201
|
Le Moigne V, Robreau G, Mahana W. Flagellin as a good carrier and potent adjuvant for Th1 response: Study of mice immune response to the p27 (Rv2108) Mycobacterium tuberculosis antigen. Mol Immunol 2008; 45:2499-507. [DOI: 10.1016/j.molimm.2008.01.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2007] [Revised: 01/04/2008] [Accepted: 01/08/2008] [Indexed: 10/22/2022]
|
202
|
Abstract
Inhalation of Yersinia pestis bacilli causes pneumonic plague, a rapidly progressing and exceptionally virulent disease. Extensively antibiotic-resistant Y. pestis strains exist and we currently lack a safe and effective pneumonic plague vaccine. These facts raise concern that Y. pestis may be exploited as a bioweapon. Here, I review the history and status of plague vaccine research and advocate that pneumonic plague vaccines should strive to prime both humoral and cellular immunity.
Collapse
Affiliation(s)
- Stephen T Smiley
- Trudeau Institute, 154 Algonquin Avenue, Saranac Lake, NY 12983, USA.
| |
Collapse
|
203
|
Bates JT, Honko AN, Graff AH, Kock ND, Mizel SB. Mucosal adjuvant activity of flagellin in aged mice. Mech Ageing Dev 2008; 129:271-81. [PMID: 18367233 DOI: 10.1016/j.mad.2008.01.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 12/11/2007] [Accepted: 01/25/2008] [Indexed: 01/22/2023]
Abstract
We evaluated the ability of flagellin, a highly effective mucosal adjuvant in mice and non-human primates, to promote mucosal innate and adaptive immunity in aged mice. We found that intratracheal instillation of flagellin induced a stronger respiratory innate response in aged mice than in young mice, and that intranasal instillation of flagellin was equally effective at triggering recruitment of T and B lymphocytes to the draining lymph nodes of young and aged mice. Intranasal immunization of aged mice with flagellin and the Yersinia pestis protein F1 promoted specific IgG and IgA production, but at lower levels and lower avidities than in young mice. Although intranasal instillation of flagellin and F1 antigen increased germinal center formation and size in young mice, it did not do so in aged mice. Our findings are consistent with the conclusion that flagellin can promote adaptive immune responses in aged mice, but at a less robust level than in young mice.
Collapse
Affiliation(s)
- John T Bates
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | | | |
Collapse
|
204
|
Van Andel R, Sherwood R, Gennings C, Lyons CR, Hutt J, Gigliotti A, Barr E. Clinical and pathologic features of cynomolgus macaques (Macaca fascicularis) infected with aerosolized Yersinia pestis. Comp Med 2008; 58:68-75. [PMID: 19793459 PMCID: PMC2703157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 08/31/2007] [Accepted: 10/03/2007] [Indexed: 05/28/2023]
Abstract
Since the anthrax attacks of 2001, the emphasis on developing animal models of aerosolized select agent pathogens has increased. Many scientists believe that nonhuman primate models are the most appropriate to evaluate pulmonary response to, vaccines for, and treatments for select agents such as Yersinia pestis (Y. pestis), the causative agent of plague. A recent symposium concluded that the cynomolgus macaque (Macaca fascicularis) plague model should be characterized more fully. To date, a well-characterized cynomolgus macaque model of pneumonic plague using reproducible bioaerosols of viable Y. pestis has not been published. In the current study, methods for creating reproducible bioaerosols of viable Y. pestis strain CO92 (YpCO92) and pneumonic plague models were evaluated in 22 Indonesian-origin cynomolgus macaques. Five macaques exposed to doses lower than 250 CFU remained free of any indication of plague infection. Fifteen macaques developed fever, lethargy, and anorexia indicative of clinical plague. The 2 remaining macaques died without overt clinical signs but were plague-positive on culture and demonstrated pathology consistent with plague. The lethal dose of plague in humans is reputedly less than 100 organisms; in this study, 66 CFU was the dose at which half of the macaques developed fever and clinical signs (ED(50)), The Indonesian cynomolgus macaque reproduces many aspects of human pneumonic plague and likely will provide an excellent model for studies that require a macaque model.
