201
|
Distinct circular single-stranded DNA viruses exist in different soil types. Appl Environ Microbiol 2015; 81:3934-45. [PMID: 25841004 DOI: 10.1128/aem.03878-14] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 03/23/2015] [Indexed: 02/03/2023] Open
Abstract
The potential dependence of virus populations on soil types was examined by electron microscopy, and the total abundance of virus particles in four soil types was similar to that previously observed in soil samples. The four soil types examined differed in the relative abundances of four morphological groups of viruses. Machair, a unique type of coastal soil in western Scotland and Ireland, differed from the others tested in having a higher proportion of tailed bacteriophages. The other soils examined contained predominantly spherical and thin filamentous virus particles, but the Machair soil had a more even distribution of the virus types. As the first step in looking at differences in populations in detail, virus sequences from Machair and brown earth (agricultural pasture) soils were examined by metagenomic sequencing after enriching for circular Rep-encoding single-stranded DNA (ssDNA) (CRESS-DNA) virus genomes. Sequences from the family Microviridae (icosahedral viruses mainly infecting bacteria) of CRESS-DNA viruses were predominant in both soils. Phylogenetic analysis of Microviridae major coat protein sequences from the Machair viruses showed that they spanned most of the diversity of the subfamily Gokushovirinae, whose members mainly infect obligate intracellular parasites. The brown earth soil had a higher proportion of sequences that matched the morphologically similar family Circoviridae in BLAST searches. However, analysis of putative replicase proteins that were similar to those of viruses in the Circoviridae showed that they are a novel clade of Circoviridae-related CRESS-DNA viruses distinct from known Circoviridae genera. Different soils have substantially different taxonomic biodiversities even within ssDNA viruses, which may be driven by physicochemical factors.
Collapse
|
202
|
Tazzyman SJ, Hall AR. Lytic phages obscure the cost of antibiotic resistance in Escherichia coli. ISME JOURNAL 2015; 9:809-20. [PMID: 25268496 DOI: 10.1038/ismej.2014.176] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 08/21/2014] [Accepted: 08/25/2014] [Indexed: 01/07/2023]
Abstract
The long-term persistence of antibiotic-resistant bacteria depends on their fitness relative to other genotypes in the absence of drugs. Outside the laboratory, viruses that parasitize bacteria (phages) are ubiquitous, but costs of antibiotic resistance are typically studied in phage-free experimental conditions. We used a mathematical model and experiments with Escherichia coli to show that lytic phages strongly affect the incidence of antibiotic resistance in drug-free conditions. Under phage parasitism, the likelihood that antibiotic-resistant genetic backgrounds spread depends on their initial frequency, mutation rate and intrinsic growth rate relative to drug-susceptible genotypes, because these parameters determine relative rates of phage-resistance evolution on different genetic backgrounds. Moreover, the average cost of antibiotic resistance in terms of intrinsic growth in the antibiotic-free experimental environment was small relative to the benefits of an increased mutation rate in the presence of phages. This is consistent with our theoretical work indicating that, under phage selection, typical costs of antibiotic resistance can be outweighed by realistic increases in mutability if drug resistance and hypermutability are genetically linked, as is frequently observed in clinical isolates. This suggests the long-term distribution of antibiotic resistance depends on the relative rates at which different lineages adapt to other types of selection, which in the case of phage parasitism is probably extremely common, as well as costs of resistance inferred by classical in vitro methods.
Collapse
Affiliation(s)
| | - Alex R Hall
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
203
|
Siranosian B, Perera S, Williams E, Ye C, de Graffenried C, Shank P. Tetranucleotide usage highlights genomic heterogeneity among mycobacteriophages. F1000Res 2015; 4:36. [PMID: 27134721 PMCID: PMC4841201 DOI: 10.12688/f1000research.6077.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/28/2015] [Indexed: 02/02/2023] Open
Abstract
Background The genomic sequences of mycobacteriophages, phages infecting mycobacterial hosts, are diverse and mosaic. Mycobacteriophages often share little nucleotide similarity, but most of them have been grouped into lettered clusters and further into subclusters. Traditionally, mycobacteriophage genomes are analyzed based on sequence alignment or knowledge of gene content. However, these approaches are computationally expensive and can be ineffective for significantly diverged sequences. As an alternative to alignment-based genome analysis, we evaluated tetranucleotide usage in mycobacteriophage genomes. These methods make it easier to characterize features of the mycobacteriophage population at many scales. Description We computed tetranucleotide usage deviation (TUD), the ratio of observed counts of 4-mers in a genome to the expected count under a null model. TUD values are comparable between members of a phage subcluster and distinct between subclusters. With few exceptions, neighbor joining phylogenetic trees and hierarchical clustering dendrograms constructed using TUD values place phages in a monophyletic clade with members of the same subcluster. Regions in a genome with exceptional TUD values can point to interesting features of genomic architecture. Finally, we found that subcluster B3 mycobacteriophages contain significantly overrepresented 4-mers and 6-mers that are atypical of phage genomes. Conclusions Statistics based on tetranucleotide usage support established clustering of mycobacteriophages and can uncover interesting relationships within and between sequenced phage genomes. These methods are efficient to compute and do not require sequence alignment or knowledge of gene content. The code to download mycobacteriophage genome sequences and reproduce our analysis is freely available at
https://github.com/bsiranosian/tango_final.
Collapse
Affiliation(s)
- Benjamin Siranosian
- Center for Computational Molecular Biology, Brown University, Providence, RI, 02912, USA; Division of Biology and Medicine, Brown University, Providence, RI, 02912, USA
| | - Sudheesha Perera
- Division of Biology and Medicine, Brown University, Providence, RI, 02912, USA
| | - Edward Williams
- Division of Biology and Medicine, Brown University, Providence, RI, 02912, USA
| | - Chen Ye
- Division of Biology and Medicine, Brown University, Providence, RI, 02912, USA
| | | | - Peter Shank
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912, USA
| |
Collapse
|
204
|
Heyse S, Hanna LF, Woolston J, Sulakvelidze A, Charbonneau D. Bacteriophage cocktail for biocontrol of Salmonella in dried pet food. J Food Prot 2015; 78:97-103. [PMID: 25581183 DOI: 10.4315/0362-028x.jfp-14-041] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Human salmonellosis has been associated with contaminated pet foods and treats. Therefore, there is interest in identifying novel approaches for reducing the risk of Salmonella contamination within pet food manufacturing environments. The use of lytic bacteriophages shows promise as a safe and effective way to mitigate Salmonella contamination in various food products. Bacteriophages are safe, natural, highly targeted antibacterial agents that specifically kill bacteria and can be targeted to kill food pathogens without affecting other microbiota. In this study, we show that a cocktail containing six bacteriophages had a broadspectrum activity in vitro against a library of 930 Salmonella enterica strains representing 44 known serovars. The cocktail was effective against 95% of the strains in this tested library. In liquid culture dose-ranging experiments, bacteriophage cocktail concentrations of ≥10(8) PFU/ml inactivated more than 90% of the Salmonella population (10(1) to 10(3) CFU/ml). Dried pet food inoculated with a mixture containing equal proportions of Salmonella serovars Enteritidis (ATCC 4931), Montevideo (ATCC 8387), Senftenberg (ATCC 8400), and Typhimurium (ATCC 13311) and then surface treated with the six-bacteriophage cocktail (≥2.5 ± 1.5 × 10(6) PFU/g) achieved a greater than 1-log (P < 0.001) reduction compared with the phosphate-buffered saline-treated control in measured viable Salmonella within 60 min. Moreover, this bacteriophage cocktail reduced natural contamination in samples taken from an undistributed lot of commercial dried dog food that tested positive for Salmonella. Our results indicate that bacteriophage biocontrol of S. enterica in dried pet food is technically feasible.
Collapse
Affiliation(s)
- Serena Heyse
- The Procter & Gamble Company, 8700 Mason-Montgomery Road, Mason, Ohio 45040, USA
| | - Leigh Farris Hanna
- The Procter & Gamble Company, 8700 Mason-Montgomery Road, Mason, Ohio 45040, USA
| | - Joelle Woolston
- Intralytix, Inc., 701 East Pratt Street, Baltimore, Maryland 21202, USA
| | | | - Duane Charbonneau
- The Procter & Gamble Company, 8700 Mason-Montgomery Road, Mason, Ohio 45040, USA.
| |
Collapse
|
205
|
Abstract
2015 marks the centennial of the discovery of bacteriophages, viruses that infect bacteria. Phages have been central to some of biology's most meaningful advances over the past hundred years (shown here); they greatly influence the workings of the biosphere, and are poised to play expanded roles in biomedicine, biotechnology, and ecology.
