201
|
Narayan NJC, Requena D, Lalazar G, Ramos-Espiritu L, Ng D, Levin S, Shebl B, Wang R, Hammond WJ, Saltsman JA, Gehart H, Torbenson MS, Clevers H, LaQuaglia MP, Simon SM. Human liver organoids for disease modeling of fibrolamellar carcinoma. Stem Cell Reports 2022; 17:1874-1888. [PMID: 35803261 PMCID: PMC9391427 DOI: 10.1016/j.stemcr.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 11/29/2022] Open
Abstract
Fibrolamellar carcinoma (FLC) is a rare, often lethal, liver cancer affecting adolescents and young adults, for which there are no approved therapeutics. The development of therapeutics is hampered by a lack of in vitro models. Organoids have shown utility as a model system for studying many diseases. In this study, tumor tissue and the adjacent non-tumor liver were obtained at the time of surgery. The tissue was dissociated and grown as organoids. We developed 21 patient-derived organoid lines: 12 from metastases, three from the liver tumor and six from adjacent non-tumor liver. These patient-derived FLC organoids recapitulate the histologic morphology, immunohistochemistry, and transcriptome of the patient tumor. Patient-derived FLC organoids were used in a preliminary high-throughput drug screen to show proof of concept for the identification of therapeutics. This model system has the potential to improve our understanding of this rare cancer and holds significant promise for drug testing and development.
Collapse
Affiliation(s)
- Nicole J C Narayan
- Pediatric Surgical Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - David Requena
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Gadi Lalazar
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Lavoisier Ramos-Espiritu
- High Throughput and Spectroscopy Center, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Denise Ng
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Solomon Levin
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Bassem Shebl
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Ruisi Wang
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - William J Hammond
- Pediatric Surgical Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - James A Saltsman
- Pediatric Surgical Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Helmuth Gehart
- Hubrecht Institute, KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht, the Netherlands
| | - Michael S Torbenson
- Department of Laboratory Medicine and Anatomic Pathology, Mayo Clinic, Rochester, MN, USA
| | - Hans Clevers
- Hubrecht Institute, KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht, the Netherlands
| | - Michael P LaQuaglia
- Pediatric Surgical Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sanford M Simon
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
202
|
Van Nyen T, Planque M, van Wagensveld L, Duarte JAG, Zaal EA, Talebi A, Rossi M, Körner PR, Rizzotto L, Moens S, De Wispelaere W, Baiden-Amissah REM, Sonke GS, Horlings HM, Eelen G, Berardi E, Swinnen JV, Berkers CR, Carmeliet P, Lambrechts D, Davidson B, Agami R, Fendt SM, Annibali D, Amant F. Serine metabolism remodeling after platinum-based chemotherapy identifies vulnerabilities in a subgroup of resistant ovarian cancers. Nat Commun 2022; 13:4578. [PMID: 35931688 PMCID: PMC9355973 DOI: 10.1038/s41467-022-32272-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/19/2022] [Indexed: 11/21/2022] Open
Abstract
Resistance to platinum-based chemotherapy represents a major clinical challenge for many tumors, including epithelial ovarian cancer. Patients often experience several response-relapse events, until tumors become resistant and life expectancy drops to 12-15 months. Despite improved knowledge of the molecular determinants of platinum resistance, the lack of clinical applicability limits exploitation of many potential targets, leaving patients with limited options. Serine biosynthesis has been linked to cancer growth and poor prognosis in various cancer types, however its role in platinum-resistant ovarian cancer is not known. Here, we show that a subgroup of resistant tumors decreases phosphoglycerate dehydrogenase (PHGDH) expression at relapse after platinum-based chemotherapy. Mechanistically, we observe that this phenomenon is accompanied by a specific oxidized nicotinamide adenine dinucleotide (NAD+) regenerating phenotype, which helps tumor cells in sustaining Poly (ADP-ribose) polymerase (PARP) activity under platinum treatment. Our findings reveal metabolic vulnerabilities with clinical implications for a subset of platinum resistant ovarian cancers.
Collapse
Affiliation(s)
- Tom Van Nyen
- Gynecological Oncology Laboratory, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), 3000, Leuven, Belgium
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | - Mélanie Planque
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000, Leuven, Belgium
| | - Lilian van Wagensveld
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre, Maastricht, The Netherlands
- GROW, School for Oncology and Developmental Biology, Maastricht, The Netherlands
- Department of Research, Netherlands Comprehensive Cancer Organization (IKNL), Utrecht, The Netherlands
| | - Joao A G Duarte
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000, Leuven, Belgium
| | - Esther A Zaal
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH, Utrecht, The Netherlands
- Division of Cell Biology, Metabolism and Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL, Utrecht, The Netherlands
| | - Ali Talebi
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), 3000, Leuven, Belgium
| | - Matteo Rossi
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000, Leuven, Belgium
| | - Pierre-René Körner
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | - Lara Rizzotto
- TRACE PDX Platform, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), 3000, Leuven, Belgium
| | - Stijn Moens
- Gynecological Oncology Laboratory, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), 3000, Leuven, Belgium
| | - Wout De Wispelaere
- Gynecological Oncology Laboratory, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), 3000, Leuven, Belgium
| | - Regina E M Baiden-Amissah
- Gynecological Oncology Laboratory, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), 3000, Leuven, Belgium
| | - Gabe S Sonke
- Department of Medical Oncology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | - Hugo M Horlings
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | - Guy Eelen
- Laboratory of Angiogenesis and Vascular Metabolism, VIB-KU Leuven Center for Cancer Biology, VIB, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), 3000, Leuven, Belgium
| | - Emanuele Berardi
- Department of Development and Regeneration, KU Leuven, 3000, Leuven, Belgium
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), 3000, Leuven, Belgium
| | - Celia R Berkers
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH, Utrecht, The Netherlands
- Division of Cell Biology, Metabolism and Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL, Utrecht, The Netherlands
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, VIB-KU Leuven Center for Cancer Biology, VIB, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), 3000, Leuven, Belgium
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Laboratory of Angiogenesis and Vascular Heterogeneity, Department of Biomedicine, Aarhus University, 8000, Aarhus, Denmark
| | - Diether Lambrechts
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, 3000, Leuven, Belgium
- VIB Center for Cancer Biology, VIB, 3000, Leuven, Belgium
| | - Ben Davidson
- University of Oslo, Faculty of Medicine, Institute of Clinical Medicine, N-0316, Oslo, Norway
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, N-0310, Oslo, Norway
| | - Reuven Agami
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
- Erasmus MC, Department of Genetics, Rotterdam University, 3015 GD, Rotterdam, The Netherlands
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000, Leuven, Belgium
| | - Daniela Annibali
- Gynecological Oncology Laboratory, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), 3000, Leuven, Belgium.
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands.
| | - Frédéric Amant
- Gynecological Oncology Laboratory, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), 3000, Leuven, Belgium.
- Department of Obstetrics and Gynecology, University Hospitals Leuven and Department of Oncology, 3000, Leuven, Belgium.
- Centre for Gynecologic Oncology Amsterdam (CGOA), Antoni Van Leeuwenhoek-Netherlands Cancer Institute (AvL-NKI), University Medical Center (UMC), Amsterdam, The Netherlands.
| |
Collapse
|
203
|
Functional Precision Oncology: The Next Frontier to Improve Glioblastoma Outcome? Int J Mol Sci 2022; 23:ijms23158637. [PMID: 35955765 PMCID: PMC9369403 DOI: 10.3390/ijms23158637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022] Open
Abstract
Glioblastoma remains the most malignant and intrinsically resistant brain tumour in adults. Despite intensive research over the past few decades, through which numerous potentially druggable targets have been identified, virtually all clinical trials of the past 20 years have failed to improve the outcome for the vast majority of GBM patients. The observation that small subgroups of patients displayed a therapeutic response across several unsuccessful clinical trials suggests that the GBM patient population probably consists of multiple subgroups that probably all require a distinct therapeutic approach. Due to extensive inter- and intratumoral heterogeneity, assigning the right therapy to each patient remains a major challenge. Classically, bulk genetic profiling would be used to identify suitable therapies, although the success of this approach remains limited due to tumor heterogeneity and the absence of direct relationships between mutations and therapy responses in GBM. An attractive novel strategy aims at implementing methods for functional precision oncology, which refers to the evaluation of treatment efficacies and vulnerabilities of (ex vivo) living tumor cells in a highly personalized way. Such approaches are currently being implemented for other cancer types by providing rapid, translatable information to guide patient-tailored therapeutic selections. In this review, we discuss the current state of the art of transforming technologies, tools and challenges for functional precision oncology and how these could improve therapy selection for GBM patients.
Collapse
|
204
|
Ren X, Chen W, Yang Q, Li X, Xu L. Patient-derived cancer organoids for drug screening: Basic technology and clinical application. J Gastroenterol Hepatol 2022; 37:1446-1454. [PMID: 35771719 DOI: 10.1111/jgh.15930] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/16/2022] [Accepted: 06/25/2022] [Indexed: 12/13/2022]
Abstract
Cancer organoids, a three-dimensional (3D) culture system of cancer cells derived from tumor tissues, recapitulate physiological structure of the parental tumor. Different tumor organoids have been established for a variety of tumor types, such as colorectal, liver, stomach, pancreatic and brain tumors. Some tumor organoid biobanks are built to screen and discover novel antitumor drug targets. Moreover, patients-derived tumor organoids (PDOs) could predict treatment response to chemoradiotherapy, targeted therapy and immunotherapy to provide guidance for personalized cancer therapy. In this review, we provide an updated overview of tumor organoid development, summarize general approach to establish tumor organoids, and discuss the application of anti-cancer drug screening based on tumor organoid and its application in personalized therapy. We also outline the opportunities and challenges for organoids to guide precision medicine.
Collapse
Affiliation(s)
- Xiaoxue Ren
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weikang Chen
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qingxia Yang
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoxing Li
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lixia Xu
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
205
|
Hennig A, Baenke F, Klimova A, Drukewitz S, Jahnke B, Brückmann S, Secci R, Winter C, Schmäche T, Seidlitz T, Bereuter JP, Polster H, Eckhardt L, Schneider SA, Brückner S, Schmelz R, Babatz J, Kahlert C, Distler M, Hampe J, Reichert M, Zeißig S, Folprecht G, Weitz J, Aust D, Welsch T, Stange DE. Detecting drug resistance in pancreatic cancer organoids guides optimized chemotherapy treatment. J Pathol 2022; 257:607-619. [PMID: 35373359 DOI: 10.1002/path.5906] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 03/11/2022] [Accepted: 03/30/2022] [Indexed: 12/17/2023]
Abstract
Drug combination therapies for cancer treatment show high efficacy but often induce severe side effects, resulting in dose or cycle number reduction. We investigated the impact of neoadjuvant chemotherapy (neoCTx) adaptions on treatment outcome in 59 patients with pancreatic ductal adenocarcinoma (PDAC). Resections with tumor-free margins were significantly more frequent when full-dose neoCTx was applied. We determined if patient-derived organoids (PDOs) can be used to personalize poly-chemotherapy regimens by pharmacotyping of treatment-naïve and post-neoCTx PDAC PDOs. Five out of ten CTx-naïve PDO lines exhibited a differential response to either the FOLFIRINOX or the Gem/Pac regimen. NeoCTx PDOs showed a poor response to the neoadjuvant regimen that had been administered to the respective patient in 30% of cases. No significant difference in PDO response was noted when comparing modified treatments in which the least effective single drug was removed from the complete regimen. Drug testing of CTx-naïve PDAC PDOs and neoCTx PDOs may be useful to guide neoadjuvant and adjuvant regimen selection, respectively. Personalizing poly-chemotherapy regimens by omitting substances with low efficacy could potentially result in less severe side effects, thereby increasing the fraction of patients receiving a full course of neoadjuvant treatment. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Alexander Hennig
- Department of Visceral, Thoracic and Vascular Surgery, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Franziska Baenke
- Department of Visceral, Thoracic and Vascular Surgery, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Anna Klimova
- National Center for Tumor Diseases (NCT), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- Institute for Medical Informatics and Biometry, Technical University Dresden, Dresden, Germany
| | - Stephan Drukewitz
- National Center for Tumor Diseases (NCT), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- Core Unit for Molecular Tumor Diagnostics (CMTD), Technical University Dresden, Dresden, Germany
| | - Beatrix Jahnke
- Department of Visceral, Thoracic and Vascular Surgery, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Sascha Brückmann
- Institute of Pathology and Tumor- and Normal Tissue Bank of the University Cancer Center (UCC), University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Ramona Secci
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Christof Winter
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tim Schmäche
- Department of Visceral, Thoracic and Vascular Surgery, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Therese Seidlitz
- Department of Visceral, Thoracic and Vascular Surgery, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Jean-Paul Bereuter
- Department of Visceral, Thoracic and Vascular Surgery, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Heike Polster
- Department of Visceral, Thoracic and Vascular Surgery, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Lisa Eckhardt
- Core Unit for Molecular Tumor Diagnostics (CMTD), Technical University Dresden, Dresden, Germany
| | - Sidney A Schneider
- Department of Visceral, Thoracic and Vascular Surgery, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Stefan Brückner
- Department of Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Renate Schmelz
- Department of Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Jana Babatz
- Department of Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Christoph Kahlert
- Department of Visceral, Thoracic and Vascular Surgery, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Marius Distler
- Department of Visceral, Thoracic and Vascular Surgery, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Jochen Hampe
- Department of Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
- Center for Regenerative Therapies (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Maximilian Reichert
- German Cancer Consortium (DKTK), Partner Site Munich, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Translational Pancreatic Cancer Research Center, Medical Clinic and Polyclinic II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Center for Protein Assemblies (CPA), Technische Universität München, Munich, Germany
| | - Sebastian Zeißig
- Department of Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
- Center for Regenerative Therapies (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Gunnar Folprecht
- Department of Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Jürgen Weitz
- Department of Visceral, Thoracic and Vascular Surgery, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Daniela Aust
- Institute of Pathology and Tumor- and Normal Tissue Bank of the University Cancer Center (UCC), University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Thilo Welsch
- Department of Visceral, Thoracic and Vascular Surgery, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Daniel E Stange
- Department of Visceral, Thoracic and Vascular Surgery, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| |
Collapse
|
206
|
Rossi R, De Angelis ML, Xhelili E, Sette G, Eramo A, De Maria R, Cesta Incani U, Francescangeli F, Zeuner A. Lung Cancer Organoids: The Rough Path to Personalized Medicine. Cancers (Basel) 2022; 14:3703. [PMID: 35954367 PMCID: PMC9367558 DOI: 10.3390/cancers14153703] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/19/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
Lung cancer is the leading cause of cancer death worldwide. Despite significant advances in research and therapy, a dismal 5-year survival rate of only 10-20% urges the development of reliable preclinical models and effective therapeutic tools. Lung cancer is characterized by a high degree of heterogeneity in its histology, a genomic landscape, and response to therapies that has been traditionally difficult to reproduce in preclinical models. However, the advent of three-dimensional culture technologies has opened new perspectives to recapitulate in vitro individualized tumor features and to anticipate treatment efficacy. The generation of lung cancer organoids (LCOs) has encountered greater challenges as compared to organoids derived from other tumors. In the last two years, many efforts have been dedicated to optimizing LCO-based platforms, resulting in improved rates of LCO production, purity, culture timing, and long-term expansion. However, due to the complexity of lung cancer, further advances are required in order to meet clinical needs. Here, we discuss the evolution of LCO technology and the use of LCOs in basic and translational lung cancer research. Although the field of LCOs is still in its infancy, its prospective development will likely lead to new strategies for drug testing and biomarker identification, thus allowing a more personalized therapeutic approach for lung cancer patients.
