201
|
Yang Y, Zhao X, Le MHA, Zijlstra RT, Gänzle MG. Reutericyclin producing Lactobacillus reuteri modulates development of fecal microbiota in weanling pigs. Front Microbiol 2015; 6:762. [PMID: 26284047 PMCID: PMC4516970 DOI: 10.3389/fmicb.2015.00762] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 07/13/2015] [Indexed: 01/18/2023] Open
Abstract
Lactobacillus reuteri is used as probiotic culture in food and feed applications; however, strain specific properties of L. reuteri that mediate probiotic activity remain unknown. This study aimed to determine effects of feed fermentation with exopolysaccharide and reutericyclin producing L. reuteri on the transition of the gut microbiome of piglets after weaning. The reutericyclin and reuteran producing L. reuteri TMW1.656 was compared to the reutericyclin negative and levan producing L. reuteri LTH5794 and unfermented controls. Both strains were fermented at conditions supporting exopolysaccharide formation, or at conditions not supporting exopolysaccharide formation. Fecal microbiota were characterized by partial sequencing of 16S rRNA genes, and by quantitative PCR targeting clostridial toxins. The transition to solid food resulted in a transient increase of Proteobacteria to 12% of total bacteria, and increased bacterial diversity by increasing the abundance of anaerobic fiber fermenting Firmicutes. Three weeks after weaning, Prevotella and Lactobacillus were among the dominant bacterial genera. Feed fermentation with L. reuteri affected the abundance of few bacterial taxa and particularly reduced the abundance of Enterobacteriaceae (P < 0.05) when compared to unfermented controls. Reutericyclin producing L. reuteri increased the abundance of Dialister spp. and Mitsuokella spp. (P < 0.05) but did not influence the abundance of clostridial toxins in the feces. In conclusion, data on the contribution of specific metabolic activities of L. reuteri to probiotic activity will facilitate the strain selection for probiotic applications in food and feed.
Collapse
Affiliation(s)
- Yan Yang
- Department of Agricultural, Food and Nutritional Science, University of Alberta Edmonton, AB, Canada
| | - Xin Zhao
- Department of Agricultural, Food and Nutritional Science, University of Alberta Edmonton, AB, Canada
| | - Minh H A Le
- Department of Agricultural, Food and Nutritional Science, University of Alberta Edmonton, AB, Canada
| | - Ruurd T Zijlstra
- Department of Agricultural, Food and Nutritional Science, University of Alberta Edmonton, AB, Canada
| | - Michael G Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta Edmonton, AB, Canada ; School of Food and Pharmaceutical Engineering, Hubei University of Technology Wuhan, China
| |
Collapse
|
202
|
Koh HW, Kim MS, Lee JS, Kim H, Park SJ. Changes in the Swine Gut Microbiota in Response to Porcine Epidemic Diarrhea Infection. Microbes Environ 2015. [PMID: 26212519 PMCID: PMC4567570 DOI: 10.1264/jsme2.me15046] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The gastrointestinal tract of mammals is a complex ecosystem with distinct environments and comprises hundreds of different types of bacterial cells. The gut microbiota may play a critical role in the gut health of the host. We herein attempted to identify a microbiota shift that may be affected by porcine epidemic diarrhea (PED). We observed significant differences in microbiota between the control and PED virus (PEDV)-infected groups at both the phylum and genus level. Most commensal bacteria (i.e. Psychrobacter, Prevotella, and Faecalibacterium) in the healthy gastrointestinal tract were decreased due to dysbiosis induced by PEDV infection.
Collapse
|
203
|
Topographical Mapping of the Rainbow Trout (Oncorhynchus mykiss) Microbiome Reveals a Diverse Bacterial Community with Antifungal Properties in the Skin. Appl Environ Microbiol 2015. [PMID: 26209676 DOI: 10.1128/aem.01826-15] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The mucosal surfaces of wild and farmed aquatic vertebrates face the threat of many aquatic pathogens, including fungi. These surfaces are colonized by diverse symbiotic bacterial communities that may contribute to fight infection. Whereas the gut microbiome of teleosts has been extensively studied using pyrosequencing, this tool has rarely been employed to study the compositions of the bacterial communities present on other teleost mucosal surfaces. Here we provide a topographical map of the mucosal microbiome of an aquatic vertebrate, the rainbow trout (Oncorhynchus mykiss). Using 16S rRNA pyrosequencing, we revealed novel bacterial diversity at each of the five body sites sampled and showed that body site is a strong predictor of community composition. The skin exhibited the highest diversity, followed by the olfactory organ, gills, and gut. Flectobacillus was highly represented within skin and gill communities. Principal coordinate analysis and plots revealed clustering of external sites apart from internal sites. A highly diverse community was present within the epithelium, as demonstrated by confocal microscopy and pyrosequencing. Using in vitro assays, we demonstrated that two Arthrobacter sp. skin isolates, a Psychrobacter sp. strain, and a combined skin aerobic bacterial sample inhibit the growth of Saprolegnia australis and Mucor hiemalis, two important aquatic fungal pathogens. These results underscore the importance of symbiotic bacterial communities of fish and their potential role for the control of aquatic fungal diseases.
Collapse
|
204
|
Arfken AM, Song B, Mallin MA. Assessing hog lagoon waste contamination in the Cape Fear Watershed using Bacteroidetes 16S rRNA gene pyrosequencing. Appl Microbiol Biotechnol 2015; 99:7283-93. [DOI: 10.1007/s00253-015-6784-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/15/2015] [Accepted: 06/18/2015] [Indexed: 12/19/2022]
|
205
|
Alain B Pajarillo E, Chae JP, Balolong MP, Bum Kim H, Kang DK. Assessment of fecal bacterial diversity among healthy piglets during the weaning transition. J GEN APPL MICROBIOL 2015; 60:140-6. [PMID: 25273987 DOI: 10.2323/jgam.60.140] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The high level of genetic diversity in the microflora of the gastrointestinal tract has the potential to provide numerous beneficial functions to the host. Thus it is now acknowledged that the complexity in animal functioning is linked to the interacting microbiome in the gut. Despite the importance of gut microbiome, there is a lack of information concerning the microbial communities in the pig gut during the weaning transition. This study describes the fecal microbial shifts of healthy piglets during the weaning transition using barcoded pyrosequencing of the prokaryotic 16S rRNA gene. Fecal samples were obtained from 15 piglets during the pre-weaning period (fourth week after birth) and post-weaning (sixth week after birth) and were subjected to community genomic DNA extraction for pyrosequencing analysis. As the piglets underwent the weaning transition a trend toward increased bacterial diversity was observed, based on species abundance as measured by the Shannon-Weaver index. Firmicutes (54.0%) and Bacteroidetes (59.6%) were the most dominant phyla during pre-weaning and post-weaning, respectively. During the weaning transition a distinct shift from Bacteroides to Prevotella as the most abundant genus was observed. Additionally, we detected a number of abundant gut bacterial species that have not been reported previously. Clostridium rectum, C. clostridioforme, C. lactatifermentans and Butyricimonas virosa were uniquely detected prior to weaning while Roseburia cecicola and Blautia wexlerae were detected during the post-weaning period only.
Collapse
|
206
|
Urubschurov V, Büsing K, Janczyk P, Souffrant WB, Zeyner A. Development and Evaluation of qPCR Assay for Quantitation of Kazachstania slooffiae and Total Yeasts Occurring in the Porcine Gut. Curr Microbiol 2015; 71:373-81. [PMID: 26134536 DOI: 10.1007/s00284-015-0862-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 05/04/2015] [Indexed: 10/23/2022]
Abstract
Kazachstania slooffiae is the dominating yeast in pig's gut. No methods others than cultivation were applied for enumeration of yeasts within this ecosystem. Therefore, the aim of this study was to develop a real-time quantitative polymerase chain reaction (qPCR) assay to quantitate total yeasts and K. slooffiae in the porcine gut. This work demonstrated that the copy numbers in gDNA can be determined by qPCR using PCR amplicons as a calibrator and one-point calibration method. The gDNA were then used as a calibrator for further analysis. The values of quantitation cycle and PCR amplification efficiency of gDNA calibrator were highly reproducible. DNA was extracted from feces and from 10 different cultured yeasts found in pigs' intestine. The qPCR results using primers NL1/LS2 encoding 26S rDNA correlated (r = 0.984, P < 0.0001) with cultivation results. From two primer sets developed, one set encoding act1 gene was suitable for quantitation of K. slooffiae. The copy numbers of K. slooffiae could be determined by 40% analyzed animals, amounting to about 70% of total yeasts. The application of this method in next studies will help to get more information about K. slooffiae and total yeasts in the gut of pigs.
Collapse
Affiliation(s)
- Vladimir Urubschurov
- Institute of Agricultural and Nutritional Sciences, Group Animal Nutrition, Martin Luther University Halle-Wittenberg, Theodor-Lieser-Straße 11, 06120, Halle (Saale), Germany,
| | | | | | | | | |
Collapse
|
207
|
Porcine models of digestive disease: the future of large animal translational research. Transl Res 2015; 166:12-27. [PMID: 25655839 PMCID: PMC4458388 DOI: 10.1016/j.trsl.2015.01.004] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 01/03/2015] [Accepted: 01/07/2015] [Indexed: 12/14/2022]
Abstract
There is increasing interest in nonrodent translational models for the study of human disease. The pig, in particular, serves as a useful animal model for the study of pathophysiological conditions relevant to the human intestine. This review assesses currently used porcine models of gastrointestinal physiology and disease and provides a rationale for the use of these models for future translational studies. The pig has proven its utility for the study of fundamental disease conditions such as ischemia-reperfusion injury, stress-induced intestinal dysfunction, and short bowel syndrome. Pigs have also shown great promise for the study of intestinal barrier function, surgical tissue manipulation and intervention, as well as biomaterial implantation and tissue transplantation. Advantages of pig models highlighted by these studies include the physiological similarity to human intestine and mechanisms of human disease. Emerging future directions for porcine models of human disease include the fields of transgenics and stem cell biology, with exciting implications for regenerative medicine.
Collapse
|
208
|
Hermann-Bank ML, Skovgaard K, Stockmarr A, Strube ML, Larsen N, Kongsted H, Ingerslev HC, Mølbak L, Boye M. Characterization of the bacterial gut microbiota of piglets suffering from new neonatal porcine diarrhoea. BMC Vet Res 2015; 11:139. [PMID: 26099928 PMCID: PMC4476181 DOI: 10.1186/s12917-015-0419-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 04/27/2015] [Indexed: 11/27/2022] Open
Abstract
Background In recent years, new neonatal porcine diarrhoea (NNPD) of unknown aetiology has emerged in Denmark. NNPD affects piglets during the first week of life and results in impaired welfare, decreased weight gain, and in the worst-case scenario death. Commonly used preventative interventions such as vaccination or treatment with antibiotics, have a limited effect on NNPD. Previous studies have investigated the clinical manifestations, histopathology, and to some extent, microbiological findings; however, these studies were either inconclusive or suggested that Enterococci, possibly in interaction with Escherichia coli, contribute to the aetiology of NNPD. This study examined ileal and colonic luminal contents of 50 control piglets and 52 NNPD piglets by means of the qPCR-based Gut Microbiotassay and 16 samples by 454 sequencing to study the composition of the bacterial gut microbiota in relation to NNPD. Results NNPD was associated with a diminished quantity of bacteria from the phyla Actinobacteria and Firmicutes while genus Enterococcus was more than 24 times more abundant in diarrhoeic piglets. The number of bacteria from the phylum Fusobacteria was also doubled in piglets suffering from diarrhoea. With increasing age, the gut microbiota of NNPD affected piglet and control piglets became more diverse. Independent of diarrhoeic status, piglets from first parity sows (gilts) possessed significantly more bacteria from family Enterobacteriaceae and species E. coli, and fewer bacteria from phylum Firmicutes. Piglets born to gilts had 25 times higher odds of having NNPD compared with piglets born to multiparous sows. Finally, the co-occurrence of genus Enterococcus and species E. coli contributed to the risk of having NNPD. Conclusion The results of this study support previous findings that points towards genus Enterococcus and species E. coli to be involved in the pathogenesis of NNPD. Moreover, the results indicate that NNPD is associated with a disturbed bacterial composition and larger variation between the diarrhoeic piglets. Electronic supplementary material The online version of this article (doi:10.1186/s12917-015-0419-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marie Louise Hermann-Bank
- National Veterinary Institute, Technical University of Denmark, Bülowsvej 27, 1870, Frederiksberg C, DK, Denmark.
