of DNA methylation and AUD and make recommendations on how to design future studies to resolve outstanding questions.
Collapse
Affiliation(s)
- Martha J. Longley
- Section on Clinical Genomics and Experimental TherapeuticsNational Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthBethesdaMarylandUSA
| | - Jisoo Lee
- Section on Clinical Genomics and Experimental TherapeuticsNational Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthBethesdaMarylandUSA
| | - Jeesun Jung
- Section on Clinical Genomics and Experimental TherapeuticsNational Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthBethesdaMarylandUSA
| | - Falk W. Lohoff
- Section on Clinical Genomics and Experimental TherapeuticsNational Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
238
|
Site-specific quantification of 5-carboxylcytosine in DNA by chemical conversion coupled with ligation-based PCR. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.05.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
239
|
Long Q, He L, Peng J, Meng Q, Zhang C, Chen M, Wang X, Zhu W, Zheng F, Dong P, Deng W. Prognostic, clinicopathological, and immune correlation of NLRP3 promoter methylation in kidney renal clear cell carcinoma. Clin Transl Med 2021; 11:e528. [PMID: 34709757 PMCID: PMC8530444 DOI: 10.1002/ctm2.528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 11/30/2022] Open
Affiliation(s)
- Qian Long
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Liru He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jin Peng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qi Meng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Changlin Zhang
- Department of Gynecology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Miao Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaonan Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wancui Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Fufu Zheng
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Pei Dong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wuguo Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
240
|
Stein DF, Chen H, Vinyard ME, Qin Q, Combs RD, Zhang Q, Pinello L. singlecellVR: Interactive Visualization of Single-Cell Data in Virtual Reality. Front Genet 2021; 12:764170. [PMID: 34777482 PMCID: PMC8582280 DOI: 10.3389/fgene.2021.764170] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/27/2021] [Indexed: 11/21/2022] Open
Abstract
Single-cell assays have transformed our ability to model heterogeneity within cell populations. As these assays have advanced in their ability to measure various aspects of molecular processes in cells, computational methods to analyze and meaningfully visualize such data have required matched innovation. Independently, Virtual Reality (VR) has recently emerged as a powerful technology to dynamically explore complex data and shows promise for adaptation to challenges in single-cell data visualization. However, adopting VR for single-cell data visualization has thus far been hindered by expensive prerequisite hardware or advanced data preprocessing skills. To address current shortcomings, we present singlecellVR, a user-friendly web application for visualizing single-cell data, designed for cheap and easily available virtual reality hardware (e.g., Google Cardboard, ∼$8). singlecellVR can visualize data from a variety of sequencing-based technologies including transcriptomic, epigenomic, and proteomic data as well as combinations thereof. Analysis modalities supported include approaches to clustering as well as trajectory inference and visualization of dynamical changes discovered through modelling RNA velocity. We provide a companion software package, scvr to streamline data conversion from the most widely-adopted single-cell analysis tools as well as a growing database of pre-analyzed datasets to which users can contribute.
Collapse
Affiliation(s)
- David F. Stein
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Khoury College of Computer Sciences, Northeastern University, Boston, MA, United States
| | - Huidong Chen
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, United States
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, United States
- Department of Pathology, Harvard Medical School, Boston, MA, United States
- Broad Institute of Harvard and MIT, Cambridge, MA, United States
| | - Michael E. Vinyard
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, United States
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, United States
- Department of Pathology, Harvard Medical School, Boston, MA, United States
- Broad Institute of Harvard and MIT, Cambridge, MA, United States
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, United States
| | - Qian Qin
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, United States
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, United States
- Department of Pathology, Harvard Medical School, Boston, MA, United States
- Broad Institute of Harvard and MIT, Cambridge, MA, United States
| | - Rebecca D. Combs
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, United States
- Winsor School, Boston, MA, United States
| | - Qian Zhang
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, United States
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, United States
- Department of Pathology, Harvard Medical School, Boston, MA, United States
- Broad Institute of Harvard and MIT, Cambridge, MA, United States
| | - Luca Pinello
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, United States
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, United States
- Department of Pathology, Harvard Medical School, Boston, MA, United States
- Broad Institute of Harvard and MIT, Cambridge, MA, United States
| |
Collapse
|
241
|
Owens MC, Zhang C, Liu KF. Recent technical advances in the study of nucleic acid modifications. Mol Cell 2021; 81:4116-4136. [PMID: 34480848 PMCID: PMC9109655 DOI: 10.1016/j.molcel.2021.07.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/20/2021] [Accepted: 07/28/2021] [Indexed: 12/30/2022]
Abstract
Enzyme-mediated chemical modifications of nucleic acids are indispensable regulators of gene expression. Our understanding of the biochemistry and biological significance of these modifications has largely been driven by an ever-evolving landscape of technologies that enable accurate detection, mapping, and manipulation of these marks. Here we provide a summary of recent technical advances in the study of nucleic acid modifications with a focus on techniques that allow accurate detection and mapping of these modifications. For each modification discussed (N6-methyladenosine, 5-methylcytidine, inosine, pseudouridine, and N4-acetylcytidine), we begin by introducing the "gold standard" technique for its mapping and detection, followed by a discussion of techniques developed to address any shortcomings of the gold standard. By highlighting the commonalities and differences of these techniques, we hope to provide a perspective on the current state of the field and to lay out a guideline for development of future technologies.