Collapse
Affiliation(s)
- Eric C. Keen
- University of Miami, Department of Biology, Coral Gables, FL, USA
- National Institutes of Health, National Cancer Institute, Center for Cancer Research, Laboratory of Molecular Biology, Bethesda, MD, USA
| |
Collapse
|
206
|
Palesse S, Colombet J, Pradeep Ram AS, Sime-Ngando T. Linking host prokaryotic physiology to viral lifestyle dynamics in a temperate freshwater lake (Lake Pavin, France). MICROBIAL ECOLOGY 2014; 68:740-750. [PMID: 24910014 DOI: 10.1007/s00248-014-0441-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 05/20/2014] [Indexed: 06/03/2023]
Abstract
In aquatic ecosystems, fluctuations in environmental conditions and prokaryotic host physiological states can strongly affect the dynamics of viral life strategies. The influence of prokaryote physiology and environmental factors on viral replication cycles (lytic and lysogeny) was investigated from April to September 2011 at three different strata (epi, meta, and hypolimnion) in the mixolimnion of deep volcanic temperate freshwater Lake Pavin (France). Overall, the euphotic region (epi and metalimnion) was more dynamic and showed significant variation in microbial standing stocks, prokaryotic physiological state, and viral life strategies compared to the aphotic hypolimnion which was stable within sampled months. The prokaryotic host physiology as inferred from the nucleic acid content of prokaryotic cells (high or low nucleic acid) was strongly regulated by the chlorophyll concentration. The predominance of the high nucleic acid (HNA) prokaryotes (cells) over low nucleic acid (LNA) prokaryotes (cells) in the spring (HNA/LNA = 1.2) and vice versa in the summer period (HNA/LNA = 0.4) suggest that the natural prokaryotic communities underwent major shifts in their physiological states during investigated time period. The increase in the percentage of inducible lysogenic prokaryotes in the summer period was associated with the switch in the dominance of LNA over HNA cells, which coincided with the periods of strong resource (nutrient) limitation. This supports the idea that lysogeny represents a maintenance strategy for viruses in unproductive or harsh nutrient/host conditions. A negative correlation of percentage of lysogenic prokaryotes with HNA cell abundance and chlorophyll suggest that lysogenic cycle is closely related to prokaryotic cells which are stressed or starved due to unavailability of resources for its growth and activity. Our results provide support to previous findings that changes in prokaryote physiology are critical for the promotion and establishment of lysogeny in aquatic ecosystems, which are prone to constant environmental fluctuations.
Collapse
Affiliation(s)
- S Palesse
- Laboratoire Microorganismes: Génome et Environnement, UMR CNRS 6023, Clermont Université, Université Blaise Pascal, BP 80026, 63171, Aubière Cedex, France
| | | | | | | |
Collapse
|
207
|
Gillan DC, Roosa S, Kunath B, Billon G, Wattiez R. The long-term adaptation of bacterial communities in metal-contaminated sediments: a metaproteogenomic study. Environ Microbiol 2014; 17:1991-2005. [DOI: 10.1111/1462-2920.12627] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 09/05/2014] [Indexed: 11/29/2022]
Affiliation(s)
- David C. Gillan
- Proteomics and Microbiology Lab; Research Institute for Biosciences; Université de Mons; 20 place du Parc Mons B-7000 Belgium
| | - Stéphanie Roosa
- Proteomics and Microbiology Lab; Research Institute for Biosciences; Université de Mons; 20 place du Parc Mons B-7000 Belgium
| | - Benoit Kunath
- Proteomics and Microbiology Lab; Research Institute for Biosciences; Université de Mons; 20 place du Parc Mons B-7000 Belgium
| | - Gabriel Billon
- Géosystèmes Lab; UFR de Chimie; Lille-1 University, Sciences and Technologies; Villeneuve d'Ascq 59655 France
| | - Ruddy Wattiez
- Proteomics and Microbiology Lab; Research Institute for Biosciences; Université de Mons; 20 place du Parc Mons B-7000 Belgium
| |
Collapse
|
208
|
Yeo BH, Gin KYH. Cyanophages infectingAnabaena circinalisandAnabaena cylindricain a tropical reservoir. BACTERIOPHAGE 2014. [DOI: 10.4161/bact.25571] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
209
|
Influence of lysogeny of Tectiviruses GIL01 and GIL16 on Bacillus thuringiensis growth, biofilm formation, and swarming motility. Appl Environ Microbiol 2014; 80:7620-30. [PMID: 25261525 DOI: 10.1128/aem.01869-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus thuringiensis is an entomopathogenic bacterium that has been used as an efficient biopesticide worldwide. Despite the fact that this bacterium is usually described as an insect pathogen, its life cycle in the environment is still largely unknown. B. thuringiensis belongs to the Bacillus cereus group of bacteria, which has been associated with many mobile genetic elements, such as species-specific temperate or virulent bacteriophages (phages). Temperate (lysogenic) phages are able to establish a long-term relationship with their host, providing, in some cases, novel ecological traits to the bacterial lysogens. Therefore, this work focuses on evaluating the potential influence of temperate tectiviruses GIL01 and GIL16 on the development of different life traits of B. thuringiensis. For this purpose, a B. thuringiensis serovar israelensis plasmid-cured (nonlysogenic) strain was used to establish bacterial lysogens for phages GIL01 and GIL16, and, subsequently, the following life traits were compared among the strains: kinetics of growth, metabolic profiles, antibiotics susceptibility, biofilm formation, swarming motility, and sporulation. The results revealed that GIL01 and GIL16 lysogeny has a significant influence on the bacterial growth, sporulation rate, biofilm formation, and swarming motility of B. thuringiensis. No changes in metabolic profiles or antibiotic susceptibilities were detected. These findings provide evidence that tectiviruses have a putative role in the B. thuringiensis life cycle as adapters of life traits with ecological advantages.
Collapse
|
210
|
Molecular characterization of a novel temperate sinorhizobium bacteriophage, ФLM21, encoding DNA methyltransferase with CcrM-like specificity. J Virol 2014; 88:13111-24. [PMID: 25187538 DOI: 10.1128/jvi.01875-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
UNLABELLED ΦLM21 is a temperate phage isolated from Sinorhizobium sp. strain LM21 (Alphaproteobacteria). Genomic analysis and electron microscopy suggested that ΦLM21 is a member of the family Siphoviridae. The phage has an isometric head and a long noncontractile tail. The genome of ΦLM21 has 50,827 bp of linear double-stranded DNA encoding 72 putative proteins, including proteins responsible for the assembly of the phage particles, DNA packaging, transcription, replication, and lysis. Virion proteins were characterized using mass spectrometry, leading to the identification of the major capsid and tail components, tape measure, and a putative portal protein. We have confirmed the activity of two gene products, a lytic enzyme (a putative chitinase) and a DNA methyltransferase, sharing sequence specificity with the cell cycle-regulating methyltransferase (CcrM) of the bacterial host. Interestingly, the genome of Sinorhizobium phage ΦLM21 shows very limited similarity to other known phage genome sequences and is thus considered unique. IMPORTANCE Prophages are known to play an important role in the genomic diversification of bacteria via horizontal gene transfer. The influence of prophages on pathogenic bacteria is very well documented. However, our knowledge of the overall impact of prophages on the survival of their lysogenic, nonpathogenic bacterial hosts is still limited. In particular, information on prophages of the agronomically important Sinorhizobium species is scarce. In this study, we describe the isolation and molecular characterization of a novel temperate bacteriophage, ΦLM21, of Sinorhizobium sp. LM21. Since we have not found any similar sequences, we propose that this bacteriophage is a novel species. We conducted a functional analysis of selected proteins. We have demonstrated that the phage DNA methyltransferase has the same sequence specificity as the cell cycle-regulating methyltransferase CcrM of its host. We point out that this phenomenon of mimicking the host regulatory mechanisms by viruses is quite common in bacteriophages.
Collapse
|
211
|
Wen J, Fozo EM. sRNA antitoxins: more than one way to repress a toxin. Toxins (Basel) 2014; 6:2310-35. [PMID: 25093388 PMCID: PMC4147584 DOI: 10.3390/toxins6082310] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 07/15/2014] [Accepted: 07/17/2014] [Indexed: 11/16/2022] Open
Abstract
Bacterial toxin-antitoxin loci consist of two genes: one encodes a potentially toxic protein, and the second, an antitoxin to repress its function or expression. The antitoxin can either be an RNA or a protein. For type I and type III loci, the antitoxins are RNAs; however, they have very different modes of action. Type I antitoxins repress toxin protein expression through interacting with the toxin mRNA, thereby targeting the mRNA for degradation or preventing its translation or both; type III antitoxins directly bind to the toxin protein, sequestering it. Along with these two very different modes of action for the antitoxin, there are differences in the functions of the toxin proteins and the mobility of these loci between species. Within this review, we discuss the major differences as to how the RNAs repress toxin activity, the potential consequences for utilizing different regulatory strategies, as well as the confirmed and potential biological roles for these loci across bacterial species.
Collapse
Affiliation(s)
- Jia Wen
- Department of Microbiology, University of Tennessee, M409 Walters Life Sciences, Knoxville, TN 37996, USA.
| | - Elizabeth M Fozo
- Department of Microbiology, University of Tennessee, M409 Walters Life Sciences, Knoxville, TN 37996, USA.
| |
Collapse
|
212
|
|
213
|
Santos SB, Carvalho C, Azeredo J, Ferreira EC. Population dynamics of a Salmonella lytic phage and its host: implications of the host bacterial growth rate in modelling. PLoS One 2014; 9:e102507. [PMID: 25051248 PMCID: PMC4106826 DOI: 10.1371/journal.pone.0102507] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 06/20/2014] [Indexed: 11/18/2022] Open
Abstract
The prevalence and impact of bacteriophages in the ecology of bacterial communities coupled with their ability to control pathogens turn essential to understand and predict the dynamics between phage and bacteria populations. To achieve this knowledge it is essential to develop mathematical models able to explain and simulate the population dynamics of phage and bacteria. We have developed an unstructured mathematical model using delay-differential equations to predict the interactions between a broad-host-range Salmonella phage and its pathogenic host. The model takes into consideration the main biological parameters that rule phage-bacteria interactions likewise the adsorption rate, latent period, burst size, bacterial growth rate, and substrate uptake rate, among others. The experimental validation of the model was performed with data from phage-interaction studies in a 5 L bioreactor. The key and innovative aspect of the model was the introduction of variations in the latent period and adsorption rate values that are considered as constants in previous developed models. By modelling the latent period as a normal distribution of values and the adsorption rate as a function of the bacterial growth rate it was possible to accurately predict the behaviour of the phage-bacteria population. The model was shown to predict simulated data with a good agreement with the experimental observations and explains how a lytic phage and its host bacteria are able to coexist.