Collapse
Affiliation(s)
- Roger Van Andel
- Lovelace Respiratory Research Institute, Albuquerque, NM, USA.
| | | | | | | | | | | | | |
Collapse
|
205
|
Decreased potency of the Vibrio cholerae sheathed flagellum to trigger host innate immunity. Infect Immun 2008; 76:1282-8. [PMID: 18174340 DOI: 10.1128/iai.00736-07] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Vibrio cholerae is a monoflagellated gram-negative bacterium that causes the severe diarrheal disease cholera. In contrast to Salmonella enterica serovar Typhimurium infection, which is accompanied by both acute diarrhea and high-level inflammation, V. cholerae infection is largely noninflammatory in human hosts. Bacterial flagella are composed of flagellin, a highly conserved protein that is also a target of the innate immune response. Because the V. cholerae flagellum is covered by a sheath, we hypothesized that it might be less prone to activation of the innate immune response than nonsheathed flagella, such as those produced by Salmonella serovar Typhimurium. Indeed, compared with Salmonella serovar Typhimurium flagella, V. cholerae flagella demonstrated significantly reduced NF-kappaB activation in A549 human pulmonary epithelial cells. However, V. cholerae flagellin monomers, FlaD and FlaC, were almost equally potent with purified FliC, a monomer derived from Salmonella serovar Typhimurium flagella, in NF-kappaB activation. Heat- and acid-induced dissociation assays showed that Salmonella serovar Typhimurium flagella disassembled far more readily into monomeric flagellins than V. cholerae flagella, suggesting that the differential levels of NF-kappaB activation by V. cholerae and Salmonella serovar Typhimurium flagella are likely attributable to the difference in their flagellin shedding. Our results suggest that monomer dissociation of V. cholerae flagella is suppressed likely due to the presence of the sheath and that this unique structural feature of V. cholerae flagella may have evolved as a strategy to evade flagellin-triggered host innate immune responses in various host species.
Collapse
|
206
|
|
207
|
Genovese KJ, He H, Lowry VK, Nisbet DJ, Kogut MH. Dynamics of the avian inflammatory response toSalmonellafollowing administration of the toll-like receptor 5 agonist flagellin. ACTA ACUST UNITED AC 2007; 51:112-7. [PMID: 17640291 DOI: 10.1111/j.1574-695x.2007.00286.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Previous work has shown that flagellin (FGN) is a potent stimulator in vitro of phagocytic cell functions of chickens. The purpose of this study was to define the effects of FGN on the inflammatory response to Salmonella enteritidis (SE) in chickens. Intra-abdominal (IA) FGN administration caused significant increases in peripheral blood leukocytes (PBL) compared with SE-injected controls at 4 and 8 h postinjection (P<or=0.05). The heterophil (PMN) was the predominant cell responsible for the increased numbers of leukocytes in the peripheral blood. In the abdominal cavity, leukocyte infiltrates were significantly greater in FGN-injected (8 h) and SE/FGN-injected (4 and 24 h) birds than in the SE-injected control birds. Again, the predominant leukocyte infiltrating the abdominal cavity was the PMN. Bovine serum albumin (BSA)-injected protein control birds showed no increases in PBL or in abdominal cell leukocyte infiltrates over saline-injected controls. In IA challenge studies, FGN reduced SE-associated mortality (26%) compared with mortality of 51% in the SE group (P<or=0.05). BSA-injected/SE-challenged chicks had mortality similar to that of the SE group. The data suggest that FGN is a potent stimulator of a heterophil-mediated innate immune response in vivo, protecting against bacterial infections in chickens.
