201
|
Expression, purification and evaluation of recombinant lipoprotein of Salmonella typhi as a vaccine candidate. Biologicals 2017; 46:108-113. [PMID: 28189484 DOI: 10.1016/j.biologicals.2017.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 01/05/2017] [Accepted: 01/27/2017] [Indexed: 11/20/2022] Open
Abstract
Lipoprotein has been reported as a vaccine candidate against many pathogenic bacteria, it plays direct role as a virulence-associated function. Here the approach is toward the expression of recombinant lipoprotein of Salmonella typhi in prokaryotic host and its evaluation as a vaccine candidate. Lipoprotein gene (lp1) was cloned in pET32a expression vector in addition to Bam HI and Hind III restriction sites, and BL21(pLysS) was used as prokaryotic expression host for transformation. Lipoprotein induction was performed by IPTG and 55 kDa (31 kDa of Gene +24 kDa of vector additional protein with His-tag) was analyzed by 12% SDS-PAGE. The recombinant lipoprotein was purified by Ni-NTA affinity chromatography due to the addition of 6X His-tag in recombinant lipoprotein. Western blot analysis using anti-His tag polyclonal antibodies confirmed the specificity of recombinant lipoprotein. Immunogenicity and protection study of recombinant lipoprotein against S. Typhi was performed in BALB/c mice. Adjuvants IFA and alum salts were used to enhance the immune response. ELISA results proved that biologically active truncated recombinant lipoprotein (31 kDa) is a suitable immunogen. Alum salts used as adjuvant was effective for long-lasting immunity.
Collapse
|
202
|
SHIVACHANDRA SB, KUMAR A, MOHANTY NN, YOGISHARADHYA R. Immunogenicity of recombinant Omp16 protein of Pasteurella multocida B:2 in mouse model. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2017. [DOI: 10.56093/ijans.v87i1.66834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Bacterial peptidoglycan-associated lipoproteins (PAL) are potential targets for the development of diagnostics/subunit vaccines for infectious diseases. Most commonly prevalent Omp16 lipoprotein is absolutely conserved among Pasteurella multocida strains, which are involved in multiple infectious diseases of livestock worldwide. In the present study, we cloned omp16 gene encoding for mature Omp16 of P. multocida B:2 strain P52 and overexpressed as a fusion protein in Escherichia coli. Mice immunized with purified recombinant non-lipidated Omp16 fusion protein (~32 kDa) resulted in elicitation of significant antigen specific serum antibody titres (total IgG and subtypes). A more pronounced increase in Th2 response (IgG1) was noticed. The study indicated the potential possibilities to use lipidated recombinant Omp16 protein in developing a composite subunit vaccine along with suitable adjuvant for haemorrhagic septicaemia/ pasteurellosis in livestock.
Collapse
|
203
|
Sviridova E, Rezacova P, Bondar A, Veverka V, Novak P, Schenk G, Svergun DI, Kuta Smatanova I, Bumba L. Structural basis of the interaction between the putative adhesion-involved and iron-regulated FrpD and FrpC proteins of Neisseria meningitidis. Sci Rep 2017; 7:40408. [PMID: 28084396 PMCID: PMC5233953 DOI: 10.1038/srep40408] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/06/2016] [Indexed: 01/14/2023] Open
Abstract
The iron-regulated protein FrpD from Neisseria meningitidis is an outer membrane lipoprotein that interacts with very high affinity (Kd ~ 0.2 nM) with the N-terminal domain of FrpC, a Type I-secreted protein from the Repeat in ToXin (RTX) protein family. In the presence of Ca2+, FrpC undergoes Ca2+ -dependent protein trans-splicing that includes an autocatalytic cleavage of the Asp414-Pro415 peptide bond and formation of an Asp414-Lys isopeptide bond. Here, we report the high-resolution structure of FrpD and describe the structure-function relationships underlying the interaction between FrpD and FrpC1-414. We identified FrpD residues involved in FrpC1-414 binding, which enabled localization of FrpD within the low-resolution SAXS model of the FrpD-FrpC1-414 complex. Moreover, the trans-splicing activity of FrpC resulted in covalent linkage of the FrpC1-414 fragment to plasma membrane proteins of epithelial cells in vitro, suggesting that formation of the FrpD-FrpC1-414 complex may be involved in the interaction of meningococci with the host cell surface.
Collapse
Affiliation(s)
- Ekaterina Sviridova
- Faculty of Science, University of South Bohemia Ceske Budejovice, Branisovska 1760, 37005 Ceske Budejovice, Czech Republic.,Center for Nanobiology and Structural Biology, Institute of Microbiology, Czech Academy of Sciences, Zamek 136, 37333 Nove Hrady, Czech Republic
| | - Pavlina Rezacova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610 Prague, Czech Republic
| | - Alexey Bondar
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Czech Academy of Sciences, Zamek 136, 37333 Nove Hrady, Czech Republic.,Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610 Prague, Czech Republic
| | - Vaclav Veverka
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610 Prague, Czech Republic
| | - Petr Novak
- Institute of Microbiology, Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic
| | - Gundolf Schenk
- EMBL Hamburg Outstation, c/o DESY, Notkestrasse 85, D-22603 Hamburg, Germany
| | - Dmitri I Svergun
- EMBL Hamburg Outstation, c/o DESY, Notkestrasse 85, D-22603 Hamburg, Germany
| | - Ivana Kuta Smatanova
- Faculty of Science, University of South Bohemia Ceske Budejovice, Branisovska 1760, 37005 Ceske Budejovice, Czech Republic.,Center for Nanobiology and Structural Biology, Institute of Microbiology, Czech Academy of Sciences, Zamek 136, 37333 Nove Hrady, Czech Republic
| | - Ladislav Bumba
- Institute of Microbiology, Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic
| |
Collapse
|
204
|
Norsworthy AN, Pearson MM. From Catheter to Kidney Stone: The Uropathogenic Lifestyle of Proteus mirabilis. Trends Microbiol 2016; 25:304-315. [PMID: 28017513 DOI: 10.1016/j.tim.2016.11.015] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/17/2016] [Accepted: 11/28/2016] [Indexed: 12/15/2022]
Abstract
Proteus mirabilis is a model organism for urease-producing uropathogens. These diverse bacteria cause infection stones in the urinary tract and form crystalline biofilms on indwelling urinary catheters, frequently leading to polymicrobial infection. Recent work has elucidated how P. mirabilis causes all of these disease states. Particularly exciting is the discovery that this bacterium forms large clusters in the bladder lumen that are sites for stone formation. These clusters, and other steps of infection, require two virulence factors in particular: urease and MR/P fimbriae. Highlighting the importance of MR/P fimbriae is the cotranscribed regulator, MrpJ, which globally controls virulence. Overall, P. mirabilis exhibits an extraordinary lifestyle, and further probing will answer exciting basic microbiological and clinically relevant questions.
Collapse
Affiliation(s)
- Allison N Norsworthy
- Department of Microbiology, New York University Medical Center, New York, NY, USA
| | - Melanie M Pearson
- Department of Microbiology, New York University Medical Center, New York, NY, USA; Department of Urology, New York University Medical Center, New York, NY, USA; Current address: University of Michigan Medical School, Department of Microbiology and Immunology, 5641 Medical Science Building II, 1150 West Medical Center Dr., Ann Arbor, MI 48109-0620, USA.
| |
Collapse
|
205
|
da Silva RAG, Churchward CP, Karlyshev AV, Eleftheriadou O, Snabaitis AK, Longman MR, Ryan A, Griffin R. The role of apolipoprotein N-acyl transferase, Lnt, in the lipidation of factor H binding protein of Neisseria meningitidis strain MC58 and its potential as a drug target. Br J Pharmacol 2016; 174:2247-2260. [PMID: 27784136 DOI: 10.1111/bph.13660] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/06/2016] [Accepted: 10/13/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE The level of cell surface expression of the meningococcal vaccine antigen, Factor H binding protein (FHbp) varies between and within strains and this limits the breadth of strains that can be targeted by FHbp-based vaccines. The molecular pathway controlling expression of FHbp at the cell surface, including its lipidation, sorting to the outer membrane and export, and the potential regulation of this pathway have not been investigated until now. This knowledge will aid our evaluation of FHbp vaccines. EXPERIMENTAL APPROACH A meningococcal transposon library was screened by whole cell immuno-dot blotting using an anti-FHbp antibody to identify a mutant with reduced binding and the disrupted gene was determined. KEY RESULTS In a mutant with markedly reduced binding, the transposon was located in the lnt gene which encodes apolipoprotein N-acyl transferase, Lnt, responsible for the addition of the third fatty acid to apolipoproteins prior to their sorting to the outer membrane. We provide data indicating that in the Lnt mutant, FHbp is diacylated and its expression within the cell is reduced 10 fold, partly due to inhibition of transcription. Furthermore the Lnt mutant showed 64 fold and 16 fold increase in susceptibility to rifampicin and ciprofloxacin respectively. CONCLUSION AND IMPLICATIONS We speculate that the inefficient sorting of diacylated FHbp in the meningococcus results in its accumulation in the periplasm inducing an envelope stress response to down-regulate its expression. We propose Lnt as a potential novel drug target for combination therapy with antibiotics. LINKED ARTICLES This article is part of a themed section on Drug Metabolism and Antibiotic Resistance in Micro-organisms. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.14/issuetoc.
Collapse
Affiliation(s)
- R A G da Silva
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston upon Thames, UK
| | - C P Churchward
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston upon Thames, UK
| | - A V Karlyshev
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston upon Thames, UK
| | - O Eleftheriadou
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston upon Thames, UK
| | - A K Snabaitis
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston upon Thames, UK
| | - M R Longman
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston upon Thames, UK
| | - A Ryan
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston upon Thames, UK
| | - R Griffin
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston upon Thames, UK
| |
Collapse
|
206
|
pqiABC and yebST, Putative mce Operons of Escherichia coli, Encode Transport Pathways and Contribute to Membrane Integrity. J Bacteriol 2016; 199:JB.00606-16. [PMID: 27795327 DOI: 10.1128/jb.00606-16] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/04/2016] [Indexed: 01/01/2023] Open
Abstract
The membranes of single-cell organisms are crucial as the first line of defense. The outer membrane of Gram-negative bacteria is an asymmetric bilayer in which lipopolysaccharides (LPSs) and phospholipids are localized in the outer and inner leaflet, respectively. This asymmetry is important for membrane integrity. In Escherichia coli, the Mla transport pathway maintains this asymmetry by removing phospholipids from the outer leaflet. The MlaD component of this system is a mammalian cell entry (MCE) domain protein, and E. coli has two other MCE domain proteins of unknown function (PqiB and YebT). Here, we show that these two proteins are components of novel transport pathways that contribute to membrane integrity. The pqiAB operon is regulated by SoxS and RpoS. The yebST operon contains pqiAB homologues. Here, we found a third member of the pqi operon, ymbA (pqiC). A PqiB-PqiC complex bridges the inner and the outer membrane, and in other bacteria, pqiBC genes are located in operons together with transporter proteins. We show here that simultaneous deletion of pqiABC and yebST operons in an Δmla background rendered cells more sensitive to SDS-EDTA, and the SDS-EDTA sensitivity of mla mutants was rescued by additional copies of pqiABC We also found that the yebST operon was induced by a defect in LPS molecules. In conclusion, PqiABC and YebST are novel transport pathways related to the Mla transport pathway and important for membrane integrity. IMPORTANCE Membranes of bacteria are crucial for stress resistance. The composition of the E. coli outer membrane is asymmetric, with asymmetry maintained by the Mla ABC transport pathway. We propose that the stress-inducible pqiABC operon and homologous yebST operon, both of previously unknown function, encode transport pathway proteins related to the Mla transport pathway. Deletion of these operons rendered cells more sensitive to membrane stress, and additional copies of pqiABC suppressed the SDS-EDTA sensitivity of mla mutant strains. We found that yebS'-'lacZ fusion was activated in mutant strains with defective LPS molecules.
Collapse
|
207
|
Dufrisne MB, Petrou VI, Clarke OB, Mancia F. Structural basis for catalysis at the membrane-water interface. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:1368-1385. [PMID: 27913292 DOI: 10.1016/j.bbalip.2016.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 11/27/2022]
Abstract
The membrane-water interface forms a uniquely heterogeneous and geometrically constrained environment for enzymatic catalysis. Integral membrane enzymes sample three environments - the uniformly hydrophobic interior of the membrane, the aqueous extramembrane region, and the fuzzy, amphipathic interfacial region formed by the tightly packed headgroups of the components of the lipid bilayer. Depending on the nature of the substrates and the location of the site of chemical modification, catalysis may occur in each of these environments. The availability of structural information for alpha-helical enzyme families from each of these classes, as well as several beta-barrel enzymes from the bacterial outer membrane, has allowed us to review here the different ways in which each enzyme fold has adapted to the nature of the substrates, products, and the unique environment of the membrane. Our focus here is on enzymes that process lipidic substrates. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop.