Collapse
Affiliation(s)
- Sílvio B. Santos
- Centre of Biological Engineering, Universidade do Minho, Braga, Portugal
| | - Carla Carvalho
- Centre of Biological Engineering, Universidade do Minho, Braga, Portugal
| | - Joana Azeredo
- Centre of Biological Engineering, Universidade do Minho, Braga, Portugal
| | | |
Collapse
|
214
|
Abeles SR, Pride DT. Molecular bases and role of viruses in the human microbiome. J Mol Biol 2014; 426:3892-906. [PMID: 25020228 PMCID: PMC7172398 DOI: 10.1016/j.jmb.2014.07.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 06/30/2014] [Accepted: 07/04/2014] [Indexed: 12/24/2022]
Abstract
Viruses are dependent biological entities that interact with the genetic material of most cells on the planet, including the trillions within the human microbiome. Their tremendous diversity renders analysis of human viral communities ("viromes") to be highly complex. Because many of the viruses in humans are bacteriophage, their dynamic interactions with their cellular hosts add greatly to the complexities observed in examining human microbial ecosystems. We are only beginning to be able to study human viral communities on a large scale, mostly as a result of recent and continued advancements in sequencing and bioinformatic technologies. Bacteriophage community diversity in humans not only is inexorably linked to the diversity of their cellular hosts but also is due to their rapid evolution, horizontal gene transfers, and intimate interactions with host nucleic acids. There are vast numbers of observed viral genotypes on many body surfaces studied, including the oral, gastrointestinal, and respiratory tracts, and even in the human bloodstream, which previously was considered a purely sterile environment. The presence of viruses in blood suggests that virome members can traverse mucosal barriers, as indeed these communities are substantially altered when mucosal defenses are weakened. Perhaps the most interesting aspect of human viral communities is the extent to which they can carry gene functions involved in the pathogenesis of their hosts, particularly antibiotic resistance. Persons in close contact with each other have been shown to share a fraction of oral virobiota, which could potentially have important implications for the spread of antibiotic resistance to healthy individuals. Because viruses can have a large impact on ecosystem dynamics through mechanisms such as the transfers of beneficial gene functions or the lysis of certain populations of cellular hosts, they may have both beneficial and detrimental roles that affect human health, including improvements in microbial resilience to disturbances, immune evasion, maintenance of physiologic processes, and altering the microbial community in ways that promote or prevent pathogen colonization.
Collapse
Affiliation(s)
- Shira R Abeles
- Department of Medicine, University of California, San Diego, CA 92093, USA
| | - David T Pride
- Department of Medicine, University of California, San Diego, CA 92093, USA; Department of Pathology, University of California, San Diego, CA 92093, USA.
| |
Collapse
|
215
|
Martínez-García E, Jatsenko T, Kivisaar M, de Lorenzo V. FreeingPseudomonas putida KT2440 of its proviral load strengthens endurance to environmental stresses. Environ Microbiol 2014; 17:76-90. [DOI: 10.1111/1462-2920.12492] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 04/18/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Esteban Martínez-García
- Systems Biology Program; Centro Nacional de Biotecnología-CSIC; Campus de Cantoblanco 28049 Madrid Spain
| | - Tatjana Jatsenko
- Department of Genetics; Institute of Molecular and Cell Biology; University of Tartu; Tartu Estonia
| | - Maia Kivisaar
- Department of Genetics; Institute of Molecular and Cell Biology; University of Tartu; Tartu Estonia
| | - Víctor de Lorenzo
- Systems Biology Program; Centro Nacional de Biotecnología-CSIC; Campus de Cantoblanco 28049 Madrid Spain
| |
Collapse
|
216
|
Roosa S, Wattiez R, Prygiel E, Lesven L, Billon G, Gillan DC. Bacterial metal resistance genes and metal bioavailability in contaminated sediments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 189:143-51. [PMID: 24662000 DOI: 10.1016/j.envpol.2014.02.031] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 02/04/2014] [Accepted: 02/26/2014] [Indexed: 05/17/2023]
Abstract
In bacteria a metal may be defined as bioavailable if it crosses the cytoplasmic membrane to reach the cytoplasm. Once inside the cell, specific metal resistance systems may be triggered. In this research, specific metal resistance genes were used to estimate metal bioavailability in sediment microbial communities. Gene levels were measured by quantitative PCR and correlated to metals in sediments using five different protocols to estimate dissolved, particle-adsorbed and occluded metals. The best correlations were obtained with czcA (a Cd/Zn/Co efflux pump) and Cd/Zn adsorbed or occluded in particles. Only adsorbed Co was correlated to czcA levels. We concluded that the measurement of czcA gene levels by quantitative PCR is a promising tool which may complement the classical approaches used to estimate Cd/Zn/Co bioavailability in sediment compartments.
Collapse
Affiliation(s)
- Stéphanie Roosa
- Proteomics and Microbiology Lab, Research Institute for Biosciences, Université de Mons, 20 place du Parc, Avenue du Champ de Mars 6, B-7000 Mons, Belgium
| | - Ruddy Wattiez
- Proteomics and Microbiology Lab, Research Institute for Biosciences, Université de Mons, 20 place du Parc, Avenue du Champ de Mars 6, B-7000 Mons, Belgium
| | - Emilie Prygiel
- Géosystèmes Lab, UFR de Chimie, Lille-1 University, Sciences and Technologies, 59655 Villeneuve d'Ascq, France
| | - Ludovic Lesven
- Géosystèmes Lab, UFR de Chimie, Lille-1 University, Sciences and Technologies, 59655 Villeneuve d'Ascq, France
| | - Gabriel Billon
- Géosystèmes Lab, UFR de Chimie, Lille-1 University, Sciences and Technologies, 59655 Villeneuve d'Ascq, France
| | - David C Gillan
- Proteomics and Microbiology Lab, Research Institute for Biosciences, Université de Mons, 20 place du Parc, Avenue du Champ de Mars 6, B-7000 Mons, Belgium.
| |
Collapse
|
217
|
Chung IY, Bae HW, Jang HJ, Kim BO, Cho YH. Superinfection exclusion reveals heteroimmunity between Pseudomonas aeruginosa temperate phages. J Microbiol 2014; 52:515-20. [PMID: 24871978 DOI: 10.1007/s12275-014-4012-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 02/10/2014] [Accepted: 02/10/2014] [Indexed: 01/24/2023]
Abstract
Temperate siphophages (MP29, MP42, and MP48) were isolated from the culture supernatant of clinical Pseudomonas aeruginosa isolates. The complete nucleotide sequences and annotation of the phage genomes revealed the overall synteny to the known temperate P. aeruginosa phages such as MP22, D3112, and DMS3. Genome-level sequence analysis showed the conservation of both ends of the linear genome and the divergence at the previously identified dissimilarity regions (R1 to R9). Protein sequence alignment of the c repressor (ORF1) of each phage enabled us to divide the six phages into two groups: D3112 group (D3112, MP29, MP42, and MP48) and MP22 group (MP22 and DMS3). Superinfection exclusion was observed between the phages belonging to the same group, which was mediated by the specific interaction between the c repressor and the cognate operator. Based on these, we suggest that the temperate siphophages prevalent in the clinical strains of P. aeruginosa represent at least two distinct heteroimmunity groups.
Collapse
Affiliation(s)
- In-Young Chung
- Department of Pharmacy, College of Pharmacy, CHA University, Gyeonggi-do, 463-840, Republic of Korea
| | | | | | | | | |
Collapse
|
218
|
Silva YJ, Costa L, Pereira C, Cunha Â, Calado R, Gomes NCM, Almeida A. Influence of environmental variables in the efficiency of phage therapy in aquaculture. Microb Biotechnol 2014; 7:401-13. [PMID: 24841213 PMCID: PMC4229321 DOI: 10.1111/1751-7915.12090] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 08/02/2013] [Accepted: 08/27/2013] [Indexed: 12/01/2022] Open
Abstract
Aquaculture facilities worldwide continue to experience significant economic losses because of disease caused by pathogenic bacteria, including multidrug-resistant strains. This scenario drives the search for alternative methods to inactivate pathogenic bacteria. Phage therapy is currently considered as a viable alternative to antibiotics for inactivation of bacterial pathogens in aquaculture systems. While phage therapy appears to represent a useful and flexible tool for microbiological decontamination of aquaculture effluents, the effect of physical and chemical properties of culture waters on the efficiency of this technology has never been reported. The present study aimed to evaluate the effect of physical and chemical properties of aquaculture waters (e.g. pH, temperature, salinity and organic matter content) on the efficiency of phage therapy under controlled experimental conditions in order to provide a basis for the selection of the most suitable protocol for subsequent experiments. A bioluminescent genetically transformed Escherichia coli was selected as a model microorganism to monitor real-time phage therapy kinetics through the measurement of bioluminescence, thus avoiding the laborious and time-consuming conventional method of counting colony-forming units (CFU). For all experiments, a bacterial concentration of ≈ 10(5) CFU ml(-1) and a phage concentration of ≈ 10(6-8) plaque forming unit ml(-1) were used. Phage survival was not significantly affected by the natural variability of pH (6.5-7.4), temperature (10-25 °C), salinity (0-30 g NaCl l(-1) ) and organic matter concentration of aquaculture waters in a temperate climate. Nonetheless, the efficiency of phage therapy was mostly affected by the variation of salinity and organic matter content. As the effectiveness of phage therapy increases with water salt content, this approach appears to be a suitable choice for marine aquaculture systems. The success of phage therapy may also be enhanced in non-marine systems through the addition of salt, whenever this option is feasible and does not affect the survival of aquatic species being cultured.