Collapse
Affiliation(s)
- Rachele Rossi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (R.R.); (M.L.D.A.); (G.S.); (A.E.); (F.F.)
| | - Maria Laura De Angelis
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (R.R.); (M.L.D.A.); (G.S.); (A.E.); (F.F.)
| | - Eljona Xhelili
- Department of Surgical Sciences, Policlinico Umberto I, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy;
| | - Giovanni Sette
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (R.R.); (M.L.D.A.); (G.S.); (A.E.); (F.F.)
| | - Adriana Eramo
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (R.R.); (M.L.D.A.); (G.S.); (A.E.); (F.F.)
| | - Ruggero De Maria
- Institute of General Pathology, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy;
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Ursula Cesta Incani
- Division of Oncology, University and Hospital Trust of Verona (AOUI), Piazzale Ludovico Antonio Scuro 10, 37134 Verona, Italy;
| | - Federica Francescangeli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (R.R.); (M.L.D.A.); (G.S.); (A.E.); (F.F.)
| | - Ann Zeuner
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (R.R.); (M.L.D.A.); (G.S.); (A.E.); (F.F.)
| |
Collapse
|
207
|
Sattar RSA, Verma R, Nimisha, Kumar A, Dar GM, Apurva, Sharma AK, Kumari I, Ahmad E, Ali A, Mahajan B, Saluja SS. Diagnostic and prognostic biomarkers in colorectal cancer and the potential role of exosomes in drug delivery. Cell Signal 2022; 99:110413. [PMID: 35907519 DOI: 10.1016/j.cellsig.2022.110413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/03/2022]
Abstract
Colorectal cancer (CRC) is third most common cancer with second most common cause of death worldwide. One fourth to one fifth of the CRC cases are detected at advance stage. Early detection of colorectal cancer might help in decreasing mortality and morbidity worldwide. CRC being a heterogeneous disease, new non-invasive approaches are needed to complement and improve the screening and management of CRC. Reliable and early detectable biomarkers would improve diagnosis, prognosis, therapeutic responses, and will enable the prediction of drug response and recurrence risk. Over the past decades molecular research has demonstrated the potentials of CTCs, ctDNAs, circulating mRNA, ncRNAs, and exosomes as tumor biomarkers. Non-invasive screening approaches using fecal samples for identification of altered gut microbes in CRC is also gaining attention. Exosomes can be potential candidates that can be employed in the drug delivery system. Further, the integration of in vitro, in vivo and in silico models that involve CRC biomarkers will help to understand the interactions occurring at the cellular level. This review summarizes recent update on CRC biomarkers and their application along with the nanoparticles followed by the application of organoid culture in CRC.
Collapse
Affiliation(s)
- Real Sumayya Abdul Sattar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Renu Verma
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Nimisha
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Arun Kumar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Ghulam Mehdi Dar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Apurva
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Abhay Kumar Sharma
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Indu Kumari
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Ejaj Ahmad
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Asgar Ali
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Bhawna Mahajan
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India; Department of Biochemistry, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Sundeep Singh Saluja
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India; Department of GI Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India.
| |
Collapse
|
208
|
Yan Y, Cheong IH, Chen P, Li X, Wang X, Wang H. Patient-derived rectal cancer organoids—applications in basic and translational cancer research. Front Oncol 2022; 12:922430. [PMID: 35957894 PMCID: PMC9360321 DOI: 10.3389/fonc.2022.922430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most commonly diagnosed cancers and among the leading causes of death in both men and women. Rectal cancer (RC) is particularly challenging compared with colon cancer as the treatment after diagnosis of RC is more complex on account of its narrow anatomical location in the pelvis adjacent to the urogenital organs. More and more existing studies have begun to refine the research on RC and colon cancer separately. Early diagnosis and multiple treatment strategies optimize outcomes for individual patients. However, the need for more accurate and precise models to facilitate RC research is underscored due to the heterogeneity of clinical response and morbidity interrelated with radical surgery. Organoids generated from biopsies of patients have developed as powerful models to recapitulate many aspects of their primary tissue, consisting of 3-D self-organizing structures, which shed great light on the applications in both biomedical and clinical research. As the preclinical research models for RC are usually confused with colon cancer, research on patient-derived RC organoid models enable personalized analysis of cancer pathobiology, organizational function, and tumor initiation and progression. In this review, we discuss the various applications of patient-derived RC organoids over the past two years in basic cancer biology and clinical translation, including sequencing analysis, drug screening, precision therapy practice, tumor microenvironment studies, and genetic engineering opportunities.
Collapse
Affiliation(s)
- Yumeng Yan
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Io Hong Cheong
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peizhan Chen
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoguang Li
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xianli Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Hui Wang,
| |
Collapse
|
209
|
Doffe F, Bonini F, Lakis E, Terry S, Chouaib S, Savagner P. Designing Organoid Models to Monitor Cancer Progression, Plasticity and Resistance: The Right Set Up for the Right Question. Cancers (Basel) 2022; 14:cancers14153559. [PMID: 35892818 PMCID: PMC9330027 DOI: 10.3390/cancers14153559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 01/25/2023] Open
Abstract
The recent trend in 3D cell modeling has fostered the emergence of a wide range of models, addressing very distinct goals ranging from the fundamental exploration of cell–cell interactions to preclinical assays for personalized medicine. It is clear that no single model will recapitulate the complexity and dynamics of in vivo situations. The key is to define the critical points, achieve a specific goal and design a model where they can be validated. In this report, we focused on cancer progression. We describe our model which is designed to emulate breast carcinoma progression during the invasive phase. We chose to provide topological clues to the target cells by growing them on microsupports, favoring a polarized epithelial organization before they are embedded in a 3D matrix. We then watched for cell organization and differentiation for these models, adding stroma cells then immune cells to follow and quantify cell responses to drug treatment, including quantifying cell death and viability, as well as morphogenic and invasive properties. We used model cell lines including Comma Dβ, MCF7 and MCF10A mammary epithelial cells as well as primary breast cancer cells from patient-derived xenografts (PDX). We found that fibroblasts impacted cell response to Docetaxel and Palbociclib. We also found that NK92 immune cells could target breast cancer cells within the 3D configuration, providing quantitative monitoring of cell cytotoxicity. We also tested several sources for the extracellular matrix and selected a hyaluronan-based matrix as a promising alternative to mouse tumor basement membrane extracts for primary human cancer cells. Overall, we validated a new 3D model designed for breast cancer for preclinical use in personalized medicine.
Collapse
Affiliation(s)
- Flora Doffe
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, 94805 Villejuif, France; (F.D.); (S.T.); (S.C.)
| | - Fabien Bonini
- Department of Pathology and Immunology, Faculty of Medicine, University Geneva, 1205 Geneva, Switzerland;
| | | | - Stéphane Terry
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, 94805 Villejuif, France; (F.D.); (S.T.); (S.C.)
| | - Salem Chouaib
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, 94805 Villejuif, France; (F.D.); (S.T.); (S.C.)
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Pierre Savagner
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, 94805 Villejuif, France; (F.D.); (S.T.); (S.C.)
- Correspondence:
| |
Collapse
|
210
|
Bladder Cancer Patient-derived Organoids and Avatars for Personalized Cancer Discovery. Eur Urol Focus 2022; 8:657-659. [DOI: 10.1016/j.euf.2022.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/01/2022] [Accepted: 07/19/2022] [Indexed: 12/29/2022]
|
211
|
Wu W, Li X, Yu S. Patient-derived Tumour Organoids: A Bridge between Cancer Biology and Personalised Therapy. Acta Biomater 2022; 146:23-36. [PMID: 35533925 DOI: 10.1016/j.actbio.2022.04.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 02/06/2023]
Abstract
Patient-derived tumour organoids (PDOs) have revolutionised our understanding of cancer biology and the applications of personalised therapies. These advancements are principally ascribed to the ability of PDOs to consistently recapitulate and maintain the genomic, proteomic and morphological characteristics of parental tumours. Given these characteristics, PDOs (and their extended biobanks) are a representative preclinical model eminently suited to translate relevant scientific findings into personalized therapies rapidly. Here, we summarise recent advancements in PDOs from the perspective of cancer biology and clinical applications, focusing on the current challenges and opportunities of reconstructing and standardising more sophisticated PDO models. STATEMENT OF SIGNIFICANCE: Patient-derived tumour organoids (PDOs), three-dimensional (3D) self-assembled organotypic structures, have revolutionised our understanding of cancer biology and the applications of personalised therapies. These advancements are principally ascribed to the ability of PDOs to consistently recapitulate and maintain the genomic, proteomic and morphological characteristics of parental tumours. Given these characteristics, PDOs (and their extended biobanks) are a representative preclinical model eminently suited to translate relevant scientific findings into personalized therapies rapidly.
Collapse
Affiliation(s)
- Wence Wu
- Departments of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Nanli, Panjiayuan, Chaoyang District, Beijing, 100021, China
| | - Xiaoyang Li
- Departments of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Nanli, Panjiayuan, Chaoyang District, Beijing, 100021, China
| | - Shengji Yu
- Departments of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Nanli, Panjiayuan, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
212
|
Kumari R, Xu X, Li HQX. Translational and Clinical Relevance of PDX-Derived Organoid Models in Oncology Drug Discovery and Development. Curr Protoc 2022; 2:e431. [PMID: 35789132 DOI: 10.1002/cpz1.431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Patient-derived cancer disease models conserve many key features of the original human cancers, potentially allowing higher predictive power than traditional cell line models. Accordingly, in vivo patient-derived xenografts (PDX) are frequently utilized in preclinical and translational oncology studies as patient surrogates for population-based screens ("mouse clinical trials"), for which large PDX biobanks have been generated over the last decade from various cancer types. In vitro patient-derived organoids (PDO) have recently emerged as a disruptive technology, enabling early "patient in a dish" clinical trials. Like PDX, PDOs retain the histology/genomics of the original tumor and are highly predictive of the clinical response. Organoids derived from adult stem cells (ASC) in patient tissue can function as mini-organs. They have greater advantages over other 3D in vitro systems, making them highly predictive, reliable, and consistent in vitro models. Large biobanks enable the adoption of organoids in early drug screening and patient selection. PDX biobanks, as a source of human material, have been used to create 3D in vitro screens, but with limitations. However, creating organoids from the ASCs residing in PDXs has been successfully used as a rapid and cost-effective way to enable higher throughput in vitro screens and generate matched in vitro/in vivo model pairs that retain genomic, histopathological, and pharmacology profiles. This overview summarizes the generation of matched in vitro/in vivo models from patient material, the advantages over other systems, and the applications to drug discovery. © 2022 Wiley Periodicals LLC.
Collapse
Affiliation(s)
| | - Xiaoxi Xu
- Crown Bioscience Inc., Beijing, China
| | | |
Collapse
|
213
|
Monberg ME, Geiger H, Lee JJ, Sharma R, Semaan A, Bernard V, Wong J, Wang F, Liang S, Swartzlander DB, Stephens BM, Katz MHG, Chen K, Robine N, Guerrero PA, Maitra A. Occult polyclonality of preclinical pancreatic cancer models drives in vitro evolution. Nat Commun 2022; 13:3652. [PMID: 35752636 PMCID: PMC9233687 DOI: 10.1038/s41467-022-31376-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/15/2022] [Indexed: 11/26/2022] Open
Abstract
Heterogeneity is a hallmark of cancer. The advent of single-cell technologies has helped uncover heterogeneity in a high-throughput manner in different cancers across varied contexts. Here we apply single-cell sequencing technologies to reveal inherent heterogeneity in assumptively monoclonal pancreatic cancer (PDAC) cell lines and patient-derived organoids (PDOs). Our findings reveal a high degree of both genomic and transcriptomic polyclonality in monolayer PDAC cell lines, custodial variation induced by growing apparently identical cell lines in different laboratories, and transcriptomic shifts in transitioning from 2D to 3D spheroid growth models. Our findings also call into question the validity of widely available immortalized, non-transformed pancreatic lines as contemporaneous "control" lines in experiments. We confirm these findings using a variety of independent assays, including but not limited to whole exome sequencing, single-cell copy number variation sequencing (scCNVseq), single-nuclei assay for transposase-accessible chromatin with sequencing, fluorescence in-situ hybridization, and single-cell RNA sequencing (scRNAseq). We map scRNA expression data to unique genomic clones identified by orthogonally-gathered scCNVseq data of these same PDAC cell lines. Further, while PDOs are known to reflect the cognate in vivo biology of the parental tumor, we identify transcriptomic shifts during ex vivo passage that might hamper their predictive abilities over time. The impact of these findings on rigor and reproducibility of experimental data generated using established preclinical PDAC models between and across laboratories is uncertain, but a matter of concern.
Collapse
Affiliation(s)
- Maria E Monberg
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- University of Texas MD Anderson Cancer Center Graduate School of Biomedical Sciences, Houston, TX, USA.
