201
|
Bechard ME, Chhatwal S, Garcia RE, Rasche ME. Application of a Colorimetric Assay to Identify Putative Ribofuranosylaminobenzene 5'-Phosphate Synthase Genes Expressed with Activity in Escherichia coli. Biol Proced Online 2003; 5:69-77. [PMID: 12734554 PMCID: PMC152576 DOI: 10.1251/bpo48] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2003] [Revised: 02/14/2003] [Accepted: 02/14/2003] [Indexed: 11/23/2022] Open
Abstract
Tetrahydromethanopterin (H(4)MPT) is a tetrahydrofolate analog originally discovered in methanogenic archaea, but later found in other archaea and bacteria. The extent to which H(4)MPT occurs among living organisms is unknown. The key enzyme which distinguishes the biosynthetic pathways of H(4)MPT and tetrahydrofolate is ribofuranosylaminobenzene 5'-phosphate synthase (RFAP synthase). Given the importance of RFAP synthase in H(4)MPT biosynthesis, the identification of putative RFAP synthase genes and measurement of RFAP synthase activity would provide an indication of the presence of H(4)MPT in untested microorganisms. Investigation of putative archaeal RFAP synthase genes has been hampered by the tendency of the resulting proteins to form inactive inclusion bodies in Escherichia coli. The current work describes a colorimetric assay for measuring RFAP synthase activity, and two modified procedures for expressing recombinant RFAP synthase genes to produce soluble, active enzyme. By lowering the incubation temperature during expression, RFAP synthase from Archaeoglobus fulgidus was produced in E. coli and purified to homogeneity. The production of active RFAP synthase from Methanothermobacter thermautotrophicus was achieved by coexpression of the gene MTH0830 with a molecular chaperone. This is the first direct biochemical identification of a methanogen gene that codes for an active RFAP synthase.
Collapse
Affiliation(s)
- Matthew E. Bechard
- Microbiology and Cell Science Department, University of Florida. Gainesville, FL 32611-0700. USA
| | - Sonya Chhatwal
- Microbiology and Cell Science Department, University of Florida. Gainesville, FL 32611-0700. USA
| | - Rosemarie E. Garcia
- Microbiology and Cell Science Department, University of Florida. Gainesville, FL 32611-0700. USA
| | - Madeline E. Rasche
- Microbiology and Cell Science Department, University of Florida. Gainesville, FL 32611-0700. USA
| |
Collapse
|
202
|
Robin S, Petrov K, Dintinger T, Kujumdzieva A, Tellier C, Dion M. Comparison of three microbial hosts for the expression of an active catalytic scFv. Mol Immunol 2003; 39:729-38. [PMID: 12531284 DOI: 10.1016/s0161-5890(02)00253-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Antibodies represent an interesting protein framework on which catalytic functions can be grafted. In previous studies, we have reported the characterization of the catalytic antibody 4B2 obtained on the basis of the "bait and switch" strategy which catalyzes two different chemical reactions: the allylic isomerization of beta,gamma-unsaturated ketones and the Kemp elimination. We have cloned the antibody 4B2 and expressed it as a single-chain Fv (scFv) fragment in different expression systems, Escherichia coli and two yeasts species, in order to elicit the most suitable system to study its catalytic activity. The scFv4B2 was secreted as an active form in the culture medium of Pichia pastoris and Kluyveromyces lactis, which led respectively to 4 and 1.3mg/l after purification. In E. coli, different strategies were investigated to increase the cytoplasmic soluble fraction, which resulted, in all cases, in the expression of a low amount of functional antibodies. By contrast, substantial amount of scFv4B2 could be purified when it was expressed as inclusion bodies (12mg/l) and submitted to an in vitro refolding process. Its catalytic activity was measured and proved to be comparable to that of the whole IgG. However, the instability of the scFv4B2 in solution prevented from an exhaustive characterization of its activity and stabilization of this protein appears to be essential before designing strategies to improve its catalytic activity.