Collapse
Affiliation(s)
- Michael C Owens
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Celia Zhang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathy Fange Liu
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
242
|
Insights into the Role of Oxidative Stress in Ovarian Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8388258. [PMID: 34659640 PMCID: PMC8516553 DOI: 10.1155/2021/8388258] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 09/07/2021] [Indexed: 12/24/2022]
Abstract
Oxidative stress (OS) arises when the body is subjected to harmful endogenous or exogenous factors that overwhelm the antioxidant system. There is increasing evidence that OS is involved in a number of diseases, including ovarian cancer (OC). OC is the most lethal gynecological malignancy, and risk factors include genetic factors, age, infertility, nulliparity, microbial infections, obesity, smoking, etc. OS can promote the proliferation, metastasis, and therapy resistance of OC, while high levels of OS have cytotoxic effects and induce apoptosis in OC cells. This review focuses on the relationship between OS and the development of OC from four aspects: genetic alterations, signaling pathways, transcription factors, and the tumor microenvironment. Furthermore, strategies to target aberrant OS in OC are summarized and discussed, with a view to providing new ideas for clinical treatment.
Collapse
|
243
|
Kamińska E, Korytiaková E, Reichl A, Müller M, Carell T. Intragenomic Decarboxylation of 5-Carboxy-2'-deoxycytidine. Angew Chem Int Ed Engl 2021; 60:23207-23211. [PMID: 34432359 PMCID: PMC8596745 DOI: 10.1002/anie.202109995] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Indexed: 12/30/2022]
Abstract
Cellular DNA is composed of four canonical nucleosides (dA, dC, dG and T), which form two Watson-Crick base pairs. In addition, 5-methylcytosine (mdC) may be present. The methylation of dC to mdC is known to regulate transcriptional activity. Next to these five nucleosides, the genome, particularly of stem cells, contains three additional dC derivatives, which are formed by stepwise oxidation of the methyl group of mdC with the help of Tet enzymes. These are 5-hydroxymethyl-dC (hmdC), 5-formyl-dC (fdC), and 5-carboxy-dC (cadC). It is believed that fdC and cadC are converted back into dC, which establishes an epigenetic control cycle that starts with methylation of dC to mdC, followed by oxidation and removal of fdC and cadC. While fdC was shown to undergo intragenomic deformylation to give dC directly, a similar decarboxylation of cadC was postulated but not yet observed on the genomic level. By using metabolic labelling, we show here that cadC decarboxylates in several cell types, which confirms that both fdC and cadC are nucleosides that are directly converted back to dC within the genome by C-C bond cleavage.