| | - Kerstin Skovgaard
- National Veterinary Institute, Technical University of Denmark, Bülowsvej 27, 1870, Frederiksberg C, DK, Denmark.
| | - Anders Stockmarr
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Matematiktorvet, Building 324, 2800, Lyngby, DK, Denmark.
| | - Mikael Lenz Strube
- National Veterinary Institute, Technical University of Denmark, Bülowsvej 27, 1870, Frederiksberg C, DK, Denmark.
| | - Niels Larsen
- Danish Genome Institute, Skt. Lucas Kirkeplads 8, 8000, Århus, DK, Denmark.
| | - Hanne Kongsted
- Danish Pig Research Centre, Danish Agriculture and Food Council, Vinkelvej 13, 8620, Kjellerup, DK, Denmark.
| | - Hans-Christian Ingerslev
- National Veterinary Institute, Technical University of Denmark, Bülowsvej 27, 1870, Frederiksberg C, DK, Denmark.
| | - Lars Mølbak
- National Veterinary Institute, Technical University of Denmark, Bülowsvej 27, 1870, Frederiksberg C, DK, Denmark. .,Present address: Chr. Hansen, Bøge Allé 10-12, 2970, Hørsholm, DK, Denmark.
| | - Mette Boye
- National Veterinary Institute, Technical University of Denmark, Bülowsvej 27, 1870, Frederiksberg C, DK, Denmark.
| |
Collapse
|
209
|
Kanengoni AT, Chimonyo M, Tasara T, Cormican P, Chapwanya A, Ndimba BK, Dzama K. A comparison of faecal microbial populations of South African Windsnyer-type indigenous pigs (SAWIPs) and Large White × Landrace (LW × LR) crosses fed diets containing ensiled maize cobs. FEMS Microbiol Lett 2015; 362:fnv100. [PMID: 26091682 DOI: 10.1093/femsle/fnv100] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2015] [Indexed: 12/26/2022] Open
Abstract
Faecal microbial communities in South African Windsnyer-type indigenous pigs (SAWIPs) and Large White × Landrace (LW × LR) crosses were investigated using high-throughput sequencing of the 16S rDNA genes. The faecal microbial communities in LW × LR crosses and SAWIPs fed control (CON) and high maize cob (HMC) diets were evaluated through parallel sequencing of 16S rDNA genes. Butrivibrio, Faecalibacterium and Desulfovibrio, although present in LW × LR pigs, were absent from the SAWIP microbial community. Bacteroides, Succiniclasticum, Peptococcus and Akkermansia were found in SAWIPs but not in LW × LR crosses. The ratios of Bacteroidia to Clostridia on the CON and HMC diets were similar (0.37 versus 0.39) in SAWIPs but different (0.24 versus 0.1) in LW × LR crosses. The faecal microbial profiles determined were different between the LW × LR and SAWIP breeds but not between pigs fed the CON and HMC diets. The composition of faecal bacterial communities in SAWIPs was determined for the first time. The differences in microbial communities detected may explain the enhanced ability of SAWIPs to digest fibrous diets compared with the LW × LR crosses.
Collapse
Affiliation(s)
- Arnold T Kanengoni
- Agricultural Research Council-Animal Production Institute, Private Bag X2, Irene, 0062, South Africa Department of Animal Sciences, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Michael Chimonyo
- Discipline of Animal & Poultry Science, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa
| | - Taurai Tasara
- Institute for Food Safety and Hygiene, Vetsuisse Faculty University of Zurich, Switzerland
| | - Paul Cormican
- Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Co. Meath, Ireland
| | - Aspinas Chapwanya
- Ross University School of Veterinary Medicine, Department of Clinical Sciences, Box 34, Basseterre, St Kitts and Nevis
| | - Bongani K Ndimba
- Agricultural Research Council, Proteomics Research and Services Unit, Helshoogte Road, Infruitech. Nietvoorbij Institute, Stellenbosch 7599, South Africa Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, Cape Town, 7535, South Africa
| | - Kennedy Dzama
- Department of Animal Sciences, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| |
Collapse
|
210
|
Feed Fermentation with Reuteran- and Levan-Producing Lactobacillus reuteri Reduces Colonization of Weanling Pigs by Enterotoxigenic Escherichia coli. Appl Environ Microbiol 2015; 81:5743-52. [PMID: 26070673 DOI: 10.1128/aem.01525-15] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 06/08/2015] [Indexed: 11/20/2022] Open
Abstract
This study determined the effect of feed fermentation with Lactobacillus reuteri on growth performance and the abundance of enterotoxigenic Escherichia coli (ETEC) in weanling piglets. L. reuteri strains produce reuteran or levan, exopolysaccharides that inhibit ETEC adhesion to the mucosa, and feed fermentation was conducted under conditions supporting exopolysaccharide formation and under conditions not supporting exopolysaccharide formation. Diets were chosen to assess the impact of organic acids and the impact of viable L. reuteri bacteria. Fecal samples were taken throughout 3 weeks of feeding; at the end of the 21-day feeding period, animals were euthanized to sample the gut digesta. The feed intake was reduced in pigs fed diets containing exopolysaccharides; however, feed efficiencies did not differ among the diets. Quantification of L. reuteri by quantitative PCR (qPCR) detected the two strains used for feed fermentation throughout the intestinal tract. Quantification of E. coli and ETEC virulence factors by qPCR demonstrated that fermented diets containing reuteran significantly (P < 0.05) reduced the copy numbers of genes for E. coli and the heat-stable enterotoxin in feces compared to those achieved with the control diet. Any fermented feed significantly (P < 0.05) reduced the abundance of E. coli and the heat-stable enterotoxin in colonic digesta at 21 days; reuteran-containing diets reduced the copy numbers of the genes for E. coli and the heat-stable enterotoxin below the detection limit in samples from the ileum, the cecum, and the colon. In conclusion, feed fermentation with L. reuteri reduced the level of colonization of weaning piglets with ETEC, and feed fermentation supplied concentrations of reuteran that may specifically contribute to the effect on ETEC.
Collapse
|
211
|
Gao ZM, Wang Y, Tian RM, Lee OO, Wong YH, Batang ZB, Al-Suwailem A, Lafi FF, Bajic VB, Qian PY. Pyrosequencing revealed shifts of prokaryotic communities between healthy and disease-like tissues of the Red Sea sponge Crella cyathophora. PeerJ 2015; 3:e890. [PMID: 26082867 PMCID: PMC4465955 DOI: 10.7717/peerj.890] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 03/23/2015] [Indexed: 11/20/2022] Open
Abstract
Sponge diseases have been widely reported, yet the causal factors and major pathogenic microbes remain elusive. In this study, two individuals of the sponge Crella cyathophora in total that showed similar disease-like characteristics were collected from two different locations along the Red Sea coast separated by more than 30 kilometers. The disease-like parts of the two individuals were both covered by green surfaces, and the body size was much smaller compared with adjacent healthy regions. Here, using high-throughput pyrosequencing technology, we investigated the prokaryotic communities in healthy and disease-like sponge tissues as well as adjacent seawater. Microbes in healthy tissues belonged mainly to the Proteobacteria, Cyanobacteria and Bacteroidetes, and were much more diverse at the phylum level than reported previously. Interestingly, the disease-like tissues from the two sponge individuals underwent shifts of prokaryotic communities and were both enriched with a novel clade affiliated with the phylum Verrucomicrobia, implying its intimate connection with the disease-like Red Sea sponge C. cyathophora. Enrichment of the phylum Verrucomicrobia was also considered to be correlated with the presence of algae assemblages forming the green surface of the disease-like sponge tissues. This finding represents an interesting case of sponge disease and is valuable for further study.
Collapse
Affiliation(s)
- Zhao-Ming Gao
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, PR China
- Sanya Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hai Nan, PR China
| | - Yong Wang
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, PR China
- Sanya Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hai Nan, PR China
| | - Ren-Mao Tian
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, PR China
| | - On On Lee
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, PR China
| | - Yue Him Wong
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, PR China
| | - Zenon B. Batang
- Coastal and Marine Resources Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Abdulaziz Al-Suwailem
- Coastal and Marine Resources Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Feras F. Lafi
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Vladimir B. Bajic
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Pei-Yuan Qian
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, PR China
| |
Collapse
|
212
|
Composition and diversity of the bacterial community in snow leopard (Uncia uncia) distal gut. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-014-0909-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
213
|
The impact of phosphorus on the immune system and the intestinal microbiota with special focus on the pig. Nutr Res Rev 2015; 28:67-82. [PMID: 26004147 DOI: 10.1017/s0954422415000049] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
There is increasing interest in dietary ingredients that are appropriate to support digestive and immune functions, but also maintain a stable microbial ecosystem in the gastrointestinal tract (GIT), particularly in weaned pigs. P is an essential nutrient for both microbes and their host, as it is involved, for example, in bone formation, energy metabolism, cellular signalling and stabilisation of cell membranes. Non-ruminant animals have limited access to phytate, the main storage form of P in plant seeds. The release of P bound to phytate requires phytase activity of plant or microbial origin, resulting in the formation of variable phosphorylated inositol phosphates (InsPs). The present review focuses on interactions between variations in dietary P supply, the immune system of the host, and the intestinal microbial ecosystem. Although results on the interaction between P and the immune system are inconsistent, several studies in different species have shown a positive impact of dietary P and phytase addition on the adaptive immune response. Recent studies with pigs suggest that P supply may influence intestinal microbial composition and activity. Individual InsPs or phosphate may also affect properties of pathogenic micro-organisms, such as metabolism or virulence. In conclusion, P may be considered as part of an integrated approach to support immune functions and maintain a stable microbial ecosystem in the GIT, thereby providing a barrier against potential pathogens. Within this regard, differences in phytate-P content and intrinsic phytase activity of plant feedstuffs, as well as the formation of individual InsPs, have to be taken into account.
Collapse
|
214
|
Savagea faecisuis gen. nov., sp. nov., a tylosin- and tetracycline-resistant bacterium isolated from a swine-manure storage pit. Antonie van Leeuwenhoek 2015; 108:151-61. [DOI: 10.1007/s10482-015-0473-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 05/06/2015] [Indexed: 10/23/2022]
|
215
|
Fraqueza MJ. Antibiotic resistance of lactic acid bacteria isolated from dry-fermented sausages. Int J Food Microbiol 2015; 212:76-88. [PMID: 26002560 DOI: 10.1016/j.ijfoodmicro.2015.04.035] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 03/19/2015] [Accepted: 04/23/2015] [Indexed: 12/22/2022]
Abstract
Dry-fermented sausages are meat products highly valued by many consumers. Manufacturing process involves fermentation driven by natural microbiota or intentionally added starter cultures and further drying. The most relevant fermentative microbiota is lactic acid bacteria (LAB) such as Lactobacillus, Pediococcus and Enterococcus, producing mainly lactate and contributing to product preservation. The great diversity of LAB in dry-fermented sausages is linked to manufacturing practices. Indigenous starters development is considered to be a very promising field, because it allows for high sanitary and sensorial quality of sausage production. LAB have a long history of safe use in fermented food, however, since they are present in human gastrointestinal tract, and are also intentionally added to the diet, concerns have been raised about the antimicrobial resistance in these beneficial bacteria. In fact, the food chain has been recognized as one of the key routes of antimicrobial resistance transmission from animal to human bacterial populations. The World Health Organization 2014 report on global surveillance of antimicrobial resistance reveals that this issue is no longer a future prediction, since evidences establish a link between the antimicrobial drugs use in food-producing animals and the emergence of resistance among common pathogens. This poses a risk to the treatment of nosocomial and community-acquired infections. This review describes the possible sources and transmission routes of antibiotic resistant LAB of dry-fermented sausages, presenting LAB antibiotic resistance profile and related genetic determinants. Whenever LAB are used as starters in dry-fermented sausages processing, safety concerns regarding antimicrobial resistance should be addressed since antibiotic resistant genes could be mobilized and transferred to other bacteria.