Collapse
Affiliation(s)
- Kenneth J Genovese
- US Department of Agriculture, Southern Plains Agricultural Research Center, College Station, TX 77845, USA.
| | | | | | | | | |
Collapse
|
208
|
Wilmanski JM, Petnicki-Ocwieja T, Kobayashi KS. NLR proteins: integral members of innate immunity and mediators of inflammatory diseases. J Leukoc Biol 2007; 83:13-30. [PMID: 17875812 PMCID: PMC3256237 DOI: 10.1189/jlb.0607402] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The innate immune system is the first line of defense against microorganisms and is conserved in plants and animals. The nucleotide-binding domain, leucine rich containing (NLR) protein family is a recent addition to the members of innate immunity effector molecules. These proteins are characterized by a central oligomerization domain, termed nucleotide-binding domain (NBD) and a protein interaction domain, leucine-rich repeats (LRRs) at the C terminus. It has been shown that NLR proteins are localized to the cytoplasm and recognize microbial products. To date, it is known that Nod1 and Nod2 detect bacterial cell wall components, whereas Ipaf and Naip detect bacterial flagellin, and NACHT/LRR/Pyrin 1 has been shown to detect anthrax lethal toxin. NLR proteins comprise a diverse protein family (over 20 in humans), indicating that NLRs have evolved to acquire specificity to various pathogenic microorganisms, thereby controlling host-pathogen interactions. Activation of NLR proteins results in inflammatory responses mediated by NF-kappaB, MAPK, or Caspase-1 activation, accompanied by subsequent secretion of proinflammatory cytokines. Mutations in several members of the NLR protein family have been linked to inflammatory diseases, suggesting these molecules play important roles in maintaining host-pathogen interactions and inflammatory responses. Therefore, understanding NLR signaling is important for the therapeutic intervention of various infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Jeanette M. Wilmanski
- Department of Cancer Immunology & AIDS, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA
- Department of Pathology, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
- Department of Biology, Saint Peter’sCollege, 2641 Kennedy Boulevard, Jersey City, NJ 07306, USA
| | - Tanja Petnicki-Ocwieja
- Department of Cancer Immunology & AIDS, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA
- Department of Pathology, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
| | - Koichi S. Kobayashi
- Department of Cancer Immunology & AIDS, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA
- Department of Pathology, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
- To whom correspondence should be addressed: , Koichi S. Kobayashi M.D., Ph.D., Department of Cancer Immunology & AIDS, Dana-Farber Cancer Institute, Assistant Professor of Pathology, Harvard Medical School, Dana 1420A, 44 Binney Street, Boston, MA 02115, phone: 617-582-8020, fax: 617-582-7962
| |
Collapse
|
209
|
Autenrieth SE, Autenrieth IB. Yersinia enterocolitica: subversion of adaptive immunity and implications for vaccine development. Int J Med Microbiol 2007; 298:69-77. [PMID: 17702651 DOI: 10.1016/j.ijmm.2007.07.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Enteric Yersinia spp. invade Peyer's patches, disseminate to lymphoid tissues, and induce mucosal and systemic immune responses. Many virulence factors of Yersinia enterocolitica have been investigated in detail and were found to act on host cells involved in innate and adaptive immunity. Recent work explored as to whether attenuated Y. enterocolitica or recombinant components of Y. enterocolitica can be used as tools for vaccination. We and others have tested whether by means of the type three secretion system in attenuated Y. enterocolitica strains antigens might be delivered to antigen-presenting cells in order to induce CD8 and CD4 T cell responses. Alternatively, recombinant components of Y. enterocolitica such as invasin protein which binds to beta1 integrins of host cells have been tested for their ability to target antigen along with microparticles (fused to invasin) to antigen-presenting cells and to act as adjuvant. The work summarized in this article demonstrates that Y. enterocolitica and its components might be useful tools for novel vaccination strategies; in fact, invasin when fused to antigen and coated to microparticles might induce both CD4 and CD8 T cell responses. Likewise, attenuated Y. enterocolitica live carrier strains were reported to induce both CD8 and some CD4 T cell responses. However, we need to know more about how Y. enterocolitica subverts functions of antigen-presenting cells in order to design mutants with optimized antigen delivery features and deletion in those virulence factor that contribute to subversion of innate or adaptive immune responses.