Collapse
Affiliation(s)
- Ewelina Kamińska
- Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstrasse 5–1381377MunichGermany
| | - Eva Korytiaková
- Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstrasse 5–1381377MunichGermany
| | - Andreas Reichl
- Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstrasse 5–1381377MunichGermany
| | - Markus Müller
- Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstrasse 5–1381377MunichGermany
| | - Thomas Carell
- Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstrasse 5–1381377MunichGermany
| |
Collapse
|
244
|
Kamińska E, Korytiaková E, Reichl A, Müller M, Carell T. Intragenomische Decarboxylierung von 5‐Carboxy‐2′‐desoxycytidin. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ewelina Kamińska
- Department of Chemistry Ludwig-Maximilians-Universität München Butenandtstraße 5–13 81377 München Deutschland
| | - Eva Korytiaková
- Department of Chemistry Ludwig-Maximilians-Universität München Butenandtstraße 5–13 81377 München Deutschland
| | - Andreas Reichl
- Department of Chemistry Ludwig-Maximilians-Universität München Butenandtstraße 5–13 81377 München Deutschland
| | - Markus Müller
- Department of Chemistry Ludwig-Maximilians-Universität München Butenandtstraße 5–13 81377 München Deutschland
| | - Thomas Carell
- Department of Chemistry Ludwig-Maximilians-Universität München Butenandtstraße 5–13 81377 München Deutschland
| |
Collapse
|
245
|
5-Formyluracil targeted biochemical reactions with proteins inhibit DNA replication, induce mutations and interference gene expression in living cells. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.02.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
246
|
Gutierrez MJ, Perez GF, Gomez JL, Rodriguez-Martinez CE, Castro-Rodriguez JA, Nino G. Genes, environment, and developmental timing: New insights from translational approaches to understand early origins of respiratory diseases. Pediatr Pulmonol 2021; 56:3157-3165. [PMID: 34388306 PMCID: PMC8858026 DOI: 10.1002/ppul.25598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 12/24/2022]
Abstract
Over the past decade, "omics" approaches have advanced our understanding of the molecular programming of the airways in humans. Several studies have identified potential molecular mechanisms that contribute to early life epigenetic reprogramming, including DNA methylation, histone modifications, microRNAs, and the homeostasis of the respiratory mucosa (epithelial function and microbiota). Current evidence supports the notion that early infancy is characterized by heightened susceptibility to airway genetic reprogramming in response to the first exposures in life, some of which can have life-long consequences. Here, we summarize and analyze the latest insights from studies that support a novel epigenetic paradigm centered on human maturational and developmental programs including three cardinal elements: genes, environment, and developmental timing. The combination of these factors is likely responsible for the functional trajectory of the respiratory system at the molecular, functional, and clinical levels.
Collapse
Affiliation(s)
- Maria J Gutierrez
- Division of Pediatric Allergy and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Geovanny F Perez
- Division of Pediatric Pulmonology, Oishei Children's Hospital, University at Buffalo, Buffalo, New York, USA
| | - Jose L Gomez
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Carlos E Rodriguez-Martinez
- Department of Pediatrics, Universidad Nacional de Colombia, Bogota, Colombia.,Department of Pediatric Pulmonology and Pediatric Critical Care Medicine, School of Medicine, Universidad El Bosque, Bogota, Colombia
| | - Jose A Castro-Rodriguez
- Department of Pediatric Pulmonology, School of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Gustavo Nino
- Division of Pediatric Pulmonary and Sleep Medicine, Children's National Hospital, George Washington University, Washington D.C., USA
| |
Collapse
|
247
|
Liu H, Zhou J, Tian W, Luo C, Bartlett A, Aldridge A, Lucero J, Osteen JK, Nery JR, Chen H, Rivkin A, Castanon RG, Clock B, Li YE, Hou X, Poirion OB, Preissl S, Pinto-Duarte A, O'Connor C, Boggeman L, Fitzpatrick C, Nunn M, Mukamel EA, Zhang Z, Callaway EM, Ren B, Dixon JR, Behrens MM, Ecker JR. DNA methylation atlas of the mouse brain at single-cell resolution. Nature 2021; 598:120-128. [PMID: 34616061 PMCID: PMC8494641 DOI: 10.1038/s41586-020-03182-8] [Citation(s) in RCA: 141] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022]
Abstract
Mammalian brain cells show remarkable diversity in gene expression, anatomy and function, yet the regulatory DNA landscape underlying this extensive heterogeneity is poorly understood. Here we carry out a comprehensive assessment of the epigenomes of mouse brain cell types by applying single-nucleus DNA methylation sequencing1,2 to profile 103,982 nuclei (including 95,815 neurons and 8,167 non-neuronal cells) from 45 regions of the mouse cortex, hippocampus, striatum, pallidum and olfactory areas. We identified 161 cell clusters with distinct spatial locations and projection targets. We constructed taxonomies of these epigenetic types, annotated with signature genes, regulatory elements and transcription factors. These features indicate the potential regulatory landscape supporting the assignment of putative cell types and reveal repetitive usage of regulators in excitatory and inhibitory cells for determining subtypes. The DNA methylation landscape of excitatory neurons in the cortex and hippocampus varied continuously along spatial gradients. Using this deep dataset, we constructed an artificial neural network model that precisely predicts single neuron cell-type identity and brain area spatial location. Integration of high-resolution DNA methylomes with single-nucleus chromatin accessibility data3 enabled prediction of high-confidence enhancer-gene interactions for all identified cell types, which were subsequently validated by cell-type-specific chromatin conformation capture experiments4. By combining multi-omic datasets (DNA methylation, chromatin contacts, and open chromatin) from single nuclei and annotating the regulatory genome of hundreds of cell types in the mouse brain, our DNA methylation atlas establishes the epigenetic basis for neuronal diversity and spatial organization throughout the mouse cerebrum.