Collapse
Affiliation(s)
- Meagan Belcher Dufrisne
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Vasileios I Petrou
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Oliver B Clarke
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
208
|
van 't Hag L, Shen HH, Lin TW, Gras SL, Drummond CJ, Conn CE. Effect of Lipid-Based Nanostructure on Protein Encapsulation within the Membrane Bilayer Mimetic Lipidic Cubic Phase Using Transmembrane and Lipo-proteins from the Beta-Barrel Assembly Machinery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:12442-12452. [PMID: 27326898 DOI: 10.1021/acs.langmuir.6b01800] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A fundamental understanding of the effect of amphiphilic protein encapsulation on the nanostructure of the bicontinuous cubic phase is crucial to progressing biomedical and biological applications of these hybrid protein-lipid materials, including as drug delivery vehicles, as biosensors, biofuel cells and for in meso crystallization. The relationship between the lipid nanomaterial and the encapsulated protein, however, remains poorly understood. In this study, we investigated the effect of incorporating the five transmembrane and lipo-proteins which make up the β-barrel assembly machinery from Gram-negative bacteria within a series of bicontinuous cubic phases. The transmembrane β-barrel BamA caused an increase in lattice parameter of the cubic phase upon encapsulation. By contrast, the mainly hydrophilic lipo-proteins BamB-E caused the cubic phase lattice parameters to decrease, despite their large size relative to the diameter of the cubic phase water channels. Analysis of the primary amino acid sequence was used to rationalize this effect, based on specific interactions between aromatic amino acids within the proteins and the polar-apolar interface. Other factors that were found to have an effect were lateral bilayer pressure and rigidity within the lipid bilayer, water channel diameter, and size and structure of the lipo-proteins. The data presented suggest that hydrophilic bioactive molecules can be selectively encapsulated within the cubic phase by using a lipid anchor or aromatic amino acids, for drug delivery or biosensing applications.
Collapse
Affiliation(s)
| | | | - Tsung-Wu Lin
- Department of Chemistry, Tunghai University , Taichung City 40704, Taiwan
| | | | - Calum J Drummond
- CSIRO Manufacturing , Clayton, Victoria 3168, Australia
- School of Science, College of Science, Engineering and Health, RMIT University , Melbourne, Victoria 3001, Australia
| | - Charlotte E Conn
- School of Science, College of Science, Engineering and Health, RMIT University , Melbourne, Victoria 3001, Australia
| |
Collapse
|
209
|
Dennehy R, Romano M, Ruggiero A, Mohamed YF, Dignam SL, Mujica Troncoso C, Callaghan M, Valvano MA, Berisio R, McClean S. The Burkholderia cenocepacia peptidoglycan-associated lipoprotein is involved in epithelial cell attachment and elicitation of inflammation. Cell Microbiol 2016; 19. [PMID: 27886433 DOI: 10.1111/cmi.12691] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/18/2016] [Accepted: 11/03/2016] [Indexed: 12/26/2022]
Abstract
The Burkholderia cepacia complex (Bcc) is a group of Gram-negative opportunistic pathogens causing infections in people with cystic fibrosis (CF). Bcc is highly antibiotic resistant, making conventional antibiotic treatment problematic. The identification of novel targets for anti-virulence therapies should improve therapeutic options for infected CF patients. We previously identified that the peptidoglycan-associated lipoprotein (Pal) was immunogenic in Bcc infected CF patients; however, its role in Bcc pathogenesis is unknown. The virulence of a pal deletion mutant (Δpal) in Galleria mellonella was 88-fold reduced (p < .001) compared to wild type. The lipopolysaccharide profiles of wild type and Δpal were identical, indicating no involvement of Pal in O-antigen transport. However, Δpal was more susceptible to polymyxin B. Structural elucidation by X-ray crystallography and calorimetry demonstrated that Pal binds peptidoglycan fragments. Δpal showed a 1.5-fold reduced stimulation of IL-8 in CF epithelial cells relative to wild type (p < .001), demonstrating that Pal is a significant driver of inflammation. The Δpal mutant had reduced binding to CFBE41o- cells, but adhesion of Pal-expressing recombinant E. coli to CFBE41o- cells was enhanced compared to wild-type E. coli (p < .0001), confirming that Pal plays a direct role in host cell attachment. Overall, Bcc Pal mediates host cell attachment and stimulation of cytokine secretion, contributing to Bcc pathogenesis.
Collapse
Affiliation(s)
- Ruth Dennehy
- Centre of Microbial Host Interactions, Institute of Technology Tallaght, Dublin, Ireland
| | - Maria Romano
- National Research Council, Institute of Biostructures and Bioimaging, Naples, Italy
| | - Alessia Ruggiero
- National Research Council, Institute of Biostructures and Bioimaging, Naples, Italy
| | - Yasmine F Mohamed
- Centre for Experimental Medicine, Queen's University, Belfast, Northern Ireland.,Faculty of Pharmacy, Department of Microbiology, Alexandria University, Alexandria, Egypt
| | - Simon L Dignam
- Centre of Microbial Host Interactions, Institute of Technology Tallaght, Dublin, Ireland
| | | | - Máire Callaghan
- Centre of Microbial Host Interactions, Institute of Technology Tallaght, Dublin, Ireland
| | - Miguel A Valvano
- Centre for Experimental Medicine, Queen's University, Belfast, Northern Ireland
| | - Rita Berisio
- National Research Council, Institute of Biostructures and Bioimaging, Naples, Italy
| | - Siobhán McClean
- Centre of Microbial Host Interactions, Institute of Technology Tallaght, Dublin, Ireland
| |
Collapse
|
210
|
Bastos PAD, da Costa JP, Vitorino R. A glimpse into the modulation of post-translational modifications of human-colonizing bacteria. J Proteomics 2016; 152:254-275. [PMID: 27888141 DOI: 10.1016/j.jprot.2016.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/22/2016] [Accepted: 11/07/2016] [Indexed: 12/19/2022]
Abstract
Protein post-translational modifications (PTMs) are a key bacterial feature that holds the capability to modulate protein function and responses to environmental cues. Until recently, their role in the regulation of prokaryotic systems has been largely neglected. However, the latest developments in mass spectrometry-based proteomics have allowed an unparalleled identification and quantification of proteins and peptides that undergo PTMs in bacteria, including in species which directly or indirectly affect human health. Herein, we address this issue by carrying out the largest and most comprehensive global pooling and comparison of PTM peptides and proteins from bacterial species performed to date. Data was collected from 91 studies relating to PTM bacterial peptides or proteins identified by mass spectrometry-based methods. The present analysis revealed that there was a considerable overlap between PTMs across species, especially between acetylation and other PTMs, particularly succinylation. Phylogenetically closer species may present more overlapping phosphoproteomes, but environmental triggers also contribute to this proximity. PTMs among bacteria were found to be extremely versatile and diverse, meaning that the same protein may undergo a wide variety of different modifications across several species, but it could also suffer different modifications within the same species.
Collapse
Affiliation(s)
- Paulo André Dias Bastos
- Department of Medical Sciences, Institute for Biomedicine-iBiMED, University of Aveiro, Aveiro, Portugal; Department of Chemistry, University of Aveiro, Portugal
| | | | - Rui Vitorino
- Department of Medical Sciences, Institute for Biomedicine-iBiMED, University of Aveiro, Aveiro, Portugal; Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal.
| |
Collapse
|
211
|
Rana A, Thakur S, Bhardwaj N, Kumar D, Akhter Y. Excavating the surface-associated and secretory proteome of Mycobacterium leprae for identifying vaccines and diagnostic markers relevant immunodominant epitopes. Pathog Dis 2016; 74:ftw110. [PMID: 27856491 DOI: 10.1093/femspd/ftw110] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/13/2016] [Accepted: 11/13/2016] [Indexed: 02/03/2023] Open
Abstract
For centuries, Mycobacterium leprae, etiological agent of leprosy, has been afflicting mankind regardless of extensive use of live-attenuated vaccines and antibiotics. Surface-associated and secretory proteins (SASPs) are attractive targets against bacteria. We have integrated biological knowledge with computational approaches and present a proteome-wide identification of SASPs. We also performed computational assignment of immunodominant epitopes as coordinates of prospective antigenic candidates in most important class of SASPs, the outer membrane proteins (OMPs). Exploiting the known protein sequence and structural characteristics shared by the SASPs from bacteria, 17 lipoproteins, 11 secretory and 19 novel OMPs (including 4 essential proteins) were identified in M. leprae As OMPs represent the most exposed antigens on the cell surface, their immunoinformatics analysis showed that the identified 19 OMPs harbor T-cell MHC class I epitopes and class II epitopes against HLA-DR alleles (54), while 15 OMPs present potential T-cell class II epitopes against HLA-DQ alleles (6) and 7 OMPs possess T-cell class II epitopes against HLA-DP alleles (5) of humans. Additionally, 11 M. leprae OMPs were found to have B-cell epitopes and these may be considered as prime candidates for the development of new immunotherapeutics against M. leprae.
Collapse
Affiliation(s)
- Aarti Rana
- School of Life Sciences, Central University of Himachal Pradesh, Shahpur, District-Kangra, Himachal Pradesh-176206, India
| | - Shweta Thakur
- School of Life Sciences, Central University of Himachal Pradesh, Shahpur, District-Kangra, Himachal Pradesh-176206, India
| | - Nupur Bhardwaj
- School of Life Sciences, Central University of Himachal Pradesh, Shahpur, District-Kangra, Himachal Pradesh-176206, India
| | - Devender Kumar
- School of Life Sciences, Central University of Himachal Pradesh, Shahpur, District-Kangra, Himachal Pradesh-176206, India
| | - Yusuf Akhter
- School of Life Sciences, Central University of Himachal Pradesh, Shahpur, District-Kangra, Himachal Pradesh-176206, India
| |
Collapse
|
212
|
González LJ, Bahr G, Vila AJ. Lipidated β-lactamases: from bench to bedside. Future Microbiol 2016; 11:1495-1498. [PMID: 27831740 DOI: 10.2217/fmb-2016-0176] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Lisandro J González
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario, Argentina.,Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Guillermo Bahr
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario, Argentina.,Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Alejandro J Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario, Argentina.,Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
213
|
An improved non-denaturing method for the purification of spiralin, the main membrane lipoprotein of the pathogenic bacteria Spiroplasma melliferum. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1036-1037:149-156. [DOI: 10.1016/j.jchromb.2016.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 09/26/2016] [Accepted: 10/09/2016] [Indexed: 11/19/2022]
|
214
|
Schaub RE, Chan YA, Lee M, Hesek D, Mobashery S, Dillard JP. Lytic transglycosylases LtgA and LtgD perform distinct roles in remodeling, recycling and releasing peptidoglycan in Neisseria gonorrhoeae. Mol Microbiol 2016; 102:865-881. [PMID: 27608412 DOI: 10.1111/mmi.13496] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2016] [Indexed: 12/17/2022]
Abstract
Neisseria gonorrhoeae releases peptidoglycan (PG) fragments during infection that provoke a large inflammatory response and, in pelvic inflammatory disease, this response leads to the death and sloughing of ciliated cells of the Fallopian tube. We characterized the biochemical functions and localization of two enzymes responsible for the release of proinflammatory PG fragments. The putative lytic transglycosylases LtgA and LtgD were shown to create the 1,6-anhydromuramyl moieties, and both enzymes were able to digest a small, synthetic tetrasaccharide dipeptide PG fragment into the cognate 1,6-anhydromuramyl-containing reaction products. Degradation of tetrasaccharide PG fragments by LtgA is the first demonstration of a family 1 lytic transglycosylase exhibiting this activity. Pulse-chase experiments in gonococci demonstrated that LtgA produces a larger amount of PG fragments than LtgD, and a vast majority of these fragments are recycled. In contrast, LtgD was necessary for wild-type levels of PG precursor incorporation and produced fragments predominantly released from the cell. Additionally, super-resolution microscopy established that LtgA localizes to the septum, whereas LtgD is localized around the cell. This investigation suggests a model where LtgD produces PG monomers in such a way that these fragments are released, whereas LtgA creates fragments that are mostly taken into the cytoplasm for recycling.