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | | | - Jaewon J Lee
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Alexander Semaan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vincent Bernard
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Justin Wong
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fang Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shaoheng Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel B Swartzlander
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bret M Stephens
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Matthew H G Katz
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Paola A Guerrero
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anirban Maitra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
214
|
Liu G, Xiao X, Xia Y, Huang W, Chen W, Xu J, Chen S, Wang H, Wei J, Li H, Shu M, Lu X, Zhang C, He Y. Organoids From Mucinous Appendiceal Adenocarcinomas as High-Fidelity Models for Individual Therapy. Front Med (Lausanne) 2022; 9:829033. [PMID: 35721089 PMCID: PMC9201037 DOI: 10.3389/fmed.2022.829033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 04/25/2022] [Indexed: 12/29/2022] Open
Abstract
Background Mucinous appendiceal adenocarcinoma (MAA) is a rare, heterogeneous disease. Patients with unrespectable mucinous appendiceal adenocarcinoma presenting with peritoneal spread are treated by intraperitoneal chemotherapy, hyperthermic intraperitoneal chemotherapy, systemic chemotherapy, or targeted therapy. However, there are no guidelines for efficacious drugs against mucinous appendiceal adenocarcinoma. Therefore, relevant high-fidelity models should be investigated to identify effective drugs for individual therapy. Methods Surgical tumor specimens were obtained from a mucinous appendiceal adenocarcinoma patient. The tissue was digested and organoid culture was established. H&E and immunohistochemistry staining as well as DNA sequencing was performed on tissue and organoid. The pathological characteristics and gene mutations of the organoid were compared to those of the original tumor. Drug sensitivity tests were performed on organoid and the patient clinical responds to chemotherapy and targeted therapy was compared. Results Organoids were successfully established and stably passaged. Pathological characteristics of organoids including H&E staining and expression of protein markers (CK20, CDX-2, STAB2, CD7, PAX8) were consistent to those of the original tumor. Moreover, the organoids carried the same gene mutations as the primary tumor. Sensitivity of the organoids to chemotherapeutic drugs and tyrosine kinase inhibitors included: 5-FU (IC50 43.95 μM), Oxaliplatin (IC50 23.49 μM), SN38 (IC50 1.02 μM), Apatinib (IC50 0.10 μM), Dasatinib (IC50 2.27 μM), Docetaxel (IC50 5.26 μM), Regorafenib (IC50 18.90 μM), and Everolimus (IC50 9.20 μM). The sensitivities of organoid to these drugs were comparable to those of the patient's clinical responses. Conclusion The mucinous appendiceal adenocarcinoma organoid model which retained the characteristics of the primary tumor was successfully established. Combined organoid-based drug screening and high throughput sequencing provided a promising way for mucinous appendiceal adenocarcinoma treatment.
Collapse
Affiliation(s)
- Guangyao Liu
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xing Xiao
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yujian Xia
- Department of Gastrointestinal Surgery, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Weibing Huang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Wei Chen
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Jiannan Xu
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Songyao Chen
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Huijin Wang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Jitao Wei
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Huan Li
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Man Shu
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaofang Lu
- Department of Pathology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Changhua Zhang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yulong He
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.,Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
215
|
Zhang Z, Kong X, Ligtenberg MA, van Hal-van Veen SE, Visser NL, de Bruijn B, Stecker K, van der Helm PW, Kuilman T, Hoefsmit EP, Vredevoogd DW, Apriamashvili G, Baars B, Voest EE, Klarenbeek S, Altelaar M, Peeper DS. RNF31 inhibition sensitizes tumors to bystander killing by innate and adaptive immune cells. Cell Rep Med 2022; 3:100655. [PMID: 35688159 PMCID: PMC9245005 DOI: 10.1016/j.xcrm.2022.100655] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/17/2022] [Accepted: 05/17/2022] [Indexed: 11/09/2022]
Abstract
Tumor escape mechanisms for immunotherapy include deficiencies in antigen presentation, diminishing adaptive CD8+ T cell antitumor activity. Although innate natural killer (NK) cells are triggered by loss of MHC class I, their response is often inadequate. To increase tumor susceptibility to both innate and adaptive immune elimination, we performed parallel genome-wide CRISPR-Cas9 knockout screens under NK and CD8+ T cell pressure. We identify all components, RNF31, RBCK1, and SHARPIN, of the linear ubiquitination chain assembly complex (LUBAC). Genetic and pharmacologic ablation of RNF31, an E3 ubiquitin ligase, strongly sensitizes cancer cells to NK and CD8+ T cell killing. This occurs in a tumor necrosis factor (TNF)-dependent manner, causing loss of A20 and non-canonical IKK complexes from TNF receptor complex I. A small-molecule RNF31 inhibitor sensitizes colon carcinoma organoids to TNF and greatly enhances bystander killing of MHC antigen-deficient tumor cells. These results merit exploration of RNF31 inhibition as a clinical pharmacological opportunity for immunotherapy-refractory cancers. Parallel CRISPR screens in tumor cells identify NK and T cell susceptibility genes Ablation of LUBAC ubiquitination complex sensitizes tumors to immune elimination Small-molecule RNF31 inhibition sensitizes tumor cells in TNF-dependent fashion RNF31 inhibition strongly enhances immune bystander killing
Collapse
Affiliation(s)
- Zhengkui Zhang
- Division of Molecular Oncology and Immunology, Oncode Institute, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Xiangjun Kong
- Division of Molecular Oncology and Immunology, Oncode Institute, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Maarten A Ligtenberg
- Division of Molecular Oncology and Immunology, Oncode Institute, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Susan E van Hal-van Veen
- Division of Molecular Oncology and Immunology, Oncode Institute, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Nils L Visser
- Division of Molecular Oncology and Immunology, Oncode Institute, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Beaunelle de Bruijn
- Division of Molecular Oncology and Immunology, Oncode Institute, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Kelly Stecker
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, and Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Pim W van der Helm
- Division of Molecular Oncology and Immunology, Oncode Institute, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Thomas Kuilman
- Division of Molecular Oncology and Immunology, Oncode Institute, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Esmée P Hoefsmit
- Division of Molecular Oncology and Immunology, Oncode Institute, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - David W Vredevoogd
- Division of Molecular Oncology and Immunology, Oncode Institute, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Georgi Apriamashvili
- Division of Molecular Oncology and Immunology, Oncode Institute, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Beau Baars
- Division of Molecular Oncology and Immunology, Oncode Institute, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Emile E Voest
- Division of Molecular Oncology and Immunology, Oncode Institute, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Sjoerd Klarenbeek
- Experimental Animal Pathology, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Maarten Altelaar
- Proteomics Core Facility, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, and Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Daniel S Peeper
- Division of Molecular Oncology and Immunology, Oncode Institute, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands.
| |
Collapse
|
216
|
Patient Derived Ex-Vivo Cancer Models in Drug Development, Personalized Medicine, and Radiotherapy. Cancers (Basel) 2022; 14:cancers14123006. [PMID: 35740672 PMCID: PMC9220792 DOI: 10.3390/cancers14123006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary This review article highlights gaps in the current system of drug development and personalized medicine for cancer therapy. The ex vivo model system using tissue biopsy from patients will advance the development of the predictive disease specific biomarker, drug screening and assessment of treatment response on a personalized basis. Although this ex vivo system demonstrated promises, there are challenges and limitations which need to be mitigated for further advancement and better applications. Abstract The field of cancer research is famous for its incremental steps in improving therapy. The consistent but slow rate of improvement is greatly due to its meticulous use of consistent cancer biology models. However, as we enter an era of increasingly personalized cancer care, including chemo and radiotherapy, our cancer models must be equally able to be applied to all individuals. Patient-derived organoid (PDO) and organ-in-chip (OIC) models based on the micro-physiological bioengineered platform have already been considered key components for preclinical and translational studies. Accounting for patient variability is one of the greatest challenges in the crossover from preclinical development to clinical trials and patient derived organoids may offer a steppingstone between the two. In this review, we highlight how incorporating PDO’s and OIC’s into the development of cancer therapy promises to increase the efficiency of our therapeutics.
Collapse
|
217
|
Larsen BM, Cancino A, Shaxted JM, Salahudeen AA. Protocol for drug screening of patient-derived tumor organoids using high-content fluorescent imaging. STAR Protoc 2022; 3:101407. [PMID: 35620075 PMCID: PMC9127194 DOI: 10.1016/j.xpro.2022.101407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
High-content imaging of tumor organoids (TOs) treated with therapeutic agents provides detailed cell viability readouts at the organoid level. In contrast, most used protocols provide one number per well. While requiring the use of inverted microscopy with an automated stage, this protocol can provide critical information about heterogeneous responses of TOs to various treatments. This protocol describes a technique for culturing and drug testing TOs using fluorescent indicators of cell viability with high reproducibility. For complete details on the use and execution of this protocol, please refer to Larsen et al. (2021).
Collapse
|
218
|
Molecular Targets and Mechanisms of Hedyotis diffusa- Scutellaria barbata Herb Pair for the Treatment of Colorectal Cancer Based on Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6186662. [PMID: 35707465 PMCID: PMC9192289 DOI: 10.1155/2022/6186662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/26/2022] [Indexed: 11/29/2022]
Abstract
Objective: Hedyotis diffusa-Scutellaria barbata herb pair (HS) has therapeutic effects on a variety of cancers, and this study aims to systematically explore the multiple mechanisms of HS in the treatment of colorectal cancer (CRC). Methods. The active ingredients of HS were obtained from TCMSP, and the potential targets related to these ingredients were screened from the STITCH, SuperPred, and Swiss TargetPrediction databases. Targets associated with CRC were retrieved by Drugbank, TTD, DisGeNET, and GeneCards. We used a Venn diagram to screen the intersection targets and used Cytoscape to construct the herb-ingredient-target-disease network, and the core targets were selected. The Go analysis and KEGG pathway annotation were performed by R language software. We used PyMol and Autodock Vina to achieve molecular docking of core ingredients and targets. Results: A total of 33 active ingredients were obtained from the HS, and 762 CRC-related targets were reserved from the four databases. We got 170 intersection targets to construct the network and found that the four ingredients with the most targets were quercetin, luteolin, baicalein, and dinatin, which were the core ingredients. The PPI analysis showed that the core targets were STAT3, TP53, MAPK3, AKT1, JUN, EGFR, MYC, VEGFA, EGF, and CTNNB1. Molecular docking results showed that these core ingredients had good binding potential with core targets, especially the docking of each component with MAPK obtained the lowest binding energy. HS acts simultaneously on various signaling pathways related to CRC, including the PI3K-Akt signaling pathway, proteoglycans in cancer, and the MAPK signaling pathway. Conclusions: This study systematically analyzed the active ingredients, core targets, and central mechanisms of HS in the treatment of CRC. It reveals the role of HS targeting PI3K-Akt signaling and MAPK signaling pathways in the treatment of CRC. We hope that our research could bring a new perspective to the therapy of CRC and find new anticancer drugs.
Collapse
|
219
|
Gupta K, Jones JC, Farias VDA, Mackeyev Y, Singh PK, Quiñones-Hinojosa A, Krishnan S. Identification of Synergistic Drug Combinations to Target KRAS-Driven Chemoradioresistant Cancers Utilizing Tumoroid Models of Colorectal Adenocarcinoma and Recurrent Glioblastoma. Front Oncol 2022; 12:840241. [PMID: 35664781 PMCID: PMC9158132 DOI: 10.3389/fonc.2022.840241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/28/2022] [Indexed: 11/20/2022] Open
Abstract
Treatment resistance is observed in all advanced cancers. Colorectal cancer (CRC) presenting as colorectal adenocarcinoma (COAD) is the second leading cause of cancer deaths worldwide. Multimodality treatment includes surgery, chemotherapy, and targeted therapies with selective utilization of immunotherapy and radiation therapy. Despite the early success of anti-epidermal growth factor receptor (anti-EGFR) therapy, treatment resistance is common and often driven by mutations in APC, KRAS, RAF, and PI3K/mTOR and positive feedback between activated KRAS and WNT effectors. Challenges in the direct targeting of WNT regulators and KRAS have caused alternative actionable targets to gain recent attention. Utilizing an unbiased drug screen, we identified combinatorial targeting of DDR1/BCR-ABL signaling axis with small-molecule inhibitors of EGFR-ERBB2 to be potentially cytotoxic against multicellular spheroids obtained from WNT-activated and KRAS-mutant COAD lines (HCT116, DLD1, and SW480) independent of their KRAS mutation type. Based on the data-driven approach using available patient datasets (The Cancer Genome Atlas (TCGA)), we constructed transcriptomic correlations between gene DDR1, with an expression of genes for EGFR, ERBB2-4, mitogen-activated protein kinase (MAPK) pathway intermediates, BCR, and ABL and genes for cancer stem cell reactivation, cell polarity, and adhesion; we identified a positive association of DDR1 with EGFR, ERBB2, BRAF, SOX9, and VANGL2 in Pan-Cancer. The evaluation of the pathway network using the STRING database and Pathway Commons database revealed DDR1 protein to relay its signaling via adaptor proteins (SHC1, GRB2, and SOS1) and BCR axis to contribute to the KRAS-PI3K-AKT signaling cascade, which was confirmed by Western blotting. We further confirmed the cytotoxic potential of our lead combination involving EGFR/ERBB2 inhibitor (lapatinib) with DDR1/BCR-ABL inhibitor (nilotinib) in radioresistant spheroids of HCT116 (COAD) and, in an additional devastating primary cancer model, glioblastoma (GBM). GBMs overexpress DDR1 and share some common genomic features with COAD like EGFR amplification and WNT activation. Moreover, genetic alterations in genes like NF1 make GBMs have an intrinsically high KRAS activity. We show the combination of nilotinib plus lapatinib to exhibit more potent cytotoxic efficacy than either of the drugs administered alone in tumoroids of patient-derived recurrent GBMs. Collectively, our findings suggest that combinatorial targeting of DDR1/BCR-ABL with EGFR-ERBB2 signaling may offer a therapeutic strategy against stem-like KRAS-driven chemoradioresistant tumors of COAD and GBM, widening the window for its applications in mainstream cancer therapeutics.
Collapse
Affiliation(s)
- Kshama Gupta
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States
| | - Jeremy C Jones
- Department of Oncology, Mayo Clinic, Jacksonville, FL, United States
| | | | - Yuri Mackeyev
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Pankaj K Singh
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Alfredo Quiñones-Hinojosa
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States.,Department of Oncology, Mayo Clinic, Jacksonville, FL, United States.,Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, United States.,Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Sunil Krishnan
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
220
|
Skala MC, Deming DA, Kratz JD. Technologies to Assess Drug Response and Heterogeneity in Patient-Derived Cancer Organoids. Annu Rev Biomed Eng 2022; 24:157-177. [PMID: 35259932 PMCID: PMC9177801 DOI: 10.1146/annurev-bioeng-110220-123503] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Patient-derived cancer organoids (PDCOs) are organotypic 3D cultures grown from patient tumor samples. PDCOs provide an exciting opportunity to study drug response and heterogeneity within and between patients. This research can guide new drug development and inform clinical treatment planning. We review technologies to assess PDCO drug response and heterogeneity, discuss best practices for clinically relevant drug screens, and assert the importance of quantifying single-cell and organoid heterogeneity to characterize response. Autofluorescence imaging of PDCO growth and metabolic activity is highlighted as a compelling method to monitor single-cell and single-organoid response robustly and reproducibly. We also speculate on the future of PDCOs in clinical practice and drug discovery.Future development will require standardization of assessment methods for both morphology and function in PDCOs, increased throughput for new drug development, prospective validation with patient outcomes, and robust classification algorithms.