Collapse
Affiliation(s)
- Hanqing Liu
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Jingtian Zhou
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, USA
| | - Wei Tian
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Chongyuan Luo
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Department of Human Genetics, University of California Los Angeles, Los Angeles, CA, USA
| | - Anna Bartlett
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Andrew Aldridge
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jacinta Lucero
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Julia K Osteen
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Joseph R Nery
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Huaming Chen
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Angeline Rivkin
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Rosa G Castanon
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ben Clock
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Yang Eric Li
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
| | - Xiaomeng Hou
- Center for Epigenomics, University of California, San Diego School of Medicine, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA
- Institute of Genomic Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Olivier B Poirion
- Center for Epigenomics, University of California, San Diego School of Medicine, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA
- Institute of Genomic Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Sebastian Preissl
- Center for Epigenomics, University of California, San Diego School of Medicine, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA
- Institute of Genomic Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Antonio Pinto-Duarte
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Carolyn O'Connor
- Flow Cytometry Core Facility, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Lara Boggeman
- Flow Cytometry Core Facility, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Conor Fitzpatrick
- Flow Cytometry Core Facility, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Michael Nunn
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Eran A Mukamel
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA, USA
| | - Zhuzhu Zhang
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Edward M Callaway
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Bing Ren
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA
- Institute of Genomic Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Jesse R Dixon
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - M Margarita Behrens
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Joseph R Ecker
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA.
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
248
|
Li X, Fu Y, Gao Y, Shang S, Guo S, Zhou H, Qu S, Ning S. DNA methylation dynamics of long noncoding RNA during human fetal development. Epigenomics 2021; 13:1347-1358. [PMID: 34558967 DOI: 10.2217/epi-2021-0159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Aim: To determine whether the promoters of long noncoding RNAs (lncRNAs) undergo dynamic changes in DNA methylation during fetal development. Methods: ANOVA and the tissue specificity index were used to identify and validate tissue-specific methylation sites. Age-associated DNA methylation signatures were identified by applying the elastic net method. Results: The lncRNA methylome landscape was characterized in four types of fetal tissue and at three gestational time points, and specific characteristics relative to the tissue of origin and developmental age were identified. Higher levels of lncRNA methylation might be involved in tissue differentiation. LncRNAs harboring age-associated methylation signatures may participate in the fetal developmental process. Conclusion: This study provides novel insights into the role of lncRNA methylomes in fetal tissue specification and development.
Collapse
Affiliation(s)
- Xin Li
- College of Bioinformatics Science & Technology, Harbin Medical University, Harbin, 150081, China.,Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yuanyuan Fu
- College of Bioinformatics Science & Technology, Harbin Medical University, Harbin, 150081, China
| | - Yue Gao
- College of Bioinformatics Science & Technology, Harbin Medical University, Harbin, 150081, China
| | - Shipeng Shang
- College of Bioinformatics Science & Technology, Harbin Medical University, Harbin, 150081, China
| | - Shuang Guo
- College of Bioinformatics Science & Technology, Harbin Medical University, Harbin, 150081, China
| | - Hanxiao Zhou
- College of Bioinformatics Science & Technology, Harbin Medical University, Harbin, 150081, China
| | - Shuqiang Qu
- Department of Pediatrics, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Shangwei Ning
- College of Bioinformatics Science & Technology, Harbin Medical University, Harbin, 150081, China
| |
Collapse
|
249
|
Siejka-Zielińska P, Cheng J, Jackson F, Liu Y, Soonawalla Z, Reddy S, Silva M, Puta L, McCain MV, Culver EL, Bekkali N, Schuster-Böckler B, Palamara PF, Mann D, Reeves H, Barnes E, Sivakumar S, Song CX. Cell-free DNA TAPS provides multimodal information for early cancer detection. SCIENCE ADVANCES 2021; 7:eabh0534. [PMID: 34516908 PMCID: PMC8442905 DOI: 10.1126/sciadv.abh0534] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 07/14/2021] [Indexed: 05/05/2023]
Abstract
Multimodal, genome-wide characterization of epigenetic and genetic information in circulating cell-free DNA (cfDNA) could enable more sensitive early cancer detection, but it is technologically challenging. Recently, we developed TET-assisted pyridine borane sequencing (TAPS), which is a mild, bisulfite-free method for base-resolution direct DNA methylation sequencing. Here, we optimized TAPS for cfDNA (cfTAPS) to provide high-quality and high-depth whole-genome cell-free methylomes. We applied cfTAPS to 85 cfDNA samples from patients with hepatocellular carcinoma (HCC) or pancreatic ductal adenocarcinoma (PDAC) and noncancer controls. From only 10 ng of cfDNA (1 to 3 ml of plasma), we generated the most comprehensive cfDNA methylome to date. We demonstrated that cfTAPS provides multimodal information about cfDNA characteristics, including DNA methylation, tissue of origin, and DNA fragmentation. Integrated analysis of these epigenetic and genetic features enables accurate identification of early HCC and PDAC.