Collapse
Affiliation(s)
- Sylvain Robin
- FRE-CNRS no. 2230 Biocatalyse, Faculté des Sciences et des Techniques, 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 03, France
| | | | | | | | | | | |
Collapse
|
203
|
Affiliation(s)
- F X Schmid
- Biochemisches Laboratorium, Universität Bayreuth, D-95440 Bayreuth, Germany
| |
Collapse
|
204
|
Schlieker C, Bukau B, Mogk A. Prevention and reversion of protein aggregation by molecular chaperones in the E. coli cytosol: implications for their applicability in biotechnology. J Biotechnol 2002; 96:13-21. [PMID: 12142139 DOI: 10.1016/s0168-1656(02)00033-0] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The amount of a native protein reflects an equilibrium of protein synthesis, de novo folding and protein stability. Stress situations, like heat shock, or overproduction of a protein can cause an imbalance in this equilibrium, resulting in protein aggregation. Molecular chaperones control protein folding processes and protect misfolded proteins from aggregation in all cells. Since protein aggregation is frequently observed upon synthesis of heterologous proteins in E. coli, molecular chaperones have been applied in biotechnology by their co-overproduction with the desired protein. While increasing protein solubility in some cases, this approach has not been generally successful. Recent findings demonstrate, that protein aggregation, even in case of inclusion bodies, must not be a dead end in the life cycle of a protein. Such resolubilization of aggregated proteins is mediated by a bi-chaperone system consisting of ClpB and DnaK, the prokaryotic representatives of the Hsp100 and Hsp70 families. The disaggregation capacity of this bi-chaperone system has now been demonstrated in vitro and in vivo for a wide variety of aggregated proteins and offers a new perspective to increase the solubility of proteins of interest.
Collapse
Affiliation(s)
- Christian Schlieker
- Institut für Biochemie und Molekularbiologie, Hermann-Herder-Str. 7, 79104, Freiburg, Germany
| | | | | |
Collapse
|
205
|
Abstract
Bacterial inclusion bodies (IBs) are refractile aggregates of protease-resistant misfolded protein that often occur in recombinant bacteria upon gratuitous overexpression of cloned genes. In biotechnology, the formation of IBs represents a main obstacle for protein production since even favouring high protein yields, the in vitro recovery of functional protein from insoluble deposits depends on technically diverse and often complex re-folding procedures. On the other hand, IBs represent an exciting model to approach the in vivo analysis of protein folding and to explore aggregation dynamics. Recent findings on the molecular organisation of embodied polypeptides and on the kinetics of inclusion body formation have revealed an unexpected dynamism of these protein aggregates, from which polypeptides are steadily released in living cells to be further refolded or degraded. The close connection between in vivo protein folding, aggregation, solubilisation and proteolytic digestion offers an integrated view of the bacterial protein quality control system of which IBs might be an important component especially in recombinant bacteria.
Collapse
Affiliation(s)
- M M Carrió
- Institut de Biotecnologia i de Biomedicina and Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | | |
Collapse
|
206
|
Vogtherr M, Jacobs DM, Parac TN, Maurer M, Pahl A, Saxena K, Rüterjans H, Griesinger C, Fiebig KM. NMR solution structure and dynamics of the peptidyl-prolyl cis-trans isomerase domain of the trigger factor from Mycoplasma genitalium compared to FK506-binding protein. J Mol Biol 2002; 318:1097-115. [PMID: 12054805 DOI: 10.1016/s0022-2836(02)00112-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We have solved the solution structure of the peptidyl-prolyl cis-trans isomerase (PPIase) domain of the trigger factor from Mycoplasma genitalium by homo- and heteronuclear NMR spectroscopy. Our results lead to a well-defined structure with a backbone rmsd of 0.23 A. As predicted, the PPIase domain of the trigger factor adopts the FK506 binding protein (FKBP) fold. Furthermore, our NMR relaxation data indicate that the dynamic behavior of the trigger factor PPIase domain and of FKBP are similar. Structural variations when compared to FKBP exist in the flap region and within the bulges of strand 5 of the beta sheet. Although the active-site crevice is similar to that of FKBP, subtle steric variations in this region can explain why FK506 does not bind to the trigger factor. Sequence variability (27% identity) between trigger factor and FKBP results in significant differences in surface charge distribution and the absence of the first strand of the central beta sheet. Our data indicate, however, that this strand may be partially structured as "nascent" beta strand. This makes the trigger factor PPIase domain the most minimal representative of the FKBP like protein family of PPIases.