Collapse
Affiliation(s)
- Melissa C Skala
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA;
- Morgridge Institute for Research, Madison, Wisconsin, USA
- University of Wisconsin-Madison Carbone Cancer Center, Madison, Wisconsin, USA
| | - Dustin A Deming
- University of Wisconsin-Madison Carbone Cancer Center, Madison, Wisconsin, USA
- Division of Hematology Medical Oncology and Palliative Care, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA; ,
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jeremy D Kratz
- University of Wisconsin-Madison Carbone Cancer Center, Madison, Wisconsin, USA
- Division of Hematology Medical Oncology and Palliative Care, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA; ,
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
221
|
Betge J, Rindtorff N, Sauer J, Rauscher B, Dingert C, Gaitantzi H, Herweck F, Srour-Mhanna K, Miersch T, Valentini E, Boonekamp KE, Hauber V, Gutting T, Frank L, Belle S, Gaiser T, Buchholz I, Jesenofsky R, Härtel N, Zhan T, Fischer B, Breitkopf-Heinlein K, Burgermeister E, Ebert MP, Boutros M. The drug-induced phenotypic landscape of colorectal cancer organoids. Nat Commun 2022; 13:3135. [PMID: 35668108 PMCID: PMC9170716 DOI: 10.1038/s41467-022-30722-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 05/12/2022] [Indexed: 12/14/2022] Open
Abstract
Patient-derived organoids resemble the biology of tissues and tumors, enabling ex vivo modeling of human diseases. They have heterogeneous morphologies with unclear biological causes and relationship to treatment response. Here, we use high-throughput, image-based profiling to quantify phenotypes of over 5 million individual colorectal cancer organoids after treatment with >500 small molecules. Integration of data using multi-omics modeling identifies axes of morphological variation across organoids: Organoid size is linked to IGF1 receptor signaling, and cystic vs. solid organoid architecture is associated with LGR5 + stemness. Treatment-induced organoid morphology reflects organoid viability, drug mechanism of action, and is biologically interpretable. Inhibition of MEK leads to cystic reorganization of organoids and increases expression of LGR5, while inhibition of mTOR induces IGF1 receptor signaling. In conclusion, we identify shared axes of variation for colorectal cancer organoid morphology, their underlying biological mechanisms, and pharmacological interventions with the ability to move organoids along them. The heterogeneity underlying cancer organoid phenotypes is not yet well understood. Here, the authors develop an imaging analysis assay for high throughput phenotypic screening of colorectal organoids that allows to define specific morphological changes that occur following different drug treatments.
Collapse
Affiliation(s)
- Johannes Betge
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, and Heidelberg University, Medical Faculty Mannheim, Department of Cell and Molecular Biology, Heidelberg, Germany.,Heidelberg University, Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Mannheim, Germany.,German Cancer Research Center (DKFZ), Junior Clinical Cooperation Unit Translational Gastrointestinal Oncology and Preclinical Models, Heidelberg, Germany.,DKFZ-Hector Cancer Institute at University Medical Center Mannheim, Mannheim, Germany.,Mannheim Cancer Center, Mannheim, Germany
| | - Niklas Rindtorff
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, and Heidelberg University, Medical Faculty Mannheim, Department of Cell and Molecular Biology, Heidelberg, Germany
| | - Jan Sauer
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, and Heidelberg University, Medical Faculty Mannheim, Department of Cell and Molecular Biology, Heidelberg, Germany.,German Cancer Research Center (DKFZ), Computational Genome Biology Group, Heidelberg, Germany
| | - Benedikt Rauscher
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, and Heidelberg University, Medical Faculty Mannheim, Department of Cell and Molecular Biology, Heidelberg, Germany
| | - Clara Dingert
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, and Heidelberg University, Medical Faculty Mannheim, Department of Cell and Molecular Biology, Heidelberg, Germany
| | - Haristi Gaitantzi
- Heidelberg University, Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Mannheim, Germany.,Mannheim Cancer Center, Mannheim, Germany
| | - Frank Herweck
- Heidelberg University, Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Mannheim, Germany.,Mannheim Cancer Center, Mannheim, Germany
| | - Kauthar Srour-Mhanna
- Heidelberg University, Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Mannheim, Germany.,German Cancer Research Center (DKFZ), Junior Clinical Cooperation Unit Translational Gastrointestinal Oncology and Preclinical Models, Heidelberg, Germany.,DKFZ-Hector Cancer Institute at University Medical Center Mannheim, Mannheim, Germany
| | - Thilo Miersch
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, and Heidelberg University, Medical Faculty Mannheim, Department of Cell and Molecular Biology, Heidelberg, Germany
| | - Erica Valentini
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, and Heidelberg University, Medical Faculty Mannheim, Department of Cell and Molecular Biology, Heidelberg, Germany
| | - Kim E Boonekamp
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, and Heidelberg University, Medical Faculty Mannheim, Department of Cell and Molecular Biology, Heidelberg, Germany
| | - Veronika Hauber
- Heidelberg University, Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Mannheim, Germany.,Mannheim Cancer Center, Mannheim, Germany
| | - Tobias Gutting
- Heidelberg University, Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Mannheim, Germany.,Mannheim Cancer Center, Mannheim, Germany.,Department of Internal Medicine IV, Heidelberg University, Heidelberg, Germany
| | - Larissa Frank
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, and Heidelberg University, Medical Faculty Mannheim, Department of Cell and Molecular Biology, Heidelberg, Germany
| | - Sebastian Belle
- Heidelberg University, Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Mannheim, Germany.,Mannheim Cancer Center, Mannheim, Germany
| | - Timo Gaiser
- Mannheim Cancer Center, Mannheim, Germany.,Heidelberg University, Institute of Pathology, University Medical Center Mannheim, Medical Faculty Mannheim, Mannheim, Germany
| | - Inga Buchholz
- Heidelberg University, Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Mannheim, Germany.,Mannheim Cancer Center, Mannheim, Germany
| | - Ralf Jesenofsky
- Heidelberg University, Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Mannheim, Germany.,Mannheim Cancer Center, Mannheim, Germany
| | - Nicolai Härtel
- Heidelberg University, Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Mannheim, Germany.,Mannheim Cancer Center, Mannheim, Germany
| | - Tianzuo Zhan
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, and Heidelberg University, Medical Faculty Mannheim, Department of Cell and Molecular Biology, Heidelberg, Germany.,Heidelberg University, Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Mannheim, Germany.,Mannheim Cancer Center, Mannheim, Germany
| | - Bernd Fischer
- German Cancer Research Center (DKFZ), Computational Genome Biology Group, Heidelberg, Germany
| | - Katja Breitkopf-Heinlein
- Heidelberg University, Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Mannheim, Germany.,Mannheim Cancer Center, Mannheim, Germany
| | - Elke Burgermeister
- Heidelberg University, Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Mannheim, Germany.,Mannheim Cancer Center, Mannheim, Germany
| | - Matthias P Ebert
- Heidelberg University, Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Mannheim, Germany. .,DKFZ-Hector Cancer Institute at University Medical Center Mannheim, Mannheim, Germany. .,Mannheim Cancer Center, Mannheim, Germany.
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, and Heidelberg University, Medical Faculty Mannheim, Department of Cell and Molecular Biology, Heidelberg, Germany. .,German Cancer Consortium (DKTK), Heidelberg, Germany.
| |
Collapse
|
222
|
Ding S, Hsu C, Wang Z, Natesh NR, Millen R, Negrete M, Giroux N, Rivera GO, Dohlman A, Bose S, Rotstein T, Spiller K, Yeung A, Sun Z, Jiang C, Xi R, Wilkin B, Randon PM, Williamson I, Nelson DA, Delubac D, Oh S, Rupprecht G, Isaacs J, Jia J, Chen C, Shen JP, Kopetz S, McCall S, Smith A, Gjorevski N, Walz AC, Antonia S, Marrer-Berger E, Clevers H, Hsu D, Shen X. Patient-derived micro-organospheres enable clinical precision oncology. Cell Stem Cell 2022; 29:905-917.e6. [PMID: 35508177 PMCID: PMC9177814 DOI: 10.1016/j.stem.2022.04.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/17/2022] [Accepted: 04/07/2022] [Indexed: 02/09/2023]
Abstract
Patient-derived xenografts (PDXs) and patient-derived organoids (PDOs) have been shown to model clinical response to cancer therapy. However, it remains challenging to use these models to guide timely clinical decisions for cancer patients. Here, we used droplet emulsion microfluidics with temperature control and dead-volume minimization to rapidly generate thousands of micro-organospheres (MOSs) from low-volume patient tissues, which serve as an ideal patient-derived model for clinical precision oncology. A clinical study of recently diagnosed metastatic colorectal cancer (CRC) patients using an MOS-based precision oncology pipeline reliably assessed tumor drug response within 14 days, a timeline suitable for guiding treatment decisions in the clinic. Furthermore, MOSs capture original stromal cells and allow T cell penetration, providing a clinical assay for testing immuno-oncology (IO) therapies such as PD-1 blockade, bispecific antibodies, and T cell therapies on patient tumors.
Collapse
Affiliation(s)
- Shengli Ding
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA; Xilis, Inc., Durham, NC 27713, USA
| | - Carolyn Hsu
- College of Arts and Sciences, University of Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zhaohui Wang
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA; Xilis, Inc., Durham, NC 27713, USA
| | - Naveen R Natesh
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Rosemary Millen
- Oncode, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), University Medical Center (UMC) Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Marcos Negrete
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Nicholas Giroux
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Grecia O Rivera
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Anders Dohlman
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Shree Bose
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Tomer Rotstein
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | | | - Athena Yeung
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Zhiguo Sun
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Chongming Jiang
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rui Xi
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | | | - Peggy M Randon
- National Institute of Environmental Health Sciences (NIEHS), Durham, NC 27709, USA
| | - Ian Williamson
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | | | | | - Sehwa Oh
- Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC 27708, USA
| | - Gabrielle Rupprecht
- Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC 27708, USA
| | - James Isaacs
- Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC 27708, USA
| | - Jingquan Jia
- Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC 27708, USA
| | - Chao Chen
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - John Paul Shen
- Department of Gastrointestinal Medical Oncology, MD Anderson, Houston, TX 77030, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, MD Anderson, Houston, TX 77030, USA
| | - Shannon McCall
- Department of Pathology, Duke University, Durham, NC 27708, USA
| | | | - Nikolche Gjorevski
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center, Basel 4058, Switzerland
| | - Antje-Christine Walz
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center, Basel 4058, Switzerland
| | - Scott Antonia
- Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC 27708, USA
| | - Estelle Marrer-Berger
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center, Basel 4058, Switzerland
| | - Hans Clevers
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands; Oncode, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), University Medical Center (UMC) Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; Roche Pharmaceutical Research and Early Development, Roche Innovation Center, Basel 4058, Switzerland.
| | - David Hsu
- Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC 27708, USA.
| | - Xiling Shen
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA; Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| |
Collapse
|
223
|
Geevimaan K, Guo JY, Shen CN, Jiang JK, Fann CSJ, Hwang MJ, Shui JW, Lin HT, Wang MJ, Shih HC, Li AFY, Chang SC, Yang SH, Chen JY. Patient-Derived Organoid Serves as a Platform for Personalized Chemotherapy in Advanced Colorectal Cancer Patients. Front Oncol 2022; 12:883437. [PMID: 35719949 PMCID: PMC9205170 DOI: 10.3389/fonc.2022.883437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Background Addition of oxaliplatin to adjuvant 5-FU has significantly improved the disease-free survival and served as the first line adjuvant chemotherapy in advanced colorectal cancer (CRC) patients. However, a fraction of patients remains refractory to oxaliplatin-based treatment. It is urgent to establish a preclinical platform to predict the responsiveness toward oxaliplatin in CRC patients as well as to improve the efficacy in the resistant patients. Methods A living biobank of organoid lines were established from advanced CRC patients. Oxaliplatin sensitivity was assessed in patient-derived tumor organoids (PDOs) in vitro and in PDO-xenografted tumors in mice. Based on in vitro oxaliplatin IC50 values, PDOs were classified into either oxaliplatin-resistant (OR) or oxaliplatin-sensitive (OS) PDOs. The outcomes of patients undergone oxaliplatin-based treatment was followed. RNA-sequencing and bioinformatics tools were performed for molecular profiling of OR and OS PDOs. Oxaliplatin response signatures were submitted to Connectivity Map algorithm to identify perturbagens that may antagonize oxaliplatin resistance. Results Oxaliplatin sensitivity in PDOs was shown to correlate to oxaliplatin-mediated inhibition on PDO xenograft tumors in mice, and parallelled clinical outcomes of CRC patients who received FOLFOX treatment. Molecular profiling of transcriptomes revealed oxaliplatin-resistant and -sensitive PDOs as two separate entities, each being characterized with distinct hallmarks and gene sets. Using Leave-One-Out Cross Validation algorithm and Logistic Regression model, 18 gene signatures were identified as predictive biomarkers for oxaliplatin response. Candidate drugs identified by oxaliplatin response signature-based strategies, including inhibitors targeting c-ABL and Notch pathway, DNA/RNA synthesis inhibitors, and HDAC inhibitors, were demonstrated to potently and effectively increase oxaliplatin sensitivity in the resistant PDOs. Conclusions PDOs are useful in informing decision-making on oxaliplatin-based chemotherapy and in designing personalized chemotherapy in CRC patients.
Collapse
Affiliation(s)
- Khamushavalli Geevimaan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Genomic Research Center, Academia Sinica, Taipei, Taiwan
| | - Jing-You Guo
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chia-Ning Shen
- Genomic Research Center, Academia Sinica, Taipei, Taiwan
| | - Jeng-Kai Jiang
- Division of Colon and Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Cathy S. J. Fann
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ming-Jing Hwang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jr-Wen Shui
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hsiu-Ting Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Mei-Jung Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hsuan-Cheng Shih
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Anna Fen-Yau Li
- Department of Pathology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shih-Ching Chang
- Division of Colon and Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Shung-Haur Yang
- Division of Colon and Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Department of Surgery, National Yang Ming Chiao Tung University Hospital, Yilan, Taiwan
- *Correspondence: Shung-Haur Yang, ; Jeou-Yuan Chen,
| | - Jeou-Yuan Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- *Correspondence: Shung-Haur Yang, ; Jeou-Yuan Chen,
| |
Collapse
|
224
|
Roelofsen L, Kaptein P, Thommen D. Multimodal predictors for precision immunotherapy. IMMUNO-ONCOLOGY TECHNOLOGY 2022; 14:100071. [PMID: 35755892 PMCID: PMC9216437 DOI: 10.1016/j.iotech.2022.100071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Immune checkpoint blockade (ICB) unleashes immune cells to attack tumors, thereby inducing durable clinical responses in many cancer types. The number of patients responding to ICB is modest, however, and combination treatments are likely needed to overcome the multifaceted suppressive pathways active in the tumor microenvironment (TME). The development of precision immuno-oncology (IO) strategies allowing to identify the optimal treatment of each patient upfront is therefore a pivotal question in the field of cancer immunotherapy. Although single-parameter biomarkers can enrich for response to ICB, their predictive capacity is far from perfect and their clinical utility is complicated by their continuous nature and the difficulty to determine cut-offs that reliably distinguish responding patients from those without clinical benefit. The antitumor immune response that is induced or reinvigorated by immunotherapy is a complex cascade of events requiring the interplay of multiple cell types. To move towards precision IO, it is therefore essential to understand for each individual patient at which level(s) the antitumor immune response failed and how it can be therapeutically restored. Holistic approaches to profile human tumor microenvironments and treatment-induced responses may help to identify critical rate-limiting factors of antitumor immunity. These factors need to be translated into clinically applicable multimodal predictors that allow for the selection of the best IO treatment. This review discusses strategies to (i) create such holistic views of antitumor immunity, (ii) identify measurable parameters capturing the complexity of a patient's immune status, and (iii) facilitate the incorporation of precision IO research in the clinic.