Collapse
Affiliation(s)
- Paulina Siejka-Zielińska
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jingfei Cheng
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Felix Jackson
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Department of Computer Science, University of Oxford, Oxford, UK
| | - Yibin Liu
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Srikanth Reddy
- Oxford Transplant Centre, Churchill Hospital, Oxford, UK
| | - Michael Silva
- Department of HPB Surgery, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Luminita Puta
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Misti Vanette McCain
- Newcastle University Translational and Clinical Research Institute, The Medical School, Newcastle University, Newcastle upon Tyne, UK
- Newcastle University Centre for Cancer, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Emma L. Culver
- Peter Medawar Building and Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Noor Bekkali
- Department of Gastroenterology, John Radcliffe Hospital, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Benjamin Schuster-Böckler
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Big Data Institute, University of Oxford, Oxford, UK
| | - Pier Francesco Palamara
- Department of Statistics, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Derek Mann
- Newcastle University Translational and Clinical Research Institute, The Medical School, Newcastle University, Newcastle upon Tyne, UK
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Fibrofind, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Helen Reeves
- Newcastle University Translational and Clinical Research Institute, The Medical School, Newcastle University, Newcastle upon Tyne, UK
- Newcastle University Centre for Cancer, The Medical School, Newcastle University, Newcastle upon Tyne, UK
- Liver Unit, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Eleanor Barnes
- Peter Medawar Building and Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Shivan Sivakumar
- Department of Oncology, University of Oxford, Oxford, UK
- Department of Oncology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Chun-Xiao Song
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
250
|
Shareef SJ, Bevill SM, Raman AT, Aryee MJ, van Galen P, Hovestadt V, Bernstein BE. Extended-representation bisulfite sequencing of gene regulatory elements in multiplexed samples and single cells. Nat Biotechnol 2021; 39:1086-1094. [PMID: 33958785 PMCID: PMC8434949 DOI: 10.1038/s41587-021-00910-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 03/31/2021] [Indexed: 02/08/2023]
Abstract
The biological roles of DNA methylation have been elucidated by profiling methods based on whole-genome or reduced-representation bisulfite sequencing, but these approaches do not efficiently survey the vast numbers of non-coding regulatory elements in mammalian genomes. Here we present an extended-representation bisulfite sequencing (XRBS) method for targeted profiling of DNA methylation. Our design strikes a balance between expanding coverage of regulatory elements and reproducibly enriching informative CpG dinucleotides in promoters, enhancers and CTCF binding sites. Barcoded DNA fragments are pooled before bisulfite conversion, allowing multiplex processing and technical consistency in low-input samples. Application of XRBS to single leukemia cells enabled us to evaluate genetic copy number variations and methylation variability across individual cells. Our analysis highlights heterochromatic H3K9me3 regions as having the highest cell-to-cell variability in their methylation, likely reflecting inherent epigenetic instability of these late-replicating regions, compounded by differences in cell cycle stages among sampled cells.
Collapse
Affiliation(s)
- Sarah J. Shareef
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Samantha M. Bevill
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Ayush T. Raman
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Martin J. Aryee
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA.,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Peter van Galen
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA.,Division of Hematology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Volker Hovestadt
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA, USA.,Co-corresponding (, )
| | - Bradley E. Bernstein
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA.,Co-corresponding (, )
| |
Collapse
|