Collapse
Affiliation(s)
- Ryan E Schaub
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Yolande A Chan
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Mijoon Lee
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Dusan Hesek
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Shahriar Mobashery
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Joseph P Dillard
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
215
|
Kohler S, Voß F, Gómez Mejia A, Brown JS, Hammerschmidt S. Pneumococcal lipoproteins involved in bacterial fitness, virulence, and immune evasion. FEBS Lett 2016; 590:3820-3839. [DOI: 10.1002/1873-3468.12352] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/01/2016] [Accepted: 08/05/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Sylvia Kohler
- Department Genetics of Microorganisms; Interfaculty Institute for Genetics and Functional Genomics; University of Greifswald; Germany
| | - Franziska Voß
- Department Genetics of Microorganisms; Interfaculty Institute for Genetics and Functional Genomics; University of Greifswald; Germany
| | - Alejandro Gómez Mejia
- Department Genetics of Microorganisms; Interfaculty Institute for Genetics and Functional Genomics; University of Greifswald; Germany
| | - Jeremy S. Brown
- Department of Medicine; Centre for Inflammation and Tissue Repair; University College Medical School; London UK
| | - Sven Hammerschmidt
- Department Genetics of Microorganisms; Interfaculty Institute for Genetics and Functional Genomics; University of Greifswald; Germany
| |
Collapse
|
216
|
Talukdar M, Bordoloi M, Dutta P, Saikia S, Kolita B, Talukdar S, Nath S, Yadav A, Saikia R, Jha D, Bora T. Structure elucidation and biological activity of antibacterial compound from Micromonospora auratinigra
, a soil Actinomycetes. J Appl Microbiol 2016; 121:973-87. [DOI: 10.1111/jam.13233] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/20/2016] [Accepted: 07/04/2016] [Indexed: 11/28/2022]
Affiliation(s)
- M. Talukdar
- Biotechnology Division; CSIR-North East Institute of Science and Technology; Jorhat Assam India
| | - M. Bordoloi
- Natural Product Chemistry Division; CSIR-North East Institute of Science and Technology; Jorhat Assam India
| | - P.P. Dutta
- Natural Product Chemistry Division; CSIR-North East Institute of Science and Technology; Jorhat Assam India
| | - S. Saikia
- Natural Product Chemistry Division; CSIR-North East Institute of Science and Technology; Jorhat Assam India
| | - B. Kolita
- Natural Product Chemistry Division; CSIR-North East Institute of Science and Technology; Jorhat Assam India
| | - S. Talukdar
- Biotechnology Division; CSIR-North East Institute of Science and Technology; Jorhat Assam India
| | - S. Nath
- Natural Product Chemistry Division; CSIR-North East Institute of Science and Technology; Jorhat Assam India
| | - A. Yadav
- Biotechnology Division; CSIR-North East Institute of Science and Technology; Jorhat Assam India
| | - R. Saikia
- Biotechnology Division; CSIR-North East Institute of Science and Technology; Jorhat Assam India
| | - D.K. Jha
- Microbial Ecology Laboratory; Department of Botany; Gauhati University; Guwahati Assam India
| | - T.C. Bora
- Biotechnology Division; CSIR-North East Institute of Science and Technology; Jorhat Assam India
| |
Collapse
|
217
|
Vu CH, Kolata J, Stentzel S, Beyer A, Gesell Salazar M, Steil L, Pané-Farré J, Rühmling V, Engelmann S, Götz F, van Dijl JM, Hecker M, Mäder U, Schmidt F, Völker U, Bröker BM. Adaptive immune response to lipoproteins of Staphylococcus aureus in healthy subjects. Proteomics 2016; 16:2667-2677. [PMID: 27324828 PMCID: PMC5096053 DOI: 10.1002/pmic.201600151] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/31/2016] [Accepted: 06/16/2016] [Indexed: 01/03/2023]
Abstract
Staphylococcus aureus is a frequent commensal but also a dangerous pathogen, causing many forms of infection ranging from mild to life‐threatening conditions. Among its virulence factors are lipoproteins, which are anchored in the bacterial cell membrane. Lipoproteins perform various functions in colonization, immune evasion, and immunomodulation. These proteins are potent activators of innate immune receptors termed Toll‐like receptors 2 and 6. This study addressed the specific B‐cell and T‐cell responses directed to lipoproteins in human S. aureus carriers and non‐carriers. 2D immune proteomics and ELISA approaches revealed that titers of antibodies (IgG) binding to S. aureus lipoproteins were very low. Proliferation assays and cytokine profiling data showed only subtle responses of T cells; some lipoproteins did not elicit proliferation. Hence, the robust activation of the innate immune system by S. aureus lipoproteins does not translate into a strong adaptive immune response. Reasons for this may include inaccessibility of lipoproteins for B cells as well as ineffective processing and presentation of the antigens to T cells.
Collapse
Affiliation(s)
- Chi Hai Vu
- Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Julia Kolata
- Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany.,Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sebastian Stentzel
- Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Anica Beyer
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Manuela Gesell Salazar
- Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Leif Steil
- Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Jan Pané-Farré
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Vanessa Rühmling
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Susanne Engelmann
- Institute of Microbiology, University of Greifswald, Greifswald, Germany.,Helmholtz Center for Infection Research, Microbial Proteomics, Braunschweig, Germany.,Institute for Microbiology, University of Braunschweig, Braunschweig, Germany
| | - Friedrich Götz
- Department of Microbial Genetics, University of Tübingen, Tübingen, Germany
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Michael Hecker
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Ulrike Mäder
- Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Frank Schmidt
- Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Barbara M Bröker
- Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany.
| |
Collapse
|
218
|
González LJ, Bahr G, Nakashige TG, Nolan EM, Bonomo RA, Vila AJ. Membrane anchoring stabilizes and favors secretion of New Delhi metallo-β-lactamase. Nat Chem Biol 2016; 12:516-22. [PMID: 27182662 PMCID: PMC4912412 DOI: 10.1038/nchembio.2083] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 03/14/2016] [Indexed: 01/22/2023]
Abstract
Carbapenems, 'last-resort' β-lactam antibiotics, are inactivated by zinc-dependent metallo-β-lactamases (MBLs). The host innate immune response withholds nutrient metal ions from microbial pathogens by releasing metal-chelating proteins such as calprotectin. We show that metal sequestration is detrimental for the accumulation of MBLs in the bacterial periplasm, because those enzymes are readily degraded in their nonmetallated form. However, the New Delhi metallo-β-lactamase (NDM-1) can persist under conditions of metal depletion. NDM-1 is a lipidated protein that anchors to the outer membrane of Gram-negative bacteria. Membrane anchoring contributes to the unusual stability of NDM-1 and favors secretion of this enzyme in outer-membrane vesicles (OMVs). OMVs containing NDM-1 can protect nearby populations of bacteria from otherwise lethal antibiotic levels, and OMVs from clinical pathogens expressing NDM-1 can carry this MBL and the blaNDM gene. We show that protein export into OMVs can be targeted, providing possibilities of new antibacterial therapeutic strategies.
Collapse
Affiliation(s)
- Lisandro J. González
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR) and Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Guillermo Bahr
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR) and Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Toshiki G. Nakashige
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Elizabeth M. Nolan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert A. Bonomo
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH; Departments of Medicine, Pharmacology, Microbiology and Molecular Biology, and Biochemistry; Case Western Reserve University, Cleveland, OH, USA
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR) and Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
219
|
Zielke RA, Wierzbicki IH, Baarda BI, Gafken PR, Soge OO, Holmes KK, Jerse AE, Unemo M, Sikora AE. Proteomics-driven Antigen Discovery for Development of Vaccines Against Gonorrhea. Mol Cell Proteomics 2016; 15:2338-55. [PMID: 27141096 PMCID: PMC4937508 DOI: 10.1074/mcp.m116.058800] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/25/2016] [Indexed: 12/18/2022] Open
Abstract
Expanding efforts to develop preventive gonorrhea vaccines is critical because of the dire possibility of untreatable gonococcal infections. Reverse vaccinology, which includes genome and proteome mining, has proven very successful in the discovery of vaccine candidates against many pathogenic bacteria. However, progress with this approach for a gonorrhea vaccine remains in its infancy. Accordingly, we applied a comprehensive proteomic platform-isobaric tagging for absolute quantification coupled with two-dimensional liquid chromatography and mass spectrometry-to identify potential gonococcal vaccine antigens. Our previous analyses focused on cell envelopes and naturally released membrane vesicles derived from four different Neisseria gonorrhoeae strains. Here, we extended these studies to identify cell envelope proteins of N. gonorrhoeae that are ubiquitously expressed and specifically induced by physiologically relevant environmental stimuli: oxygen availability, iron deprivation, and the presence of human serum. Together, these studies enabled the identification of numerous potential gonorrhea vaccine targets. Initial characterization of five novel vaccine candidate antigens that were ubiquitously expressed under these different growth conditions demonstrated that homologs of BamA (NGO1801), LptD (NGO1715), and TamA (NGO1956), and two uncharacterized proteins, NGO2054 and NGO2139, were surface exposed, secreted via naturally released membrane vesicles, and elicited bactericidal antibodies that cross-reacted with a panel of temporally and geographically diverse isolates. In addition, analysis of polymorphisms at the nucleotide and amino acid levels showed that these vaccine candidates are highly conserved among N. gonorrhoeae strains. Finally, depletion of BamA caused a loss of N. gonorrhoeae viability, suggesting it may be an essential target. Together, our data strongly support the use of proteomics-driven discovery of potential vaccine targets as a sound approach for identifying promising gonococcal antigens.
Collapse
Affiliation(s)
- Ryszard A Zielke
- From the ‡Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon
| | - Igor H Wierzbicki
- From the ‡Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon
| | - Benjamin I Baarda
- From the ‡Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon
| | - Philip R Gafken
- §Proteomics Facility, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Olusegun O Soge
- ¶Neisseria Reference Laboratory, Department of Global Health, University of Washington, Seattle, Washington
| | - King K Holmes
- ¶Neisseria Reference Laboratory, Department of Global Health, University of Washington, Seattle, Washington; ‖Departments of Medicine and Global Health, University of Washington, Seattle, Washington
| | - Ann E Jerse
- **Department of Microbiology and Immunology, F. Edward Herbert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Magnus Unemo
- ‡‡WHO Collaborating Centre for Gonorrhoea and other Sexually Transmitted Infections, National Reference Laboratory for Pathogenic Neisseria, Department of Laboratory Medicine, Microbiology, Örebro University Hospital, Örebro, Sweden
| | - Aleksandra E Sikora
- From the ‡Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon;
| |
Collapse
|
220
|
Chan K, Nasereddin T, Alter L, Centurion-Lara A, Giacani L, Parveen N. Treponema pallidum Lipoprotein TP0435 Expressed in Borrelia burgdorferi Produces Multiple Surface/Periplasmic Isoforms and mediates Adherence. Sci Rep 2016; 6:25593. [PMID: 27161310 PMCID: PMC4861935 DOI: 10.1038/srep25593] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/18/2016] [Indexed: 12/17/2022] Open
Abstract
The ability of Treponema pallidum, the syphilis spirochete to colonize various tissues requires the presence of surface-exposed adhesins that have been difficult to identify due to the inability to culture and genetically manipulate T. pallidum. Using a Borrelia burgdorferi-based heterologous system and gain-in-function approach, we show for the first time that a highly immunogenic lipoprotein TP0435 can be differentially processed into multiple isoforms with one variant stochastically displayed on the spirochete surface. TP0435 was previously believed to be exclusively located in T. pallidum periplasm. Furthermore, non-adherent B. burgdorferi strain expressing TP0435 acquires the ability to bind to a variety of host cells including placental cells and exhibits slow opsonophagocytosis in vitro similar to poor ex vivo phagocytosis of T. pallidum by host macrophages reported previously. This phenomenon of production of both surface and periplasmic immunogenic lipoprotein isoforms has possible implications in immune evasion of the obligate pathogen T. pallidum during infection.
Collapse
Affiliation(s)
- Kamfai Chan
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA
| | - Thayer Nasereddin
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA
| | - Laura Alter
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA
| | | | - Lorenzo Giacani
- Department of Medicine, University of Washington, Seattle, WA 98104, USA
| | - Nikhat Parveen
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
221
|
FAD-I, a Fusobacterium nucleatum Cell Wall-Associated Diacylated Lipoprotein That Mediates Human Beta Defensin 2 Induction through Toll-Like Receptor-1/2 (TLR-1/2) and TLR-2/6. Infect Immun 2016; 84:1446-1456. [PMID: 26930710 DOI: 10.1128/iai.01311-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/13/2016] [Indexed: 12/24/2022] Open
Abstract
We previously identified a cell wall-associated protein from Fusobacterium nucleatum, a Gram-negative bacterium of the oral cavity, that induces human beta defensin 2 (hBD-2) in primary human oral epithelial cells (HOECs) and designated it FAD-I (Fusobacterium-associated defensin inducer). Here, we report differential induction of hBD-2 by different strains of F. nucleatum; ATCC 25586 and ATCC 23726 induce significantly more hBD-2 mRNA than ATCC 10953. Heterologous expression of plasmid-borne fadI from the highly hBD-2-inducing strains in a ΔfadI mutant of ATCC 10953 resulted in hBD-2 induction to levels comparable to those of the highly inducing strains, indicating that FAD-I is the principal F. nucleatum agent for hBD-2 induction in HOECs. Moreover, anti-FAD-I antibodies blocked F. nucleatum induction of hBD-2 by more than 80%. Recombinant FAD-I (rFAD-I) expressed in Escherichia coli triggered levels of hBD-2 transcription and peptide release in HOECs similar to those of native FAD-I (nFAD-I) isolated from F. nucleatum ATCC 25586. Tandem mass spectrometry revealed a diacylglycerol modification at the cysteine residue in position 16 for both nFAD-I and rFAD-I. Cysteine-to-alanine substitution abrogated FAD-I's ability to induce hBD-2. Finally, FAD-I activation of hBD-2 expression was mediated via both Toll-like receptor-1/2 (TLR-1/2) and TLR-2/6 heterodimerization. Microbial molecules like FAD-I may be utilized in novel therapeutic ways to bolster the host innate immune response at mucosal surfaces.