Collapse
Affiliation(s)
- Martin Vogtherr
- Institut für Organische Chemie der Universität Frankfurt, Marie-Curie-Str. 11, 60439 Frankfurt, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
207
|
Ikura K, Kokubu T, Natsuka S, Ichikawa A, Adachi M, Nishihara K, Yanagi H, Utsumi S. Co-overexpression of folding modulators improves the solubility of the recombinant guinea pig liver transglutaminase expressed in Escherichia coli. Prep Biochem Biotechnol 2002; 32:189-205. [PMID: 12071648 DOI: 10.1081/pb-120004130] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Transglutaminases (EC 2.3.2.13) catalyze the formation of epsilon-(gamma-glutamyl)lysine cross-links and the substitution of primary amines for the gamma-carboxamide groups of protein bound glutamine residues, and are involved in many biological phenomena. Transglutaminase reactions are also applicable in applied enzymology. Here, we established an expression system of recombinant mammalian tissue-type transglutaminase with high productivity. Overexpression of guinea pig liver transglutaminase in Escherichia coli, using a plasmid pET21-d, mostly resulted in the accumulation of insoluble and inactive enzyme protein. By the expression culture at lower temperatures (25 and 18 degrees C), however, a fraction of the soluble and active enzyme protein slightly increased. Co-overexpression of a molecular chaperone system (DnaK-DnaJ-GrpE) and/or a folding catalyst (trigger factor) improved the solubility of the recombinant enzyme produced in E. coli cells. The specific activity, the affinity to the amine substrate, and the sensitivity to the calcium activation and GTP inhibition of the purified soluble recombinant enzyme were lower than those of the natural liver enzyme. These results indicated that co-overexpression of folding modulators tested improved the solubility of the overproduced recombinant mammalian tissue-type transglutaminase, but the catalytic properties of the soluble recombinant enzyme were not exactly the same as those of the natural enzyme.
Collapse
Affiliation(s)
- Koji Ikura
- Department of Applied Biology, Kyoto Institute of Technology, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
208
|
Kohda J, Endo Y, Okumura N, Kurokawa Y, Nishihara K, Yanagi H, Yura T, Fukuda H, Kondo A. Improvement of productivity of active form of glutamate racemase in Escherichia coli by coexpression of folding accessory proteins. Biochem Eng J 2002. [DOI: 10.1016/s1369-703x(01)00154-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
209
|
Levy R, Weiss R, Chen G, Iverson BL, Georgiou G. Production of correctly folded Fab antibody fragment in the cytoplasm of Escherichia coli trxB gor mutants via the coexpression of molecular chaperones. Protein Expr Purif 2001; 23:338-47. [PMID: 11676610 DOI: 10.1006/prep.2001.1520] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Disulfide bonds are normally formed after a polypeptide has been exported from the reducing environment of the cytoplasm into a more oxidizing compartment, such as the bacterial periplasm. Recently, we showed that in Escherichia coli trxB gor mutants, in which the reduction of thioredoxin and glutathione is impaired, the redox potential of the cytoplasm becomes comparable to that of the mammalian endoplasmic reticulum, thus allowing the formation of disulfide bonds in certain complex proteins (P. H. Bessette et al., 1999, Proc. Natl. Acad. Sci. USA 96, 13703-13708]. Here, we investigate the expression of a Fab antibody fragment in the bacterial cytoplasm. The effect of coexpressing cytoplasmic chaperones (GroEL/ES, trigger factor, DnaK/J), as well as signal sequenceless versions of periplasmic chaperones (DsbC and Skp), was examined. Skp coexpression was shown to have the most significant effect (five- to sixfold increase) on the yield of correctly folded Fab. A maximum yield of 0.8 mg Fab/L/OD(600) Fab was obtained, indicating that cytoplasmic expression may be a viable alternative for the preparative production of antibody fragments.
Collapse
Affiliation(s)
- R Levy
- Institute for Cell and Molecular Biology, University of Texas, Austin, 79712, USA
| | | | | | | | | |
Collapse
|
210
|
Li ZY, Liu CP, Zhu LQ, Jing GZ, Zhou JM. The chaperone activity of trigger factor is distinct from its isomerase activity during co-expression with adenylate kinase in Escherichia coli. FEBS Lett 2001; 506:108-12. [PMID: 11591381 DOI: 10.1016/s0014-5793(01)02896-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
To investigate the molecular chaperone function of trigger factor (TF) and its relationship with isomerase activity in vivo, the assisted folding of adenylate kinase (AK) by TF in Escherichia coli was examined by measuring the amounts of soluble AK produced during co-expression. When the mutant of chicken AK, P17G, is expressed in plasmid pBVAK, 95% of the protein is found in inclusion bodies. Co-expression of AK with TF was achieved using a plasmid pBVAT that allowed expression of TF and AK in the same plasmid under separate control. Co-expression with TF resulted in an increase in the amount of soluble AK, with a higher increase when TF was expressed at higher levels in the cell. Co-expression of AK with the two TF mutants, Y221G and F233Y, in which peptidyl-prolyl cis/trans isomerase activity was 1% of wild-type, gave the same results as wild-type TF. This provides in vivo evidence that the molecular chaperone activity of TF is distinct from its isomerase activity.