Collapse
Affiliation(s)
- Maria João Fraqueza
- CIISA, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, Pólo Universitário do Alto da Ajuda, 1300-477 Lisbon, Portugal.
| |
Collapse
|
216
|
Aguirre M, Venema K. Does the Gut Microbiota Contribute to Obesity? Going beyond the Gut Feeling. Microorganisms 2015; 3:213-35. [PMID: 27682087 PMCID: PMC5023237 DOI: 10.3390/microorganisms3020213] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/05/2015] [Accepted: 04/17/2015] [Indexed: 02/06/2023] Open
Abstract
Increasing evidence suggests that gut microbiota is an environmental factor that plays a crucial role in obesity. However, the aetiology of obesity is rather complex and depends on different factors. Furthermore, there is a lack of consensus about the exact role that this microbial community plays in the host. The aim of this review is to present evidence about what has been characterized, compositionally and functionally, as obese gut microbiota. In addition, the different reasons explaining the so-far unclear role are discussed considering evidence from in vitro, animal and human studies.
Collapse
Affiliation(s)
- Marisol Aguirre
- Top Institute of Food and Nutrition, P.O. Box 557, 6700 AA Wageningen, The Netherlands.
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Faculty of Health, Medicine and Life Sciences, Department of Human Biology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
- The Netherlands Organization for Applied Scientific Research (TNO), P.O. Box 360, 3700 AJ Zeist, The Netherlands.
| | - Koen Venema
- Top Institute of Food and Nutrition, P.O. Box 557, 6700 AA Wageningen, The Netherlands.
- Beneficial Microbes Consultancy, Johan Karschstraat 3, 6709 TN Wageningen, The Netherlands.
| |
Collapse
|
217
|
Hou C, Liu H, Zhang J, Zhang S, Yang F, Zeng X, Thacker PA, Zhang G, Qiao S. Intestinal microbiota succession and immunomodulatory consequences after introduction of Lactobacillus reuteri I5007 in neonatal piglets. PLoS One 2015; 10:e0119505. [PMID: 25775260 PMCID: PMC4361599 DOI: 10.1371/journal.pone.0119505] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 01/14/2015] [Indexed: 01/06/2023] Open
Abstract
Seventy-two, suckling piglets, obtained from 9 litters standardized to 8 piglets, were assigned to 1 of 3 treatments (n = 24) to compare short-term, early administration with intermittent, longer-term administration of Lactobacillus reuteri I5007. The treatments were a control (given a placebo of 0.1% peptone water from day 1 to 5) or treatments in which 1.7 × 1010 CFU L. reuteri was administrated either daily for 4 days starting on day 1 or every 4th day from day 1 to 17. Five piglets per treatment were killed at 3 time points (day 7, 14 and 21). Denaturing Gradient Electrophoresis of ileal digesta revealed an increase in the presence of L. reuteri I5007 and Clostridium lentocellum (on day 14 and 21) in the every 4th-day treatment and Actinobacillus porcinus (on day 7 and 14) in both L. reuteri treatments, while reducing the abundance of E. coli on day 21 in the every 4th-day treatment. Real-time qPCR of ileal digesta showed an increase in Bifidobacterium spp. on day 14 for both L. reuteri I5007 treatments. An increase in the concentration of lactic acid and a lower pH was observed in the first 4-day treatment on day 7 and the every 4th day treatment on day 14. The relative abundance of mRNA for TGF-β was increased while that for IFN-γ was decreased in the mesenteric lymph nodes of piglets treated with L. reuteri every 4th day. In conclusion, early intervention with L. reuteri increases the presence of beneficial bacteria and decreases the presence of undesirable microbes in the lower gastrointestinal tract. The changes appear to be mediated by altering the intestinal pH through lactic acid production resulting in favorable bacterial species colonization. A prolonged duration of treatment (i.e. every 4th day) would appear to be superior to treatment only during the first 4 days.
Collapse
Affiliation(s)
- Chengli Hou
- State Key Laboratory of Animal Nutrition, China Agricultural University, No. 2, Yuanmingyuan West Road, Beijing 100193, China
| | - Hong Liu
- State Key Laboratory of Animal Nutrition, China Agricultural University, No. 2, Yuanmingyuan West Road, Beijing 100193, China
| | - Jiang Zhang
- State Key Laboratory of Animal Nutrition, China Agricultural University, No. 2, Yuanmingyuan West Road, Beijing 100193, China
| | - Shihai Zhang
- State Key Laboratory of Animal Nutrition, China Agricultural University, No. 2, Yuanmingyuan West Road, Beijing 100193, China
| | - Fengjuan Yang
- State Key Laboratory of Animal Nutrition, China Agricultural University, No. 2, Yuanmingyuan West Road, Beijing 100193, China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, China Agricultural University, No. 2, Yuanmingyuan West Road, Beijing 100193, China
| | - Philip A Thacker
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Canada
| | - Guolong Zhang
- Department of Animal Science, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, China Agricultural University, No. 2, Yuanmingyuan West Road, Beijing 100193, China
- * E-mail:
| |
Collapse
|
218
|
Sattler VA, Bayer K, Schatzmayr G, Haslberger AG, Klose V. Impact of a probiotic, inulin, or their combination on the piglets' microbiota at different intestinal locations. Benef Microbes 2015; 6:473-83. [PMID: 25380797 DOI: 10.3920/bm2014.0030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Natural feed additives are used to maintain health and to promote performance of pigs without antibiotics. Effects of a probiotic, inulin, and their combination (synbiotic), on the microbial diversity and composition at different intestinal locations were analysed using denaturing gradient gel electrophoresis (DGGE), real-time PCR, and 16S rRNA gene pyrosequencing. Bacterial diversity assessed by DGGE and/or pyrosequencing was increased by inulin in all three gut locations and by the synbiotic in the caecum and colon. In contrast, the probiotic did only affect the microbiota diversity in the ileum. Shifts in the DGGE microbiota profiles of the caecum and colon were detected for the pro- and synbiotic fed animals, whereas inulin profiles were more similar to the ones of the control. 16S rRNA gene pyrosequencing revealed that all three additives could reduce Escherichia species in each gut location, indicating a potential beneficial effect on the gut microbiota. An increase of relative abundance of Clostridiaceae in the large intestine was found in the inulin group and of Enterococcaceae in the ileum of probiotic fed pigs. Furthermore, real-time PCR results showed that the probiotic and synbiotic increased bifidobacterial numbers in the ileum, which was supported by sequencing results. The probiotic and inulin, to different extents, changed the diversity, relative abundance of phylotypes, and community profiles of the porcine microbiota. However, alterations of the bacterial community were not uniformly between gut locations, demonstrating that functionality of feed additives is site specific. Therefore, gut sampling from various locations is crucial when investigations aim to identify the composition of a healthy gut microbiota after its manipulation through feed additives.
Collapse
Affiliation(s)
- V A Sattler
- 1 University of Natural Resources and Applied Life Sciences, Department for Agrobiotechnology, IFA Tulln, Konrad-Lorenz Strasse 20, 3430 Tulln, Austria
| | | | | | | | | |
Collapse
|
219
|
McLaughlin RW, Cochran PA, Dowd SE. Metagenomic analysis of the gut microbiota of the Timber Rattlesnake, Crotalus horridus. Mol Biol Rep 2015; 42:1187-95. [PMID: 25663091 DOI: 10.1007/s11033-015-3854-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 01/28/2015] [Indexed: 10/24/2022]
Abstract
Snakes are capable of surviving long periods without food. In this study we characterized the microbiota of a Timber Rattlesnake (Crotalus horridus), devoid of digesta, living in the wild. Pyrosequencing-based metagenomics were used to analyze phylogenetic and metabolic profiles with the aid of the MG-RAST server. Pyrosequencing of samples taken from the stomach, small intestine and colon yielded 691696, 957756 and 700419 high quality sequence reads. Taxonomic analysis of metagenomic reads indicated Eukarya was the most predominant domain, followed by bacteria and then viruses, for all three tissues. The most predominant phylum in the domain Bacteria was Proteobacteria for the tissues examined. Functional classifications by the subsystem database showed cluster-based subsystems were most predominant (10-15 %). Almost equally predominant (10-13 %) was carbohydrate metabolism. To identify bacteria in the colon at a finer taxonomic resolution, a 16S rRNA gene clone library was created. Proteobacteria was again found to be the most predominant phylum. The present study provides a baseline for understanding the microbial ecology of snakes living in the wild.
Collapse
|
220
|
Potential of cereal grains and grain legumes in modulating pigs׳ intestinal microbiota – A review. Livest Sci 2015. [DOI: 10.1016/j.livsci.2014.11.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
221
|
Hu Y, Dun Y, Li S, Zhang D, Peng N, Zhao S, Liang Y. Dietary Enterococcus faecalis LAB31 improves growth performance, reduces diarrhea, and increases fecal Lactobacillus number of weaned piglets. PLoS One 2015; 10:e0116635. [PMID: 25617897 PMCID: PMC4305361 DOI: 10.1371/journal.pone.0116635] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 12/12/2014] [Indexed: 11/19/2022] Open
Abstract
Lactic acid bacteria (LAB) have been shown to enhance performance of weaned piglets. However, few studies have reported the addition of LAB Enterococcus faecalis as alternatives to growth promoting antibiotics for weaned piglets. This study evaluated the effects of dietary E. faecalis LAB31 on the growth performance, diarrhea incidence, blood parameters, fecal bacterial and Lactobacillus communities in weaned piglets. A total of 360 piglets weaned at 26 ± 2 days of age were randomly allotted to 5 groups (20 pens, with 4 pens for each group) for a trial of 28 days: group N (negative control, without antibiotics or probiotics); group P (Neomycin sulfate, 100 mg/kg feed); groups L, M and H (supplemented with E. faecalis LAB31 0.5×109, 1.0×109, and 2.5×109 CFU/kg feed, respectively). Average daily gain and feed conversion efficiency were found to be higher in group H than in group N, and showed significant differences between group H and group P (P0 < 0.05). Furthermore, groups H and P had a lower diarrhea index than the other three groups (P0 < 0.05). Denaturing gradient gel electrophoresis (DGGE) showed that the application of probiotics to the diet changed the bacterial community, with a higher bacterial diversity in group M than in the other four groups. Real-time PCR revealed that the relative number of Lactobacillus increased by addition of probiotics, and was higher in group H than in group N (P0 < 0.05). However, group-specific PCR-DGGE showed no obvious difference among the five groups in Lactobacillus composition and diversity. Therefore, the dietary addition of E. faecalis LAB31 can improve growth performance, reduce diarrhea, and increase the relative number of Lactobacillus in feces of weaned piglets.