Collapse
|
222
|
Dubrana MP, Béven L, Arricau-Bouvery N, Duret S, Claverol S, Renaudin J, Saillard C. Differential expression of Spiroplasma citri surface protein genes in the plant and insect hosts. BMC Microbiol 2016; 16:53. [PMID: 27005573 PMCID: PMC4804543 DOI: 10.1186/s12866-016-0666-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 03/07/2016] [Indexed: 11/10/2022] Open
Abstract
Background Spiroplasma citri is a cell wall-less, plant pathogenic bacteria that colonizes two distinct hosts, the leafhopper vector and the host plant. Given the absence of a cell wall, surface proteins including lipoproteins and transmembrane polypeptides are expected to play key roles in spiroplasma/host interactions. Important functions in spiroplasma/insect interactions have been shown for a few surface proteins such as the major lipoprotein spiralin, the transmembrane S. citri adhesion-related proteins (ScARPs) and the sugar transporter subunit Sc76. S. citri efficient transmission from the insect to the plant is expected to rely on its ability to adapt to the different environments and more specifically to regulate the expression of genes encoding surface-exposed proteins. Results Genes encoding S. citri lipoproteins and ScARPs were investigated for their expression level in axenic medium, in the leafhopper vector Circulifer haematoceps and in the host plant (periwinkle Catharanthus roseus) either insect-infected or graft-inoculated. The vast majority of the lipoprotein genes tested (25/28) differentially responded to the various host environments. Considering their relative expression levels in the different environments, the possible involvement of the targeted genes in spiroplasma host adaptation was discussed. In addition, two S. citri strains differing notably in their ability to express adhesin ScARP2b and pyruvate dehydrogenase E1 component differed in their capacity to multiply in the two hosts, the plant and the leafhopper vector. Conclusions This study provided us with a list of genes differentially expressed in the different hosts, leading to the identification of factors that are thought to be involved in the process of S. citri host adaptation. The identification of such factors is a key step for further understanding of S. citri pathogenesis. Moreover the present work highlights the high capacity of S. citri in tightly regulating the expression level of a large set of surface protein genes, despite the small size of its genome. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0666-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marie-Pierre Dubrana
- UMR 1332 Biologie du Fruit et Pathologie, INRA, F-33882, Villenave d'Ornon, France.,UMR 1332 Biologie du Fruit et Pathologie, Université de Bordeaux, F-33882, Villenave d'Ornon, France
| | - Laure Béven
- UMR 1332 Biologie du Fruit et Pathologie, INRA, F-33882, Villenave d'Ornon, France. .,UMR 1332 Biologie du Fruit et Pathologie, Université de Bordeaux, F-33882, Villenave d'Ornon, France.
| | - Nathalie Arricau-Bouvery
- UMR 1332 Biologie du Fruit et Pathologie, INRA, F-33882, Villenave d'Ornon, France.,UMR 1332 Biologie du Fruit et Pathologie, Université de Bordeaux, F-33882, Villenave d'Ornon, France
| | - Sybille Duret
- UMR 1332 Biologie du Fruit et Pathologie, INRA, F-33882, Villenave d'Ornon, France.,UMR 1332 Biologie du Fruit et Pathologie, Université de Bordeaux, F-33882, Villenave d'Ornon, France
| | - Stéphane Claverol
- Plateforme Protéome, CGFB, Université de Bordeaux, F-33076, Bordeaux, France
| | - Joël Renaudin
- UMR 1332 Biologie du Fruit et Pathologie, INRA, F-33882, Villenave d'Ornon, France.,UMR 1332 Biologie du Fruit et Pathologie, Université de Bordeaux, F-33882, Villenave d'Ornon, France
| | - Colette Saillard
- UMR 1332 Biologie du Fruit et Pathologie, INRA, F-33882, Villenave d'Ornon, France.,UMR 1332 Biologie du Fruit et Pathologie, Université de Bordeaux, F-33882, Villenave d'Ornon, France
| |
Collapse
|
223
|
Abstract
While significant protection from pneumococcal disease has been achieved by the use of polysaccharide and polysaccharide-protein conjugate vaccines, capsule-independent protection has been limited by serotype replacement along with disease caused by nonencapsulated Streptococcus pneumoniae (NESp). NESp strains compose approximately 3% to 19% of asymptomatic carriage isolates and harbor multiple antibiotic resistance genes. Surface proteins unique to NESp enhance colonization and virulence despite the lack of a capsule even though the capsule has been thought to be required for pneumococcal pathogenesis. Genes for pneumococcal surface proteins replace the capsular polysaccharide (cps) locus in some NESp isolates, and these proteins aid in pneumococcal colonization and otitis media (OM). NESp strains have been isolated from patients with invasive and noninvasive pneumococcal disease, but noninvasive diseases, specifically, conjunctivitis (85%) and OM (8%), are of higher prevalence. Conjunctival strains are commonly of the so-called classical NESp lineages defined by multilocus sequence types (STs) ST344 and ST448, while sporadic NESp lineages such as ST1106 are more commonly isolated from patients with other diseases. Interestingly, sporadic lineages have significantly higher rates of recombination than classical lineages. Higher rates of recombination can lead to increased acquisition of antibiotic resistance and virulence factors, increasing the risk of disease and hindering treatment. NESp strains are a significant proportion of the pneumococcal population, can cause disease, and may be increasing in prevalence in the population due to effects on the pneumococcal niche caused by pneumococcal vaccines. Current vaccines are ineffective against NESp, and further research is necessary to develop vaccines effective against both encapsulated and nonencapsulated pneumococci.
Collapse
|
224
|
Abstract
The emerging field of proteomics has contributed greatly to improving our understanding of the human pathogen Mycobacterium tuberculosis over the last two decades. In this chapter we provide a comprehensive overview of mycobacterial proteome research and highlight key findings. First, studies employing a combination of two-dimensional gel electrophoresis and mass spectrometry (MS) provided insights into the proteomic composition, initially of the whole bacillus and subsequently of subfractions, such as the cell wall, cytosol, and secreted proteins. Comparison of results obtained under various culture conditions, i.e., acidic pH, nutrient starvation, and low oxygen tension, aiming to mimic facets of the intracellular lifestyle of M. tuberculosis, provided initial clues to proteins relevant for intracellular survival and manipulation of the host cell. Further attempts were aimed at identifying the biological functions of the hypothetical M. tuberculosis proteins, which still make up a quarter of the gene products of M. tuberculosis, and at characterizing posttranslational modifications. Recent technological advances in MS have given rise to new methods such as selected reaction monitoring (SRM) and data-independent acquisition (DIA). These targeted, cutting-edge techniques combined with a public database of specific MS assays covering the entire proteome of M. tuberculosis allow the simple and reliable detection of any mycobacterial protein. Most recent studies attempt not only to identify but also to quantify absolute amounts of single proteins in the complex background of host cells without prior sample fractionation or enrichment. Finally, we will discuss the potential of proteomics to advance vaccinology, drug discovery, and biomarker identification to improve intervention and prevention measures for tuberculosis.
Collapse
|
225
|
Goret J, Le Roy C, Touati A, Mesureur J, Renaudin H, Claverol S, Bébéar C, Béven L, Pereyre S. Surface lipoproteome of Mycoplasma hominis PG21 and differential expression after contact with human dendritic cells. Future Microbiol 2016; 11:179-94. [DOI: 10.2217/fmb.15.130] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To assess the lipoproteins that are involved in the interaction between Mycoplasma hominis and human dendritic cells. Materials & methods: The surface lipoproteome of M. hominis PG21 was characterized by using Triton X-114 extraction and LC–MS/MS identification. The transcriptional changes in lipoprotein genes upon contact with human dendritic cells were determined by using reverse transcription quantitative PCR after identification of reference genes suitable for normalization. Results: A large-scale overexpression of lipoprotein genes was observed with 21 upregulated transcripts. Seven genes of unknown function were M. hominis species specific and six genes were putatively associated with increased nutrient capture from the host cell and adhesion. Conclusion: M. hominis regulates lipoprotein gene expression and may use species-specific mechanisms during the host colonization process.
Collapse
Affiliation(s)
- Julien Goret
- Université de Bordeaux, USC EA 3671 Mycoplasmal & Chlamydial Infections in Humans, Bordeaux, France
- INRA, USC EA 3671 Mycoplasmal & Chlamydial Infections in Humans, Bordeaux, France
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Chloé Le Roy
- Université de Bordeaux, USC EA 3671 Mycoplasmal & Chlamydial Infections in Humans, Bordeaux, France
- INRA, USC EA 3671 Mycoplasmal & Chlamydial Infections in Humans, Bordeaux, France
| | - Arabella Touati
- Université de Bordeaux, USC EA 3671 Mycoplasmal & Chlamydial Infections in Humans, Bordeaux, France
- INRA, USC EA 3671 Mycoplasmal & Chlamydial Infections in Humans, Bordeaux, France
| | | | - Hélène Renaudin
- Université de Bordeaux, USC EA 3671 Mycoplasmal & Chlamydial Infections in Humans, Bordeaux, France
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Stéphane Claverol
- Pôle Protéomique, Plateforme Génomique Fonctionnelle de Bordeaux, Université de Bordeaux, Bordeaux, France
| | - Cécile Bébéar
- Université de Bordeaux, USC EA 3671 Mycoplasmal & Chlamydial Infections in Humans, Bordeaux, France
- INRA, USC EA 3671 Mycoplasmal & Chlamydial Infections in Humans, Bordeaux, France
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Laure Béven
- INRA, UMR 1332, Biologie du Fruit et Pathologie, Villenave d'Ornon, France
- Université de Bordeaux, UMR 1332, Biologie du Fruit et Pathologie, Bordeaux, France
| | - Sabine Pereyre
- Université de Bordeaux, USC EA 3671 Mycoplasmal & Chlamydial Infections in Humans, Bordeaux, France
- INRA, USC EA 3671 Mycoplasmal & Chlamydial Infections in Humans, Bordeaux, France
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| |
Collapse
|
226
|
Salverda MLM, Meinderts SM, Hamstra HJ, Wagemakers A, Hovius JWR, van der Ark A, Stork M, van der Ley P. Surface display of a borrelial lipoprotein on meningococcal outer membrane vesicles. Vaccine 2016; 34:1025-33. [PMID: 26801064 DOI: 10.1016/j.vaccine.2016.01.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 12/09/2015] [Accepted: 01/11/2016] [Indexed: 12/12/2022]
Abstract
Outer Membrane Vesicles (OMVs) are gaining attention as vaccine candidates. The successful expression of heterologous antigens in OMVs, with the OMV functioning both as adjuvant and delivery vehicle, has greatly enhanced their vaccine potential. Since there are indications that surface exposed antigens might induce a superior immune response, targeting of heterologous antigens to the OMV surface is of special interest. Several systems for surface display of heterologous antigens on OMVs have been developed. However, these systems have not been used to display lipidated membrane-associated proteins known as lipoproteins, which are emerging as key targets for protective immunity. We were therefore interested to see whether we could express a foreign lipoprotein on the outer surface of OMVs. When outer surface protein A (OspA), a borrelial surface-exposed lipoprotein, was expressed in meningococci, it was found that although OspA was present in OMVs, it was no longer surface-exposed. Therefore, a set of fusions of OspA to different regions of factor H binding protein (fHbp), a meningococcal surface-exposed lipoprotein, were designed and tested for their surface-exposure. An N-terminal part of fHbp was found to be necessary for the successful surface display of OspA on meningococcal OMVs. When mice were immunized with this set of OMVs, an OspA-specific antibody response was only elicited by OMVs with clearly surface-exposed OspA, strengthening the idea that the exact positioning of an antigen in the OMV affects the immune response. This method for the surface display of heterologous lipoproteins on OMVs is a step forward in the development of OMVs as a vaccine platform.
Collapse
Affiliation(s)
- Merijn L M Salverda
- Institute for Translational Vaccinology (InTraVacc), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands.
| | - Sanne M Meinderts
- Institute for Translational Vaccinology (InTraVacc), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Hendrik-Jan Hamstra
- Immunology of Infectious Diseases and Vaccines (IIV), National Institute of Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Alex Wagemakers
- Department of Internal Medicine, Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Joppe W R Hovius
- Department of Internal Medicine, Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Arno van der Ark
- Institute for Translational Vaccinology (InTraVacc), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Michiel Stork
- Institute for Translational Vaccinology (InTraVacc), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Peter van der Ley
- Institute for Translational Vaccinology (InTraVacc), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| |
Collapse
|
227
|
Mao G, Zhao Y, Kang X, Li Z, Zhang Y, Wang X, Sun F, Sankaran K, Zhang XC. Crystal structure of E. coli lipoprotein diacylglyceryl transferase. Nat Commun 2016; 7:10198. [PMID: 26729647 PMCID: PMC4728403 DOI: 10.1038/ncomms10198] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 11/16/2015] [Indexed: 02/07/2023] Open
Abstract
Lipoprotein biogenesis is essential for bacterial survival. Phosphatidylglycerol:prolipoprotein diacylglyceryl transferase (Lgt) is an integral membrane enzyme that catalyses the first reaction of the three-step post-translational lipid modification. Deletion of the lgt gene is lethal to most Gram-negative bacteria. Here we present the crystal structures of Escherichia coli Lgt in complex with phosphatidylglycerol and the inhibitor palmitic acid at 1.9 and 1.6 Å resolution, respectively. The structures reveal the presence of two binding sites and support the previously reported structure–function relationships of Lgt. Complementation results of lgt-knockout cells with different mutant Lgt variants revealed critical residues, including Arg143 and Arg239, that are essential for diacylglyceryl transfer. Using a GFP-based in vitro assay, we correlated the activities of Lgt with structural observations. Together, the structural and biochemical data support a mechanism whereby substrate and product, lipid-modified lipobox-containing peptide, enter and leave the enzyme laterally relative to the lipid bilayer. Bacterial lipoproteins have important biological functions, and the lipoprotien biogenesis enzyme Lgt is essential in most gram-negative bacteria. Here, the authors use structural and biochemical techniques to shed light on the function of Lgt in post-translational transacylation modification.