Collapse
Affiliation(s)
| | | | - D.S. Thommen
- Division of Molecular Oncology & Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
225
|
Wang B, Xue Y, Zhai W. Integration of Tumor Microenvironment in Patient-Derived Organoid Models Help Define Precision Medicine of Renal Cell Carcinoma. Front Immunol 2022; 13:902060. [PMID: 35592336 PMCID: PMC9111175 DOI: 10.3389/fimmu.2022.902060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/04/2022] [Indexed: 12/11/2022] Open
Abstract
Renal cell carcinoma (RCC) is a common urological tumor, with a poor prognosis, as the result of insensitivity to chemotherapy and radiotherapy. About 20%–30% of patients with RCC have metastasis at the first diagnosis, so only systemic treatment is possible. Due to the heterogeneity of renal tumors, responses to drugs differ from person to person. Consequently, patient-derived organoid, highly recapitulating tumor heterogeneity, becomes a promising model for high-throughput ex vivo drug screening and thus guides the drug choice of patients with RCC. Systemic treatment of RCC mainly targets the tumor microenvironment, including neovasculature and immune cells. We reviewed several methods with which patient-derived organoid models mimic the heterogeneity of not only tumor epithelium but also the tumor microenvironment. We further discuss some new aspects of the development of patient-derived organoids, preserving in vivo conditions in patients with RCC.
Collapse
Affiliation(s)
- Bingran Wang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yizheng Xue
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Zhai
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
226
|
Pritchard JR, Lee MJ, Peyton SR. Materials-driven approaches to understand extrinsic drug resistance in cancer. SOFT MATTER 2022; 18:3465-3472. [PMID: 35445686 PMCID: PMC9380814 DOI: 10.1039/d2sm00071g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Metastatic cancer has a poor prognosis, because it is broadly disseminated and associated with both intrinsic and acquired drug resistance. Critical unmet needs in effectively killing drug resistant cancer cells include overcoming the drug desensitization characteristics of some metastatic cancers/lesions, and tailoring therapeutic regimens to both the tumor microenvironment and the genetic profiles of the resident cancer cells. Bioengineers and materials scientists are developing technologies to determine how metastatic sites exclude therapies, and how extracellular factors (including cells, proteins, metabolites, extracellular matrix, and abiotic factors) at metastatic sites significantly affect drug pharmacodynamics. Two looming challenges are determining which feature, or combination of features, from the tumor microenvironment drive drug resistance, and what the relative impact is of extracellular signals vs. intrinsic cell genetics in determining drug response. Sophisticated systems biology tools that can de-convolve a crowded network of signals and responses, as well as controllable microenvironments capable of providing discrete and tunable extracellular cues can help us begin to interrogate the high dimensional interactions governing drug resistance in patients.
Collapse
Affiliation(s)
- Justin R Pritchard
- Department of Biomedical Engineering, Pennsylvania State University, State College PA, USA
| | - Michael J Lee
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Shelly R Peyton
- Department of Chemical Engineering, University of Massachusetts Amherst, 240 Thatcher Way, Life Sciences Laboratory N531, Amherst, MA 01003, USA.
| |
Collapse
|
227
|
Shang L, Ye F, Li M, Zhao Y. Spatial confinement toward creating artificial living systems. Chem Soc Rev 2022; 51:4075-4093. [PMID: 35502858 DOI: 10.1039/d1cs01025e] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lifeforms are regulated by many physicochemical factors, and these factors could be controlled to play a role in the construction of artificial living systems. Among these factors, spatial confinement is an important one, which mediates biological behaviors at multiscale levels and participates in the biomanufacturing processes accordingly. This review describes how spatial confinement, as a fundamental biological phenomenon, provides cues for the construction of artificial living systems. Current knowledge about the role of spatial confinement in mediating individual cell behavior, collective cellular behavior, and tissue-level behavior are categorized. Endeavors on the synthesis of biomacromolecules, artificial cells, engineered tissues, and organoids in spatially confined bioreactors are then emphasized. After that, we discuss the cutting-edge applications of spatially confined artificial living systems in biomedical fields. Finally, we conclude by assessing the remaining challenges and future trends in the context of fundamental science, technical improvement, and practical applications.
Collapse
Affiliation(s)
- Luoran Shang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China. .,Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Fangfu Ye
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. .,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health); Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China.
| | - Ming Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China. .,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health); Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China.
| |
Collapse
|
228
|
Liu F, Dai Z, Cheng Q, Xu L, Huang L, Liu Z, Li X, Wang N, Wang G, Wang L, Wang Z. LncRNA-targeting bio-scaffold mediates triple immune effects for postoperative colorectal cancer immunotherapy. Biomaterials 2022; 284:121485. [DOI: 10.1016/j.biomaterials.2022.121485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/19/2022] [Accepted: 03/22/2022] [Indexed: 12/13/2022]
|
229
|
Engel RM, Jardé T, Oliva K, Kerr G, Chan WH, Hlavca S, Nickless D, Archer SK, Yap R, Ranchod P, Bell S, Niap A, Koulis C, Chong A, Wilkins S, Dale TC, Hollins AJ, McMurrick PJ, Abud HE. Modeling colorectal cancer: A bio-resource of 50 patient-derived organoid lines. J Gastroenterol Hepatol 2022; 37:898-907. [PMID: 35244298 PMCID: PMC10138743 DOI: 10.1111/jgh.15818] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/07/2022] [Accepted: 02/16/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIM Colorectal cancer (CRC) is the second leading cause of cancer death worldwide. To improve outcomes for these patients, we need to develop new treatment strategies. Personalized cancer medicine, where patients are treated based on the characteristics of their own tumor, has gained significant interest for its promise to improve outcomes and reduce unnecessary side effects. The purpose of this study was to examine the potential utility of patient-derived colorectal cancer organoids (PDCOs) in a personalized cancer medicine setting. METHODS Patient-derived colorectal cancer organoids were derived from tissue obtained from treatment-naïve patients undergoing surgical resection for the treatment of CRC. We examined the recapitulation of key histopathological, molecular, and phenotypic characteristics of the primary tumor. RESULTS We created a bio-resource of PDCOs from primary and metastatic CRCs. Key histopathological features were retained in PDCOs when compared with the primary tumor. Additionally, a cohort of 12 PDCOs, and their corresponding primary tumors and normal sample, were characterized through whole exome sequencing and somatic variant calling. These PDCOs exhibited a high level of concordance in key driver mutations when compared with the primary tumor. CONCLUSIONS Patient-derived colorectal cancer organoids recapitulate characteristics of the tissue from which they are derived and are a powerful tool for cancer research. Further research will determine their utility for predicting patient outcomes in a personalized cancer medicine setting.
Collapse
Affiliation(s)
- Rebekah M Engel
- Department of Anatomy and Developmental BiologyMonash UniversityMelbourneVictoriaAustralia
- Development and Stem Cells ProgramMonash Biomedicine Discovery Institute, Monash UniversityMelbourneVictoriaAustralia
- Department of Surgery, Cabrini HospitalCabrini Monash UniversityMelbourneVictoriaAustralia
| | - Thierry Jardé
- Department of Anatomy and Developmental BiologyMonash UniversityMelbourneVictoriaAustralia
- Development and Stem Cells ProgramMonash Biomedicine Discovery Institute, Monash UniversityMelbourneVictoriaAustralia
- Centre for Cancer ResearchHudson Institute of Medical ResearchMelbourneVictoriaAustralia
| | - Karen Oliva
- Department of Surgery, Cabrini HospitalCabrini Monash UniversityMelbourneVictoriaAustralia
| | - Genevieve Kerr
- Department of Anatomy and Developmental BiologyMonash UniversityMelbourneVictoriaAustralia
- Development and Stem Cells ProgramMonash Biomedicine Discovery Institute, Monash UniversityMelbourneVictoriaAustralia
| | - Wing Hei Chan
- Department of Anatomy and Developmental BiologyMonash UniversityMelbourneVictoriaAustralia
- Development and Stem Cells ProgramMonash Biomedicine Discovery Institute, Monash UniversityMelbourneVictoriaAustralia
| | - Sara Hlavca
- Department of Anatomy and Developmental BiologyMonash UniversityMelbourneVictoriaAustralia
- Development and Stem Cells ProgramMonash Biomedicine Discovery Institute, Monash UniversityMelbourneVictoriaAustralia
| | - David Nickless
- Anatomical Pathology DepartmentCabrini Pathology, Cabrini HospitalMelbourneVictoriaAustralia
| | - Stuart K Archer
- Monash Bioinformatics PlatformMonash UniversityMelbourneVictoriaAustralia
| | - Raymond Yap
- Department of Surgery, Cabrini HospitalCabrini Monash UniversityMelbourneVictoriaAustralia
| | - Pravin Ranchod
- Department of Surgery, Cabrini HospitalCabrini Monash UniversityMelbourneVictoriaAustralia
| | - Stephen Bell
- Department of Surgery, Cabrini HospitalCabrini Monash UniversityMelbourneVictoriaAustralia
| | - Ann Niap
- Anatomical Pathology DepartmentCabrini Pathology, Cabrini HospitalMelbourneVictoriaAustralia
| | - Christine Koulis
- Department of Surgery, Cabrini HospitalCabrini Monash UniversityMelbourneVictoriaAustralia
| | - Ashley Chong
- Department of Anatomy and Developmental BiologyMonash UniversityMelbourneVictoriaAustralia
- Development and Stem Cells ProgramMonash Biomedicine Discovery Institute, Monash UniversityMelbourneVictoriaAustralia
| | - Simon Wilkins
- Department of Surgery, Cabrini HospitalCabrini Monash UniversityMelbourneVictoriaAustralia
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive MedicineMonash UniversityMelbourneVictoriaAustralia
| | - Trevor C Dale
- European Cancer Stem Cell Research Institute (ECSCRI)CardiffUK
- School of BiosciencesCardiff UniversityCardiffUK
| | - Andrew J Hollins
- European Cancer Stem Cell Research Institute (ECSCRI)CardiffUK
- School of BiosciencesCardiff UniversityCardiffUK
| | - Paul J McMurrick
- Department of Surgery, Cabrini HospitalCabrini Monash UniversityMelbourneVictoriaAustralia
| | - Helen E Abud
- Department of Anatomy and Developmental BiologyMonash UniversityMelbourneVictoriaAustralia
- Development and Stem Cells ProgramMonash Biomedicine Discovery Institute, Monash UniversityMelbourneVictoriaAustralia
- Department of Surgery, Cabrini HospitalCabrini Monash UniversityMelbourneVictoriaAustralia
| |
Collapse
|
230
|
Zhao P, Han Y, Nguyen H, Corey E, Gao X. Magneto-Endosomalytic Therapy for Cancer. Adv Healthc Mater 2022; 11:e2101010. [PMID: 34355530 DOI: 10.1002/adhm.202101010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/07/2021] [Indexed: 12/20/2022]
Abstract
A remarkably simple yet effective mode of cancer treatment is reported by repurposing clinically approved magnetic nanoparticles (MNPs). Intracellular nanoparticle self-assembly directed by static parallel magnetic fields leads to cell death in targeted tissues while leaving other cells and organs intact. This simple concept opens a new avenue to treat cancer, capitalizing on nanosciences and the nanoparticle (NP) design principles accumulated in the past decades.
Collapse
Affiliation(s)
- Pengfei Zhao
- Department of Bioengineering University of Washington 3720 15th Ave NE Seattle WA 98195 USA
| | - Yan Han
- Department of Bioengineering University of Washington 3720 15th Ave NE Seattle WA 98195 USA
| | - Holly Nguyen
- Department of Urology University of Washington 1959 NE Pacific St Seattle WA 98195 USA
| | - Eva Corey
- Department of Urology University of Washington 1959 NE Pacific St Seattle WA 98195 USA
| | - Xiaohu Gao
- Department of Bioengineering University of Washington 3720 15th Ave NE Seattle WA 98195 USA
| |
Collapse
|
231
|
Wang Y, Li Y, Sheng Z, Deng W, Yuan H, Wang S, Liu Y. Advances of Patient-Derived Organoids in Personalized Radiotherapy. Front Oncol 2022; 12:888416. [PMID: 35574360 PMCID: PMC9102799 DOI: 10.3389/fonc.2022.888416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/28/2022] [Indexed: 11/16/2022] Open
Abstract
Patient-derived organoids (PDO), based on the advanced three-dimensional (3D) culture technology, can provide more relevant physiological and pathological cancer models, which is especially beneficial for developing and optimizing cancer therapeutic strategies. Radiotherapy (RT) is a cornerstone of curative and palliative cancer treatment, which can be performed alone or integrated with surgery, chemotherapy, immunotherapy, or targeted therapy in clinical care. Among all cancer therapies, RT has great local control, safety and effectiveness, and is also cost-effective per life-year gained for patients. It has been reported that combing RT with chemotherapy or immunotherapy or radiosensitizer drugs may enhance treatment efficacy at faster rates and lower cost. However, very few FDA-approved combinations of RT with drugs or radiosensitizers exist due to the lack of accurate and relevant preclinical models. Meanwhile, radiation dose escalation may increase treatment efficacy and induce more toxicity of normal tissue as well, which has been studied by conducting various clinical trials, very expensive and time-consuming, often burdensome on patients and sometimes with controversial results. The surged PDO technology may help with the preclinical test of RT combination and radiation dose escalation to promote precision radiation oncology, where PDO can recapitulate individual patient’ tumor heterogeneity, retain characteristics of the original tumor, and predict treatment response. This review aims to introduce recent advances in the PDO technology and personalized radiotherapy, highlight the strengths and weaknesses of the PDO cancer models, and finally examine the existing RT-related PDO trials or applications to harness personalized and precision radiotherapy.