Collapse
Affiliation(s)
- Yolanda J Silva
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | | | | | | | | | | | | |
Collapse
|
219
|
Dy RL, Przybilski R, Semeijn K, Salmond GP, Fineran PC. A widespread bacteriophage abortive infection system functions through a Type IV toxin-antitoxin mechanism. Nucleic Acids Res 2014; 42:4590-605. [PMID: 24465005 PMCID: PMC3985639 DOI: 10.1093/nar/gkt1419] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 12/23/2013] [Accepted: 12/26/2013] [Indexed: 01/17/2023] Open
Abstract
Bacterial abortive infection (Abi) systems are 'altruistic' cell death systems that are activated by phage infection and limit viral replication, thereby providing protection to the bacterial population. Here, we have used a novel approach of screening Abi systems as a tool to identify and characterize toxin-antitoxin (TA)-acting Abi systems. We show that AbiE systems are encoded by bicistronic operons and function via a non-interacting (Type IV) bacteriostatic TA mechanism. The abiE operon was negatively autoregulated by the antitoxin, AbiEi, a member of a widespread family of putative transcriptional regulators. AbiEi has an N-terminal winged-helix-turn-helix domain that is required for repression of abiE transcription, and an uncharacterized bi-functional C-terminal domain, which is necessary for transcriptional repression and sufficient for toxin neutralization. The cognate toxin, AbiEii, is a predicted nucleotidyltransferase (NTase) and member of the DNA polymerase β family. AbiEii specifically bound GTP, and mutations in conserved NTase motifs (I-III) and a newly identified motif (IV), abolished GTP binding and subsequent toxicity. The AbiE systems can provide phage resistance and enable stabilization of mobile genetic elements, such as plasmids. Our study reveals molecular insights into the regulation and function of the widespread bi-functional AbiE Abi-TA systems and the biochemical properties of both toxin and antitoxin proteins.
Collapse
Affiliation(s)
- Ron L. Dy
- Department of Microbiology and Immunology, University of Otago, 720 Cumberland Street, PO Box 56, Dunedin 9054, New Zealand and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Rita Przybilski
- Department of Microbiology and Immunology, University of Otago, 720 Cumberland Street, PO Box 56, Dunedin 9054, New Zealand and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Koen Semeijn
- Department of Microbiology and Immunology, University of Otago, 720 Cumberland Street, PO Box 56, Dunedin 9054, New Zealand and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - George P.C. Salmond
- Department of Microbiology and Immunology, University of Otago, 720 Cumberland Street, PO Box 56, Dunedin 9054, New Zealand and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Peter C. Fineran
- Department of Microbiology and Immunology, University of Otago, 720 Cumberland Street, PO Box 56, Dunedin 9054, New Zealand and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| |
Collapse
|
220
|
Ma C, Pan N, Chen Z, Liu Z, Gong G, Ma A. Geographical diversity of Streptococcus thermophilus phages in Chinese yoghurt plants. Int Dairy J 2014. [DOI: 10.1016/j.idairyj.2013.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
221
|
Cavanagh D, Guinane CM, Neve H, Coffey A, Ross RP, Fitzgerald GF, McAuliffe O. Phages of non-dairy lactococci: isolation and characterization of ΦL47, a phage infecting the grass isolate Lactococcus lactis ssp. cremoris DPC6860. Front Microbiol 2014; 4:417. [PMID: 24454309 PMCID: PMC3888941 DOI: 10.3389/fmicb.2013.00417] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/18/2013] [Indexed: 11/17/2022] Open
Abstract
Lactococci isolated from non-dairy sources have been found to possess enhanced metabolic activity when compared to dairy strains. These capabilities may be harnessed through the use of these strains as starter or adjunct cultures to produce more diverse flavor profiles in cheese and other dairy products. To understand the interactions between these organisms and the phages that infect them, a number of phages were isolated against lactococcal strains of non-dairy origin. One such phage, ΦL47, was isolated from a sewage sample using the grass isolate L. lactis ssp. cremoris DPC6860 as a host. Visualization of phage virions by transmission electron microscopy established that this phage belongs to the family Siphoviridae and possesses a long tail fiber, previously unseen in dairy lactococcal phages. Determination of the lytic spectrum revealed a broader than expected host range, with ΦL47 capable of infecting 4 industrial dairy strains, including ML8, HP and 310, and 3 additional non-dairy isolates. Whole genome sequencing of ΦL47 revealed a dsDNA genome of 128, 546 bp, making it the largest sequenced lactococcal phage to date. In total, 190 open reading frames (ORFs) were identified, and comparative analysis revealed that the predicted products of 117 of these ORFs shared greater than 50% amino acid identity with those of L. lactis phage Φ949, a phage isolated from cheese whey. Despite their different ecological niches, the genomic content and organization of ΦL47 and Φ949 are quite similar, with both containing 4 gene clusters oriented in different transcriptional directions. Other features that distinguish ΦL47 from Φ949 and other lactococcal phages, in addition to the presence of the tail fiber and the genome length, include a low GC content (32.5%) and a high number of predicted tRNA genes (8). Comparative genome analysis supports the conclusion that ΦL47 is a new member of the 949 lactococcal phage group which currently includes the dairy Φ949.
Collapse
Affiliation(s)
- Daniel Cavanagh
- Department of Food Biosciences, Teagasc Food Research Centre Fermoy, Ireland ; Department of Microbiology, University College Cork Co. Cork, Ireland
| | - Caitriona M Guinane
- Department of Food Biosciences, Teagasc Food Research Centre Fermoy, Ireland
| | - Horst Neve
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food Kiel, Germany
| | - Aidan Coffey
- Department of Biological Sciences, Cork Institute of Technology Co. Cork, Ireland
| | - R Paul Ross
- Department of Food Biosciences, Teagasc Food Research Centre Fermoy, Ireland
| | | | - Olivia McAuliffe
- Department of Food Biosciences, Teagasc Food Research Centre Fermoy, Ireland
| |
Collapse
|
222
|
Keen EC. Tradeoffs in bacteriophage life histories. BACTERIOPHAGE 2014; 4:e28365. [PMID: 24616839 PMCID: PMC3942329 DOI: 10.4161/bact.28365] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 02/24/2014] [Accepted: 02/26/2014] [Indexed: 11/19/2022]
Abstract
Viruses are the most abundant biological entities on the planet, yet most classical principles of evolutionary biology and ecology were not developed with viruses in mind. Here, the concept of biological tradeoffs, a fundamental tenet of life history theory, is examined in the context of bacteriophage biology. Specifically, several important parameters of phage life histories-replication, persistence, host range, and adsorption-are evaluated for tradeoffs. Available data indicate that replication rate is strongly negatively correlated with both persistence and host range, suggesting that the well-documented tradeoff in macroorganisms between offspring production and offspring quality also applies to phages. The biological tradeoffs that appear to characterize viruses' life histories have potential importance for viral evolution, ecology, and pathogenesis.
Collapse
Affiliation(s)
- Eric C Keen
- Department of Biology; University of Miami; Coral Gables, FL USA
- Laboratory of Molecular Biology; Center for Cancer Research; National Cancer Institute; National Institutes of Health; Bethesda, MD USA
| |
Collapse
|
223
|
Muniesa M, Colomer-Lluch M, Jofre J. Potential impact of environmental bacteriophages in spreading antibiotic resistance genes. Future Microbiol 2013; 8:739-51. [PMID: 23701331 DOI: 10.2217/fmb.13.32] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The idea that bacteriophage transduction plays a role in the horizontal transfer of antibiotic resistance genes is gaining momentum. Such transduction might be vital in horizontal transfer from environmental to human body-associated biomes and here we review many lines of evidence supporting this notion. It is well accepted that bacteriophages are the most abundant entities in most environments, where they have been shown to be quite persistent. This fact, together with the ability of many phages to infect bacteria belonging to different taxa, makes them suitable vehicles for gene transfer. Metagenomic studies confirm that substantial percentages of the bacteriophage particles present in most environments contain bacterial genes, including mobile genetic elements and antibiotic resistance genes. When specific genes of resistance to antibiotics are detected by real-time PCR in the bacteriophage populations of different environments, only tenfold lower numbers of these genes are observed, compared with those found in the corresponding bacterial populations. In addition, the antibiotic resistance genes from these bacteriophages are functional and generate resistance to the bacteria when these genes are transfected. Finally, reports about the transduction of antibiotic resistance genes are on the increase.
Collapse
Affiliation(s)
- Maite Muniesa
- Department of Microbiology, University of Barcelona, Diagonal 643, Annex, Floor 0, E-08028 Barcelona, Spain
| | | | | |
Collapse
|
224
|
|
225
|
Ebert D. The Epidemiology and Evolution of Symbionts with Mixed-Mode Transmission. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2013. [DOI: 10.1146/annurev-ecolsys-032513-100555] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dieter Ebert
- Universität Basel, Zoologisches Institut, 4051 Basel, Switzerland; Wissenschaftskolleg zu Berlin, 14193 Berlin, Germany;
| |
Collapse
|
226
|
SP10 infectivity is aborted after bacteriophage SP10 infection induces nonA transcription on the prophage SPβ region of the Bacillus subtilis genome. J Bacteriol 2013; 196:693-706. [PMID: 24272782 DOI: 10.1128/jb.01240-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Bacteria have developed various strategies for phage resistance. Infection with phage induces the transcription of part of the phage resistance gene, but the regulatory mechanisms of such transcription remain largely unknown. The phage resistance gene nonA is located on the SPβ prophage region of the Bacillus subtilis Marburg strain genome. The nonA transcript was detected at the late stage of SP10 infection but is undetectable in noninfected cells. The nonA transcript was detected after the induction of the sigma factor Orf199-Orf200 (σ(Orf199-200)), when sigma factors encoded in the SP10 genome were expressed from a xylose-inducible plasmid. Thus, the SP10 sigma factor is an activator of a set of SP10 genes and nonA. The nonA gene encodes a 72-amino-acid protein with a transmembrane motif and has no significant homology with any protein in any database. NonA overexpression halted cell growth and reduced the efficiency of B. subtilis colony formation and respiration activity. In addition, SP10 virion protein synthesis was inhibited in the nonA(+) strain, and SP10 virion particles were scarce in it. These results indicate that NonA is a novel protein that can abort SP10 infection, and its transcription was regulated by SP10 sigma factor.