Collapse
Affiliation(s)
- Guotao Mao
- National Laboratory of Macromolecules, National Center of Protein Science - Beijing, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Zhao
- National Laboratory of Macromolecules, National Center of Protein Science - Beijing, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xusheng Kang
- National Laboratory of Macromolecules, National Center of Protein Science - Beijing, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Zhijie Li
- National Laboratory of Macromolecules, National Center of Protein Science - Beijing, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Yan Zhang
- National Laboratory of Macromolecules, National Center of Protein Science - Beijing, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Xianping Wang
- National Laboratory of Macromolecules, National Center of Protein Science - Beijing, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Fei Sun
- National Laboratory of Macromolecules, National Center of Protein Science - Beijing, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | | | - Xuejun C Zhang
- National Laboratory of Macromolecules, National Center of Protein Science - Beijing, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| |
Collapse
|
228
|
Membrane-Bound PenA β-Lactamase of Burkholderia pseudomallei. Antimicrob Agents Chemother 2015; 60:1509-14. [PMID: 26711764 DOI: 10.1128/aac.02444-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/09/2015] [Indexed: 11/20/2022] Open
Abstract
Burkholderia pseudomallei is the etiologic agent of melioidosis, a difficult-to-treat disease with diverse clinical manifestations. β-Lactam antibiotics such as ceftazidime are crucial to the success of melioidosis therapy. Ceftazidime-resistant clinical isolates have been described, and the most common mechanism is point mutations affecting expression or critical amino acid residues of the chromosomally encoded class A PenA β-lactamase. We previously showed that PenA was exported via the twin arginine translocase system and associated with the spheroplast fraction. We now show that PenA is a membrane-bound lipoprotein. The protein and accompanying β-lactamase activity are found in the membrane fraction and can be extracted with Triton X-114. Treatment with globomycin of B. pseudomallei cells expressing PenA results in accumulation of the prolipoprotein. Mass spectrometric analysis of extracted membrane proteins reveals a protein peak whose mass is consistent with a triacylated PenA protein. Mutation of a crucial lipobox cysteine at position 23 to a serine residue results in loss of β-lactamase activity and absence of detectable PenAC23S protein. A concomitant isoleucine-to-alanine change at position 20 in the signal peptide processing site in the PenAC23S mutant results in a nonlipidated protein (PenAI20A C23S) that is processed by signal peptidase I and exhibits β-lactamase activity. The resistance profile of a B. pseudomallei strain expressing this protein is indistinguishable from the profile of the isogenic strain expressing wild-type PenA. The data show that PenA membrane association is not required for resistance and must serve another purpose.
Collapse
|
229
|
Lehmann JS, Corey VC, Ricaldi JN, Vinetz JM, Winzeler EA, Matthias MA. Whole Genome Shotgun Sequencing Shows Selection on Leptospira Regulatory Proteins During in vitro Culture Attenuation. Am J Trop Med Hyg 2015; 94:302-313. [PMID: 26711524 PMCID: PMC4751964 DOI: 10.4269/ajtmh.15-0401] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/08/2015] [Indexed: 12/29/2022] Open
Abstract
Leptospirosis is the most common zoonotic disease worldwide with an estimated 500,000 severe cases reported annually, and case fatality rates of 12–25%, due primarily to acute kidney and lung injuries. Despite its prevalence, the molecular mechanisms underlying leptospirosis pathogenesis remain poorly understood. To identify virulence-related genes in Leptospira interrogans, we delineated cumulative genome changes that occurred during serial in vitro passage of a highly virulent strain of L. interrogans serovar Lai into a nearly avirulent isogenic derivative. Comparison of protein coding and computationally predicted noncoding RNA (ncRNA) genes between these two polyclonal strains identified 15 nonsynonymous single nucleotide variant (nsSNV) alleles that increased in frequency and 19 that decreased, whereas no changes in allelic frequency were observed among the ncRNA genes. Some of the nsSNV alleles were in six genes shown previously to be transcriptionally upregulated during exposure to in vivo-like conditions. Five of these nsSNVs were in evolutionarily conserved positions in genes related to signal transduction and metabolism. Frequency changes of minor nsSNV alleles identified in this study likely contributed to the loss of virulence during serial in vitro culture. The identification of new virulence-associated genes should spur additional experimental inquiry into their potential role in Leptospira pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | - Michael A. Matthias
- *Address correspondence to Michael A. Matthias, Department of Medicine, Division of Infectious Diseases, School of Medicine, University of California, San Diego School of Medicine, 9500 Gilman Drive, BRF 2, Room 4A15, La Jolla, CA 92093-0760. E-mail:
| |
Collapse
|
230
|
In silico approaches for the identification of virulence candidates amongst hypothetical proteins of Mycoplasma pneumoniae 309. Comput Biol Chem 2015; 59 Pt A:67-80. [DOI: 10.1016/j.compbiolchem.2015.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 09/08/2015] [Accepted: 09/14/2015] [Indexed: 01/25/2023]
|
231
|
Hu X, Yan H, Liu K, Hu J, Qi C, Yang J, Liu Y, Zhao J, Liu J. Identification and characterization of a novel stress-responsive outer membrane protein Lip40 from Actinobacillus pleuropneumoniae. BMC Biotechnol 2015; 15:106. [PMID: 26608465 PMCID: PMC4660844 DOI: 10.1186/s12896-015-0199-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/29/2015] [Indexed: 01/30/2023] Open
Abstract
Background Actinobacillus pleuropneumoniae, a Gram-negative bacterium, is the causative agent of porcine pleuropneumonia, a highly contagious and often fatal disease. Because current vaccines confer limited protection against A. pleuropneumoniae infection, the development of more effective vaccines is urgently required. The identification of immunogenic and protective antigens, such as an outer-membrane lipoprotein, will advance this purpose. Results Sixty putative lipoproteins were predicted from the genomic sequence of A. pleuropneumoniae using multiple algorithms. Here, we focused on the characteristics of the putative lipoprotein Lip40 from A. pleuropneumoniae strain SLW01 (serovar 1). Lip40 shares sequence similarity with many bacterial lipoproteins, and the structural prediction of Lip40 suggests that it is similar to A. pleuropneumoniae TbpB. The N-terminus of Lip40 contains an interesting tandemly repeated sequence, Q(E/D/P)QPK. Real-time RT–PCR indicated that the expression of lip40 was significantly upregulated at 42 °C, at 16 °C, and under anaerobic conditions. Recombinant Lip40 (rLip40) produced in Escherichia coli BL21(DE3) was specifically recognized by porcine convalescent serum directed against A. pleuropneumoniae. Lip40 was confirmed to localize at the bacterial outer membrane, and its expression was significantly stimulated when A. pleuropneumoniae was cultured under various stress conditions. Lip40 also protected 75 % of mice from fatal virulent A. pleuropneumoniae infection. Conclusions The immunogenic outer-membrane protein Lip40 is stress responsive, protects mice against infection, and might be a virulence determinant. Further investigation of Lip40 should expedite vaccine development and provide insight into the pathogenesis of A. pleuropneumoniae. Electronic supplementary material The online version of this article (doi:10.1186/s12896-015-0199-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xuehe Hu
- College of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China.
| | - Hao Yan
- College of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China.
| | - Ke Liu
- College of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China.
| | - Jiansheng Hu
- College of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China.
| | - Chao Qi
- College of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China.
| | - Jihong Yang
- College of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China.
| | - Yanli Liu
- College of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China.
| | - Jin Zhao
- College of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China.
| | - Jinlin Liu
- College of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China.
| |
Collapse
|
232
|
Outer membrane lipoprotein VacJ is required for the membrane integrity, serum resistance and biofilm formation of Actinobacillus pleuropneumoniae. Vet Microbiol 2015; 183:1-8. [PMID: 26790928 DOI: 10.1016/j.vetmic.2015.11.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/11/2015] [Accepted: 11/15/2015] [Indexed: 11/21/2022]
Abstract
The outer membrane proteins of Actinobacillus pleuropneumoniae are mediators of infection, acting as targets for the host's defense system. The outer membrane lipoprotein VacJ is involved in serum resistance and intercellular spreading in several pathogenic bacteria. To investigate the role of VacJ in the pathogenicity of Actinobacillus pleuropneumoniae, the vacJ gene-deletion mutant MD12 ΔvacJ was constructed. The increased susceptibility to KCl, SDS plus EDTA, and several antibiotics in the MD12ΔvacJ mutant suggested that the stability of the outer membrane was impaired as a result of the mutation in the vacJ gene. The increased NPN fluorescence and significant cellular morphological variation in the MD12ΔvacJ mutant further demonstrated the crucial role of the VacJ lipoprotein in maintaining the outer membrane integrity of A. pleuropneumoniae. In addition, the MD12ΔvacJ mutant exhibited decreased survival from the serum and complement killing compared to the wild-type strain. Interestingly, the MD12ΔvacJ mutant showed reduced biofilm formation compared to the wild-type strain. To our knowledge, this is the first description of the VacJ lipoprotein contributing to bacterial biofilm formation. The data presented in this study illustrate the important role of the VacJ lipoprotein in the maintenance of cellular integrity, serum resistance, and biofilm formation in A. pleuropneumoniae.
Collapse
|
233
|
Quantitative Lipoproteomics in Clostridium difficile Reveals a Role for Lipoproteins in Sporulation. ACTA ACUST UNITED AC 2015; 22:1562-1573. [DOI: 10.1016/j.chembiol.2015.10.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/28/2015] [Accepted: 10/01/2015] [Indexed: 01/09/2023]
|
234
|
Goolab S, Roth RL, van Heerden H, Crampton MC. Analyzing the molecular mechanism of lipoprotein localization in Brucella. Front Microbiol 2015; 6:1189. [PMID: 26579096 PMCID: PMC4623201 DOI: 10.3389/fmicb.2015.01189] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/12/2015] [Indexed: 01/18/2023] Open
Abstract
Bacterial lipoproteins possess diverse structure and functionality, ranging from bacterial physiology to pathogenic processes. As such many lipoproteins, originating from Brucella are exploited as potential vaccines to countermeasure brucellosis infection in the host. These membrane proteins are translocated from the cytoplasm to the cell membrane where they are anchored peripherally by a multifaceted targeting mechanism. Although much research has focused on the identification and classification of Brucella lipoproteins and their potential use as vaccine candidates for the treatment of Brucellosis, the underlying route for the translocation of these lipoproteins to the outer surface of the Brucella (and other pathogens) outer membrane (OM) remains mostly unknown. This is partly due to the complexity of the organism and evasive tactics used to escape the host immune system, the variation in biological structure and activity of lipoproteins, combined with the complex nature of the translocation machinery. The biosynthetic pathway of Brucella lipoproteins involves a distinct secretion system aiding translocation from the cytoplasm, where they are modified by lipidation, sorted by the lipoprotein localization machinery pathway and thereafter equipped for export to the OM. Surface localized lipoproteins in Brucella may employ a lipoprotein flippase or the β-barrel assembly complex for translocation. This review provides an overview of the characterized Brucella OM proteins that form part of the OM, including a handful of other characterized bacterial lipoproteins and their mechanisms of translocation. Lipoprotein localization pathways in gram negative bacteria will be used as a model to identify gaps in Brucella lipoprotein localization and infer a potential pathway. Of particular interest are the dual topology lipoproteins identified in Escherichia coli and Haemophilus influenza. The localization and topology of these lipoproteins from other gram negative bacteria are well characterized and may be useful to infer a solution to better understand the translocation process in Brucella.