Collapse
Affiliation(s)
- Stella E Autenrieth
- Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Elfriede-Aulhorn-Strasse 6, D-72076 Tübingen, Germany
| | | |
Collapse
|
210
|
Zavialov A, Zav'yalova G, Korpela T, Zav'yalov V. FGL chaperone-assembled fimbrial polyadhesins: anti-immune armament of Gram-negative bacterial pathogens. FEMS Microbiol Rev 2007; 31:478-514. [PMID: 17576202 DOI: 10.1111/j.1574-6976.2007.00075.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
This review summarizes the current knowledge on the structure, function, assembly, and biomedical applications of the family of adhesive fimbrial organelles assembled on the surface of Gram-negative pathogens via the FGL chaperone/usher pathway. Recent studies revealed the unique structural and functional properties of these organelles, distinguishing them from a related family, FGS chaperone-assembled adhesive pili. The FGL chaperone-assembled organelles consist of linear polymers of one or two types of protein subunits, each possessing one or two independent adhesive sites specific to different host cell receptors. This structural organization enables these fimbrial organelles to function as polyadhesins. Fimbrial polyadhesins may ensure polyvalent fastening of bacteria to the host cells, aggregating their receptors and triggering subversive signals that allow pathogens to evade immune defense. The FGL chaperone-assembled fimbrial polyadhesins are attractive targets for vaccine and drug design.
Collapse
Affiliation(s)
- Anton Zavialov
- Department of Molecular Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | | | | | | |
Collapse
|
211
|
Ishii KJ, Akira S. Toll or toll-free adjuvant path toward the optimal vaccine development. J Clin Immunol 2007; 27:363-71. [PMID: 17370119 DOI: 10.1007/s10875-007-9087-x] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Accepted: 02/21/2007] [Indexed: 12/25/2022]
Abstract
Successful vaccines contain an adjuvant component that activates the innate immune system, thereby eliciting antigen-specific immune responses. Many adjuvants appear to be ligands for toll-like receptors (TLR), which are thus promising targets for the development of novel adjuvants to elicit vaccine immunogenicity. However, recent evidence suggests that some adjuvants activate the innate immune system in a TLR-independent manner possibly through other pattern recognition receptors and signaling machinery. In particular, newly identified intracellular retinoic-acid-inducible gene (RIG)-like receptors, NOD-like receptors, or even as yet unknown recognition machinery for the adjuvant may regulate TLR-independent vaccine immunogenicity. To develop optimal vaccines, it will be critical to understand how TLR-dependent and TLR-independent innate immune activation, by various adjuvants, control the consequent adaptive immune responses to vaccine.
Collapse
Affiliation(s)
- Ken J Ishii
- Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency (JST), Osaka University, Suita, Osaka 565-0871, Japan.
| | | |
Collapse
|
212
|
Ye Z, Gan YH. Flagellin Contamination of Recombinant Heat Shock Protein 70 Is Responsible for Its Activity on T Cells. J Biol Chem 2007; 282:4479-4484. [PMID: 17178717 DOI: 10.1074/jbc.m606802200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Heat shock proteins (Hsp) 60 and 70 have been intensively studied for their ability to activate innate immunity. Heat shock proteins had been shown to induce the activation of dendritic cells, T cells, and B cells. However, the possible contamination of endotoxin in heat shock protein preparations makes their function as an activator of immune system ambiguous. Here, we examined the ability of bacterial Hsp60 and Hsp70 to activate Jurkat T cells and primary T cells. We found that Burkholderia pseudomallei Hsp70 and Mycobacterium tuberculosis Hsp70 could costimulate Jurkat T cells to make IL-2 and signal through TLR5. This costimulatory activity is not due to endotoxin or contaminants signaling via TLR2 nor TLR4. However, recombinant Hsp70 expressed in Escherichia coli DeltafliC strain completely lost its ability to costimulate T cells. Thus, the activation of T cells by recombinant Hsp70 is ascribed to flagellin contamination.