Collapse
|
227
|
Kot W, Vogensen FK, Sørensen SJ, Hansen LH. DPS - a rapid method for genome sequencing of DNA-containing bacteriophages directly from a single plaque. J Virol Methods 2013; 196:152-6. [PMID: 24239631 DOI: 10.1016/j.jviromet.2013.10.040] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/25/2013] [Accepted: 10/29/2013] [Indexed: 01/21/2023]
Abstract
Bacteriophages (phages) coexist with bacteria in all environments and influence microbial diversity, evolution and industrial production processes. As a result of this major impact of phages on microbes, tools that allow rapid characterization of phages are needed. Today, one of the most powerful methods for characterization of phages is determination of the whole genome using high throughput sequencing approaches. Here a direct plaque sequencing (DPS) is described, which is a rapid method that allows easy full genome sequencing of DNA-containing phages using the Nextera XT™ kit. A combination of host-DNA removal followed by purification and concentration of the viral DNA, allowed the construction of Illumina-compatible sequencing libraries using the Nextera™ XT technology directly from single phage plaques without any whole genome amplification step. This method was tested on three Caudovirales phages; ϕ29 Podoviridae, P113g Siphoviridae and T4 Myovirdae, which are representative of >96% of all known phages, and were sequenced using the Illumina MiSeq platform. Successful de novo assembly of the viral genomes was possible.
Collapse
Affiliation(s)
- Witold Kot
- Department of Biology, Faculty of Science, University of Copenhagen, Universitetsparken 15, DK-2100 København Ø, Denmark.
| | - Finn K Vogensen
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark
| | - Søren J Sørensen
- Department of Biology, Faculty of Science, University of Copenhagen, Universitetsparken 15, DK-2100 København Ø, Denmark
| | - Lars H Hansen
- Department of Biology, Faculty of Science, University of Copenhagen, Universitetsparken 15, DK-2100 København Ø, Denmark; Department of Environmental Science, Aarhus University, Frederiksborgvej 399, Roskilde, Denmark
| |
Collapse
|
228
|
Fischer S, Kittler S, Klein G, Glünder G. Impact of a single phage and a phage cocktail application in broilers on reduction of Campylobacter jejuni and development of resistance. PLoS One 2013; 8:e78543. [PMID: 24205254 PMCID: PMC3804501 DOI: 10.1371/journal.pone.0078543] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 09/15/2013] [Indexed: 11/19/2022] Open
Abstract
Campylobacteriosis is currently the most frequent foodborne zoonosis in many countries. One main source is poultry. The aim of this study was to enhance the knowledge about the potential of bacteriophages in reducing colonization of broilers with Campylobacter , as there are only a few in vivo studies published. Commercial broilers were inoculated with 10⁴ CFU/bird of a Campylobacter jejuni field strain. Groups of 88 birds each were subsequently treated with a single phage or a four-phage cocktail (10⁷ PFU/bird in CaCO₃ buffered SM-Buffer). Control birds received the solvent only. Afterwards, subgroups of eleven birds each were examined for their loads with phages and Campylobacter on day 1, 3, 7, 14, 21, 28, 35 and 42 after phage application. The susceptibility of the Campylobacter population to phage infection was determined using ten isolates per bird. In total 4180 re-isolates were examined. The study demonstrated that the deployed phages persisted over the whole investigation period. The Campylobacter load was permanently reduced by the phage-cocktail as well as by the single phage. The reduction was significant between one and four weeks after treatment and reached a maximum of log₁₀ 2.8 CFU/g cecal contents. Phage resistance rates of initially up to 43% in the single phage treated group and 24% in the cocktail treated group later stabilized at low levels. The occurrence of phage resistance influenced but did not override the Campylobacter reducing effect. Regarding the reduction potential, the cocktail treatment had only a small advantage over the singe phage treatment directly after phage administration. However, the cocktail moderated and delayed the emergence of phage resistance.
Collapse
Affiliation(s)
- Samuel Fischer
- Clinic for Poultry, University of Veterinary Medicine, Hannover, Lower Saxony, Germany
| | - Sophie Kittler
- Institute of Food Quality and Food Safety, University of Veterinary Medicine, Hannover, Lower Saxony, Germany
| | - Günter Klein
- Institute of Food Quality and Food Safety, University of Veterinary Medicine, Hannover, Lower Saxony, Germany
| | - Gerhard Glünder
- Clinic for Poultry, University of Veterinary Medicine, Hannover, Lower Saxony, Germany
| |
Collapse
|
229
|
Kim MS, Whon TW, Bae JW. Comparative viral metagenomics of environmental samples from Korea. Genomics Inform 2013; 11:121-8. [PMID: 24124407 PMCID: PMC3794084 DOI: 10.5808/gi.2013.11.3.121] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 08/06/2013] [Accepted: 08/20/2013] [Indexed: 01/21/2023] Open
Abstract
The introduction of metagenomics into the field of virology has facilitated the exploration of viral communities in various natural habitats. Understanding the viral ecology of a variety of sample types throughout the biosphere is important per se, but it also has potential applications in clinical and diagnostic virology. However, the procedures used by viral metagenomics may produce technical errors, such as amplification bias, while public viral databases are very limited, which may hamper the determination of the viral diversity in samples. This review considers the current state of viral metagenomics, based on examples from Korean viral metagenomic studies-i.e., rice paddy soil, fermented foods, human gut, seawater, and the near-surface atmosphere. Viral metagenomics has become widespread due to various methodological developments, and much attention has been focused on studies that consider the intrinsic role of viruses that interact with their hosts.
Collapse
Affiliation(s)
- Min-Soo Kim
- Department of Life and Nanopharmaceutical Science and Department of Biology, Kyung Hee University, Seoul 130-701, Korea
| | | | | |
Collapse
|
230
|
Sun CL, Relman DA. Microbiota's 'little helpers': bacteriophages and antibiotic-associated responses in the gut microbiome. Genome Biol 2013; 14:127. [PMID: 23906048 PMCID: PMC4053952 DOI: 10.1186/gb-2013-14-7-127] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Antibiotics alter the abundance and types of bacteriophage-associated genes in the mouse gut, suggesting that phage help bacterial communities during times of stress.
Collapse
|
231
|
Barr JJ, Youle M, Rohwer F. Innate and acquired bacteriophage-mediated immunity. BACTERIOPHAGE 2013; 3:e25857. [PMID: 24228227 PMCID: PMC3821666 DOI: 10.4161/bact.25857] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 07/16/2013] [Accepted: 07/23/2013] [Indexed: 01/16/2023]
Abstract
We recently described a novel, non-host-derived, phage-mediated immunity active at mucosal surfaces, the main site of pathogen entry in metazoans. In that work, we showed that phage T4 adheres to mucus glycoproteins via immunoglobulin-like domains displayed on its capsid. This adherence positions the phage in mucus surfaces where they are more likely to encounter and kill bacteria, thereby benefiting both the phage and its metazoan host. We presented this phage-metazoan symbiosis based on an exclusively lytic model of phage infection. Here we extend our bacteriophage adherence to mucus (BAM) model to consider the undoubtedly more complex dynamics in vivo. We hypothesize how mucus-adherent phages, both lytic and temperate, might impact the commensal microbiota as well as protect the metazoan epithelium from bacterial invasion. We suggest that BAM may provide both an innate and an acquired antimicrobial immunity.
Collapse
Affiliation(s)
- Jeremy J Barr
- Department of Biology; San Diego State University; San Diego, CA USA
| | | | | |
Collapse
|
232
|
Mick E, Stern A, Sorek R. Holding a grudge: persisting anti-phage CRISPR immunity in multiple human gut microbiomes. RNA Biol 2013; 10:900-6. [PMID: 23439321 PMCID: PMC3737347 DOI: 10.4161/rna.23929] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 02/06/2013] [Accepted: 02/08/2013] [Indexed: 12/13/2022] Open
Abstract
The CRISPR (clustered regularly interspaced short palindromic repeats)/Cas (CRISPR-associated) system of bacteria and archaea constitutes a mechanism of acquired adaptive immunity against phages, which is based on genome-encoded markers of previously infecting phage sequences ("spacers"). As a repository of phage sequences, these spacers make the system particularly suitable for elucidating phage-bacteria interactions in metagenomic studies. Recent metagenomic analyses of CRISPRs associated with the human microbiome intriguingly revealed conserved "memory spacers" shared by bacteria in multiple unrelated, geographically separated individuals. Here, we discuss possible avenues for explaining this phenomenon by integrating insights from CRISPR biology and phage-bacteria ecology, with a special focus on the human gut. We further explore the growing body of evidence for the role of CRISPR/Cas in regulating the interplay between bacteria and lysogenic phages, which may be intimately related to the presence of memory spacers and sheds new light on the multifaceted biological and ecological modes of action of CRISPR/Cas.