Collapse
Affiliation(s)
- Shivani Goolab
- Protein Technologies, Biosciences, Council for Scientific and Industrial ResearchPretoria, South Africa
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of PretoriaPretoria, South Africa
| | - Robyn L. Roth
- Protein Technologies, Biosciences, Council for Scientific and Industrial ResearchPretoria, South Africa
| | - Henriette van Heerden
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of PretoriaPretoria, South Africa
| | - Michael C. Crampton
- Protein Technologies, Biosciences, Council for Scientific and Industrial ResearchPretoria, South Africa
| |
Collapse
|
235
|
Sangal V, Blom J, Sutcliffe IC, von Hunolstein C, Burkovski A, Hoskisson PA. Adherence and invasive properties of Corynebacterium diphtheriae strains correlates with the predicted membrane-associated and secreted proteome. BMC Genomics 2015; 16:765. [PMID: 26452736 PMCID: PMC4600297 DOI: 10.1186/s12864-015-1980-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 10/02/2015] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Non-toxigenic Corynebacterium diphtheriae strains are emerging as a major cause of severe pharyngitis and tonsillitis as well as invasive diseases such as endocarditis, septic arthritis, splenic abscesses and osteomyelitis. C. diphtheriae strains have been reported to vary in their ability to adhere and invade different cell lines. To identify the genetic basis of variation in the degrees of pathogenicity, we sequenced the genomes of four strains of C. diphtheriae (ISS 3319, ISS 4060, ISS 4746 and ISS 4749) that are well characterised in terms of their ability to adhere and invade mammalian cells. RESULTS Comparative analyses of 20 C. diphtheriae genome sequences, including 16 publicly available genomes, revealed a pan-genome comprising 3,989 protein coding sequences that include 1,625 core genes and 2,364 accessory genes. Most of the genomic variation between these strains relates to uncharacterised genes encoding hypothetical proteins or transposases. Further analyses of protein sequences using an array of bioinformatic tools predicted most of the accessory proteome to be located in the cytoplasm. The membrane-associated and secreted proteins are generally involved in adhesion and virulence characteristics. The genes encoding membrane-associated proteins, especially the number and organisation of the pilus gene clusters (spa) including the number of genes encoding surface proteins with LPXTG motifs differed between different strains. Other variations were among the genes encoding extracellular proteins, especially substrate binding proteins of different functional classes of ABC transport systems and 'non-classical' secreted proteins. CONCLUSIONS The structure and organisation of the spa gene clusters correlates with differences in the ability of C. diphtheriae strains to adhere and invade the host cells. Furthermore, differences in the number of genes encoding membrane-associated proteins, e.g., additional proteins with LPXTG motifs could also result in variation in the adhesive properties between different strains. The variation in the secreted proteome may be associated with the degree of pathogenesis. While the role of the 'non-classical' secretome in virulence remains unclear, differences in the substrate binding proteins of various ABC transport systems and cytoplasmic proteins potentially suggest strain variation in nutritional requirements or a differential ability to utilize various carbon sources.
Collapse
Affiliation(s)
- Vartul Sangal
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| | - Jochen Blom
- Heinrich-Buff-Ring 58, Justus-Liebig-Universität, 35392, Gießen, Germany.
| | - Iain C Sutcliffe
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| | | | - Andreas Burkovski
- Professur für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany.
| | - Paul A Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK.
| |
Collapse
|
236
|
Gonzalez T, Gaultney RA, Floden AM, Brissette CA. Escherichia coli lipoprotein binds human plasminogen via an intramolecular domain. Front Microbiol 2015; 6:1095. [PMID: 26500634 PMCID: PMC4595779 DOI: 10.3389/fmicb.2015.01095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/22/2015] [Indexed: 11/13/2022] Open
Abstract
Escherichia coli lipoprotein (Lpp) is a major cellular component that exists in two distinct states, bound-form and free-form. Bound-form Lpp is known to interact with the periplasmic bacterial cell wall, while free-form Lpp is localized to the bacterial cell surface. A function for surface-exposed Lpp has yet to be determined. We hypothesized that the presence of C-terminal lysinses in the surface-exposed region of Lpp would facilitate binding to the host zymogen plasminogen (Plg), a protease commandeered by a number of clinically important bacteria. Recombinant Lpp was synthesized and the binding of Lpp to Plg, the effect of various inhibitors on this binding, and the effects of various mutations of Lpp on Lpp-Plg interactions were examined. Additionally, the ability of Lpp-bound Plg to be converted to active plasmin was analyzed. We determined that Lpp binds Plg via an atypical domain located near the center of mature Lpp that may not be exposed on the surface of intact E. coli according to the current localization model. Finally, we found that Plg bound by Lpp can be converted to active plasmin. While the consequences of Lpp binding Plg are unclear, these results prompt further investigation of the ability of surface exposed Lpp to interact with host molecules such as extracellular matrix components and complement regulators, and the role of these interactions in infections caused by E. coli and other bacteria.
Collapse
Affiliation(s)
- Tammy Gonzalez
- Brissette Laboratory, Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks ND, USA
| | - Robert A Gaultney
- Brissette Laboratory, Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks ND, USA
| | - Angela M Floden
- Brissette Laboratory, Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks ND, USA
| | - Catherine A Brissette
- Brissette Laboratory, Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks ND, USA
| |
Collapse
|
237
|
van der Pol L, Stork M, van der Ley P. Outer membrane vesicles as platform vaccine technology. Biotechnol J 2015; 10:1689-706. [PMID: 26912077 PMCID: PMC4768646 DOI: 10.1002/biot.201400395] [Citation(s) in RCA: 249] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 08/13/2015] [Accepted: 09/24/2015] [Indexed: 12/31/2022]
Abstract
Outer membrane vesicles (OMVs) are released spontaneously during growth by many Gram-negative bacteria. They present a range of surface antigens in a native conformation and have natural properties like immunogenicity, self-adjuvation and uptake by immune cells which make them attractive for application as vaccines against pathogenic bacteria. In particular with Neisseria meningitidis, they have been investigated extensively and an OMV-containing meningococcal vaccine has recently been approved by regulatory agencies. Genetic engineering of the OMV-producing bacteria can be used to improve and expand their usefulness as vaccines. Recent work on meningitis B vaccines shows that OMVs can be modified, such as for lipopolysaccharide reactogenicity, to yield an OMV product that is safe and effective. The overexpression of crucial antigens or simultaneous expression of multiple antigenic variants as well as the expression of heterologous antigens enable expansion of their range of applications. In addition, modifications may increase the yield of OMV production and can be combined with specific production processes to obtain high amounts of well-defined, stable and uniform OMV particle vaccine products. Further improvement can facilitate the development of OMVs as platform vaccine product for multiple applications.
Collapse
Affiliation(s)
| | - Michiel Stork
- Product Development, Intravacc, Bilthoven, The Netherlands
| | | |
Collapse
|
238
|
Romero-Saavedra F, Laverde D, Budin-Verneuil A, Muller C, Bernay B, Benachour A, Hartke A, Huebner J. Characterization of Two Metal Binding Lipoproteins as Vaccine Candidates for Enterococcal Infections. PLoS One 2015; 10:e0136625. [PMID: 26322633 PMCID: PMC4556446 DOI: 10.1371/journal.pone.0136625] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 08/05/2015] [Indexed: 12/19/2022] Open
Abstract
Background Enterococcus faecium and faecalis are Gram-positive opportunistic pathogens that have become leading causes of nosocomial infections over the last decades. Especially multidrug resistant enterococci have become a challenging clinical problem worldwide. Therefore, new treatment options are needed and the identification of alternative targets for vaccine development has emerged as a feasible alternative to fight the infections caused by these pathogens. Results We extrapolate the transcriptomic data from a mice peritonitis infection model in E. faecalis to identify putative up-regulated surface proteins under infection conditions in E. faecium. After the bionformatic analyses two metal binding lipoproteins were identified to have a high homology (>72%) between the two species, the manganese ABC transporter substrate-binding lipoprotein (PsaAfm,) and the zinc ABC transporter substrate-binding lipoprotein (AdcAfm). These candidate lipoproteins were overexpressed in Escherichia coli and purified. The recombinant proteins were used to produce rabbit polyclonal antibodies that were able to induce specific opsonic antibodies that mediated killing of the homologous strain E. faecium E155 as well as clinical strains E. faecium E1162, Enterococcus faecalis 12030, type 2 and type 5. Mice were passively immunized with the antibodies raised against recombinant lipoproteins, showing significant reduction of colony counts in mice livers after the bacterial challenge and demonstrating the efficacy of these metal binding lipoproteins as promising vaccine candidates to treat infections caused by these enterococcal pathogens. Conclusion Overall, our results demonstrate that these two metal binding lipoproteins elicited specific, opsonic and protective antibodies, with an extensive cross-reactivity and serotype-independent coverage among these two important nocosomial pathogens. Pointing these two protein antigens as promising immunogens, that can be used as single components or as carrier proteins together with polysaccharide antigens in vaccine development against enterococcal infections.
Collapse
Affiliation(s)
- Felipe Romero-Saavedra
- Division of Infectious Diseases, Department of Medicine, University Medical Center Freiburg, Freiburg, Germany
- EA4655 U2RM Stress/Virulence, University of Caen Lower-Normandy, Caen, France
| | - Diana Laverde
- Division of Infectious Diseases, Department of Medicine, University Medical Center Freiburg, Freiburg, Germany
- EA4655 U2RM Stress/Virulence, University of Caen Lower-Normandy, Caen, France
| | | | - Cécile Muller
- EA4655 U2RM Stress/Virulence, University of Caen Lower-Normandy, Caen, France
| | - Benoit Bernay
- Proteogen platform SFR ICORE 4206, University of Caen Lower-Normandy, Caen, France
| | - Abdellah Benachour
- EA4655 U2RM Stress/Virulence, University of Caen Lower-Normandy, Caen, France
| | - Axel Hartke
- EA4655 U2RM Stress/Virulence, University of Caen Lower-Normandy, Caen, France
| | - Johannes Huebner
- Division of Infectious Diseases, Department of Medicine, University Medical Center Freiburg, Freiburg, Germany
- Division of Pediatric Infectious Diseases, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
- * E-mail:
| |
Collapse
|
239
|
Monlezun L, Phan G, Benabdelhak H, Lascombe MB, Enguéné VYN, Picard M, Broutin I. New OprM structure highlighting the nature of the N-terminal anchor. Front Microbiol 2015; 6:667. [PMID: 26191054 PMCID: PMC4486845 DOI: 10.3389/fmicb.2015.00667] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 06/19/2015] [Indexed: 01/11/2023] Open
Abstract
Among the different mechanisms used by bacteria to resist antibiotics, active efflux plays a major role. In Gram-negative bacteria, active efflux is carried out by tripartite efflux pumps that form a macromolecular assembly spanning both membranes of the cellular wall. At the outer membrane level, a well-conserved outer membrane factor (OMF) protein acts as an exit duct, but its sequence varies greatly among different species. The OMFs share a similar tri-dimensional structure that includes a beta-barrel pore domain that stabilizes the channel within the membrane. In addition, OMFs are often subjected to different N-terminal post-translational modifications (PTMs), such as an acylation with a lipid. The role of additional N-terminal anchors is all the more intriguing since it is not always required among the OMFs family. Understanding this optional PTM could open new research lines in the field of antibiotics resistance. In Escherichia coli, it has been shown that CusC is modified with a tri-acylated lipid, whereas TolC does not show any modification. In the case of OprM from Pseudomonas aeruginosa, the N-terminal modification remains a matter of debate, therefore, we used several approaches to investigate this issue. As definitive evidence, we present a new X-ray structure at 3.8 Å resolution that was solved in a new space group, making it possible to model the N-terminal residue as a palmitoylated cysteine.
Collapse
Affiliation(s)
- Laura Monlezun
- Laboratoire de Cristallographie et RMN Biologiques, CNRS UMR 8015, Faculté de Pharmacie, Université Paris Descartes Paris, France
| | - Gilles Phan
- Laboratoire de Cristallographie et RMN Biologiques, CNRS UMR 8015, Faculté de Pharmacie, Université Paris Descartes Paris, France
| | - Houssain Benabdelhak
- Laboratoire d'Imagerie Biomédicale, Sorbonne Universités, Université Pierre et Marie Curie Paris 6, CNRS UMR 7371, INSERM U1146 Paris, France
| | - Marie-Bernard Lascombe
- Laboratoire de Cristallographie et RMN Biologiques, CNRS UMR 8015, Faculté de Pharmacie, Université Paris Descartes Paris, France
| | - Véronique Y N Enguéné
- Laboratoire de Cristallographie et RMN Biologiques, CNRS UMR 8015, Faculté de Pharmacie, Université Paris Descartes Paris, France
| | - Martin Picard
- Laboratoire de Cristallographie et RMN Biologiques, CNRS UMR 8015, Faculté de Pharmacie, Université Paris Descartes Paris, France
| | - Isabelle Broutin
- Laboratoire de Cristallographie et RMN Biologiques, CNRS UMR 8015, Faculté de Pharmacie, Université Paris Descartes Paris, France
| |
Collapse
|
240
|
Shahbaaz M, Bisetty K, Ahmad F, Hassan MI. Towards New Drug Targets? Function Prediction of Putative Proteins of Neisseria meningitidis MC58 and Their Virulence Characterization. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2015; 19:416-34. [PMID: 26076386 DOI: 10.1089/omi.2015.0032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Neisseria meningitidis is a Gram-negative aerobic diplococcus, responsible for a variety of meningococcal diseases. The genome of N. meningitidis MC58 is comprised of 2114 genes that are translated into 1953 proteins. The 698 genes (∼35%) encode hypothetical proteins (HPs), because no experimental evidence of their biological functions are available. Analyses of these proteins are important to understand their functions in the metabolic networks and may lead to the discovery of novel drug targets against the infections caused by N. meningitidis. This study aimed at the identification and categorization of each HP present in the genome of N. meningitidis MC58 using computational tools. Functions of 363 proteins were predicted with high accuracy among the annotated set of HPs investigated. The reliably predicted 363 HPs were further grouped into 41 different classes of proteins, based on their possible roles in cellular processes such as metabolism, transport, and replication. Our studies revealed that 22 HPs may be involved in the pathogenesis caused by this microorganism. The top two HPs with highest virulence scores were subjected to molecular dynamics (MD) simulations to better understand their conformational behavior in a water environment. We also compared the MD simulation results with other virulent proteins present in N. meningitidis. This study broadens our understanding of the mechanistic pathways of pathogenesis, drug resistance, tolerance, and adaptability for host immune responses to N. meningitidis.