Collapse
Affiliation(s)
- Z Y Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Academia Sinica, 15 Datun Road, 100101, Beijing, PR China
| | | | | | | | | |
Collapse
|
211
|
Kagawa N, Cao Q. Osmotic stress induced by carbohydrates enhances expression of foreign proteins in Escherichia coli. Arch Biochem Biophys 2001; 393:290-6. [PMID: 11556816 DOI: 10.1006/abbi.2001.2516] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Arabinose has been serendipitously observed to enhance the expression of P450s in Escherichia coli. To understand the mechanism of this arabinose-dependent enhancement, the effects of various carbohydrates were investigated. Surprisingly, a series of sugars, including pentoses and hexoses, enhanced the foreign gene expression in a manner similar to arabinose. Furthermore, glycerol, a poor carbon source, also enhanced P450 expression. These results indicate that the enhancement is independent of the specific efficiency of the carbon source and also suggest the involvement of osmotic stress. Therefore, the effect of the sigma(s) (also termed sigma(38)) factor, a sigma subunit of RNA polymerase that plays a central role in regulating the expression of osmotic stress response genes, has been examined. We found that the glycerol-dependent increase in P450 expression was not observed in sigma(s)-deficient E. coli, indicating that carbohydrates enhance the foreign gene expression in E. coli via the induction of the osmotic stress response. The results suggest the important role of the osmotic stress response in posttranscriptional processes required for producing functional proteins.
Collapse
Affiliation(s)
- N Kagawa
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA.
| | | |
Collapse
|
212
|
Smidt H, van Leest M, van der Oost J, de Vos WM. Transcriptional regulation of the cpr gene cluster in ortho-chlorophenol-respiring Desulfitobacterium dehalogenans. J Bacteriol 2000; 182:5683-91. [PMID: 11004165 PMCID: PMC94688 DOI: 10.1128/jb.182.20.5683-5691.2000] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To characterize the expression and possible regulation of reductive dehalogenation in halorespiring bacteria, a 11.5-kb genomic fragment containing the o-chlorophenol reductive dehalogenase-encoding cprBA genes of the gram-positive bacterium Desulfitobacterium dehalogenans was subjected to detailed molecular characterization. Sequence analysis revealed the presence of eight designated genes with the order cprTKZEBACD and with the same polarity except for cprT. The deduced cprC and cprK gene products belong to the NirI/NosR and CRP-FNR families of transcription regulatory proteins, respectively. CprD and CprE are predicted to be molecular chaperones of the GroEL type, whereas cprT may encode a homologue of the trigger factor folding catalysts. Northern blot analysis, reverse transcriptase PCR, and primer extension analysis were used to elucidate the transcriptional organization and regulation of the cpr gene cluster. Results indicated halorespiration-specific transcriptional induction of the monocistronic cprT gene and the biscistronic cprBA and cprZE genes. Occasional read-through at cprC gives rise to a tetracistronic cprBACD transcript. Transcription of cprBA was induced 15-fold upon addition of the o-chlorophenolic substrate 3-chloro-4-hydroxyphenylacetic acid within 30 min with concomitant induction of dehalogenation activity. Putative regulatory protein binding motifs that to some extent resemble the FNR box were identified in the cprT-cprK and cprK-cprZ intergenic regions and the promoter at cprB, suggesting a role for FNR-like CprK in the control of expression of the cprTKZEBACD genes.
Collapse
Affiliation(s)
- H Smidt
- Laboratory of Microbiology, Wageningen University, NL-6703 CT Wageningen, The Netherlands.
| | | | | | | |
Collapse
|
213
|
Improvement of productivity of active horseradish peroxidase in Escherichia coli by coexpression of Dsb proteins. J Biosci Bioeng 2000. [DOI: 10.1016/s1389-1723(00)90003-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|