Collapse
Affiliation(s)
- Yuenan Wang
- Department of Radiation Oncology, Peking University Shenzhen Hospital, Shenzhen, China
- *Correspondence: Yuenan Wang, ; Yajie Liu, ; Shubin Wang,
| | - Ye Li
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zonghai Sheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Weiwei Deng
- Department of Mechanical and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Hongyan Yuan
- Department of Mechanical and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Shubin Wang
- Department of Medical Oncology, Peking University Shenzhen Hospital, Shenzhen, China
- *Correspondence: Yuenan Wang, ; Yajie Liu, ; Shubin Wang,
| | - Yajie Liu
- Department of Radiation Oncology, Peking University Shenzhen Hospital, Shenzhen, China
- *Correspondence: Yuenan Wang, ; Yajie Liu, ; Shubin Wang,
| |
Collapse
|
232
|
Patient-Derived Organoids of Colorectal Cancer: A Useful Tool for Personalized Medicine. J Pers Med 2022; 12:jpm12050695. [PMID: 35629118 PMCID: PMC9147270 DOI: 10.3390/jpm12050695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 11/18/2022] Open
Abstract
Colorectal cancer is one of the most important malignancies worldwide, with high incidence and mortality rates. Several studies have been conducted using two-dimensional cultured cell lines; however, these cells do not represent a study model of patient tumors very well. In recent years, advancements in three-dimensional culture methods have facilitated the establishment of patient-derived organoids, which have become indispensable for molecular biology-related studies of colorectal cancer. Patient-derived organoids are useful in both basic science and clinical practice; they can help predict the sensitivity of patients with cancer to chemotherapy and radiotherapy and provide the right treatment to the right patient. Regarding precision medicine, combining gene panel testing and organoid-based screening can increase the effectiveness of medical care. In this study, we review the development of three-dimensional culture methods and present the most recent information on the clinical application of patient-derived organoids. Moreover, we discuss the problems and future prospects of organoid-based personalized medicine.
Collapse
|
233
|
Hsu KS, Adileh M, Martin ML, Makarov V, Chen J, Wu C, Bodo S, Klingler S, Sauvé CEG, Szeglin BC, Smith JJ, Fuks Z, Riaz N, Chan TA, Nishimura M, Paty PB, Kolesnick R. Colorectal cancer develops inherent radiosensitivity that can be predicted using patient-derived organoids. Cancer Res 2022; 82:2298-2312. [PMID: 35472075 DOI: 10.1158/0008-5472.can-21-4128] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/21/2022] [Accepted: 04/22/2022] [Indexed: 11/16/2022]
Abstract
Identifying colorectal cancer patient populations responsive to chemotherapy or chemoradiation therapy before surgery remains a challenge. Recently validated mouse protocols for organoid irradiation employ the single hit multi-target (SHMT) algorithm, which yields a single value, the D0, as a measure of inherent tissue radiosensitivity. Here we translate these protocols to human tissue to evaluate radioresponsiveness of patient-derived organoids (PDOs) generated from normal human intestines and rectal tumors of patients undergoing neoadjuvant therapy. While PDOs from adenomas with a logarithmically-expanded Lgr5+-intestinal stem cell population retain the radioresistant phenotype of normal colorectal PDOs, malignant transformation yields PDOs from a large patient subpopulation displaying marked radiosensitivity due to reduced homologous recombination-mediated DNA repair. A proof-of-principle pilot clinical trial demonstrated that rectal cancer patient responses to neoadjuvant chemoradiation, including complete response, correlate closely with their PDO D0 values. Overall, upon transformation to colorectal adenocarcinoma, broad radiation sensitivity occurs in a large subset of patients that can be identified using SHMT analysis of PDO radiation responses.
Collapse
Affiliation(s)
- Kuo-Shun Hsu
- Memorial Sloan Kettering Cancer Center, New York City, United States
| | - Mohammad Adileh
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | | | - Vladimir Makarov
- Memorial Sloan Kettering Cancer Center, Cleveland, OH, United States
| | - Jiapeng Chen
- Memorial Sloan Kettering Cancer Center, Manhattan, New York, United States
| | - Chao Wu
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Sahra Bodo
- Memorial Sloan Kettering Cancer Center, New York, New York, United States
| | - Stefan Klingler
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | | | - Bryan C Szeglin
- Albert Einstein College of Medicine, Bronx, NY, United States
| | - J Joshua Smith
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Zvi Fuks
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Nadeem Riaz
- Memorial Sloan Kettering Cancer Center, Manhattan, New York, United States
| | | | - Makoto Nishimura
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Philip B Paty
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | | |
Collapse
|
234
|
Predicting Colorectal Cancer Using Residual Deep Learning with Nursing Care. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:7996195. [PMID: 35291423 PMCID: PMC8898865 DOI: 10.1155/2022/7996195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/02/2021] [Accepted: 02/03/2022] [Indexed: 02/02/2023]
Abstract
Presently, colorectal cancer is the second most dangerous cancer; around 13% of people have been affected; and it requires an effective image analysis and earlier cancer prediction (IAECP) system for reducing the mortality rate. Here, the IAECP system uses MRI radio imaging for predicting colorectal cancer. During this process, high- and low-level features are required to examine cancer in an earlier stage. Due to the limitation of the conventional feature extraction process, both features are difficult to extract from cancer suffered locations. Hence, a deep learning system (DLS) is used to examine the entire bowel MRI image to identify the cancer-affected location, feature extraction, and feature training process. Furthermore, the DLS-based IAECP system helps improve the overall colorectal cancer identification accuracy for further process. The derived bowel features are trained by applying the residual convolution network, which minimizes the error between predicted and actual values. Finally, the test query images are compared with the trained image by applying the sum, which is more absolute to the cross-correlation template feature matching (SACC) algorithm. The experimental process is performed using 100,000 histological data sets, which is considered a publicly available data set. Moreover, the introduced method does not use generic features, whereas the deep learning features help improve the overall IAECP prediction rate (99.8%) ratio as predicted at lab-scale analysis.
Collapse
|
235
|
Bae J, Choi YS, Cho G, Jang SJ. The Patient-Derived Cancer Organoids: Promises and Challenges as Platforms for Cancer Discovery. Cancers (Basel) 2022; 14:cancers14092144. [PMID: 35565273 PMCID: PMC9105149 DOI: 10.3390/cancers14092144] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 02/01/2023] Open
Abstract
The cancer burden is rapidly increasing in most countries, and thus, new anticancer drugs for effective cancer therapy must be developed. Cancer model systems that recapitulate the biological processes of human cancers are one of the cores of the drug development process. PDCO has emerged as a unique model that preserves the genetic, physiological, and histologic characteristics of original cancer, including inter- and intratumoral heterogeneities. Due to these advantages, the PCDO model is increasingly investigated for anticancer drug screening and efficacy testing, preclinical patient stratification, and precision medicine for selecting the most effective anticancer therapy for patients. Here, we review the prospects and limitations of PDCO compared to the conventional cancer models. With advances in culture success rates, co-culture systems with the tumor microenvironment, organoid-on-a-chip technology, and automation technology, PDCO will become the most promising model to develop anticancer drugs and precision medicine.
Collapse
Affiliation(s)
- JuneSung Bae
- Department of Research and Development, OncoClew Co., Ltd., Seoul 04778, Korea; (J.B.); (Y.S.C.); (G.C.)
| | - Yun Sik Choi
- Department of Research and Development, OncoClew Co., Ltd., Seoul 04778, Korea; (J.B.); (Y.S.C.); (G.C.)
| | - Gunsik Cho
- Department of Research and Development, OncoClew Co., Ltd., Seoul 04778, Korea; (J.B.); (Y.S.C.); (G.C.)
| | - Se Jin Jang
- Department of Research and Development, OncoClew Co., Ltd., Seoul 04778, Korea; (J.B.); (Y.S.C.); (G.C.)
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, Seoul 05505, Korea
- Correspondence: ; Tel.: +82-2-498-2644; Fax: +82-2-498-2655
| |
Collapse
|
236
|
Wang Z, Yu Y, Wu P, Ye Q, Guo Y, Zhang X, Xi L, Li Q, Jin Y, Zhou D, Luo Y, Peng S, Li J. Lactate promotes the growth of patient-derived organoids from hepatopancreatobiliary cancers via ENO1/HIF1α pathway and does not affect their drug sensitivities. Cell Death Dis 2022; 8:214. [PMID: 35443744 PMCID: PMC9021221 DOI: 10.1038/s41420-022-01014-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 11/28/2022]
Abstract
The long culture duration of patient-derived organoids (PDOs) have severely limited their clinical applications. The aim of this study was to determine the effect of lactate supplementation on the growth, genetic profiles and drug sensitivities of PDOs from hepatopancreatobiliary tumors. LM3, Huh7, Panc02, and RBE cell lines were cultured as organoids in the presence or absence of lactate, and total protein was extracted to measure the expression of α-enolase (ENO1), hypoxia-inducible factor-1α (HIF1α), AKT, and PI3 kinase (PI3K). Thirteen hepatopancreatobiliary tumor specimens were collected during surgical resection and cultured as PDOs with or without l-lactate. Hematoxylin and eosin (H&E) staining and immunohistochemical staining were performed on the original tissues and PDOs to compare their pathological structures, and their genetic profiles were analyzed by whole-exome sequencing (WES). The sensitivity of the PDOs to gemcitabine, 5-fluorouracil, cisplatin, paclitaxel, ivosidenib, infigratinib, and lenvatinib were evaluated in terms of cell viability. Peripheral blood mononuclear cells (PBMCs) were isolated and co-cultured with PDOs to test the sensitivity of PDOs to tislelizumab. The addition of 20 mM lactate significantly promoted the growth of LM3 and Huh 7 organoids by 217% and 36%, respectively, compared to the control group, and the inhibition of lactate transporter decreased their growth. The HIF1α/ENO1/AKT/PI3K pathway was also activated by lactate. The inhibition of enolase also partly decreased the growth of organoids treated with lactate. Furthermore, 20 mM lactate increased the viability of 9 PDOs from 135% to 317% without affecting their pathological features. The genetic similarity, in terms of single nucleotide variations, insertions, and deletions, between original tissues and lactate-treated PDOs ranged from 83.2% to 94.1%, and that between the untreated and lactate-treated PDOs was at least 93.2%. Furthermore, the addition of lactate did not significantly change the dose–response curves of the PDOs to chemotherapeutic drugs, targeted drugs, and immune checkpoint inhibitor, especially for the drugs to which the cells were sensitive. Thus, lactate can be added to the culture medium of PDOs to promote their growth without altering their genetic profiles and drug sensitivities.
Collapse
Affiliation(s)
- Zhiwei Wang
- Department of Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang Province, China
| | - Yuanquan Yu
- Department of Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang Province, China
| | - Peiyao Wu
- Gastroenterology Endoscopy Center, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 210029, Nanjing, Jiangsu Province, China
| | - Qinghuang Ye
- Department of Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang Province, China
| | - Yinghao Guo
- Department of Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang Province, China
| | - Xiaoxiao Zhang
- Department of Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang Province, China
| | - Longfu Xi
- Department of Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang Province, China
| | - Qi Li
- Department of Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang Province, China
| | - Yun Jin
- Department of Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang Province, China
| | - Donger Zhou
- Department of Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang Province, China
| | - Yan Luo
- Department of Biochemistry and Cancer Institute of the Second Affiliated Hospital (Key Laboratory of Cancer Prevention and Intervention of China National MOE), Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shuyou Peng
- Department of Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang Province, China
| | - Jiangtao Li
- Department of Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
237
|
Wang Z, Zhao S, Lin X, Chen G, Kang J, Ma Z, Wang Y, Li Z, Xiao X, He A, Xiang D. Application of Organoids in Carcinogenesis Modeling and Tumor Vaccination. Front Oncol 2022; 12:855996. [PMID: 35371988 PMCID: PMC8968694 DOI: 10.3389/fonc.2022.855996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/17/2022] [Indexed: 12/12/2022] Open
Abstract
Organoids well recapitulate organ-specific functions from their tissue of origin and remain fundamental aspects of organogenesis. Organoids are widely applied in biomedical research, drug discovery, and regenerative medicine. There are various cultivated organoid systems induced by adult stem cells and pluripotent stem cells, or directly derived from primary tissues. Researchers have drawn inspiration by combination of organoid technology and tissue engineering to produce organoids with more physiological relevance and suitable for translational medicine. This review describes the value of applying organoids for tumorigenesis modeling and tumor vaccination. We summarize the application of organoids in tumor precision medicine. Extant challenges that need to be conquered to make this technology be more feasible and precise are discussed.
Collapse
Affiliation(s)
- Zeyu Wang
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shasha Zhao
- State Key Laboratory of Oncogenes and Related Genes, the Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaolin Lin
- Department of Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guanglong Chen
- Department of General Surgery, Zhengzhou University, Affiliated Cancer Hospital (Henan Cancer Hospital), Zhengzhou, China
| | - Jiawei Kang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | | | - Yiming Wang
- Shanghai OneTar Biomedicine, Shanghai, China
| | - Zhi Li
- Department of General Surgery, Zhengzhou University, Affiliated Cancer Hospital (Henan Cancer Hospital), Zhengzhou, China
| | - Xiuying Xiao
- Department of Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aina He
- Department of Oncology, The Sixth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dongxi Xiang
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, The Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
238
|
KLF5 inhibition overcomes oxaliplatin resistance in patient-derived colorectal cancer organoids by restoring apoptotic response. Cell Death Dis 2022; 13:303. [PMID: 35379798 PMCID: PMC8980070 DOI: 10.1038/s41419-022-04773-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/17/2022] [Accepted: 03/25/2022] [Indexed: 12/18/2022]
Abstract
Oxaliplatin resistance is a major challenge in the treatment of colorectal cancer (CRC). Many molecular targeted drugs for refractory CRC have been developed to solve CRC drug resistance, but their effectiveness and roles in the progression of CRC and oxaliplatin resistance remain unclear. Here, we successfully constructed CRC PDOs and selected the Kruppel-like factor 5 (KLF5) inhibitor ML264 as the research object based on the results of the in vitro drug screening assay. ML264 significantly restored oxaliplatin sensitivity in CRC PDOs by restoring the apoptotic response, and this effect was achieved by inhibiting the KLF5/Bcl-2/caspase3 signaling pathway. Chromatin immunoprecipitation (ChIP) and luciferase reporter assays verified that KLF5 promoted the transcription of Bcl-2 in CRC cells. KLF5 inhibition also overcame oxaliplatin resistance in xenograft tumors. Taken together, our study demonstrated that ML264 can restore oxaliplatin sensitivity in CRC PDOs by restoring the apoptotic response. KLF5 may be a potential therapeutic target for oxaliplatin-resistant CRC. PDOs have a strong potential for evaluating inhibitors and drug combination therapy in a preclinical environment.