Collapse
Affiliation(s)
- Eran Mick
- Department of Systems Biology; Harvard Medical School; Boston, MA USA
| | - Adi Stern
- Department of Microbiology and Immunology; University of California; San Francisco, CA USA
- Department of Integrative Biology; University of California; Berkeley, CA USA
| | - Rotem Sorek
- Department of Molecular Genetics; Weizmann Institute of Science; Rehovot, Israel
| |
Collapse
|
233
|
Abstract
Bacteriophages, or simply phages, are viruses infecting bacteria. With an estimated 1031 particles in the biosphere, phages outnumber bacteria by a factor of at least 10 and not surprisingly, they influence the evolution of most bacterial species, sometimes in unexpected ways. “Temperate” phages have the ability to integrate into the chromosome of their host upon infection, where they can reside as “quiescent” prophages until conditions favor their reactivation. Lysogenic conversion resulting from the integration of prophages encoding powerful toxins is probably the most determinant contribution of prophages to the evolution of pathogenic bacteria. We currently grasp only a small fraction of the total phage diversity. Phage biologists keep unraveling novel mechanisms developed by phages to parasitize their host. The purpose of this review is to give an overview of some of the various ways by which prophages change the lifestyle and boost virulence of some of the most dangerous bacterial pathogens.
Collapse
Affiliation(s)
- Louis-Charles Fortier
- Département de Microbiologie et d'Infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC Canada.
| | | |
Collapse
|
234
|
Maurice CF, Bouvier C, de Wit R, Bouvier T. Linking the lytic and lysogenic bacteriophage cycles to environmental conditions, host physiology and their variability in coastal lagoons. Environ Microbiol 2013; 15:2463-75. [PMID: 23581698 DOI: 10.1111/1462-2920.12120] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 03/05/2013] [Indexed: 01/21/2023]
Abstract
Changes in environmental conditions and prokaryote physiology can strongly affect the dynamics of both the lysogenic and lytic bacteriophage replication cycles in aquatic systems. However, it remains unclear whether it is the nature, amplitude or frequency of these changes that alter the phage replication cycles. We performed an annual survey of three Mediterranean lagoons with contrasting levels of chlorophyll a concentration and salinity to explore how these cues and their variability influence either replication cycle. The lytic cycle was always detected and showed seasonal patterns, whereas the lysogenic cycle was often undetected and highly variable. The lytic cycle was influenced by environmental and prokaryotic physiological cues, increasing with concentrations of dissolved organic carbon, chlorophyll a, and the proportion of respiring cells, and decreasing with the proportion of damaged cells. In contrast, lysogeny was not explained by the magnitude of any environmental or physiological parameter, but increased with the amplitude of change in prokaryote physiology. Our study suggests that both cycles are regulated by distinct factors: the lytic cycle is dependent on environmental parameters and host physiology, while lysogeny is dependent on the variability of prokaryote physiology. This could lead to the contrasting patterns observed between both cycles in aquatic systems.
Collapse
Affiliation(s)
- C F Maurice
- Université de Montpellier 2, Laboratoire Ecologie des Systèmes Marins Côtiers ECOSYM UMR5119 CNRS-Ifremer-IRD, case 093. Place Eugène Bataillon, 34095, Montpellier cedex 5, France
| | | | | | | |
Collapse
|
235
|
Kęsik-Szeloch A, Drulis-Kawa Z, Weber-Dąbrowska B, Kassner J, Majkowska-Skrobek G, Augustyniak D, Lusiak-Szelachowska M, Zaczek M, Górski A, Kropinski AM. Characterising the biology of novel lytic bacteriophages infecting multidrug resistant Klebsiella pneumoniae. Virol J 2013; 10:100. [PMID: 23537199 PMCID: PMC3620542 DOI: 10.1186/1743-422x-10-100] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 03/25/2013] [Indexed: 01/21/2023] Open
Abstract
Background Members of the genus Klebsiella are among the leading microbial pathogens associated with nosocomial infection. The increased incidence of antimicrobial resistance in these species has propelled the need for alternate/combination therapeutic regimens to aid clinical treatment. Bacteriophage therapy forms one of these alternate strategies. Methods Electron microscopy, burst size, host range, sensitivity of phage particles to temperature, chloroform, pH, and restriction digestion of phage DNA were used to characterize Klebsiella phages. Results and conclusions Of the 32 isolated phages eight belonged to the family Myoviridae, eight to the Siphoviridae whilst the remaining 16 belonged to the Podoviridae. The host range of these phages was characterised against 254 clinical Enterobacteriaceae strains including multidrug resistant Klebsiella isolates producing extended-spectrum beta-lactamases (ESBLs). Based on their lytic potential, six of the phages were further characterised for burst size, physicochemical properties and sensitivity to restriction endonuclease digestion. In addition, five were fully sequenced. Multiple phage-encoded host resistance mechanisms were identified. The Siphoviridae phage genomes (KP16 and KP36) contained low numbers of host restriction sites similar to the strategy found in T7-like phages (KP32). In addition, phage KP36 encoded its own DNA adenine methyltransferase. The φKMV-like KP34 phage was sensitive to all endonucleases used in this study. Dam methylation of KP34 DNA was detected although this was in the absence of an identifiable phage encoded methyltransferase. The Myoviridae phages KP15 and KP27 both carried Dam and Dcm methyltransferase genes and other anti-restriction mechanisms elucidated in previous studies. No other anti-restriction mechanisms were found, e.g. atypical nucleotides (hmC or glucosyl hmC), although Myoviridae phage KP27 encodes an unknown anti-restriction mechanism that needs further investigation.
Collapse
Affiliation(s)
- Agata Kęsik-Szeloch
- Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, Wroclaw, Poland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
236
|
Sberro H, Leavitt A, Kiro R, Koh E, Peleg Y, Qimron U, Sorek R. Discovery of functional toxin/antitoxin systems in bacteria by shotgun cloning. Mol Cell 2013; 50:136-48. [PMID: 23478446 DOI: 10.1016/j.molcel.2013.02.002] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 11/21/2012] [Accepted: 01/31/2013] [Indexed: 01/21/2023]
Abstract
Toxin-antitoxin (TA) modules, composed of a toxic protein and a counteracting antitoxin, play important roles in bacterial physiology. We examined the experimental insertion of 1.5 million genes from 388 microbial genomes into an Escherichia coli host using more than 8.5 million random clones. This revealed hundreds of genes (toxins) that could only be cloned when the neighboring gene (antitoxin) was present on the same clone. Clustering of these genes revealed TA families widespread in bacterial genomes, some of which deviate from the classical characteristics previously described for such modules. Introduction of these genes into E. coli validated that the toxin toxicity is mitigated by the antitoxin. Infection experiments with T7 phage showed that two of the new modules can provide resistance against phage. Moreover, our experiments revealed an "antidefense" protein in phage T7 that neutralizes phage resistance. Our results expose active fronts in the arms race between bacteria and phage.
Collapse
Affiliation(s)
- Hila Sberro
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | |
Collapse
|
237
|
H. Narasimhaiah M, Y. Asrani J, M. Palaniswamy S, Bhat J, E. George S, Srinivasan R, Vipra A, N. Desai S, Patil Junjappa R, Roy P, Sriram B, Padmanabhan S. Therapeutic Potential of Staphylococcal Bacteriophages for Nasal Decolonization of <i>Staphylococcus aureus</i> in Mice. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/aim.2013.31008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
238
|
Mills S, Shanahan F, Stanton C, Hill C, Coffey A, Ross RP. Movers and shakers: influence of bacteriophages in shaping the mammalian gut microbiota. Gut Microbes 2013; 4:4-16. [PMID: 23022738 PMCID: PMC3555884 DOI: 10.4161/gmic.22371] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The human intestinal microbiota is one of the most densely populated ecosystems on Earth, containing up to 10 ( 13) bacteria/g and in some respects can be considered an organ itself given its role in human health. Bacteriophages (phages) are the most abundant replicating entities on the planet and thrive wherever their bacterial hosts exist. They undoubtedly influence the dominant microbial populations in many ecosystems including the human intestine. Within this setting, lysogeny appears to be the preferred life cycle, presumably due to nutrient limitations and lack of suitable hosts protected in biofilms, hence the predator/prey dynamic observed in many ecosystems is absent. On the other hand, free virulent phages in the gut are more common among sufferers of intestinal diseases and have been shown to increase with antibiotic usage. Many of these phages evolve from prophages of intestinal bacteria and emerge under conditions where their bacterial hosts encounter stress suggesting that prophages can significantly alter the microbial community composition. Based on these observations, we propose the "community shuffling" model which hypothesizes that prophage induction contributes to intestinal dysbiosis by altering the ratio of symbionts to pathobionts, enabling pathobiont niche reoccupation. The consequences of the increased phage load on the mammalian immune system are also addressed. While this is an area of intestinal biology which has received little attention, this review assembles evidence from the literature which supports the role of phages as one of the biological drivers behind the composition of the gut microbiota.