Collapse
Affiliation(s)
- Mohd Shahbaaz
- 1 Department of Chemistry, Durban University of Technology , Durban, South Africa
| | - Krishna Bisetty
- 1 Department of Chemistry, Durban University of Technology , Durban, South Africa
| | - Faizan Ahmad
- 2 Center for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Md Imtaiyaz Hassan
- 2 Center for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| |
Collapse
|
241
|
Rana A, Kumar D, Rub A, Akhter Y. Proteome-scale identification and characterization of mitochondria targeting proteins of Mycobacterium avium subspecies paratuberculosis: Potential virulence factors modulating host mitochondrial function. Mitochondrion 2015; 23:42-54. [PMID: 26048556 DOI: 10.1016/j.mito.2015.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 04/21/2015] [Accepted: 05/04/2015] [Indexed: 02/03/2023]
Abstract
Mycobacterium avium subsp. paratuberculosis is the etiological agent of Johne's Disease among ruminants. During the course of infection, it expresses a number of proteins for its successful persistence inside the host that cause variety of physiological abnormalities in the host. Mitochondrion is one of the attractive targets for pathogenic bacteria. Employing a proteome-wide sequence and structural signature based approach we have identified 46 M. avium subsp. paratuberculosis proteins as potential targets for the host mitochondrial targeting. These may act as virulence factors modulating mitochondrial physiology for bacterial survival and immune evasion inside the host cells.
Collapse
Affiliation(s)
- Aarti Rana
- School of Life Sciences, Central University of Himachal Pradesh, Shahpur, District-Kangra, 176206 Himachal Pradesh, India
| | - Devender Kumar
- School of Life Sciences, Central University of Himachal Pradesh, Shahpur, District-Kangra, 176206 Himachal Pradesh, India
| | - Abdur Rub
- Infection and Immunity Lab, Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Yusuf Akhter
- School of Life Sciences, Central University of Himachal Pradesh, Shahpur, District-Kangra, 176206 Himachal Pradesh, India.
| |
Collapse
|
242
|
Biagini M, Garibaldi M, Aprea S, Pezzicoli A, Doro F, Becherelli M, Taddei AR, Tani C, Tavarini S, Mora M, Teti G, D'Oro U, Nuti S, Soriani M, Margarit I, Rappuoli R, Grandi G, Norais N. The Human Pathogen Streptococcus pyogenes Releases Lipoproteins as Lipoprotein-rich Membrane Vesicles. Mol Cell Proteomics 2015; 14:2138-49. [PMID: 26018414 DOI: 10.1074/mcp.m114.045880] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Indexed: 01/24/2023] Open
Abstract
Bacterial lipoproteins are attractive vaccine candidates because they represent a major class of cell surface-exposed proteins in many bacteria and are considered as potential pathogen-associated molecular patterns sensed by Toll-like receptors with built-in adjuvanticity. Although Gram-negative lipoproteins have been extensively characterized, little is known about Gram-positive lipoproteins. We isolated from Streptococcus pyogenes a large amount of lipoproteins organized in vesicles. These vesicles were obtained by weakening the bacterial cell wall with a sublethal concentration of penicillin. Lipid and proteomic analysis of the vesicles revealed that they were enriched in phosphatidylglycerol and almost exclusively composed of lipoproteins. In association with lipoproteins, a few hypothetical proteins, penicillin-binding proteins, and several members of the ExPortal, a membrane microdomain responsible for the maturation of secreted proteins, were identified. The typical lipidic moiety was apparently not necessary for lipoprotein insertion in the vesicle bilayer because they were also recovered from the isogenic diacylglyceryl transferase deletion mutant. The vesicles were not able to activate specific Toll-like receptor 2, indicating that lipoproteins organized in these vesicular structures do not act as pathogen-associated molecular patterns. In light of these findings, we propose to name these new structures Lipoprotein-rich Membrane Vesicles.
Collapse
Affiliation(s)
- Massimiliano Biagini
- From the ‡Novartis Vaccines and Diagnostics (a GSK company), Via Fiorentiina 1, 53100 Siena, Itlay
| | - Manuela Garibaldi
- From the ‡Novartis Vaccines and Diagnostics (a GSK company), Via Fiorentiina 1, 53100 Siena, Itlay
| | - Susanna Aprea
- From the ‡Novartis Vaccines and Diagnostics (a GSK company), Via Fiorentiina 1, 53100 Siena, Itlay
| | - Alfredo Pezzicoli
- From the ‡Novartis Vaccines and Diagnostics (a GSK company), Via Fiorentiina 1, 53100 Siena, Itlay
| | - Francesco Doro
- From the ‡Novartis Vaccines and Diagnostics (a GSK company), Via Fiorentiina 1, 53100 Siena, Itlay
| | - Marco Becherelli
- From the ‡Novartis Vaccines and Diagnostics (a GSK company), Via Fiorentiina 1, 53100 Siena, Itlay
| | - Anna Rita Taddei
- §Centro Interdipartimentale di Microscopia Elettronica, Università della Tuscia, Viterbo, Italy
| | - Chiara Tani
- From the ‡Novartis Vaccines and Diagnostics (a GSK company), Via Fiorentiina 1, 53100 Siena, Itlay
| | - Simona Tavarini
- From the ‡Novartis Vaccines and Diagnostics (a GSK company), Via Fiorentiina 1, 53100 Siena, Itlay
| | - Marirosa Mora
- From the ‡Novartis Vaccines and Diagnostics (a GSK company), Via Fiorentiina 1, 53100 Siena, Itlay
| | - Giuseppe Teti
- ¶Dipartimento di Scienze Pediatriche, Ginecologiche, Microbiologiche e Biomediche, Università degli Studi di Messina, Messina, Italy
| | - Ugo D'Oro
- From the ‡Novartis Vaccines and Diagnostics (a GSK company), Via Fiorentiina 1, 53100 Siena, Itlay
| | - Sandra Nuti
- From the ‡Novartis Vaccines and Diagnostics (a GSK company), Via Fiorentiina 1, 53100 Siena, Itlay
| | - Marco Soriani
- From the ‡Novartis Vaccines and Diagnostics (a GSK company), Via Fiorentiina 1, 53100 Siena, Itlay
| | - Immaculada Margarit
- From the ‡Novartis Vaccines and Diagnostics (a GSK company), Via Fiorentiina 1, 53100 Siena, Itlay
| | - Rino Rappuoli
- From the ‡Novartis Vaccines and Diagnostics (a GSK company), Via Fiorentiina 1, 53100 Siena, Itlay
| | - Guido Grandi
- From the ‡Novartis Vaccines and Diagnostics (a GSK company), Via Fiorentiina 1, 53100 Siena, Itlay
| | - Nathalie Norais
- From the ‡Novartis Vaccines and Diagnostics (a GSK company), Via Fiorentiina 1, 53100 Siena, Itlay;
| |
Collapse
|
243
|
Buaklin A, Palaga T, Hannaman D, Kerdkaew R, Patarakul K, Jacquet A. Optimization of the immunogenicity of a DNA vaccine encoding a bacterial outer membrane lipoprotein. Mol Biotechnol 2015; 56:903-10. [PMID: 24870617 DOI: 10.1007/s12033-014-9769-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bacterial outer membrane lipoproteins represent potent immunogens for the design of recombinant subunit vaccines. However, recombinant lipoprotein production and purification could be a challenge notably in terms of expression yield, protein solubility, and post-translational acylation. Together with the cost effectiveness, facilitated production, and purification as well as good stability, DNA-based vaccines encoding lipoproteins could become an alternative strategy for antibacterial vaccinations. Although the immunogenicity and the efficacy of DNA-based vaccines can be demonstrated in small rodents, such vaccine candidates could request concrete optimization as they are weak immunogens in primates and humans and particularly when administered by conventional injection. Therefore, the goal of the present study was to optimize the immunogenicity of a DNA vaccine encoding an outer membrane lipoprotein. LipL32, the major outer membrane protein from pathogenic Leptospira, was selected as a model antigen. We evaluated the influence of antigen secretion, the in vivo DNA delivery by electroporation, the adjuvant co-administration, as well as the heterologous prime-boost regimen on the induction of anti-LipL32 specific immune responses. Our results clearly showed that, following transfections, a DNA construct based on the authentic full-length LipL32 gene (containing leader sequence and the N-terminus cysteine residue involved in the protein anchoring) drives antigen secretion with the same efficiency as a plasmid-encoding anchor-less LipL32 and for which the bacterial leader sequence was replaced with a viral signal peptide. The in vivo DNA delivery by electroporation drastically enhanced the production of strong Th1 responses characterized by specific IgG2a antibodies and the IFNγ secretion in a restimulation assay, regardless of the DNA constructs used. In comparison with the heterologous prime-boost regimen, the homologous prime-boost vaccinations with DNA co-administrated with polyinosinic-polycytidylic acid (poly I:C) generated the highest specific IgG and IgG2a titers as well as the greatest IFNγ production. Taken together, these data suggest that optimization of outer membrane lipoprotein secretion is not critical for the induction of antigen-specific responses through DNA vaccination. Moreover, the potent antibody response induced by DNA plasmid encoding lipoprotein formulated with poly I:C and delivered through electroporation provides the rationale for the design of new prophylactic vaccines against pathogenic bacteria.
Collapse
Affiliation(s)
- Arun Buaklin
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Oor-Por-Ror Building, 15th floor, Room # 1510B2 1873 Rama IV Road, Pathum Wan, Bangkok, 10330, Thailand
| | | | | | | | | | | |
Collapse
|
244
|
Arntzen MØ, Karlskås IL, Skaugen M, Eijsink VGH, Mathiesen G. Proteomic Investigation of the Response of Enterococcus faecalis V583 when Cultivated in Urine. PLoS One 2015; 10:e0126694. [PMID: 25915650 PMCID: PMC4411035 DOI: 10.1371/journal.pone.0126694] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 04/07/2015] [Indexed: 11/19/2022] Open
Abstract
Enterococcus faecalis is a robust bacterium, which is able to survive in and adapt to hostile environments such as the urinary tract and bladder. In this label-free quantitative proteomic study based on MaxQuant LFQ algorithms, we identified 127 proteins present in the secretome of the clinical vancomycin-resistant isolate E. faecalis V583 and we compared proteins secreted in the initial phase of cultivation in urine with the secretome during cultivation in standard laboratory medium, 2xYT. Of the 54 identified proteins predicted to be secreted, six were exclusively found after cultivation in urine including the virulence factor EfaA ("endocarditis specific antigen") and its homologue EF0577 ("adhesion lipoprotein"). These two proteins are both involved in manganese transport, known to be an important determinant of colonization and infection, and may additionally function as adhesins. Other detected urine-specific proteins are involved in peptide transport (EF0063 and EF3106) and protease inhibition (EF3054). In addition, we found an uncharacterized protein (EF0764), which had not previously been linked to the adaptation of V583 to a urine environment, and which is unique to E. faecalis. Proteins found in both environments included a histone-like protein, EF1550, that was up-regulated during cultivation in urine and that has a homologue in streptococci (HlpA) known to be involved in bacterial adhesion to host cells. Up-regulated secreted proteins included autolysins. These results from secretome analyses are largely compatible with previously published data from transcriptomics studies. All in all, the present data indicate that transport, in particular metal transport, adhesion, cell wall remodelling and the unknown function carried out by the unique EF0764 are important for enterococcal adaptation to the urine environment. These results provide a basis for a more targeted exploration of novel proteins involved in the adaptability and pathogenicity of E. faecalis.