Collapse
|
239
|
Herpers B, Eppink B, James MI, Cortina C, Cañellas-Socias A, Boj SF, Hernando-Momblona X, Glodzik D, Roovers RC, van de Wetering M, Bartelink-Clements C, Zondag-van der Zande V, Mateos JG, Yan K, Salinaro L, Basmeleh A, Fatrai S, Maussang D, Lammerts van Bueren JJ, Chicote I, Serna G, Cabellos L, Ramírez L, Nuciforo P, Salazar R, Santos C, Villanueva A, Stephan-Otto Attolini C, Sancho E, Palmer HG, Tabernero J, Stratton MR, de Kruif J, Logtenberg T, Clevers H, Price LS, Vries RGJ, Batlle E, Throsby M. Functional patient-derived organoid screenings identify MCLA-158 as a therapeutic EGFR × LGR5 bispecific antibody with efficacy in epithelial tumors. NATURE CANCER 2022; 3:418-436. [PMID: 35469014 DOI: 10.1038/s43018-022-00359-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 03/04/2022] [Indexed: 12/19/2022]
Abstract
Patient-derived organoids (PDOs) recapitulate tumor architecture, contain cancer stem cells and have predictive value supporting personalized medicine. Here we describe a large-scale functional screen of dual-targeting bispecific antibodies (bAbs) on a heterogeneous colorectal cancer PDO biobank and paired healthy colonic mucosa samples. More than 500 therapeutic bAbs generated against Wingless-related integration site (WNT) and receptor tyrosine kinase (RTK) targets were functionally evaluated by high-content imaging to capture the complexity of PDO responses. Our drug discovery strategy resulted in the generation of MCLA-158, a bAb that specifically triggers epidermal growth factor receptor degradation in leucine-rich repeat-containing G-protein-coupled receptor 5-positive (LGR5+) cancer stem cells but shows minimal toxicity toward healthy LGR5+ colon stem cells. MCLA-158 exhibits therapeutic properties such as growth inhibition of KRAS-mutant colorectal cancers, blockade of metastasis initiation and suppression of tumor outgrowth in preclinical models for several epithelial cancer types.
Collapse
Affiliation(s)
- Bram Herpers
- OcellO BV, Leiden, The Netherlands
- Crown Bioscience Netherlands BV, Leiden, The Netherlands
| | | | - Mark I James
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Carme Cortina
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona, Spain
- CIBERONC, Madrid, Spain
| | - Adrià Cañellas-Socias
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona, Spain
- CIBERONC, Madrid, Spain
| | - Sylvia F Boj
- Hubrecht Organoid Technology (HUB), Utrecht, the Netherlands
| | - Xavier Hernando-Momblona
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona, Spain
- CIBERONC, Madrid, Spain
| | - Dominik Glodzik
- Wellcome Sanger Institute, Hinxton, UK
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | | | - Marc van de Wetering
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
- Oncode Institute, Hubrecht Institute, Utrecht, the Netherlands
| | | | | | - Jara García Mateos
- OcellO BV, Leiden, The Netherlands
- Crown Bioscience Netherlands BV, Leiden, The Netherlands
| | - Kuan Yan
- OcellO BV, Leiden, The Netherlands
- Crown Bioscience Netherlands BV, Leiden, The Netherlands
| | | | | | | | | | | | - Irene Chicote
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Garazi Serna
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Laia Cabellos
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Medical Oncology Department, Vall d'Hebron University Hospital (HUVH), Barcelona, Spain
| | - Lorena Ramírez
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Medical Oncology Department, Vall d'Hebron University Hospital (HUVH), Barcelona, Spain
| | - Paolo Nuciforo
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Ramon Salazar
- Department of Medical Oncology, Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL)-CIBERONC, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Cristina Santos
- Department of Medical Oncology, Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL)-CIBERONC, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Alberto Villanueva
- Chemoresistance and Predictive Factors Group, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain
- Xenopat SL, Parc Cientific de Barcelona (PCB), Barcelona, Spain
| | - Camille Stephan-Otto Attolini
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Elena Sancho
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona, Spain
- CIBERONC, Madrid, Spain
| | - Hector G Palmer
- CIBERONC, Madrid, Spain
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Medical Oncology Department, Vall d'Hebron University Hospital (HUVH), Barcelona, Spain
| | - Josep Tabernero
- CIBERONC, Madrid, Spain
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Medical Oncology Department, Vall d'Hebron University Hospital (HUVH), Barcelona, Spain
| | | | | | | | - Hans Clevers
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
- Oncode Institute, Hubrecht Institute, Utrecht, the Netherlands
| | - Leo S Price
- OcellO BV, Leiden, The Netherlands
- Crown Bioscience Netherlands BV, Leiden, The Netherlands
| | | | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona, Spain.
- CIBERONC, Madrid, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| | | |
Collapse
|
240
|
Liabeuf D, Oshima M, Stange DE, Sigal M. Stem Cells, Helicobacter pylori, and Mutational Landscape: Utility of Preclinical Models to Understand Carcinogenesis and to Direct Management of Gastric Cancer. Gastroenterology 2022; 162:1067-1087. [PMID: 34942172 DOI: 10.1053/j.gastro.2021.12.252] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/20/2022]
Abstract
Several genetic and environmental factors increase gastric cancer (GC) risk, with Helicobacter pylori being the main environmental agent. GC is thought to emerge through a sequence of morphological changes that have been elucidated on the molecular level. New technologies have shed light onto pathways that are altered in GC, involving mutational and epigenetic changes and altered signaling pathways. Using various new model systems and innovative approaches, the relevance of such alterations for the emergence and progression of GC has been validated. Here, we highlight the key strategies and the resulting achievements. A major step is the characterization of epithelial stem cell behavior in the healthy stomach. These data, obtained through new reporter mouse lines and lineage tracing, enabled insights into the processes that control cellular proliferation, self-renewal, and differentiation of gastric stem cells. It has become evident that these cells and pathways are often deregulated in carcinogenesis. Second, insights into how H pylori colonizes gastric glands, directly interacts with stem cells, and alters cellular and genomic integrity, as well as the characterization of tissue responses to infection, provide a comprehensive picture of how this bacterium contributes to gastric carcinogenesis. Third, the development of stem cell- and tissue-specific reporter mice have driven our understanding of the signals and mutations that promote different types of GC and now also enable the study of more advanced, metastasized stages. Finally, organoids from human tissue have allowed insights into gastric carcinogenesis by validating mutational and signaling alterations in human primary cells and opening a route to predicting responses to personalized treatment.
Collapse
Affiliation(s)
- Dylan Liabeuf
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Masanobu Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Daniel E Stange
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, Dresden, Germany; National Center for Tumor Diseases (NCT/UCC), Dresden, Germany, German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Michael Sigal
- Department of Internal Medicine, Division of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Germany; Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
| |
Collapse
|
241
|
Baião A, Dias S, Soares AF, Pereira CL, Oliveira C, Sarmento B. Advances in the use of 3D colorectal cancer models for novel drug discovery. Expert Opin Drug Discov 2022; 17:569-580. [PMID: 35343351 DOI: 10.1080/17460441.2022.2056162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Colorectal cancer (CRC) is one of the most common and deadly tumors worldwide. CRC in vitro and in vivo models that recapitulate key features of human disease are essential to the development of novel and effective therapeutics. However, two-dimensional (2D) in vitro culture systems are considered too simple and do not represent the complex nature of the human tumor. However, three-dimensional (3D) models have emerged in recent years as more advanced and complex cell culture systems, able to closely resemble key features of human cancer tissues. AREAS COVERED The authors' review the currently established in vitro cell culture models and describe the advances in the development of 3D scaffold-free models to study CRC. The authors also discuss intestinal spheroids and organoids. As well as in vitro models for drug screening and metastatic CRC (mCRC). EXPERT OPINION The ideal CRC in vitro model is not yet established. Spheroid-based 3D models represent one of the most used approaches to recapitulate the tumor environment, overcoming some limitations of 2D models. Mouse and patient-derived organoids are more advanced models that can mimic more closely the characteristics and properties of CRC, with the possibility of including cells derived from patients with metastatic CRC.
Collapse
Affiliation(s)
- Ana Baião
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.,INEB, Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.,ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Sofia Dias
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.,INEB, Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.,ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Ana Francisca Soares
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.,INEB, Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Catarina Leite Pereira
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.,INEB, Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Carla Oliveira
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.,IPATIMUP, Institute of Molecular Pathology and Immunology of University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.,Department of Pathology, Faculty of Medicine of University of Porto, 4200-319 Porto, Portugal
| | - Bruno Sarmento
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.,INEB, Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.,CESPU - Instituto Universitário de Ciências da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal
| |
Collapse
|
242
|
Smith D, Price DRG, Faber MN, Chapuis AF, McNeilly TN. Advancing animal health and disease research in the lab with three-dimensional cell culture systems. Vet Rec 2022; 191:e1528. [PMID: 35338777 DOI: 10.1002/vetr.1528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/31/2022] [Accepted: 02/11/2022] [Indexed: 11/08/2022]
Abstract
The development of three-dimensional cell culture systems representative of tissues from animals of veterinary interest is accelerating research that seeks to address specific questions tied to animal health. In terms of their relevance and complexity, these in vitro models can be seen as a midpoint between the more reductionist single-cell culture systems and complex live animals. Organoids in particular represent a significant development due to their organised multicellular structure that more closely represents in vivo tissues than any other cell culture technology previously developed. In this review, we provide an overview of the different three-dimensional cell culture systems available to veterinary researchers and give examples of their application in contexts relating to animal health.
Collapse
Affiliation(s)
- David Smith
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian, UK
| | - Daniel R G Price
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian, UK
| | - Marc N Faber
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian, UK
| | - Ambre F Chapuis
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian, UK
| | - Tom N McNeilly
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian, UK
| |
Collapse
|
243
|
Cao J, Chan WC, Chow MSS. Use of conditional reprogramming cell, patient derived xenograft and organoid for drug screening for individualized prostate cancer therapy: Current and future perspectives (Review). Int J Oncol 2022; 60:52. [PMID: 35322860 DOI: 10.3892/ijo.2022.5342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/14/2022] [Indexed: 11/06/2022] Open
Abstract
Prostate cancer mortality is ranked second among all cancer mortalities in men worldwide. There is a great need for a method of efficient drug screening for precision therapy, especially for patients with existing drug‑resistant prostate cancer. Based on the concept of bacterial cell culture and drug sensitivity testing, the traditional approach of cancer drug screening is inadequate. The current and more innovative use of cancer cell culture and in vivo tumor models in drug screening for potential individualization of anti‑cancer therapy is reviewed and discussed in the present review. An ideal screening model would have the ability to identify drug activity for the targeted cells resembling what would have occurred in the in vivo environment. Based on this principle, three available cell culture/tumor screening models for prostate cancer are reviewed and considered. The culture conditions, advantages and disadvantages for each model together with ideas to best utilize these models are discussed. The first screening model uses conditional reprogramed cells derived from patient cancer cells. Although these cells are convenient to grow and use, they are likely to have different markers and characteristics from original tumor cells and thus not likely to be informative. The second model employs patient derived xenograft (PDX) which resembles an in vivo approach, but its main disadvantages are that it cannot be easily genetically modified and it is not suitable for high‑throughput drug screening. Finally, high‑throughput screening is more feasible with tumor organoids grown from patient cancer cells. The last system still needs a large number of tumor cells. It lacks in situ blood vessels, immune cells and the extracellular matrix. Based on these current models, future establishment of an organoid data bank would allow the selection of a specific organoid resembling that of an individual's prostate cancer and used for screening of suitable anticancer drugs. This can be further confirmed using the PDX model. Thus, this combined organoid‑PDX approach is expected to be able to provide the drug sensitivity testing approach for individualization of prostate cancer therapy in the near future.
Collapse
Affiliation(s)
- Jessica Cao
- College of Osteopathic Medicine of The Pacific, Western University of Health Sciences, Pomona, CA 91766‑1854, USA
| | - Wing C Chan
- City of Hope Comprehensive Cancer Center, City of Hope Medical Center, Duarte, CA 91010‑3012, USA
| | - Moses S S Chow
- College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766‑1854, USA
| |
Collapse
|
244
|
DeStefanis RA, Kratz JD, Olson AM, Sunil A, DeZeeuw AK, Gillette AA, Sha GC, Johnson KA, Pasch CA, Clipson L, Skala MC, Deming DA. Impact of baseline culture conditions of cancer organoids when determining therapeutic response and tumor heterogeneity. Sci Rep 2022; 12:5205. [PMID: 35338174 PMCID: PMC8956720 DOI: 10.1038/s41598-022-08937-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/14/2022] [Indexed: 01/27/2023] Open
Abstract
Representative models are needed to screen new therapies for patients with cancer. Cancer organoids are a leap forward as a culture model that faithfully represents the disease. Mouse-derived cancer organoids (MDCOs) are becoming increasingly popular, however there has yet to be a standardized method to assess therapeutic response and identify subpopulation heterogeneity. There are multiple factors unique to organoid culture that could affect how therapeutic response and MDCO heterogeneity are assessed. Here we describe an analysis of nearly 3500 individual MDCOs where individual organoid morphologic tracking was performed. Change in MDCO diameter was assessed in the presence of control media or targeted therapies. Individual organoid tracking was identified to be more sensitive to treatment response than well-level assessment. The impact of different generations of mice of the same genotype, different regions of the colon, and organoid specific characteristics including baseline size, passage number, plating density, and location within the matrix were examined. Only the starting size of the MDCO altered the subsequent growth. These results were corroborated using ~ 1700 patient-derived cancer organoids (PDCOs) isolated from 19 patients. Here we establish organoid culture parameters for individual organoid morphologic tracking to determine therapeutic response and growth/response heterogeneity for translational studies.
Collapse
Affiliation(s)
- Rebecca A DeStefanis
- Division of Hematology, Medical Oncology, and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Ave, 6507 WIMR2, Madison, WI, 53705, USA
| | - Jeremy D Kratz
- Division of Hematology, Medical Oncology, and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Ave, 6507 WIMR2, Madison, WI, 53705, USA
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Autumn M Olson
- Division of Hematology, Medical Oncology, and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Ave, 6507 WIMR2, Madison, WI, 53705, USA
| | - Aishwarya Sunil
- Division of Hematology, Medical Oncology, and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Ave, 6507 WIMR2, Madison, WI, 53705, USA
| | - Alyssa K DeZeeuw
- Division of Hematology, Medical Oncology, and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Ave, 6507 WIMR2, Madison, WI, 53705, USA
| | - Amani A Gillette
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Gioia C Sha
- Division of Hematology, Medical Oncology, and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Ave, 6507 WIMR2, Madison, WI, 53705, USA
| | - Katherine A Johnson
- Division of Hematology, Medical Oncology, and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Ave, 6507 WIMR2, Madison, WI, 53705, USA
| | - Cheri A Pasch
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Linda Clipson
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI, USA
| | - Melissa C Skala
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Morgridge Institute for Research, Madison, WI, USA
| | - Dustin A Deming
- Division of Hematology, Medical Oncology, and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Ave, 6507 WIMR2, Madison, WI, 53705, USA.
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA.