Collapse
Affiliation(s)
- Yuanliang Hu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China
- College of Life Sciences, Hubei Normal University, Huangshi, Hubei 435002, P.R. China
| | - Yaohao Dun
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Shenao Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Dongxiao Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Nan Peng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Shumiao Zhao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Yunxiang Liang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China
- * E-mail:
| |
Collapse
|
222
|
Kim YS, Kim J, Park SJ. High-throughput 16S rRNA gene sequencing reveals alterations of mouse intestinal microbiota after radiotherapy. Anaerobe 2015; 33:1-7. [PMID: 25600706 DOI: 10.1016/j.anaerobe.2015.01.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/02/2014] [Accepted: 01/14/2015] [Indexed: 02/07/2023]
Abstract
The mammalian gastrointestinal tract harbors a highly complex microbial community that comprises hundreds of different types of bacterial cells. The gastrointestinal microbiota plays an important role in the function of the host intestine. Most cancer patients undergoing pelvic irradiation experience side effects such as diarrhea; however, little is currently known about the effects of irradiation on the microorganisms colonizing the mucosal surfaces of the gastrointestinal tract. The aim of this study was to investigate the effects of gamma irradiation on the compositions of the large and small intestinal microbiotas. The gut microbiotas in control mice and mice receiving irradiation treatment were characterized by high-throughput sequencing of the bacterial 16S rRNA gene. Irradiation treatment induced significant alterations in the bacterial compositions of the large and small intestines at the genus level. Unexpectedly, irradiation treatment increased the number of operational taxonomic units in the small intestine but not the large intestine. In particular, irradiation treatment increased the level of the genera Alistipes in the large intestine and increased the level of the genus Corynebacterium in the small intestine. By contrast, compared with that in the corresponding control group, the level of the genera Prevotella was lower in the irradiated large intestine, and the level of the genera Alistipes was lower in the irradiated small intestine. Overall, the data presented here reveal the potential microbiological effects of pelvic irradiation on the gastrointestinal tracts of cancer patients.
Collapse
Affiliation(s)
- Young Suk Kim
- Department of Radiation Oncology, Jeju National University Hospital, Aran 13gil 15, Jeju 650-756, Republic of Korea
| | - Jinu Kim
- Department of Anatomy, Jeju National University School of Medicine, 102 Jejudaehak-ro, Jeju 650-756, Republic of Korea; Department of Biomedicine & Drug Development, Jeju National University, 102 Jejudaehak-ro, Jeju 650-756, Republic of Korea
| | - Soo-Je Park
- Department of Biology, Jeju National University, 102 Jejudaehak-ro, Jeju 650-756, Republic of Korea.
| |
Collapse
|
223
|
Ye G, Qiu Y, He X, Zhao L, Shi F, Lv C, Jing B, Li Y. Effect of Two Macrocephala Flavored Powder supplementation on intestinal morphology and intestinal microbiota in weaning pigs. Int J Clin Exp Med 2015; 8:1504-1514. [PMID: 25785165 PMCID: PMC4358620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/05/2015] [Indexed: 06/04/2023]
Abstract
A total of 75 pigs were used to investigate effects of feeding Two Macrocephala Flavored Powder (TMFP) on small intestinal morphology, intestinal microbiota in weaning pigs. The dietary treatments were: a control diet; control diet + 3 g/kg TMFP; control diet + 0.3 g/kg colistin sulfate (ANT). The results showed that supplementation with TMFP increased (P < 0.05) villus height at duodenum, jejunum at 3 time points, increased (P < 0.05) crypt depth at duodenum, jejunum at day 14, improved villus height: crypt depth ratio (P < 0.05) in jejunum at day 21 as compared with ANT. Supplementation of TMFP and ANT had lower (P < 0.05) E. coli counts in the ileum, cecum and colon at day 7 as compared with control. Supplementation of TMFP had higher (P < 0.05) bifidobacteria counts in the ileum, cecum and colon compared with ANT, except for colon at day 21. No effect (P > 0.05) on lactobacilli in colon has been seen with supplementation of TMFP and ANT at 3 time points, while both of supplementations showed increased the number of lactobacilli in cecum at day 14 and day 21. Analysis of DGGE fingerprints indicated that a highest similarity was observed for profiles from samples taken 14 d, 21 d from TMFP. The diversity of DGGE fingerprints of TMFP was higher than those of ANT and control. The results suggest that TMFP is potential to enhancing intestinal morphology and microbiota of weaning pigs, and can be served as an effective and safe dietary additive for weaning pigs.
Collapse
Affiliation(s)
- Gang Ye
- College of Veterinary Medicine, Sichuan Agricultural UniversityYa’an 625014, Sichuan, China
| | - Yin Qiu
- College of Veterinary Medicine, Sichuan Agricultural UniversityYa’an 625014, Sichuan, China
| | - Xiaoli He
- College of Science, Sichuan Agricultural UniversityYa’an 625014, Sichuan, China
| | - Ling Zhao
- College of Veterinary Medicine, Sichuan Agricultural UniversityYa’an 625014, Sichuan, China
| | - Fei Shi
- College of Veterinary Medicine, Sichuan Agricultural UniversityYa’an 625014, Sichuan, China
| | - Cheng Lv
- College of Veterinary Medicine, Sichuan Agricultural UniversityYa’an 625014, Sichuan, China
| | - Bo Jing
- College of Veterinary Medicine, Sichuan Agricultural UniversityYa’an 625014, Sichuan, China
| | - Yinglun Li
- College of Veterinary Medicine, Sichuan Agricultural UniversityYa’an 625014, Sichuan, China
| |
Collapse
|
224
|
Bui TH, Lee SY. Endogenous cellulase production in the leaf litter foraging mangrove crab Parasesarma erythodactyla. Comp Biochem Physiol B Biochem Mol Biol 2015; 179:27-36. [DOI: 10.1016/j.cbpb.2014.09.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 09/10/2014] [Accepted: 09/10/2014] [Indexed: 02/03/2023]
|
225
|
Jašarević E, Rodgers AB, Bale TL. A novel role for maternal stress and microbial transmission in early life programming and neurodevelopment. Neurobiol Stress 2015; 1:81-88. [PMID: 25530984 PMCID: PMC4267059 DOI: 10.1016/j.ynstr.2014.10.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 10/18/2014] [Accepted: 10/20/2014] [Indexed: 12/13/2022] Open
Abstract
Perturbations in the prenatal and early life environment can contribute to the development of offspring stress dysregulation, a pervasive symptom in neuropsychiatric disease. Interestingly, the vertical transmission of maternal microbes to offspring and the subsequent bacterial colonization of the neonatal gut overlap with a critical period of brain development. Therefore, environmental factors such as maternal stress that are able to alter microbial populations and their transmission can thereby shape offspring neurodevelopment. As the neonatal gastrointestinal tract is primarily inoculated at parturition through the ingestion of maternal vaginal microflora, disruption in the vaginal ecosystem may have important implications for offspring neurodevelopment and disease risk. Here, we discuss alterations that occur in the vaginal microbiome following maternal insult and the subsequent effects on bacterial assembly of the neonate gut, the production of neuromodulatory metabolites, and the developmental course of stress regulation.
Collapse
Affiliation(s)
| | | | - Tracy L. Bale
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
226
|
Duar RM, Clark KJ, Patil PB, Hernández C, Brüning S, Burkey TE, Madayiputhiya N, Taylor SL, Walter J. Identification and characterization of intestinal lactobacilli strains capable of degrading immunotoxic peptides present in gluten. J Appl Microbiol 2014; 118:515-27. [PMID: 25376327 DOI: 10.1111/jam.12687] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/15/2014] [Accepted: 10/30/2014] [Indexed: 01/17/2023]
Abstract
AIM Identify and characterize bacteria from the proximal gastrointestinal tract of pigs capable of degrading immunogenic gluten peptides. METHODS AND RESULTS Bacteria were cultured from the small intestine of pigs fed a 20% gluten diet and from an enrichment media with the 18-mer peptide LQLQPFPQPQLPYPQPQL. Isolates were screened for the production of specialized proteolytic enzymes and the ability to degrade and remove metastable peptides from α-gliadin (16-mer and 33-mer) and ω-gliadin (17-mer), with established roles in the aetiology of coeliac disease. Degradation was determined by ELISA and mass spectrometry (UHPLC-MS/MS in MRM mode), and hydrolysis fragments were characterized by LC-MS/MS. Four strains from the species Lactobacillus ruminis, Lactobacillus johnsonii, Lactobacillus amylovorus and Lactobacillus salivarius showed the highest peptide-degrading activities. Strains displayed different degradation rates and cleavage patterns that resulted in reduction but not complete removal of immunotoxic epitopes. CONCLUSIONS We employed a unique enrichment process to select for bacteria adapted to the conditions of the proximal gastrointestinal tract with the ability to partially detoxify well-characterized peptides involved in coeliac disease. SIGNIFICANCE AND IMPACT OF THE STUDY This study provides a basis for the selection of Lactobacillus strains for probiotic applications aimed to reduce epitope-containing gluten peptides before reaching the epithelium of the small intestine of patients with coeliac disease.
Collapse
Affiliation(s)
- R M Duar
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, USA; Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
227
|
Pitta DW, Parmar N, Patel AK, Indugu N, Kumar S, Prajapathi KB, Patel AB, Reddy B, Joshi C. Bacterial diversity dynamics associated with different diets and different primer pairs in the rumen of Kankrej cattle. PLoS One 2014; 9:e111710. [PMID: 25365522 PMCID: PMC4218807 DOI: 10.1371/journal.pone.0111710] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 09/29/2014] [Indexed: 11/18/2022] Open
Abstract
The ruminal microbiome in herbivores plays a dominant role in the digestion of lignocellulose and has potential to improve animal productivity. Kankrej cattle, a popular native breed of the Indian subcontinent, were used to investigate the effect of different dietary treatments on the bacterial diversity in ruminal fractions using different primer pairs. Two groups of four cows were assigned to two primary diets of either dry or green forages. Each group was fed one of three dietary treatments for six weeks each. Dietary treatments were; K1 (50% dry/green roughage: 50% concentrate), K2 (75% dry/green roughage: 25% concentrate) and K3 (100% dry/green roughage). Rumen samples were collected using stomach tube at the end of each dietary period and separated into solid and liquid fractions. The DNA was extracted and amplified for V1–V3, V4–V5 and V6–V8 hypervariable regions using P1, P2 and P3 primer pairs, sequenced on a 454 Roche platform and analyzed using QIIME. Community compositions and the abundance of most bacterial lineages were driven by interactions between primer pair, dietary treatment and fraction. The most abundant bacterial phyla identified were Bacteroidetes and Firmicutes however, the abundance of these phyla varied between different primer pairs; in each primer pair the abundance was dependent on the dietary treatment and fraction. The abundance of Bacteroidetes in cattle receiving K1 treatment indicate their diverse functional capabilities in the digestion of both carbohydrate and protein while the predominance of Firmicutes in the K2 and K3 treatments signifies their metabolic role in fibre digestion. It is apparent that both liquid and solid fractions had distinct bacterial community patterns (P<0.001) congruent to changes in the dietary treatments. It can be concluded that the P1 primer pair flanking the V1–V3 hyper-variable region provided greater species richness and diversity of bacterial populations in the rumen of Kankrej cattle.