Collapse
Affiliation(s)
- Zhiyong Ye
- Department of Biochemistry, National University of Singapore, Block MD7, #05-10, 8 Medical Drive, Singapore 117597, Singapore
| | - Yunn-Hwen Gan
- Department of Biochemistry, National University of Singapore, Block MD7, #05-10, 8 Medical Drive, Singapore 117597, Singapore; Immunology Program, Yong Loo Lin School of Medicine, National University of Singapore, Block MD7, #05-10, 8 Medical Drive, Singapore 117597, Singapore.
| |
Collapse
|
213
|
Fisher ML, Castillo C, Mecsas J. Intranasal inoculation of mice with Yersinia pseudotuberculosis causes a lethal lung infection that is dependent on Yersinia outer proteins and PhoP. Infect Immun 2006; 75:429-42. [PMID: 17074849 PMCID: PMC1828392 DOI: 10.1128/iai.01287-06] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Yersinia pseudotuberculosis infects many mammals and birds including humans, livestock, and wild rodents and can be recovered from the lungs of infected animals. To determine the Y. pseudotuberculosis factors important for growth during lung infection, we developed an intranasal model of infection in mice. Following intranasal inoculation, we monitored both bacterial growth in lungs and dissemination to systemic tissues. Intranasal inoculation with as few as 18 CFU of Y. pseudotuberculosis caused a lethal lung infection in some mice. Over the course of 7 days, wild-type Y. pseudotuberculosis replicated to nearly 1 x 10(8) CFU/g of lung in BALB/c mice, induced histopathology in lungs consistent with pneumonia, but disseminated sporadically to other tissues. In contrast, a Delta yopB deletion strain was attenuated in this model, indicating that translocation of Yersinia outer proteins (Yops) is essential for virulence. Additionally, a Delta yopH null mutant failed to grow to wild-type levels by 4 days postintranasal inoculation, but deletions of any other single effector YOP did not attenuate lung colonization 4 days postinfection. Strains with deletions in yopH and any one of the other known effector yop genes were more attenuated that the Delta yopH strain, indicating a unique role for yopH in lungs. In summary, we have characterized the progression of a lung infection with an enteric Yersinia pathogen and shown that YopB and YopH are important in lung colonization and dissemination. Furthermore, this lung infection model with Y. pseudotuberculosis can be used to test potential therapeutics against Yersinia and other gram-negative infections in lungs.
Collapse
Affiliation(s)
- Michael L Fisher
- Department of Microbiology, 136 Harrison Ave., Tufts University, Boston, MA 02111, USA
| | | | | |
Collapse
|
214
|
Sanders CJ, Yu Y, Moore DA, Williams IR, Gewirtz AT. Humoral immune response to flagellin requires T cells and activation of innate immunity. THE JOURNAL OF IMMUNOLOGY 2006; 177:2810-8. [PMID: 16920916 DOI: 10.4049/jimmunol.177.5.2810] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Bacterial flagellin, the primary structural component of flagella, is a dominant target of humoral immunity upon infection by enteric pathogens and in Crohn's disease. To better understand how such responses may be regulated, we sought to define, in mice, basic mechanisms that regulate generation of flagellin-specific Igs. We observed that, in response to i.p. injection with flagellin, generation of flagellin-specific Ig required activation of innate immunity in that these responses were ablated in MyD88-deficient mice and that flagellin from Helicobacter pylori, which is known not to activate TLR5, also did not elicit Abs. Mice lacking alphabeta T cells (TCRbeta(null)) were completely deficient in their ability to make flagellin Abs in various contexts indicating that, in contrast to common belief, generation of flagellin-specific Ig is absolutely T cell dependent. In contrast to Ab responses to whole flagella (H serotyping), responses to flagellin monomers displayed only moderate serospecificity. Whereas neither oral nor rectal administration of flagellin elicited a strong serum Ab response, induction of colitis with dextran sodium sulfate resulted in a MyD88-dependent serum Ab response to endogenous flagellin, suggesting that, in an inflammatory milieu, TLR signaling promotes acquisition of Abs to intestinal flagellin. Thus, acquisition of a humoral immune response to flagellin requires activation of innate immunity, is T cell dependent, and can originate from flagellin in the intestinal tract in inflammatory conditions in the intestine.