Collapse
Affiliation(s)
- Susan Mills
- Teagasc Food Research Centre; Moorepark; Fermoy, County Cork, Ireland
| | - Fergus Shanahan
- Alimentary Pharmabiotic Centre; University College Cork; National University of Ireland; Cork, Ireland,Department of Medicine; University College Cork; National University of Ireland; Cork, Ireland
| | - Catherine Stanton
- Teagasc Food Research Centre; Moorepark; Fermoy, County Cork, Ireland,Alimentary Pharmabiotic Centre; University College Cork; National University of Ireland; Cork, Ireland
| | - Colin Hill
- Alimentary Pharmabiotic Centre; University College Cork; National University of Ireland; Cork, Ireland,Department of Microbiology; University College Cork; National University of Ireland; Cork, Ireland
| | - Aidan Coffey
- Department of Biological Sciences; Cork Institute of Technology; Bishopstown, Cork, Ireland
| | - R. Paul Ross
- Teagasc Food Research Centre; Moorepark; Fermoy, County Cork, Ireland,Alimentary Pharmabiotic Centre; University College Cork; National University of Ireland; Cork, Ireland,Correspondence to: R. Paul Ross,
| |
Collapse
|
239
|
Curtis T, Daran JM, Pronk JT, Frey J, Jansson JK, Robbins-Pianka A, Knight R, Schnürer A, Smets BF, Smid EJ, Abee T, Vicente M, Zengler K. Crystal ball - 2013. Microb Biotechnol 2012. [PMCID: PMC3815379 DOI: 10.1111/1751-7915.12014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Tom Curtis
- School of Civil Engineering and Geosciences; Newcastle University; Newcastle upon Tyne; NE17RU; UK
| | - Jean-Marc Daran
- Department of Biotechnology; Delft University of Technology and Kluyver Centre for Genomics of Industrial Fermentation; Julianalaan 67; 2628; BC Delft; The Netherlands
| | - Jack T. Pronk
- Department of Biotechnology; Delft University of Technology and Kluyver Centre for Genomics of Industrial Fermentation; Julianalaan 67; 2628; BC Delft; The Netherlands
| | - Joachim Frey
- Institute of Veterinary Bacteriology; Universität Bern; Laenggass-Str. 122; Postfach; CH; 3001; Bern; Switzerland
| | - Janet K. Jansson
- Department of Ecology; Earth Sciences Division; Lawrence Berkeley National, Laboratory; 1 Cyclotron Road; Berkeley; CA; 94720; USA
| | | | | | - Anna Schnürer
- Department of Microbiology; BioCenter; Swedish University of the Agricultural Sciences; Box 7025; 750 07; Uppsala; Sweden
| | - Barth F. Smets
- Department of Environmental Engineering; Technical University of Denmark; DK-2800 Kgs; Lyngby; Denmark
| | - E. J. Smid
- Laboratory of Food Microbiology; Wageningen University; 6700 EV; Wageningen; The Netherlands
| | - T. Abee
- Laboratory of Food Microbiology; Wageningen University; 6700 EV; Wageningen; The Netherlands
| | - Miguel Vicente
- Centro Nacional de Biotecnología; Consejo Superior de Investigaciones Científicas (CNB-CSIC); C/ Darwin n° 3; E-28049; Madrid; Spain
| | | |
Collapse
|
240
|
Cohen Y, Joseph Pollock F, Rosenberg E, Bourne DG. Phage therapy treatment of the coral pathogen Vibrio coralliilyticus. Microbiologyopen 2012; 2:64-74. [PMID: 23239510 PMCID: PMC3584214 DOI: 10.1002/mbo3.52] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 10/23/2012] [Accepted: 11/05/2012] [Indexed: 11/20/2022] Open
Abstract
Vibrio coralliilyticus is an important coral pathogen demonstrated to cause disease outbreaks worldwide. This study investigated the feasibility of applying bacteriophage therapy to treat the coral pathogen V. coralliilyticus. A specific bacteriophage for V. coralliilyticus strain P1 (LMG23696), referred to here as bacteriophage YC, was isolated from the seawater above corals at Nelly Bay, Magnetic Island, central Great Barrier Reef (GBR), the same location where the bacterium was first isolated. Bacteriophage YC was shown to be a lytic phage belonging to the Myoviridae family, with a rapid replication rate, high burst size, and high affinity to its host. By infecting its host bacterium, bacteriophage YC was able to prevent bacterial-induced photosystem inhibition in pure cultures of Symbiodinium, the photosymbiont partner of coral and a target for virulence factors produced by the bacterial pathogen. Phage therapy experiments using coral juveniles in microtiter plates as a model system revealed that bacteriophage YC was able to prevent V. coralliilyticus-induced photoinactivation and tissue lysis. These results demonstrate that bacteriophage YC has the potential to treat coral disease outbreaks caused by the bacterial pathogen V. coralliilyticus, making it a good candidate for phage therapy treatment of coral disease.
Collapse
Affiliation(s)
- Yossi Cohen
- Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, Tel Aviv, 69978, Israel
| | | | | | | |
Collapse
|
241
|
Evaluation of two approaches for assessing the genetic similarity of virioplankton populations as defined by genome size. Appl Environ Microbiol 2012; 78:8773-83. [PMID: 23064328 DOI: 10.1128/aem.02432-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Viral production estimates show that virioplankton communities turn over rapidly in aquatic ecosystems. Thus, it is likely that the genetic identity of viral populations comprising the virioplankton also change over temporal and spatial scales, reflecting shifts in viral-host interactions. However, there are few approaches that can provide data on the genotypic identity of viral populations at low cost and with the sample throughput necessary to assess dynamic changes in the virioplankton. This study examined two of these approaches-T4-like major capsid protein (g23) gene polymorphism and randomly amplified polymorphic DNA-PCR (RAPD-PCR) fingerprinting-to ask how well each technique could track differences in virioplankton populations over time and geographic location. Seasonal changes in overall virioplankton composition were apparent from pulsed-field gel electrophoresis (PFGE) analysis. T4-like phages containing similar g23 proteins were found within both small- and large-genome populations, including populations from different geographic locations and times. The surprising occurrence of T4-like g23 within small genomic groups (23 to 64 kb) indicated that the genome size range of T4-like phages may be broader than previously believed. In contrast, RAPD-PCR fingerprinting detected high genotypic similarity within PFGE bands from the same location, time, and genome size class without the requirement for DNA sequencing. Unlike g23 polymorphism, RAPD-PCR fingerprints showed a greater temporal than geographic variation. Thus, while polymorphism in a viral signature gene, such as g23, can be a powerful tool for inferring evolutionary relationships, the degree to which this approach can capture fine-scale variability within virioplankton populations is less clear.
Collapse
|
242
|
Wylie KM, Weinstock GM, Storch GA. Emerging view of the human virome. Transl Res 2012; 160:283-90. [PMID: 22683423 PMCID: PMC3701101 DOI: 10.1016/j.trsl.2012.03.006] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 03/28/2012] [Accepted: 03/29/2012] [Indexed: 01/21/2023]
Abstract
The human virome is the collection of all viruses that are found in or on humans, including both eukaryotic and prokaryotic viruses. Eukaryotic viruses clearly have important effects on human health, ranging from mild, self-limited acute or chronic infections to those with serious or fatal consequences. Prokaryotic viruses can also influence human health by affecting bacterial community structure and function. Therefore, definition of the virome is an important step toward understanding how microbes affect human health and disease. We review progress in virome analysis, which has been driven by advances in high-throughput, deep sequencing technology. Highlights from these studies include the association of viruses with clinical phenotypes and description of novel viruses that may be important pathogens. Together these studies indicate that analysis of the human virome is critical as we aim to understand how microbial communities influence human health and disease. Descriptions of the human virome will stimulate future work to understand how the virome affects long-term human health, immunity, and response to coinfections. Analysis of the virome ultimately may affect the treatment of patients with a variety of clinical syndromes.
Collapse
Affiliation(s)
- Kristine M Wylie
- The Genome Insititute, Washington University School of Medicine, St Louis, MO, USA
| | | | | |
Collapse
|
243
|
Hartley MA, Ronet C, Fasel N. Backseat drivers: the hidden influence of microbial viruses on disease. Curr Opin Microbiol 2012; 15:538-45. [DOI: 10.1016/j.mib.2012.05.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 05/21/2012] [Indexed: 01/21/2023]
|
244
|
Jin J, Li ZJ, Wang SW, Wang SM, Huang DH, Li YH, Ma YY, Wang J, Liu F, Chen XD, Li GX, Wang XT, Wang ZQ, Zhao GQ. Isolation and characterization of ZZ1, a novel lytic phage that infects Acinetobacter baumannii clinical isolates. BMC Microbiol 2012; 12:156. [PMID: 22838726 PMCID: PMC3438129 DOI: 10.1186/1471-2180-12-156] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 07/17/2012] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Acinetobacter baumannii, a significant nosocomial pathogen, has evolved resistance to almost all conventional antimicrobial drugs. Bacteriophage therapy is a potential alternative treatment for multidrug-resistant bacterial infections. In this study, one lytic bacteriophage, ZZ1, which infects A. baumannii and has a broad host range, was selected for characterization. RESULTS Phage ZZ1 and 3 of its natural hosts, A. baumanni clinical isolates AB09V, AB0902, and AB0901, are described in this study. The 3 strains have different sensitivities to ZZ1, but they have the same sensitivity to antibiotics. They are resistant to almost all of the antibiotics tested, except for polymyxin. Several aspects of the life cycle of ZZ1 were investigated using the sensitive strain AB09V under optimal growth conditions. ZZ1 is highly infectious with a short latent period (9 min) and a large burst size (200 PFU/cell). It exhibited the most powerful antibacterial activity at temperatures ranging from 35°C to 39°C. Moreover, when ZZ1 alone was incubated at different pHs and different temperatures, the phage was stable over a wide pH range (4 to 9) and at extreme temperatures (between 50°C and 60°C). ZZ1 possesses a 100-nm icosahedral head containing double-stranded DNA with a total length of 166,682 bp and a 120-nm long contractile tail. Morphologically, it could be classified as a member of the Myoviridae family and the Caudovirales order. Bioinformatic analysis of the phage whole genome sequence further suggested that ZZ1 was more likely to be a new member of the Myoviridae phages. Most of the predicted ORFs of the phage were similar to the predicted ORFs from other Acinetobacter phages. CONCLUSION The phage ZZ1 has a relatively broad lytic spectrum, high pH stability, strong heat resistance, and efficient antibacterial potential at body temperature. These characteristics greatly increase the utility of this phage as an antibacterial agent; thus, it should be further investigated.