Collapse
Affiliation(s)
- Dipti W. Pitta
- Center for Animal Health and Productivity, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| | - Nidhi Parmar
- Ome Research Facility, Department of Animal Biotechnology, Anand Agricultural University, Anand, Gujarat, India
| | - Amrut K. Patel
- Ome Research Facility, Department of Animal Biotechnology, Anand Agricultural University, Anand, Gujarat, India
| | - Nagaraju Indugu
- Center for Animal Health and Productivity, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sanjay Kumar
- Center for Animal Health and Productivity, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Karsanbhai B. Prajapathi
- Livestock Production and Management Department, College of Veterinary Science and Animal Husbandry, Sardar Krushi Nagar Dantiwada Agricultural University, Sardar Krushi Nagar, Gujarat, India
| | - Anand B. Patel
- Ome Research Facility, Department of Animal Biotechnology, Anand Agricultural University, Anand, Gujarat, India
| | - Bhaskar Reddy
- Ome Research Facility, Department of Animal Biotechnology, Anand Agricultural University, Anand, Gujarat, India
| | - Chaitanya Joshi
- Ome Research Facility, Department of Animal Biotechnology, Anand Agricultural University, Anand, Gujarat, India
| |
Collapse
|
228
|
Hwang OH, Raveendar S, Kim YJ, Kim JH, Choi JW, Kim TH, Choi DY, Jeon CO, Cho SB, Lee KT. Deodorization of pig slurry and characterization of bacterial diversity using 16S rDNA sequence analysis. J Microbiol 2014; 52:918-29. [PMID: 25359269 DOI: 10.1007/s12275-014-4251-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 09/01/2014] [Accepted: 09/05/2014] [Indexed: 02/05/2023]
Abstract
The concentration of major odor-causing compounds including phenols, indoles, short-chain fatty acids (SCFAs) and branched chain fatty acids (BCFAs) in response to the addition of powdered horse radish (PHR) and spent mushroom compost (SMC) was compared with control non-treated slurry (CNS) samples. A total of 97,465 rDNAs sequence reads were generated from three different samples (CNS, n = 2; PHR, n = 3; SMC, n = 3) using bar-coded pyrosequencing. The number of operational taxonomic units (OTUs) was lower in the PHR slurry compared with the other samples. A total of 11 phyla were observed in the slurry samples, while the phylogenetic analysis revealed that the slurry microbiome predominantly comprised members of the Bacteroidetes, Firmicutes, and Proteobacteria phyla. The rarefaction analysis showed the bacterial species richness varied among the treated samples. Overall, at the OTU level, 2,558 individual genera were classified, 276 genera were found among the three samples, and 1,832 additional genera were identified in the individual samples. A principal component analysis revealed the differences in microbial communities among the CNS, PHR, and SMC pig slurries. Correlation of the bacterial community structure with the Kyoto Encyclopedia of Genes and Genomes (KEGG) predicted pathways showed that the treatments altered the metabolic capabilities of the slurry microbiota. Overall, these results demonstrated that the PHR and S MC treatments significantly reduced the malodor compounds in pig slurry (P < 0.05).
Collapse
Affiliation(s)
- Ok-Hwa Hwang
- National Institute of Animal Science, Rural Development Administration, Suwon, 441-706, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
229
|
Tanner SA, Chassard C, Zihler Berner A, Lacroix C. Synergistic effects of Bifidobacterium thermophilum RBL67 and selected prebiotics on inhibition of Salmonella colonization in the swine proximal colon PolyFermS model. Gut Pathog 2014; 6:44. [PMID: 25364390 PMCID: PMC4215022 DOI: 10.1186/s13099-014-0044-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 10/06/2014] [Indexed: 01/10/2023] Open
Abstract
Background Probiotics and prebiotics are promising strategies to counteract Salmonella prevalence in swine. In the present study, we investigated the effects of prebiotics (fructo- (FOS), galacto- (GOS) and mannan- (MOS) oligosaccharides) and the bacteriocinogenic Bifidobacterium thermophilum RBL67 (RBL67) on Salmonella enterica subsp. enterica serovar Typhimurium N-15 (N-15) colonization using the PolyFermS in vitro continuous fermentation model simulating the swine proximal colon. Material and methods The PolyFermS model was designed with a first-stage reactor containing immobilized fecal pig microbiota. This reactor continuously inoculated five parallel second-stage reactors, a control and four treatment reactors, all operated with proximal colon conditions. FOS and GOS (5.2 g/day), and MOS (half dosage) and RBL67 (108 copy numbers/mL applied daily) were tested on the ability of N-15 to colonize reactors, inoculated with the same microbiota. Reactor effluents were collected daily and analyzed for microbial composition (quantitative PCR and 454 pyrosequencing of 16S rRNA gene pool) and main metabolites (HPLC). Results RBL67 and N-15 were shown to stably colonize the system. Colonization of N-15 was strongly inhibited by FOS and GOS, whereas addition of RBL67 alone or combined with MOS showed intermediate results. However, the effect of FOS and GOS was enhanced when prebiotics were combined with a daily addition of RBL67. FOS and GOS increased the total short chain fatty acid production, especially acetate and propionate. RBL67 combined with FOS additionally stimulated butyrate production. Conclusions Our study demonstrates the suitability of the porcine PolyFermS in vitro model to study nutritional effects of pro- and prebiotics on gut microbiota composition and activity. It can further be used to monitor Salmonella colonization. The inhibition effects of FOS and GOS on N-15 colonization are partly due to an increased acetate production, while further antimicrobial mechanisms may contribute to an enhanced inhibition with prebiotic-RBL67 combinations. A future direction of this work could be to understand the anti-Salmonella effects of Bifidobacterium thermophilum RBL67 in the presence of prebiotics to unravel the mechanism of this probiotic:pathogen interaction. Electronic supplementary material The online version of this article (doi:10.1186/s13099-014-0044-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sabine Amani Tanner
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Department of Health Science and Technology, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland
| | - Christophe Chassard
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Department of Health Science and Technology, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland
| | - Annina Zihler Berner
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Department of Health Science and Technology, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland
| | - Christophe Lacroix
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Department of Health Science and Technology, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland
| |
Collapse
|
230
|
Gao ZM, Wang Y, Lee OO, Tian RM, Wong YH, Bougouffa S, Batang Z, Al-Suwailem A, Lafi FF, Bajic VB, Qian PY. Pyrosequencing reveals the microbial communities in the Red Sea sponge Carteriospongia foliascens and their impressive shifts in abnormal tissues. MICROBIAL ECOLOGY 2014; 68:621-632. [PMID: 24760170 DOI: 10.1007/s00248-014-0419-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 04/04/2014] [Indexed: 06/03/2023]
Abstract
Abnormality and disease in sponges have been widely reported, yet how sponge-associated microbes respond correspondingly remains inconclusive. Here, individuals of the sponge Carteriospongia foliascens under abnormal status were collected from the Rabigh Bay along the Red Sea coast. Microbial communities in both healthy and abnormal sponge tissues and adjacent seawater were compared to check the influences of these abnormalities on sponge-associated microbes. In healthy tissues, we revealed low microbial diversity with less than 100 operational taxonomic units (OTUs) per sample. Cyanobacteria, affiliated mainly with the sponge-specific species "Candidatus Synechococcus spongiarum," were the dominant bacteria, followed by Bacteroidetes and Proteobacteria. Intraspecies dynamics of microbial communities in healthy tissues were observed among sponge individuals, and potential anoxygenic phototrophic bacteria were found. In comparison with healthy tissues and the adjacent seawater, abnormal tissues showed dramatic increase in microbial diversity and decrease in the abundance of sponge-specific microbial clusters. The dominated cyanobacterial species Candidatus Synechococcus spongiarum decreased and shifted to unspecific cyanobacterial clades. OTUs that showed high similarity to sequences derived from diseased corals, such as Leptolyngbya sp., were found to be abundant in abnormal tissues. Heterotrophic Planctomycetes were also specifically enriched in abnormal tissues. Overall, we revealed the microbial communities of the cyanobacteria-rich sponge, C. foliascens, and their impressive shifts under abnormality.
Collapse
Affiliation(s)
- Zhao-Ming Gao
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
231
|
Tran H, Bundy JW, Hinkle EE, Walter J, Burkey TE, Miller PS. Effects of a yeast-dried milk product in creep and phase-1 nursery diets on growth performance, circulating immunoglobulin A, and fecal microbiota of nursing and nursery pigs1. J Anim Sci 2014; 92:4518-30. [DOI: 10.2527/jas.2014-7574] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- H. Tran
- Department of Animal Science, University of Nebraska, Lincoln 68583-0908
| | - J. W. Bundy
- Department of Animal Science, University of Nebraska, Lincoln 68583-0908
| | - E. E. Hinkle
- Department of Animal Science, University of Nebraska, Lincoln 68583-0908
| | - J. Walter
- Department of Food Science and Technology, University of Nebraska, Lincoln 68583-0908
| | - T. E. Burkey
- Department of Animal Science, University of Nebraska, Lincoln 68583-0908
| | - P. S. Miller
- Department of Animal Science, University of Nebraska, Lincoln 68583-0908
| |
Collapse
|
232
|
Holman DB, Baurhoo B, Chénier MR. Temporal analysis of the effect of extruded flaxseed on the swine gut microbiota. Can J Microbiol 2014; 60:649-59. [DOI: 10.1139/cjm-2014-0317] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Flaxseed is a rich source of α-linolenic acid, an essential ω-3 fatty acid reported to have beneficial health effects in humans. Feeding swine a diet supplemented with flaxseed has been found to enrich pork products with ω-3 fatty acids. However, the effect of flaxseed supplementation on the swine gut microbiota has not been assessed to date. The purpose of this study was to investigate if extruded flaxseed has any impact on the bacterial and archaeal microbiota in the feces of growing–finishing pigs over a 51-day period, using denaturing gradient gel electrophoresis (DGGE) and real-time PCR. Bacterial DGGE profile analysis revealed major temporal shifts in the bacterial microbiota with only minor ones related to diet. The archaeal microbiota was significantly less diverse than that of Bacteria. The majority of bacterial DGGE bands sequenced belonged to the Firmicutes phylum while the archaeal DGGE bands were found to consist of only 2 species, Methanobrevibacter smithii and Methanosphaera stadtmanae. The abundance of Bacteroidetes decreased significantly from day 0 to day 21 in all diet groups while the abundance of Firmicutes was relatively stable across all diet cohorts and sampling times. There was also no significant correlation between pig mass and the ratio of Firmicutes to Bacteroidetes. While the addition of extruded flaxseed to the feed of growing–finishing pigs was beneficial for improving ω-3 fatty acid content of pork, it had no detectable impact on the fecal bacterial and archaeal microbiota, suggesting that extruded flaxseed may be used to improve meat quality without adverse effect on the swine gut microbiota or animal performance.
Collapse
Affiliation(s)
- Devin B. Holman
- Department of Animal Science, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Bushansingh Baurhoo
- Bélisle Solution and Nutrition Inc., Saint-Mathias-sur-Richelieu, QC J3L 6A7, Canada
| | - Martin R. Chénier
- Department of Animal Science, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
- Department of Food Science and Agricultural Chemistry, McGill University, 21 111 Lakeshore Road, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| |
Collapse
|
233
|
Thiouracil-Forming Bacteria Identified and Characterized upon Porcine In Vitro Digestion of Brassicaceae Feed. Appl Environ Microbiol 2014; 80:7433-42. [PMID: 25261511 DOI: 10.1128/aem.02370-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/19/2014] [Indexed: 11/20/2022] Open
Abstract
In recent years, the frequent detection of the banned thyreostat thiouracil (TU) in livestock urine has been related to endogenous TU formation following digestion of glucosinolate-rich Brassicaceae crops. Recently, it was demonstrated that, upon in vitro digestion of Brassicaceae, fecal bacteria induce TU detection in livestock (porcine livestock > bovines). Therefore, the present study was intended to isolate and identify bacteria involved in this intestinal TU formation upon Brassicaceae digestion and to gain more insight into the underlying mechanism in porcine livestock. Twenty porcine fecal inocula (gilts and multiparous sows) were assessed through static in vitro colonic-digestion simulations with rapeseed. After derivatization and extraction of the fecal suspensions, TU was analyzed using liquid chromatography-tandem mass spectrometry (LC-MS(2)). On average, lower TU concentrations were observed in fecal colonic simulations in gilts (8.35 ng g(-1) rapeseed ± 3.42 [mean ± standard deviation]) than in multiparous sows (52.63 ng g(-1) ± 16.17), which correlates with maturation of the gut microbial population with age. Further exploration of the mechanism showed cell-dependent activity of the microbial conversion and sustained TU-forming activity after subjection of the fecal inoculum to moderate heat over a time span of up to 30 min. Finally, nine TU-producing bacterial species were successfully isolated and identified by a combination of biochemical and molecular techniques as Escherichia coli (n = 5), Lactobacillus reuteri (n = 2), Enterococcus faecium (n = 1), and Salmonella enterica subsp. arizonae (n = 1). This report demonstrates that endogenous formation of TU is Brassicaceae induced and occurs under colonic conditions most likely through myrosinase-like enzyme activity expressed by different common intestinal bacterial species.