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
245
|
Yao L, Zao XL, Pan XF, Zhang HG, Wang FJ, Qiao PF. Application of tumoroids derived from advanced colorectal cancer patients to predict individual response to chemotherapy. J Chemother 2022; 35:104-116. [PMID: 35285783 DOI: 10.1080/1120009x.2022.2045827] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Therapeutic approaches of advanced colorectal cancer are more complex, here we present a living biobank of patient-derived tumoroids from advanced colorectal cancer patients and show examples of how these tumoroids can be used to to simulate cancer behavior ex vivo and provide more evidence for tumoroids could be utilized as a predictive platform during chemotherapy treatment to identify the chemotherapy response. Morphological, histological and genomic characterization analysis of colorectal cancer tumoroids was conducted. Further, we treated colorectal cancer tumoroids with different drugs to detect cellular activities to evaluate drug sensitivity using CellTiter-Glo 3 D cell viability assay. Then the drug sensitivity of tumoroids was compared with clinical outcomes. Our results implied that tumoroids recapitulated the histological features of the original tumours and genotypic profiling of tumoroids showed a high-level of similarity to the matched primary tumours. Dose-response curves, area under the curve and tumour inhibitory rate of each therapeutic profiling calculations in tumoroids demonstrated a great diversity and we gained 88.24% match ratio between the sensitivity data of tumoroids with their paired patients' clinical outcomes. tumour inhibitory rate of each treatment parameters in tumoroids performed positive correlation with progression-free survival while area under the curve of each treatment parameters performed negative correlation with progression-free survival of the corresponding patients. In summary, We presented a living biobank of tumoroids from advanced colorectal cancer patients and show tumoroids got great potential for predicting clinical responses to chemotherapy treatment of advanced colorectal cancer.
Collapse
Affiliation(s)
- Lei Yao
- Department of General Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiao-Long Zao
- Department of General Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiao-Fei Pan
- Department of General Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hao-Gang Zhang
- Department of General Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fu-Jing Wang
- Department of General Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Peng-Fei Qiao
- Department of General Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
246
|
Luo L, Ma Y, Zheng Y, Su J, Huang G. Application Progress of Organoids in Colorectal Cancer. Front Cell Dev Biol 2022; 10:815067. [PMID: 35273961 PMCID: PMC8902504 DOI: 10.3389/fcell.2022.815067] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/31/2022] [Indexed: 12/24/2022] Open
Abstract
Currently, colorectal cancer is still the third leading cause of cancer-related mortality, and the incidence is rising. It is a long time since the researchers used cancer cell lines and animals as the study subject. However, these models possess various limitations to reflect the cancer progression in the human body. Organoids have more clinical significance than cell lines, and they also bridge the gap between animal models and humans. Patient-derived organoids are three-dimensional cultures that simulate the tumor characteristics in vivo and recapitulate tumor cell heterogeneity. Therefore, the emergence of colorectal cancer organoids provides an unprecedented opportunity for colorectal cancer research. It retains the molecular and cellular composition of the original tumor and has a high degree of homology and complexity with patient tissues. Patient-derived colorectal cancer organoids, as personalized tumor organoids, can more accurately simulate colorectal cancer patients’ occurrence, development, metastasis, and predict drug response in colorectal cancer patients. Colorectal cancer organoids show great potential for application, especially preclinical drug screening and prediction of patient response to selected treatment options. Here, we reviewed the application of colorectal cancer organoids in disease model construction, basic biological research, organoid biobank construction, drug screening and personalized medicine, drug development, drug toxicity and safety, and regenerative medicine. In addition, we also displayed the current limitations and challenges of organoids and discussed the future development direction of organoids in combination with other technologies. Finally, we summarized and analyzed the current clinical trial research of organoids, especially the clinical trials of colorectal cancer organoids. We hoped to lay a solid foundation for organoids used in colorectal cancer research.
Collapse
Affiliation(s)
- Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China.,The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Yucui Ma
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Yilin Zheng
- Clinical Research Center, Shantou Central Hospital, Shantou, China
| | - Jiating Su
- The First Clinical College, Guangdong Medical University, Zhanjiang, China
| | - Guoxin Huang
- Clinical Research Center, Shantou Central Hospital, Shantou, China
| |
Collapse
|
247
|
Organoid screening reveals epigenetic vulnerabilities in human colorectal cancer. Nat Chem Biol 2022; 18:605-614. [PMID: 35273398 DOI: 10.1038/s41589-022-00984-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 01/28/2022] [Indexed: 12/31/2022]
Abstract
Precision oncology presumes an accurate prediction of drug response on the basis of the molecular profile of tumors. However, the extent to which patient-derived tumor organoids recapitulate the response of in vivo tumors to a given drug remains obscure. To gain insights into the pharmacobiology of human colorectal cancer (CRC), we here created a robust drug screening platform for patient-derived colorectal organoids. Application of suspension culture increased organoid scalability, and a refinement of the culture condition enabled incorporation of normal and precursor organoids to high-throughput drug screening. Drug screening identified bromodomain and extra-terminal (BET) bromodomain protein inhibitor as a cancer-selective growth suppressor that targets genes aberrantly activated in CRC. A multi-omics analysis identified an association between checkpoint with forkhead and ring finger domaines (CHFR) silencing and paclitaxel sensitivity, which was further validated by gene engineering of organoids and in xenografts. Our findings highlight the utility of multiparametric validation in enhancing the biological and clinical fidelity of a drug screening system.
Collapse
|
248
|
Laoukili J, Constantinides A, Wassenaar ECE, Elias SG, Raats DAE, van Schelven SJ, van Wettum J, Volckmann R, Koster J, Huitema ADR, Nienhuijs SW, de Hingh IHJT, Wiezer RJ, van Grevenstein HMU, Rinkes IHMB, Boerma D, Kranenburg O. Peritoneal metastases from colorectal cancer belong to Consensus Molecular Subtype 4 and are sensitised to oxaliplatin by inhibiting reducing capacity. Br J Cancer 2022; 126:1824-1833. [PMID: 35194192 PMCID: PMC9174226 DOI: 10.1038/s41416-022-01742-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/19/2022] [Accepted: 02/03/2022] [Indexed: 01/13/2023] Open
Abstract
Background Peritoneal metastases (PM) in colorectal cancer (CRC) are associated with therapy resistance and poor survival. Oxaliplatin monotherapy is widely applied in the intraperitoneal treatment of PM, but fails to yield clinical benefit. We aimed to identify the mechanism(s) underlying PM resistance to oxaliplatin and to develop strategies overcoming such resistance. Experimental design We generated a biobank consisting of 35 primary tumour regions and 59 paired PM from 12 patients. All samples were analysed by RNA sequencing. We also generated a series of PM-derived organoid (PMDO) cultures and used these to design and test strategies to overcome resistance to oxaliplatin. Results PM displayed various hallmarks of aggressive CRC biology. The vast majority of PM and paired primary tumours belonged to the Consensus Molecular Subtype 4 (CMS4). PMDO cultures were resistant to oxaliplatin and expressed high levels of glutamate-cysteine ligase (GCLC) causing detoxification of oxaliplatin through glutathione synthesis. Genetic or pharmacological targeting of GCLC sensitised PMDOs to a 1-h exposure to oxaliplatin, through increased platinum-DNA adduct formation. Conclusions These results link oxaliplatin resistance of colorectal PM to their CMS4 status and high reducing capacity. Inhibiting the reducing capacity of PM may be an effective strategy to overcome PM resistance to oxaliplatin. ![]()
Collapse
Affiliation(s)
- Jamila Laoukili
- Department of Surgical Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Emma C E Wassenaar
- Department of Surgical Oncology, University Medical Center Utrecht, Utrecht, the Netherlands.,Department of Surgery, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - Sjoerd G Elias
- Department of Epidemiology, Julius Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Danielle A E Raats
- Department of Surgical Oncology, University Medical Center Utrecht, Utrecht, the Netherlands.,Utrecht Platform for Organoid Technology, Utrecht University, Utrecht, the Netherlands
| | - Susanne J van Schelven
- Department of Surgical Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jonathan van Wettum
- Department of Surgical Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Richard Volckmann
- Department of Oncogenomics, Amsterdam UMC, Amsterdam, The Netherlands
| | - Jan Koster
- Department of Oncogenomics, Amsterdam UMC, Amsterdam, The Netherlands
| | - Alwin D R Huitema
- Department of Pharmacy and Pharmacology, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands.,Department of Clinical Pharmacy, University Medical Centre, Utrecht, the Netherlands.,Department of Pharmacology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Simon W Nienhuijs
- Department of Surgery, Catharina Hospital, Eindhoven, The Netherlands
| | - Ignace H J T de Hingh
- Department of Surgery, Catharina Hospital, Eindhoven, The Netherlands.,School for Oncology and Developmental Biology, GROW, Maastricht, The Netherlands
| | - René J Wiezer
- Department of Surgery, St. Antonius Hospital, Nieuwegein, The Netherlands
| | | | - Inne H M Borel Rinkes
- Department of Surgical Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Djamila Boerma
- Department of Surgery, St. Antonius Hospital, Nieuwegein, The Netherlands.
| | - Onno Kranenburg
- Department of Surgical Oncology, University Medical Center Utrecht, Utrecht, the Netherlands. .,Utrecht Platform for Organoid Technology, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
249
|
Zhao Y, Roy S, Wang C, Goel A. A Combined Treatment with Berberine and Andrographis Exhibits Enhanced Anti-Cancer Activity through Suppression of DNA Replication in Colorectal Cancer. Pharmaceuticals (Basel) 2022; 15:ph15030262. [PMID: 35337060 PMCID: PMC8953248 DOI: 10.3390/ph15030262] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 12/13/2022] Open
Abstract
The high morbidity and mortality associated with colorectal cancer (CRC) are largely due to the invariable development of chemoresistance to classic chemotherapies, as well as intolerance to their significant toxicity. Many pharmaceutical formulations screened from natural plant extracts offer safe, inexpensive, and multi-target therapeutic options. In this study, we demonstrated that Berberis vulgaris L. (Berberine) and Andrographis paniculata (Burm. f.) Nees (Andrographis) extracts exerted their synergistic amplified anti-cancer effects by jointly inhibiting cell viability, suppressing colony formation, and inducing cell cycle arrest. Consistent with our in-vitro findings, the amplified synergistic anti-cancer effects were also observed in subcutaneous xenograft preclinical animal models, as well as patient-derived primary tumor organoids. To explore the molecular mechanisms underlying the amplified synergistic anti-cancer effects, RNA sequencing was performed to identify candidate pathways and genes. A transcriptome analysis revealed that DNA-replication-related genes, including FEN1, MCM7, PRIM1, MCM5, POLA1, MCM4, and PCNA, may be responsible for the enhanced anticancer effects of these two natural extracts. Taken together, our data revealed the powerful enhanced synergistic anti-CRC effects of berberine and Andrographis and provide evidence for the combinational targeting of DNA-replication-related genes as a promising new strategy for the therapeutic option in the management of CRC patients.
Collapse
Affiliation(s)
- Yinghui Zhao
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Monrovia, CA 91010, USA; (Y.Z.); (S.R.)
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China;
| | - Souvick Roy
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Monrovia, CA 91010, USA; (Y.Z.); (S.R.)
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China;
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan 250033, China
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan 250033, China
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Monrovia, CA 91010, USA; (Y.Z.); (S.R.)
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
- Correspondence: ; Tel.: +1-626-218-3452
| |
Collapse
|
250
|
Furbo S, Urbano PCM, Raskov HH, Troelsen JT, Kanstrup Fiehn AM, Gögenur I. Use of Patient-Derived Organoids as a Treatment Selection Model for Colorectal Cancer: A Narrative Review. Cancers (Basel) 2022; 14:cancers14041069. [PMID: 35205817 PMCID: PMC8870458 DOI: 10.3390/cancers14041069] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Colorectal cancer (CRC) is the third most common type of cancer globally. Despite successful treatment, it has a 40% chance of recurrence within five years after surgery. While neoadjuvant chemotherapy is offered for stage IV cancers, it comes with a risk of resistance and disease progression. CRC tumors vary biologically, recur frequently, and pose a significant risk for cancer-related mortality, making it increasingly relevant to develop methods to study personalized treatment. A tumor organoid is a miniature, multicellular, and 3D replica of a tumor in vitro that retains its characteristics. Here, we discuss the current methods of culturing organoids and the correlation of drug response in organoids with clinical responses in patients. This helps us to determine whether organoids can be used for treatment selection in a clinical setting. Based on the studies included, there was a strong correlation between treatment responses of organoids and clinical treatment responses. Abstract Surgical resection is the mainstay in intended curative treatment of colorectal cancer (CRC) and may be accompanied by adjuvant chemotherapy. However, 40% of the patients experience recurrence within five years of treatment, highlighting the importance of improved, personalized treatment options. Monolayer cell cultures and murine models, which are generally used to study the biology of CRC, are associated with certain drawbacks; hence, the use of organoids has been emerging. Organoids obtained from tumors display similar genotypic and phenotypic characteristics, making them ideal for investigating individualized treatment strategies and for integration as a core platform to be used in prediction models. Here, we review studies correlating the clinical response in patients with CRC with the therapeutic response in patient-derived organoids (PDO), as well as the limitations and potentials of this model. The studies outlined in this review reported strong associations between treatment responses in the PDO model and clinical treatment responses. However, as PDOs lack the tumor microenvironment, they do not genuinely account for certain crucial characteristics that influence therapeutic response. To this end, we reviewed studies investigating PDOs co-cultured with tumor-infiltrating lymphocytes. This model is a promising method allowing evaluation of patient-specific tumors and selection of personalized therapies. Standardized methodologies must be implemented to reach a “gold standard” for validating the use of this model in larger cohorts of patients. The introduction of this approach to a clinical scenario directing neoadjuvant treatment and in other curative and palliative treatment strategies holds incredible potential for improving personalized treatment and its outcomes.
Collapse
Affiliation(s)
- Sara Furbo
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark; (S.F.); (P.C.M.U.); (H.H.R.); (A.-M.K.F.)
| | - Paulo César Martins Urbano
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark; (S.F.); (P.C.M.U.); (H.H.R.); (A.-M.K.F.)
| | - Hans Henrik Raskov
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark; (S.F.); (P.C.M.U.); (H.H.R.); (A.-M.K.F.)
| | - Jesper Thorvald Troelsen
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark;
- Enhanced Perioperative Oncology (EPeOnc) Consortium, Zealand University Hospital, 4600 Køge, Denmark
| | - Anne-Marie Kanstrup Fiehn
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark; (S.F.); (P.C.M.U.); (H.H.R.); (A.-M.K.F.)
- Department of Pathology, Zealand University Hospital, Sygehusvej 10, 4000 Roskilde, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 København, Denmark
| | - Ismail Gögenur
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark; (S.F.); (P.C.M.U.); (H.H.R.); (A.-M.K.F.)
- Enhanced Perioperative Oncology (EPeOnc) Consortium, Zealand University Hospital, 4600 Køge, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 København, Denmark
- Correspondence: ; Tel.: +45-2633-6426
| |
Collapse
|