Collapse
|
215
|
Bühler OT, Wiedig CA, Schmid Y, Grassl GA, Bohn E, Autenrieth IB. The Yersinia enterocolitica invasin protein promotes major histocompatibility complex class I- and class II-restricted T-cell responses. Infect Immun 2006; 74:4322-9. [PMID: 16790806 PMCID: PMC1489713 DOI: 10.1128/iai.00260-06] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yersinia enterocolitica invasin (Inv) protein confers internalization into and expression of proinflammatory cytokines by host cells. Both events require binding of Inv to beta1 integrins, which initiates signaling cascades including activation of focal adhesion complexes, Rac1, mitogen-activated protein kinase, and NF-kappaB. Here we tested whether Inv might be suitable as a delivery molecule and adjuvant if used as a component of a vaccine. For this purpose, hybrid proteins composed of Inv and ovalbumin (OVA) were prepared, applied as a coating to microparticles, and used for vaccination. Fusion of OVA to Inv did not significantly disturb the ability of Inv to promote host cell binding, internalization, and interleukin-8 (IL-8) secretion when applied as a coating to microparticles. The microparticles were used for vaccination of mice adoptively transferred with OVA-specific T cells from OT-1 or DO11.10 mice. Administration of OVA-Inv-coated microparticles induced OVA-specific T-cell responses. OVA-specific CD4 T cells produced both gamma interferon (IFN-gamma) and IL-4 as determined by enzyme-linked immunosorbent assay. Likewise, pronounced OVA-specific CD8 T-cell responses associated with IFN-gamma production were observed. Together, these results suggest that Inv might be an attractive tool in vaccination as it confers both host cell uptake and adjuvant activity by engagement of beta1 integrins of host cells, which leads to CD4 as well as CD8 T-cell responses.
Collapse
Affiliation(s)
- O T Bühler
- Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Elfriede-Aulhorn-Str. 6, D-72060 Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
216
|
Palin A, Chattopadhyay A, Park S, Delmas G, Suresh R, Senina S, Perlin DS, Rose JK. An optimized vaccine vector based on recombinant vesicular stomatitis virus gives high-level, long-term protection against Yersinia pestis challenge. Vaccine 2006; 25:741-50. [PMID: 16959385 DOI: 10.1016/j.vaccine.2006.08.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Revised: 07/26/2006] [Accepted: 08/09/2006] [Indexed: 10/24/2022]
Abstract
We have developed recombinant vesicular stomatitis virus (VSV) vectors expressing the Yersinia pestis lcrV gene. These vectors, given intranasally to mice, induced high antibody titers to the LcrV protein and protected against intranasal (pulmonary) challenge with Y. pestis. High-level protection was dependent on using an optimized VSV vector that expressed high levels of the LcrV protein from an lcrV gene placed in the first position in the VSV genome, followed by a single boost. This VSV-based vaccine vector system has potential as a plague vaccine protecting against virulent strains lacking the F1 protein.
Collapse
Affiliation(s)
- Amy Palin
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street (LH 315), New Haven, CT 06510, USA
| | | | | | | | | | | | | | | |
Collapse
|
217
|
Rumbo M, Nempont C, Kraehenbuhl JP, Sirard JC. Mucosal interplay among commensal and pathogenic bacteria: lessons from flagellin and Toll-like receptor 5. FEBS Lett 2006; 580:2976-84. [PMID: 16650409 DOI: 10.1016/j.febslet.2006.04.036] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Accepted: 04/08/2006] [Indexed: 12/19/2022]
Abstract
Toll-like receptors (TLR) detect pathogen-associated molecular patterns (PAMP) and play a crucial role in triggering immunity. Due to their large surfaces in direct contact with the environment, mucosal tissues are the major sites of PAMP-TLR signalling. How innate and adaptive immunity are triggered through flagellin-TLR5 interaction is the main focus of the review. In view of recent reports on genetic polymorphism, we will summarize the impact of TLR5 on the susceptibility to mucosal infections and on various immuno-pathologies. Finally, the contribution of TLRs in the induction and maintenance of mucosal homeostasis and commensal discrimination is discussed.
Collapse
Affiliation(s)
- Martin Rumbo
- UNLP, Laboratorio de Investigaciones en el Sistema Inmune, Facultad de Ciencias Exactas, La Plata, Argentina
| | | | | | | |
Collapse
|