Collapse
|
234
|
Miyazaki M, Sakai S, Ritalahti KM, Saito Y, Yamanaka Y, Saito Y, Tame A, Uematsu K, Löffler FE, Takai K, Imachi H. Sphaerochaeta multiformis sp. nov., an anaerobic, psychrophilic bacterium isolated from subseafloor sediment, and emended description of the genus Sphaerochaeta. Int J Syst Evol Microbiol 2014; 64:4147-4154. [PMID: 25249566 DOI: 10.1099/ijs.0.068148-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An anaerobic, psychrophilic bacterium, strain MO-SPC2(T), was isolated from a methanogenic microbial community in a continuous-flow bioreactor that was established from subseafloor sediments collected from off the Shimokita Peninsula of Japan in the north-western Pacific Ocean. Cells were pleomorphic: spherical, annular, curved rod, helical and coccoid cell morphologies were observed. Motility only occurred in helical cells. Strain MO-SPC2(T) grew at 0-17 °C (optimally at 9 °C), at pH 6.0-8.0 (optimally at pH 6.8-7.2) and in 20-40 g NaCl l(-1) (optimally at 20-30 NaCl l(-1)). The strain grew chemo-organotrophically with mono-, di- and polysaccharides. The major end products of glucose fermentation were acetate, ethanol, hydrogen and carbon dioxide. The abundant polar lipids of strain MO-SPC2(T) were phosphatidylglycolipids, phospholipids and glycolipids. The major cellular fatty acids were C14 : 0, C16 : 0 and C16 : 1ω9. Isoprenoid quinones were not detected. The G+C content of the DNA was 32.3 mol%. 16S rRNA gene-based phylogenetic analysis showed that strain MO-SPC2(T) was affiliated with the genus Sphaerochaeta within the phylum Spirochaetes, and its closest relatives were Sphaerochaeta pleomorpha Grapes(T) (88.4 % sequence identity), Sphaerochaeta globosa Buddy(T) (86.7 %) and Sphaerochaeta coccoides SPN1(T) (85.4 %). Based on phenotypic characteristics and phylogenetic traits, strain MO-SPC2(T) is considered to represent a novel species of the genus Sphaerochaeta, for which the name Sphaerochaeta multiformis sp. nov. is proposed. The type strain is MO-SPC2(T) ( = JCM 17281(T) = DSM 23952(T)). An emended description of the genus Sphaerochaeta is also proposed.
Collapse
Affiliation(s)
- Masayuki Miyazaki
- Department of Subsurface Geobiology Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan
| | - Sanae Sakai
- Department of Subsurface Geobiology Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan
| | - Kirsti M Ritalahti
- Joint Institute for Biological Sciences (JIBS) and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.,Center for Environmental Biotechnology, Department of Microbiology, Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Yayoi Saito
- Department of Environmental Systems Engineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan.,Department of Subsurface Geobiology Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan
| | - Yuko Yamanaka
- Department of Subsurface Geobiology Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan
| | - Yumi Saito
- Department of Subsurface Geobiology Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan
| | - Akihiko Tame
- Section 1 Geochemical Oceanography, Office of Marine Research Department of Marine Science, Marine Works Japan Ltd, Yokosuka, Kanagawa 237-0061, Japan
| | - Katsuyuki Uematsu
- Section 1 Geochemical Oceanography, Office of Marine Research Department of Marine Science, Marine Works Japan Ltd, Yokosuka, Kanagawa 237-0061, Japan
| | - Frank E Löffler
- Joint Institute for Biological Sciences (JIBS) and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.,Center for Environmental Biotechnology, Department of Microbiology, Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Ken Takai
- Department of Subsurface Geobiology Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan
| | - Hiroyuki Imachi
- Department of Subsurface Geobiology Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan
| |
Collapse
|
235
|
A comparative metagenome survey of the fecal microbiota of a breast- and a plant-fed Asian elephant reveals an unexpectedly high diversity of glycoside hydrolase family enzymes. PLoS One 2014; 9:e106707. [PMID: 25208077 PMCID: PMC4160196 DOI: 10.1371/journal.pone.0106707] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 07/29/2014] [Indexed: 02/07/2023] Open
Abstract
A phylogenetic and metagenomic study of elephant feces samples (derived from a three-weeks-old and a six-years-old Asian elephant) was conducted in order to describe the microbiota inhabiting this large land-living animal. The microbial diversity was examined via 16S rRNA gene analysis. We generated more than 44,000 GS-FLX+454 reads for each animal. For the baby elephant, 380 operational taxonomic units (OTUs) were identified at 97% sequence identity level; in the six-years-old animal, close to 3,000 OTUs were identified, suggesting high microbial diversity in the older animal. In both animals most OTUs belonged to Bacteroidetes and Firmicutes. Additionally, for the baby elephant a high number of Proteobacteria was detected. A metagenomic sequencing approach using Illumina technology resulted in the generation of 1.1 Gbp assembled DNA in contigs with a maximum size of 0.6 Mbp. A KEGG pathway analysis suggested high metabolic diversity regarding the use of polymers and aromatic and non-aromatic compounds. In line with the high phylogenetic diversity, a surprising and not previously described biodiversity of glycoside hydrolase (GH) genes was found. Enzymes of 84 GH families were detected. Polysaccharide utilization loci (PULs), which are found in Bacteroidetes, were highly abundant in the dataset; some of these comprised cellulase genes. Furthermore the highest coverage for GH5 and GH9 family enzymes was detected for Bacteroidetes, suggesting that bacteria of this phylum are mainly responsible for the degradation of cellulose in the Asian elephant. Altogether, this study delivers insight into the biomass conversion by one of the largest plant-fed and land-living animals.
Collapse
|
236
|
Chen XY, Woodward A, Zijlstra RT, Gänzle MG. Exopolysaccharides synthesized by Lactobacillus reuteri protect against enterotoxigenic Escherichia coli in piglets. Appl Environ Microbiol 2014; 80:5752-60. [PMID: 25015886 PMCID: PMC4178603 DOI: 10.1128/aem.01782-14] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 07/08/2014] [Indexed: 01/09/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a major cause of diarrhea in piglets; ETEC cells colonize the intestinal mucosa with adhesins and deliver toxins that cause fluid loss. This study determined the antiadhesive properties of bacterial exopolysaccharides (reuteran and levan) and related glycans (dextran and inulin) in a small intestinal segment perfusion (SISP) model. The SISP model used 10 jejunal segments from 5-week-old piglets. Five segments were infected with ETEC expressing K88 fimbriae (ETEC K88), while five segments were treated with saline. Every two segments (ETEC and non-ETEC infected) were infused with 65 ml of 10 g liter(-1) of glycans or saline (control) for 8 h. High-resolution melting-curve (HRM) quantitative PCR (qPCR) indicated that E. coli is the dominant bacterium in infected segments, while other bacteria were predominant in noninfected segments. Infection by ETEC K88 was also verified by qPCR; gene copy numbers of K88 fimbriae and the heat-labile toxin (LT) in mucosal scrapings and outflow fluid of infected segments were significantly higher than those in noninfected segments. Genes coding for K88 fimbriae and LT were also detected in noninfected segments. LT amplicons from infected and noninfected segments were 99% identical over 481 bp, demonstrating the presence of autochthonous ETEC K88. All glycans reduced fluid loss caused by ETEC K88 infection. Reuteran tended (P = 0.06) to decrease ETEC K88 levels in mucosal scraping sample, as judged by qPCR. Fluorescent in situ hybridization analysis demonstrated that reuteran significantly (P = 0.012) decreased levels of adherent ETEC K88. Overall, reuteran may prevent piglet diarrhea by reducing adhesion of ETEC K88.
Collapse
Affiliation(s)
- Xiao Yan Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Adrienne Woodward
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Ruurd T Zijlstra
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Michael G Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada School of Food and Pharmaceutical Engineering, Hubei University of Technology, Wuhan, People's Republic of China
| |
Collapse
|
237
|
Development of a prokaryotic universal primer for simultaneous analysis of Bacteria and Archaea using next-generation sequencing. PLoS One 2014; 9:e105592. [PMID: 25144201 PMCID: PMC4140814 DOI: 10.1371/journal.pone.0105592] [Citation(s) in RCA: 821] [Impact Index Per Article: 82.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 07/26/2014] [Indexed: 01/03/2023] Open
Abstract
For the analysis of microbial community structure based on 16S rDNA sequence diversity, sensitive and robust PCR amplification of 16S rDNA is a critical step. To obtain accurate microbial composition data, PCR amplification must be free of bias; however, amplifying all 16S rDNA species with equal efficiency from a sample containing a large variety of microorganisms remains challenging. Here, we designed a universal primer based on the V3-V4 hypervariable region of prokaryotic 16S rDNA for the simultaneous detection of Bacteria and Archaea in fecal samples from crossbred pigs (Landrace × Large white × Duroc) using an Illumina MiSeq next-generation sequencer. In-silico analysis showed that the newly designed universal prokaryotic primers matched approximately 98.0% of Bacteria and 94.6% of Archaea rRNA gene sequences in the Ribosomal Database Project database. For each sequencing reaction performed with the prokaryotic universal primer, an average of 69,330 (± 20,482) reads were obtained, of which archaeal rRNA genes comprised approximately 1.2% to 3.2% of all prokaryotic reads. In addition, the detection frequency of Bacteria belonging to the phylum Verrucomicrobia, including members of the classes Verrucomicrobiae and Opitutae, was higher in the NGS analysis using the prokaryotic universal primer than that performed with the bacterial universal primer. Importantly, this new prokaryotic universal primer set had markedly lower bias than that of most previously designed universal primers. Our findings demonstrate that the prokaryotic universal primer set designed in the present study will permit the simultaneous detection of Bacteria and Archaea, and will therefore allow for a more comprehensive understanding of microbial community structures in environmental samples.
Collapse
|
238
|
Tang Q, Zuo T, Lu S, Wu J, Wang J, Zheng R, Chen S, Xue C. Dietary squid ink polysaccharides ameliorated the intestinal microflora dysfunction in mice undergoing chemotherapy. Food Funct 2014; 5:2529-35. [PMID: 25131333 DOI: 10.1039/c4fo00408f] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Gastrointestinal mucositis and infection by chemotherapy treatment are associated with alteration of intestinal microflora and bacterial translocation due to the potential damage induced by anti-cancer drugs on the intestinal barrier and microbiota homeostasis. This study aimed to investigate the protective effect of dietary polysaccharides on chemotherapy induced intestinal microflora dysfunction. In the current contribution, with a mouse model intraperitoneally injected with 50 mg kg(-1) of cyclophosphamide (Cy) for 2 days, we revealed that polysaccharides from the ink of Ommastrephes bartrami (OBP) altered the intestinal microflora composition. OBP retarded the excessive growth of intestinal bacteria induced by cyclophosphamide, based on 16S rRNA gene (16S rDNA) quantification. The clone libraries of intestinal bacteria 16S rDNA were used to decipher the difference in bacterial community structures in different groups of mice. Followed by RFLP evaluation and OTU abundance analysis, they imply that OBP changed the intestinal microflora composition, in which the quantity of probiotic Bifidobacterium got up-regulated but Bacteroidetes decreased in mice undergoing chemotherapy. Our results may have important implications for OBP as a functional food component or nutrient against chemotherapy induced intestinal injury and potential pathogenic intestinal disorders involving inflammation and infection.