Collapse
Affiliation(s)
- Magnus Øverlie Arntzen
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, N-1432 Ås, Norway
- * E-mail:
| | - Ingrid Lea Karlskås
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, N-1432 Ås, Norway
| | - Morten Skaugen
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, N-1432 Ås, Norway
| | - Vincent G. H. Eijsink
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, N-1432 Ås, Norway
| | - Geir Mathiesen
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, N-1432 Ås, Norway
| |
Collapse
|
245
|
Transcriptional analysis of the MrpJ network: modulation of diverse virulence-associated genes and direct regulation of mrp fimbrial and flhDC flagellar operons in Proteus mirabilis. Infect Immun 2015; 83:2542-56. [PMID: 25847961 DOI: 10.1128/iai.02978-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 03/29/2015] [Indexed: 01/14/2023] Open
Abstract
The enteric bacterium Proteus mirabilis is associated with a significant number of catheter-associated urinary tract infections (UTIs). Strict regulation of the antagonistic processes of adhesion and motility, mediated by fimbriae and flagella, respectively, is essential for disease progression. Previously, the transcriptional regulator MrpJ, which is encoded by the mrp fimbrial operon, has been shown to repress both swimming and swarming motility. Here we show that MrpJ affects an array of cellular processes beyond adherence and motility. Microarray analysis found that expression of mrpJ mimicking levels observed during UTIs leads to differential expression of 217 genes related to, among other functions, bacterial virulence, type VI secretion, and metabolism. We probed the molecular mechanism of transcriptional regulation by MrpJ using transcriptional reporters and chromatin immunoprecipitation (ChIP). Binding of MrpJ to two virulence-associated target gene promoters, the promoters of the flagellar master regulator flhDC and mrp itself, appears to be affected by the condensation state of the native chromosome, although both targets share a direct MrpJ binding site proximal to the transcriptional start. Furthermore, an mrpJ deletion mutant colonized the bladders of mice at significantly lower levels in a transurethral model of infection. Additionally, we observed that mrpJ is widely conserved in a collection of recent clinical isolates. Altogether, these findings support a role of MrpJ as a global regulator of P. mirabilis virulence.
Collapse
|
246
|
Xayarath B, Alonzo F, Freitag NE. Identification of a peptide-pheromone that enhances Listeria monocytogenes escape from host cell vacuoles. PLoS Pathog 2015; 11:e1004707. [PMID: 25822753 PMCID: PMC4379056 DOI: 10.1371/journal.ppat.1004707] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 01/26/2015] [Indexed: 02/05/2023] Open
Abstract
Listeria monocytogenes is a Gram-positive facultative intracellular bacterial pathogen that invades mammalian cells and escapes from membrane-bound vacuoles to replicate within the host cell cytosol. Gene products required for intracellular bacterial growth and bacterial spread to adjacent cells are regulated by a transcriptional activator known as PrfA. PrfA becomes activated following L. monocytogenes entry into host cells, however the signal that stimulates PrfA activation has not yet been defined. Here we provide evidence for L. monocytogenes secretion of a small peptide pheromone, pPplA, which enhances the escape of L. monocytogenes from host cell vacuoles and may facilitate PrfA activation. The pPplA pheromone is generated via the proteolytic processing of the PplA lipoprotein secretion signal peptide. While the PplA lipoprotein is dispensable for pathogenesis, bacteria lacking the pPplA pheromone are significantly attenuated for virulence in mice and have a reduced efficiency of bacterial escape from the vacuoles of nonprofessional phagocytic cells. Mutational activation of PrfA restores virulence and eliminates the need for pPplA-dependent signaling. Experimental evidence suggests that the pPplA peptide may help signal to L. monocytogenes its presence within the confines of the host cell vacuole, stimulating the expression of gene products that contribute to vacuole escape and facilitating PrfA activation to promote bacterial growth within the cytosol.
Collapse
Affiliation(s)
- Bobbi Xayarath
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Francis Alonzo
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Nancy E. Freitag
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
247
|
Zou J, Wang X, Tian M, Cao S, Hou W, Wang S, Han X, Ding C, Yu S. The M949_1556 gene plays a role on the bacterial antigenicity and pathogenicity of Riemerella anatipestifer. Vet Microbiol 2015; 177:193-200. [PMID: 25804836 DOI: 10.1016/j.vetmic.2015.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 03/03/2015] [Accepted: 03/04/2015] [Indexed: 11/16/2022]
Abstract
Riemerella anatipestifer is one of the most economically important pathogens of farm ducks worldwide. However, the molecular mechanisms regarding its antigenicity and pathogenicity are poorly understood. We previously constructed a library of random Tn4351 transposon mutants using R. anatipestifer strain CH3. In this study, M949_1556 gene inactivated mutant strain CH3ΔM949_1556 was identified by screening of the library using monoclonal antibody against R. anatipestifer serotype 1 lipopolysaccharide (LPS) (anti-LPS MAb) followed by sequence analysis. The mutant strain presented no reactivity to the anti-LPS MAb in an indirect ELISA. Animal studies showed that the median lethal dose (LD50) of CH3ΔM949_1556 was >10(10) colony forming units (CFU), which was attenuated more than 50 times, compared with that of wild-type strain CH3 (LD50=2×10(8) CFU). The bacterial loads in the blood of CH3ΔM949_1556 infected ducks were significantly decreased, compared with those of CH3-infected ducks. In addition, CH3ΔM949_1556 presented significant, higher susceptibility to complement-dependent killing than CH3 did in vitro. Furthermore, CH3ΔM949_1556 showed increased bacterial adhesion and invasion capacities to Vero cells. Immunization with CH3ΔM949_1556-inactived vaccine was effective in protecting the ducks from challenge with R. anatipestifer serotype 1 strain WJ4, serotype 2 strain Yb2 and serotype 10 strain HXb2, suggesting that the mutant strain CH3ΔM949_1556 could provide a broad cross-protection among R. anatipestifer serotypes 1, 2 and 10 strains. Our results demonstrated that the M949_1556 gene plays a role on the bacterial antigenicity and pathogenicity of R. anatipestifer.
Collapse
Affiliation(s)
- Jiechi Zou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Xiaolan Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Mingxing Tian
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Shoulin Cao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Wanwan Hou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Shaohui Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Xiangan Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Shengqing Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| |
Collapse
|
248
|
High-throughput, signature-tagged mutagenic approach to identify novel virulence factors of Yersinia pestis CO92 in a mouse model of infection. Infect Immun 2015; 83:2065-81. [PMID: 25754198 DOI: 10.1128/iai.02913-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 02/26/2015] [Indexed: 12/18/2022] Open
Abstract
The identification of new virulence factors in Yersinia pestis and understanding their molecular mechanisms during an infection process are necessary in designing a better vaccine or to formulate an appropriate therapeutic intervention. By using a high-throughput, signature-tagged mutagenic approach, we created 5,088 mutants of Y. pestis strain CO92 and screened them in a mouse model of pneumonic plague at a dose equivalent to 5 50% lethal doses (LD50) of wild-type (WT) CO92. From this screen, we obtained 118 clones showing impairment in disseminating to the spleen, based on hybridization of input versus output DNA from mutant pools with 53 unique signature tags. In the subsequent screen, 20/118 mutants exhibited attenuation at 8 LD50 when tested in a mouse model of bubonic plague, with infection by 10/20 of the aforementioned mutants resulting in 40% or higher survival rates at an infectious dose of 40 LD50. Upon sequencing, six of the attenuated mutants were found to carry interruptions in genes encoding hypothetical proteins or proteins with putative functions. Mutants with in-frame deletion mutations of two of the genes identified from the screen, namely, rbsA, which codes for a putative sugar transport system ATP-binding protein, and vasK, a component of the type VI secretion system, were also found to exhibit some attenuation at 11 or 12 LD50 in a mouse model of pneumonic plague. Likewise, among the remaining 18 signature-tagged mutants, 9 were also attenuated (40 to 100%) at 12 LD50 in a pneumonic plague mouse model. Previously, we found that deleting genes encoding Braun lipoprotein (Lpp) and acyltransferase (MsbB), the latter of which modifies lipopolysaccharide function, reduced the virulence of Y. pestis CO92 in mouse models of bubonic and pneumonic plague. Deletion of rbsA and vasK genes from either the Δlpp single or the Δlpp ΔmsbB double mutant augmented the attenuation to provide 90 to 100% survivability to mice in a pneumonic plague model at 20 to 50 LD50. The mice infected with the Δlpp ΔmsbB ΔrbsA triple mutant at 50 LD50 were 90% protected upon subsequent challenge with 12 LD50 of WT CO92, suggesting that this mutant or others carrying combinational deletions of genes identified through our screen could potentially be further tested and developed into a live attenuated plague vaccine(s).
Collapse
|
249
|
Saxena S, Khan N, Dehinwal R, Kumar A, Sehgal D. Conserved surface accessible nucleoside ABC transporter component SP0845 is essential for pneumococcal virulence and confers protection in vivo. PLoS One 2015; 10:e0118154. [PMID: 25689507 PMCID: PMC4331430 DOI: 10.1371/journal.pone.0118154] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 01/05/2015] [Indexed: 11/30/2022] Open
Abstract
Streptococcus pneumoniae is a leading cause of bacterial pneumonia, sepsis and meningitis. Surface accessible proteins of S. pneumoniae are being explored for the development of a protein-based vaccine in order to overcome the limitations of existing polysaccharide-based pneumococcal vaccines. To identify a potential vaccine candidate, we resolved surface-associated proteins of S. pneumoniae TIGR4 strain using two-dimensional gel electrophoresis followed by immunoblotting with antisera generated against whole heat-killed TIGR4. Ten immunoreactive spots were identified by mass spectrometric analysis that included a putative lipoprotein SP0845. Analysis of the inferred amino acid sequence of sp0845 homologues from 36 pneumococcal strains indicated that SP0845 was highly conserved (>98% identity) and showed less than 11% identity with any human protein. Our bioinformatic and functional analyses demonstrated that SP0845 is the substrate-binding protein of an ATP-binding cassette (ABC) transporter that is involved in nucleoside uptake with cytidine, uridine, guanosine and inosine as the preferred substrates. Deletion of the gene encoding SP0845 renders pneumococci avirulent suggesting that it is essential for virulence. Immunoblot analysis suggested that SP0845 is expressed in in vitro grown pneumococci and during mice infection. Immunofluorescence microscopy and flow cytometry data indicated that SP0845 is surface exposed in encapsulated strains and accessible to antibodies. Subcutaneous immunization with recombinant SP0845 induced high titer antibodies in mice. Hyperimmune sera raised against SP0845 promoted killing of encapsulated pneumococcal strains in a blood bactericidal assay. Immunization with SP0845 protected mice from intraperitoneal challenge with heterologous pneumococcal serotypes. Based on its surface accessibility, role in virulence and ability to elicit protective immunity, we propose that SP0845 may be a potential candidate for a protein-based pneumococcal vaccine.
Collapse
Affiliation(s)
- Sneha Saxena
- Molecular Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Naeem Khan
- Molecular Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Ruchika Dehinwal
- Molecular Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Ajay Kumar
- Molecular Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Devinder Sehgal
- Molecular Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
- * E-mail:
| |
Collapse
|
250
|
Kim NJ, Ahn KB, Jeon JH, Yun CH, Finlay BB, Han SH. Lipoprotein in the cell wall of Staphylococcus aureus is a major inducer of nitric oxide production in murine macrophages. Mol Immunol 2015; 65:17-24. [PMID: 25600878 DOI: 10.1016/j.molimm.2014.12.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 12/18/2014] [Accepted: 12/26/2014] [Indexed: 01/15/2023]
Abstract
Staphylococcus aureus is a Gram-positive bacterium that causes inflammation at infection sites by inducing various inflammatory mediators such as nitric oxide (NO). To identify the staphylococcal virulence factors contributing to NO production, we compared the ability of ethanol-killed wild-type S. aureus and mutant strains lacking lipoteichoic acid (ΔltaS), lipoproteins (Δlgt), or d-alanine (ΔdltA) to stimulate NO production in a murine macrophage cell line, RAW 264.7, and the primary macrophages derived from C57BL/6 mice. Wild-type, ΔltaS, and ΔdltA strains induced NO production in a dose-dependent manner but this response was not observed when the cells were stimulated with the Δlgt strain. Moreover, purified lipoproteins triggered NO production in macrophages. Coincident with NO induction, the wild-type, ΔltaS, and ΔdltA strains induced expression of inducible NO synthase (iNOS) at both mRNA and protein levels whereas Δlgt failed to induce iNOS protein or mRNA. Transient transfection followed by a reporter gene assay and Western blotting experiments demonstrated that wild-type, ΔltaS, and ΔdltA strains, but not the Δlgt strain, induced substantial activation of NF-κB and STAT1 phosphorylation, both of which are known to be crucial for iNOS expression. Moreover, wild-type, ΔltaS, and ΔdltA strains increased Toll-like receptor 2 (TLR2) activation, which is known to mediate S. aureus-induced innate immunity, whereas the Δlgt strain did not. Collectively, these results suggest that lipoproteins in the cell wall of S. aureus play a major role in the induction of NO production in murine macrophages through activation of the TLR2 receptor.
Collapse
Affiliation(s)
- Nam Joong Kim
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea
| | - Ki Bum Ahn
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea
| | - Jun Ho Jeon
- Division of High-risk Pathogen Research, Center for Infectious Diseases, Korean National Institute of Health, Cheongwon-gun, Chungbuk 363-951, Republic of Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | - B Brett Finlay
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea.
| |
Collapse
|