Collapse
Affiliation(s)
- Jing Jin
- Department of Pathogen Biology, Basic Medical College of Zhengzhou University, Zhengzhou, P R China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Zehr ES, Tabatabai LB, Bayles DO. Genomic and proteomic characterization of SuMu, a Mu-like bacteriophage infecting Haemophilus parasuis. BMC Genomics 2012; 13:331. [PMID: 22823751 PMCID: PMC3447690 DOI: 10.1186/1471-2164-13-331] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 06/28/2012] [Indexed: 11/10/2022] Open
Abstract
Background Haemophilus parasuis, the causative agent of Glässer’s disease, is prevalent in swine herds and clinical signs associated with this disease are meningitis, polyserositis, polyarthritis, and bacterial pneumonia. Six to eight week old pigs in segregated early weaning herds are particularly susceptible to the disease. Insufficient colostral antibody at weaning or the mixing of pigs with heterologous virulent H. parasuis strains from other farm sources in the nursery or grower-finisher stage are considered to be factors for the outbreak of Glässer’s disease. Previously, a Mu-like bacteriophage portal gene was detected in a virulent swine isolate of H. parasuis by nested polymerase chain reaction. Mu-like bacteriophages are related phyologenetically to enterobacteriophage Mu and are thought to carry virulence genes or to induce host expression of virulence genes. This study characterizes the Mu-like bacteriophage, named SuMu, isolated from a virulent H. parasuis isolate. Results Characterization was done by genomic comparison to enterobacteriophage Mu and proteomic identification of various homologs by mass spectrometry. This is the first report of isolation and characterization of this bacteriophage from the Myoviridae family, a double-stranded DNA bacteriophage with a contractile tail, from a virulent field isolate of H. parasuis. The genome size of bacteriophage SuMu was 37,151 bp. DNA sequencing revealed fifty five open reading frames, including twenty five homologs to Mu-like bacteriophage proteins: Nlp, phage transposase-C-terminal, COG2842, Gam-like protein, gp16, Mor, peptidoglycan recognition protein, gp29, gp30, gpG, gp32, gp34, gp36, gp37, gpL, phage tail tube protein, DNA circulation protein, gpP, gp45, gp46, gp47, COG3778, tail fiber protein gp37-C terminal, tail fiber assembly protein, and Com. The last open reading frame was homologous to IS1414. The G + C content of bacteriophage SuMu was 41.87% while its H. parasuis host genome’s G + C content was 39.93%. Twenty protein homologs to bacteriophage proteins, including 15 structural proteins, one lysogeny-related and one lysis-related protein, and three DNA replication proteins were identified by mass spectrometry. One of the tail proteins, gp36, may be a virulence-related protein. Conclusions Bacteriophage SuMu was characterized by genomic and proteomic methods and compared to enterobacteriophage Mu.
Collapse
Affiliation(s)
- Emilie S Zehr
- U.S. Department of Agriculture, Ruminant Diseases and Immunology, National Animal Disease Center, Agricultural Research Service, Ames, IA 50010, USA.
| | | | | |
Collapse
|
246
|
Ryan E, Garland MJ, Singh TRR, Bambury E, O’Dea J, Migalska K, Gorman SP, McCarthy HO, Gilmore BF, Donnelly RF. Microneedle-mediated transdermal bacteriophage delivery. Eur J Pharm Sci 2012; 47:297-304. [PMID: 22750416 PMCID: PMC3778942 DOI: 10.1016/j.ejps.2012.06.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 06/18/2012] [Accepted: 06/18/2012] [Indexed: 01/16/2023]
Abstract
Interest in bacteriophages as therapeutic agents has recently been reawakened. Parenteral delivery is the most routinely-employed method of administration. However, injection of phages has numerous disadvantages, such as the requirement of a health professional for administration and the possibility of cross-contamination. Transdermal delivery offers one potential means of overcoming many of these problems. The present study utilized a novel poly (carbonate) (PC) hollow microneedle (MN) device for the transdermal delivery of Escherichia coli-specific T4 bacteriophages both in vitro and in vivo. MN successfully achieved bacteriophage delivery in vitro across dermatomed and full thickness skin. A concentration of 2.67 × 106 PFU/ml (plaque forming units per ml) was detected in the receiver compartment when delivered across dermatomed skin and 4.0 × 103 PFU/ml was detected in the receiver compartment when delivered across full thickness skin. An in vivo study resulted in 4.13 × 103 PFU/ml being detected in blood 30 min following initial MN-mediated phage administration. Clearance occurred rapidly, with phages being completely cleared from the systemic circulation within 24 h, which was expected in the absence of infection. We have shown here that MN-mediated delivery allows successful systemic phage absorption. Accordingly, bacteriophage-based therapeutics may now have an alternative route for systemic delivery. Once fully-investigated, this could lead to more widespread investigation of these interesting therapeutic viruses.
Collapse
Affiliation(s)
- Elizabeth Ryan
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Martin J. Garland
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Thakur Raghu Raj Singh
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Eoin Bambury
- Crospon Ireland, Galway Business Park, Dangan, Galway, Ireland
| | - John O’Dea
- Crospon Ireland, Galway Business Park, Dangan, Galway, Ireland
| | - Katarzyna Migalska
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Sean P. Gorman
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Helen O. McCarthy
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Brendan F. Gilmore
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ryan F. Donnelly
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
- Corresponding author. Tel.: +44 (0) 28 90 972 251; fax: +44 (0) 28 90 247 794.
| |
Collapse
|
247
|
Stern A, Mick E, Tirosh I, Sagy O, Sorek R. CRISPR targeting reveals a reservoir of common phages associated with the human gut microbiome. Genome Res 2012; 22:1985-94. [PMID: 22732228 PMCID: PMC3460193 DOI: 10.1101/gr.138297.112] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The bacterial community in the human gut has crucial health roles both in metabolic functions and in protection against pathogens. Phages, which are known to significantly affect microbial community composition in many ecological niches, have the potential to impact the gut microbiota, yet thorough characterization of this relationship remains elusive. We have reconstructed the content of the CRISPR bacterial immune system in the human gut microbiomes of 124 European individuals and used it to identify a catalog of 991 phages targeted by CRISPR across all individuals. Our results show that 78% of these phages are shared among two or more individuals. Moreover, a significant fraction of phages found in our study are shown to exist in fecal samples previously derived from American and Japanese individuals, identifying a common reservoir of phages frequently associated with the human gut microbiome. We further inferred the bacterial hosts for more than 130 such phages, enabling a detailed analysis of phage-bacteria interactions across the 124 individuals by correlating patterns of phage abundance with bacterial abundance and resistance. A subset of phages demonstrated preferred association with host genomes as lysogenized prophages, with highly increased abundance in specific individuals. Overall, our results imply that phage-bacterial attack-resistance interactions occur within the human gut microbiome, possibly affecting microbiota composition and human health. Our finding of global sharing of gut phages is surprising in light of the extreme genetic diversity of phages found in other ecological niches.
Collapse
Affiliation(s)
- Adi Stern
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
248
|
Petrovski S, Tillett D, Seviour RJ. Isolation and complete genome sequence of a bacteriophage lysing Tetrasphaera jenkinsii, a filamentous bacteria responsible for bulking in activated sludge. Virus Genes 2012; 45:380-8. [PMID: 22710996 DOI: 10.1007/s11262-012-0771-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 05/31/2012] [Indexed: 10/28/2022]
Abstract
The Nosticoida limicola filamentous morphotype is held responsible for incidents of bulking and foaming in activated sludge. Members of the actinobacterial N. limicola II have been isolated and grown in pure culture and shown to belong to the genus Tetrasphaera, and play an important role in phosphorus removal. This article describes the isolation and genomic characterization of a phage able to lyse Tetrasphaera jenkinsii, TJE1. This lytic phage is a member of the Caudovirales specific for T. jenkinsii. The complete DNA sequence of TJE1 phage revealed it to have a circularly permuted genome (49,219 bp) with 66 putative open reading frames, a single transcriptional terminator, and 6 pairs of inverted repeats within the genome sequence. The TJE1 phage genome is organised into a modular gene structure, but shares only limited sequence identity with other phages so far described.
Collapse
Affiliation(s)
- Steve Petrovski
- La Trobe Institute for Molecular Sciences, La Trobe University, Bendigo, VIC, Australia.
| | | | | |
Collapse
|
249
|
Augustine J, Varghese SM, Bhat SG. ΦSP-3, a Salmonella-specific lytic phage capable of infecting its host under nutrient-deprived states. ANN MICROBIOL 2012. [DOI: 10.1007/s13213-012-0485-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
250
|
Zehr ES, Tabatabai LB. Detection of a bacteriophage gene encoding a Mu-like portal protein in Haemophilus parasuis reference strains and field isolates by nested polymerase chain reaction. J Vet Diagn Invest 2012; 23:538-42. [PMID: 21908286 DOI: 10.1177/1040638711404143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A nested polymerase chain reaction (nPCR) assay was developed to determine the presence of a gene encoding a bacteriophage Mu-like portal protein, gp29, in 15 reference strains and 31 field isolates of Haemophilus parasuis. Specific primers, based on the gene's sequence, were utilized. A majority of the virulent reference strains and field isolates tested harbored the gene. The results suggest that the nPCR technique described in the current report could serve as a tool for epidemiological studies of H. parasuis.
Collapse
Affiliation(s)
- Emilie S Zehr
- Food Safety and Enteric Pathogens Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, 1920 Dayton Avenue, Building 24, Ames, IA 50010, USA.
| | | |
Collapse
|