Collapse
Affiliation(s)
- Qingjuan Tang
- College of Food Science and Engineering, Ocean University of China, Yushan Road 5th, Qingdao, Shandong province, P.R. China266003.
| | | | | | | | | | | | | | | |
Collapse
|
239
|
Modulatory effects of vasoactive intestinal peptide on intestinal mucosal immunity and microbial community of weaned piglets challenged by an enterotoxigenic Escherichia coli (K88). PLoS One 2014; 9:e104183. [PMID: 25101851 PMCID: PMC4125177 DOI: 10.1371/journal.pone.0104183] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 07/11/2014] [Indexed: 01/08/2023] Open
Abstract
Toll-like receptors (TLRs) recognize microbial pathogens and trigger immune response, but their regulation by neuropeptide-vasoactive intestinal peptide (VIP) in weaned piglets infected by enterotoxigenic Escherichia coli (ETEC) K88 remains unexplored. Therefore, the study was conducted to investigate its role using a model of early weaned piglets infected by ETEC K88. Male Duroc×Landrace×Yorkshire piglets (n = 24) were randomly divided into control, ETEC K88, VIP, and ETEC K88+VIP groups. On the first three days, ETEC K88 and ETEC K88+VIP groups were orally administrated with ETEC K88, other two groups were given sterile medium. Then each piglet from VIP and ETEC K88+VIP group received 10 nmol VIP intraperitoneally (i.p.) once daily, on day four and six. On the seventh day, the piglets were sacrificed. The results indicated that administration of VIP improved the growth performance, reduced diarrhea incidence of ETEC K88 challenged pigs, and mitigated the histopathological changes of intestine. Serum levels of IL-2, IL-6, IL-12p40, IFN-γ and TNF-α in the ETEC K88+ VIP group were significantly reduced compared with those in the ETEC group. VIP significantly increased IL-4, IL-10, TGF-β and S-IgA production compared with the ETEC K88 group. Besides, VIP could inhibit the expression of TLR2, TLR4, MyD88, NF-κB p65 and the phosphorylation of IκB-α, p-ERK, p-JNK, and p-38 induced by ETEC K88. Moreover, VIP could upregulate the expression of occludin in the ileum mucosa compared with the ETEC K88 group. Colon and caecum content bacterial richness and diversity were lower for pigs in the ETEC group than the unchallenged groups. These results demonstrate that VIP is beneficial for the maturation of the intestinal mucosal immune system and elicited local immunomodulatory activities. The TLR2/4-MyD88 mediated NF-κB and MAPK signaling pathway may be critical to the mechanism underlying the modulatory effect of VIP on intestinal mucosal immune function and bacterial community.
Collapse
|
240
|
Han KH, Azuma S, Fukushima M. In vitro fermentation of spent turmeric powder with a mixed culture of pig faecal bacteria. Food Funct 2014; 5:2446-52. [PMID: 25098546 DOI: 10.1039/c4fo00142g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The fermentation potential of spent turmeric was studied in in vitro swine faecal batch cultures. The spent turmeric residue (the enzyme-resistant fraction from spent turmeric, EST) was obtained through the use of the digestive enzymes amyloglucosidase and pancreatin and compared to cellulose and high-amylose starch (HAS) as carbon sources. EST showed significant increases in total anaerobes, bifidobacteria, lactobacilli and lactic acid bacteria populations compared to cellulose at 12, 24 and 48 h, and the total anaerobic level in the HAS group was significantly higher than that in the cellulose group at 24 and 48 h. However, a significant decrease in the coliform population was only found in the HAS group compared to the cellulose group at 48 h. The total short-chain fatty acid (SCFA) concentrations in the EST and HAS groups were significantly higher than that in the cellulose group at 12 h and 48 h. However, there was no significant difference in the total SCFA concentration between the EST and HAS groups at 12 h and 48 h. Ammonia and pH levels in the EST and HAS groups were significantly lower than those in the cellulose group at 24 and 48 h, but there was no significant difference between the EST and HAS groups. These results indicate that the fermentation potential of the enzyme-resistant fraction from spent turmeric is comparable to that of commercially established resistant starch.
Collapse
Affiliation(s)
- Kyu-Ho Han
- Department of Food Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan.
| | | | | |
Collapse
|
241
|
Kraft B, Tegetmeyer HE, Meier D, Geelhoed JS, Strous M. Rapid succession of uncultured marine bacterial and archaeal populations in a denitrifying continuous culture. Environ Microbiol 2014; 16:3275-86. [PMID: 24976559 DOI: 10.1111/1462-2920.12552] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 06/19/2014] [Indexed: 02/02/2023]
Abstract
Marine denitrification constitutes an important part of the global nitrogen cycle and the diversity, abundance and process rates of denitrifying microorganisms have been the focus of many studies. Still, there is little insight in the ecophysiology of marine denitrifying communities. In this study, a heterotrophic denitrifying community from sediments of a marine intertidal flat active in nitrogen cycling was selected in a chemostat and monitored over a period of 50 days. The chemostat enabled the maintenance of constant and well-defined experimental conditions over the time-course of the experiment. Analysis of the microbial community composition by automated ribosomal intergenic spacer analysis (ARISA), Illumina sequencing and catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH) revealed strong dynamics in community composition over time, while overall denitrification by the enrichment culture was stable. Members of the genera Arcobacter, Pseudomonas, Pseudovibrio, Rhodobacterales and of the phylum Bacteroidetes were identified as the dominant denitrifiers. Among the fermenting organisms co-enriched with the denitrifiers was a novel archaeon affiliated with the recently proposed DPANN-superphylum. The pan-genome of populations affiliated to Pseudovibrio encoded a NirK as well as a NirS nitrite reductase, indicating the rare co-occurrence of both evolutionary unrelated nitrite reductases within coexisting subpopulations.
Collapse
Affiliation(s)
- Beate Kraft
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | | | | | | | | |
Collapse
|
242
|
Park SJ, Kim J, Lee JS, Rhee SK, Kim H. Characterization of the fecal microbiome in different swine groups by high-throughput sequencing. Anaerobe 2014; 28:157-62. [DOI: 10.1016/j.anaerobe.2014.06.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/20/2014] [Accepted: 06/03/2014] [Indexed: 10/25/2022]
|
243
|
Looft T, Allen HK, Cantarel BL, Levine UY, Bayles DO, Alt DP, Henrissat B, Stanton TB. Bacteria, phages and pigs: the effects of in-feed antibiotics on the microbiome at different gut locations. THE ISME JOURNAL 2014; 8:1566-76. [PMID: 24522263 PMCID: PMC4817603 DOI: 10.1038/ismej.2014.12] [Citation(s) in RCA: 271] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 11/25/2013] [Accepted: 01/10/2014] [Indexed: 01/16/2023]
Abstract
Disturbance of the beneficial gut microbial community is a potential collateral effect of antibiotics, which have many uses in animal agriculture (disease treatment or prevention and feed efficiency improvement). Understanding antibiotic effects on bacterial communities at different intestinal locations is essential to realize the full benefits and consequences of in-feed antibiotics. In this study, we defined the lumenal and mucosal bacterial communities from the small intestine (ileum) and large intestine (cecum and colon) plus feces, and characterized the effects of in-feed antibiotics (chlortetracycline, sulfamethazine and penicillin (ASP250)) on these communities. 16S rRNA gene sequence and metagenomic analyses of bacterial membership and functions revealed dramatic differences between small and large intestinal locations, including enrichment of Firmicutes and phage-encoding genes in the ileum. The large intestinal microbiota encoded numerous genes to degrade plant cell wall components, and these genes were lacking in the ileum. The mucosa-associated ileal microbiota harbored greater bacterial diversity than the lumen but similar membership to the mucosa of the large intestine, suggesting that most gut microbes can associate with the mucosa and might serve as an inoculum for the lumen. The collateral effects on the microbiota of antibiotic-fed animals caused divergence from that of control animals, with notable changes being increases in Escherichia coli populations in the ileum, Lachnobacterium spp. in all gut locations, and resistance genes to antibiotics not administered. Characterizing the differential metabolic capacities and response to perturbation at distinct intestinal locations will inform strategies to improve gut health and food safety.
Collapse
Affiliation(s)
- Torey Looft
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| | - Heather K Allen
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| | - Brandi L Cantarel
- Baylor Institute for Immunology Research, Baylor Healthcare system, Dallas, TX, USA
| | - Uri Y Levine
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| | - Darrell O Bayles
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, Ames, IA, USA
| | - David P Alt
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, Ames, IA, USA
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, CNRS UMR 7257, 163 Avenue de Luminy, Marseille, France
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Thaddeus B Stanton
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| |
Collapse
|
244
|
Yang L, Bian G, Su Y, Zhu W. Comparison of faecal microbial community of lantang, bama, erhualian, meishan, xiaomeishan, duroc, landrace, and yorkshire sows. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 27:898-906. [PMID: 25050029 PMCID: PMC4093183 DOI: 10.5713/ajas.2013.13621] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/30/2013] [Accepted: 01/05/2014] [Indexed: 02/08/2023]
Abstract
The objective of this study was to investigate differences in the faecal microbial composition among Lantang, Bama, Erhualian, Meishan, Xiaomeishan, Duroc, Landrace, and Yorkshire sows and to explore the possible link of the pig breed with the gut microbial community. Among the sows, the Meishan, Landrace, Duroc, and Yorkshire sows were from the same breeding farm with the same feed. Fresh faeces were collected from three sows of each purebred breed for microbiota analysis and volatile fatty acid (VFA) determination. Denaturing gradient gel electrophoresis (DGGE) analysis revealed that samples from Bama, Erhualian, and Xiaomeishan sows, which from different farms, were generally grouped in one cluster, with similarity higher than 67.2%, and those from Duroc, Landrace, and Yorkshire sows were grouped in another cluster. Principal component analysis of the DGGE profile showed that samples from the foreign breeds and the samples from the Chinese indigenous breeds were scattered in two different groups, irrespective of the farm origin. Faecal VFA concentrations were significantly affected by the pig breed. The proportion of acetate was higher in the Bama sows than in the other breeds. The real-time PCR analysis showed that 16S rRNA gene copies of total bacteria, Firmicutes and Bacteroidetes were significantly higher in the Bama sows compared to Xiaomeishan and Duroc sows. Both Meishan and Erhualian sows had higher numbers of total bacteria, Firmicutes, Bacteroidetes and sulphate-reducing bacteria as compared to Duroc sows. The results suggest that the pig breed affects the composition of gut microbiota. The microbial composition is different with different breeds, especially between overseas breeds (lean type) and Chinese breeds (relatively obese type).
Collapse
|
245
|
Guo Y, Zhang J, Deng C, Zhu N. Spatial Heterogeneity of Bacteria: Evidence from Hot Composts by Culture-independent Analysis. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 25:1045-54. [PMID: 25049662 PMCID: PMC4092977 DOI: 10.5713/ajas.2011.11341] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 04/03/2012] [Accepted: 01/15/2012] [Indexed: 11/27/2022]
Abstract
The phylogenetic diversity of the bacteria in hot composting samples collected from three spatial locations was investigated by molecular tools in order to determine the influence of gradient effect on bacterial communities during the thermophilic phase of composting swine manure with rice straw. Total microbial DNA was extracted and bacterial near full-length 16S rRNA genes were subsequently amplified, cloned, restriction fragment length polymorphism-screened and sequenced. The superstratum sample had the highest microbial diversity among the three samples which was possibly related to the surrounding conditions of the sample resulting from the location. The results showed that the sequences related to Bacillus sp. were most common in the composts. In superstratum sample, 45 clones (33%) and 36 clones (27%) were affiliated with the Bacillus sp. and Clostridium sp., respectively; 74 clones (58%) were affiliated with the Clostridium sp. in the middle-level sample; 52 clones (40%) and 29 clones (23%) were affiliated with the Clostridium sp. and Bacillus sp. in substrate sample, respectively. It indicated that the microbial diversity and community in the samples were different for each sampling site, and different locations of the same pile often contained distinct and different microbial communities.
Collapse
Affiliation(s)
- Yan Guo
- Department of Life Science, Shangqiu Normal University, Shangqiu 476000, China
| | - Jinliang Zhang
- Department of Life Science, Shangqiu Normal University, Shangqiu 476000, China
| | - Changyan Deng
- Department of Life Science, Shangqiu Normal University, Shangqiu 476000, China
| | - Nengwu Zhu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters of Ministry of Education, College of Environmental Science and Engineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
246
|
Fermentable non-starch polysaccharides increases the abundance of Bacteroides-Prevotella-Porphyromonas in ileal microbial community of growing pigs. Animal 2014; 8:1777-87. [PMID: 25046106 DOI: 10.1017/s1751731114001827] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Most plant-origin fiber sources used in pig production contains a mixture of soluble and insoluble non-starch polysaccharides (NSP). The knowledge about effects of these sources of NSP on the gut microbiota and its fermentation products is still scarce. The aim of this study was to investigate effects of feeding diets with native sources of NSP on the ileal and fecal microbial composition and the dietary impact on the concentration of short-chain fatty acids (SCFA) and lactic acid. The experiment comprised four diets and four periods in a change-over design with seven post valve t-cecum cannulated growing pigs. The four diets were balanced to be similar in NSP content and included one of four fiber sources, two diets were rich in pectins, through inclusion of chicory forage (CFO) and sugar beet pulp, and two were rich in arabinoxylan, through inclusion of wheat bran (WB) and grass meal. The gut microbial composition was assessed with terminal restriction fragment (TRF) length polymorphism and the abundance of Lactobacillus spp., Enterobacteriaceae, Bacteroides-Prevotella-Porphyromonas and the β-xylosidase gene, xynB, were assessed with quantitative PCR. The gut microbiota did not cluster based on NSP structure (arabinoxylan or pectin) rather, the effect was to a high degree ingredient specific. In pigs fed diet CFO, three TRFs related to Prevotellaceae together consisted of more than 25% of the fecal microbiota, which is about 3 to 23 times higher (P<0.05) than in pigs fed the other diets. Whereas pigs fed diet WB had about 2 to 22 times higher abundance (P<0.05) of Megasphaera elsdenii in feces and about six times higher abundance (P<0.05) of Lactobacillus reuteri in ileal digesta than pigs fed the other diets. The total amount of digested NSP (r=0.57; P=0.002), xylose (r=0.53; P=0.004) and dietary fiber (r=0.60; P=0.001) in ileal digesta were positively correlated with an increased abundance of Bacteroides-Prevotella-Porphyromonas. The effect on SCFA was correlated to specific neutral sugars where xylose increased the ileal butyric acid proportion, whereas arabinose increased the fecal butyric acid proportion. Moreover, chicory pectin increased the acetic acid proportion in both ileal digesta and feces.
Collapse
|
247
|
Piotrowska M, Sliżewska K, Nowak A, Zielonka L, Zakowska Z, Gajęcka M, Gajęcki M. The effect of experimental fusarium mycotoxicosis on microbiota diversity in porcine ascending colon contents. Toxins (Basel) 2014; 6:2064-81. [PMID: 25025709 PMCID: PMC4113742 DOI: 10.3390/toxins6072064] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/01/2014] [Accepted: 07/04/2014] [Indexed: 12/31/2022] Open
Abstract
The objective of the study was to determine the effect of exposure of pigs to the Fusarium mycotoxins zearalenone (ZEN) and deoxynivalenol (DON), administered together and separately, on the colon microbiota. An experiment was conducted for 42 days on gilts, randomly assigned to four groups and administered either ZEN, DON, ZEN+DON, or a placebo. The number of aerobic mesophilic bacteria, yeasts, molds, anaerobic Clostridium perfringens, fecal streptococci, Enterobacteriaceae, Escherichia coli, and lactic acid bacteria (LAB) were determined in the contents of the ascending colon. The influence of mycotoxins on the functional diversity of the colonic microbiota was assessed using EcoPlate tests (Biolog). Analysis revealed the predominance of LAB in all groups of pigs. Zearalenone, administered separately and together with DON, was found to have an adverse effect on mesophilic aerobic bacteria, but only after long exposure to this mycotoxin. During the six weeks of the experiment, the concentration of C. perfringens, E. coli, and other bacteria in the family Enterobacteriaceae was most considerably reduced in the experimental groups exposed to zearalenone, both separately and together with DON. Mycotoxins also affected the functional biodiversity of microorganisms. Both Shannon’s diversity index and the number of catabolized substrates in Biolog plate (the R index) were much higher in the group subjected to mixed mycotoxicosis.
Collapse
Affiliation(s)
- Małgorzata Piotrowska
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wólczańska 171/173, Łódź 90-924, Poland.
| | - Katarzyna Sliżewska
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wólczańska 171/173, Łódź 90-924, Poland.
| | - Adriana Nowak
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wólczańska 171/173, Łódź 90-924, Poland.
| | - Lukasz Zielonka
- Department of Veterinary Prevention and Feed Hygiene, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/19, Olsztyn 10-717, Poland.
| | - Zofia Zakowska
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wólczańska 171/173, Łódź 90-924, Poland.
| | - Magdalena Gajęcka
- Department of Veterinary Prevention and Feed Hygiene, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/19, Olsztyn 10-717, Poland.
| | - Maciej Gajęcki
- Department of Veterinary Prevention and Feed Hygiene, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/19, Olsztyn 10-717, Poland.
| |
Collapse
|
248
|
Impact of feed restriction on health, digestion and faecal microbiota of growing pigs housed in good or poor hygiene conditions. Animal 2014; 8:1632-42. [PMID: 24963640 DOI: 10.1017/s1751731114001608] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Feed restriction could be a relevant strategy to preserve gut health, reduce systemic inflammatory response and finally limit antibiotic use. This study assessed the effect of feed restriction on growing pigs submitted to a moderate inflammatory challenge induced by the degradation of the environmental hygiene that is known to alter growth rate. The experiment was run on 80 pigs selected at 7 weeks of age according to a 2×2 factorial design: two feeding levels, ad libitum (AL) and feed restricted (FR) at 60% of AL, and two conditions of environmental hygiene, clean and dirty. Pigs were housed individually throughout the experiment. From 61 to 68 days of age (day 0 to 7), pigs were housed in a post weaning unit and feed restriction was applied to half of the pigs from day 0 to day 29. At 68 days of age (day 7 of the experiment), pigs were transferred in a growing unit where half of FR and half of AL pigs were housed in a dirty environment (poor hygiene) and the other half in a clean environment (good hygiene) until day 42. Growth performance was recorded weekly. Blood and faeces samples were collected to measure indicators of inflammation, nutrient digestibility and microbiota composition. Faecal consistency was monitored daily to detect diarrhoeas. Feed restriction decreased daily weight gain (-35% to -50%, P<0.001), increased the feed conversion ratio (+15%, P<0.001) and CP digestibility (+3%, P<0.05) and reduced the occurrence of diarrhoeas irrespective of hygiene conditions. Poor hygiene conditions decreased growth performance (-20%, P<0.05) and total tract digestibility of all nutrients (P<0.001). Haptoglobin (+50%) concentrations and lymphocyte (+10%) and granulocyte (+40%) numbers were higher in poor hygiene conditions (P<0.05), confirming that the model was effective to induce a systemic inflammatory response. Both feed restriction and hygiene modified the profile of the faecal microbiota. In this study, feed restriction did not reduce the systemic inflammatory response caused by poor hygiene conditions despite the limitation of the occurrence of digestive disorders. However, our study opens discussions regarding the impact of hygiene and feed restriction on gut microbial communities and digestive health.
Collapse
|
249
|
Liu HY, Dicksved J, Lundh T, Lindberg JE. Expression of heat shock proteins 27 and 72 correlates with specific commensal microbes in different regions of porcine gastrointestinal tract. Am J Physiol Gastrointest Liver Physiol 2014; 306:G1033-41. [PMID: 24763551 DOI: 10.1152/ajpgi.00299.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The gastrointestinal (GI) tract of mammals is inhabited by trillions of microorganisms, resulting in exceedingly complex networking. The interaction between distinct bacterial species and the host immune system is essential in maintaining homeostasis in the gut ecosystem. For instance, the gut commensal microbiota dictates intestinal mucosa maturation and its abundant immune components, such as cytoprotective heat shock proteins (HSP). Here we examined physiological expression of HSP in the normal porcine GI tract and found it to be gut region- and cell type-specific in response to dietary components, microbes, and microbial metabolites to which the mucosa surface is exposed. Correlations between HSP72 expression and ileal Lactobacillus spp. and colonic clostridia species, and between HSP27 expression and uronic acid ingestion, were important interplays identified here. Thus this study provides novel insights into host-microbe interactions shaping the immune system that are modifiable by dietary regime.
Collapse
Affiliation(s)
- Hao-Yu Liu
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Johan Dicksved
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Torbjörn Lundh
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jan Erik Lindberg
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
250
|
Looft T, Allen HK, Casey TA, Alt DP, Stanton TB. Carbadox has both temporary and lasting effects on the swine gut microbiota. Front Microbiol 2014; 5:276. [PMID: 24959163 PMCID: PMC4050737 DOI: 10.3389/fmicb.2014.00276] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 05/20/2014] [Indexed: 12/27/2022] Open
Abstract
Antibiotics are used in livestock and poultry production to treat and prevent disease as well as to promote animal growth. Carbadox is an in-feed antibiotic that is widely used in swine production to prevent dysentery and to improve feed efficiency. The goal of this study was to characterize the effects of carbadox and its withdrawal on the swine gut microbiota. Six pigs (initially 3-weeks old) received feed containing carbadox and six received unamended feed. After 3-weeks of continuous carbadox administration, all pigs were switched to a maintenance diet without carbadox. DNA was extracted from feces (n = 142) taken before, during, and following (6-week withdrawal) carbadox treatment. Phylotype analysis using 16S rRNA sequences showed the gradual development of the non-medicated swine gut microbiota over the 8-week study, and that the carbadox-treated pigs had significant differences in bacterial membership relative to non-medicated pigs. Enumeration of fecal Escherichia coli showed that a diet change concurrent with carbadox withdrawal was associated with an increase in the E. coli in the non-medicated pigs, suggesting that carbadox pre-treatment prevented an increase of E. coli populations. In-feed carbadox caused striking effects within 4 days of administration, with significant alterations in both community structure and bacterial membership, notably a large relative increase in Prevotella populations in medicated pigs. Digital PCR was used to show that the absolute abundance of Prevotella was unchanged between the medicated and non-medicated pigs despite the relative increase shown in the phylotype analysis. Carbadox therefore caused a decrease in the abundance of other gut bacteria but did not affect the absolute abundance of Prevotella. The pending regulation on antibiotics used in animal production underscores the importance of understanding how they modulate the microbiota and impact animal health, which will inform the search for antibiotic alternatives.
Collapse
Affiliation(s)
- Torey Looft
- United States Department of Agriculture, National Animal Disease Center, Agricultural Research Service Ames, IA, USA
| | - Heather K Allen
- United States Department of Agriculture, National Animal Disease Center, Agricultural Research Service Ames, IA, USA
| | - Thomas A Casey
- United States Department of Agriculture, National Animal Disease Center, Agricultural Research Service Ames, IA, USA
| | - David P Alt
- United States Department of Agriculture, National Animal Disease Center, Agricultural Research Service Ames, IA, USA
| | - Thaddeus B Stanton
- United States Department of Agriculture, National Animal Disease Center, Agricultural Research Service Ames, IA, USA
| |
Collapse
|