201
|
Engineering and selection of shuffled AAV genomes: a new strategy for producing targeted biological nanoparticles. Mol Ther 2008; 16:1252-1260. [PMID: 18500254 DOI: 10.1038/mt.2008.100] [Citation(s) in RCA: 195] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Accepted: 04/15/2008] [Indexed: 02/02/2023] Open
Abstract
We report a DNA shuffling-based approach for developing cell type-specific vectors through directed evolution. Capsid genomes of adeno-associated virus (AAV) serotypes 1-9 were randomly fragmented and reassembled using PCR to generate a chimeric capsid library. A single infectious clone (chimeric-1829) containing genome fragments from AAV1, 2, 8, and 9 was isolated from an integrin minus hamster melanoma cell line previously shown to have low permissiveness to AAV. Molecular modeling studies suggest that AAV2 contributes to surface loops at the icosahedral threefold axis of symmetry, while AAV1 and 9 contribute to two- and fivefold symmetry interactions, respectively. The C-terminal domain (AAV9) was identified as a critical structural determinant of melanoma tropism through rational mutagenesis. Chimeric-1829 utilizes heparan sulfate as a primary receptor and transduces melanoma cells more efficiently than all serotypes. Further, chimeric-1829 demonstrates altered tropism in rodent skeletal muscle, liver, and brain including nonhuman primates. We determined a unique immunological profile based on neutralizing antibody (NAb) titer and crossreactivity studies strongly supporting isolation of a synthetic laboratory-derived capsid variant. Application of this technology to alternative cell/tissue types using AAV or other viral capsid sequences is likely to yield a new class of biological nanoparticles as vectors for human gene transfer.
Collapse
|
202
|
In vitro and in vivo gene therapy vector evolution via multispecies interbreeding and retargeting of adeno-associated viruses. J Virol 2008; 82:5887-911. [PMID: 18400866 DOI: 10.1128/jvi.00254-08] [Citation(s) in RCA: 523] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Adeno-associated virus (AAV) serotypes differ broadly in transduction efficacies and tissue tropisms and thus hold enormous potential as vectors for human gene therapy. In reality, however, their use in patients is restricted by prevalent anti-AAV immunity or by their inadequate performance in specific targets, exemplified by the AAV type 2 (AAV-2) prototype in the liver. Here, we attempted to merge desirable qualities of multiple natural AAV isolates by an adapted DNA family shuffling technology to create a complex library of hybrid capsids from eight different wild-type viruses. Selection on primary or transformed human hepatocytes yielded pools of hybrids from five of the starting serotypes: 2, 4, 5, 8, and 9. More stringent selection with pooled human antisera (intravenous immunoglobulin [IVIG]) then led to the selection of a single type 2/type 8/type 9 chimera, AAV-DJ, distinguished from its closest natural relative (AAV-2) by 60 capsid amino acids. Recombinant AAV-DJ vectors outperformed eight standard AAV serotypes in culture and greatly surpassed AAV-2 in livers of naïve and IVIG-immunized mice. A heparin binding domain in AAV-DJ was found to limit biodistribution to the liver (and a few other tissues) and to affect vector dose response and antibody neutralization. Moreover, we report the first successful in vivo biopanning of AAV capsids by using a new AAV-DJ-derived viral peptide display library. Two peptides enriched after serial passaging in mouse lungs mediated the retargeting of AAV-DJ vectors to distinct alveolar cells. Our study validates DNA family shuffling and viral peptide display as two powerful and compatible approaches to the molecular evolution of novel AAV vectors for human gene therapy applications.
Collapse
|
203
|
Abstract
The HI loop is a prominent domain on the adeno-associated virus (AAV) capsid surface that extends from each viral protein (VP) subunit overlapping the neighboring fivefold VP. Despite the highly conserved nature of the residues at the fivefold pore, the HI loops surrounding this critical region vary significantly in amino acid sequence between the AAV serotypes. In order to understand the role of this unique capsid domain, we ablated side chain interactions between the HI loop and the underlying EF loop in the neighboring VP subunit by generating a collection of deletion, insertion, and substitution mutants. A mutant lacking the HI loop was unable to assemble particles, while a substitution mutant (10 glycine residues) assembled particles but was unable to package viral genomes. Substitution mutants carrying corresponding regions from AAV1, AAV4, AAV5, and AAV8 yielded (i) particles with titers and infectivity identical to those of AAV2 (AAV2 HI1 and HI8), (ii) particles with a decreased virus titer (1 log) but normal infectivity (HI4), and (iii) particles that synthesized VPs but were unable to assemble into intact capsids (HI5). AAV5 HI is shorter than all other HI loops by one amino acid. Replacing the missing residue (threonine) in AAV2 HI5 resulted in a moderate particle assembly rescue. In addition, we replaced the HI loop with peptides varying in length and amino acid sequence. This region tolerated seven-amino-acid peptide substitutions unless they spanned a conserved phenylalanine at amino acid position 661. Mutation of this highly conserved phenylalanine to a glycine resulted in a modest decrease in virus titer but a substantial decrease (1 log order) in infectivity. Subsequently, confocal studies revealed that AAV2 F661G is incapable of efficiently completing a key step in the infectious pathway nuclear entry, hinting at a possible perturbation of VP1 phospholipase activity. Molecular modeling studies with the F661G mutant suggest that disruption of interactions between F661 and an underlying P373 residue in the EF loop of the neighboring subunit might adversely affect incorporation of the VP1 subunit at the fivefold axis. Western blot analysis confirmed inefficient incorporation of VP1, as well as a proteolytically processed VP1 subunit that could account for the markedly reduced infectivity. In summary, our studies show that the HI loop, while flexible in amino acid sequence, is critical for AAV capsid assembly, proper VP1 subunit incorporation, and viral genome packaging, all of which implies a potential role for this unique surface domain in viral infectivity.
Collapse
|
204
|
Quesada O, Gurda B, Govindasamy L, McKenna R, Kohlbrenner E, Aslanidi G, Zolotukhin S, Muzyczka N, Agbandje-McKenna M. Production, purification and preliminary X-ray crystallographic studies of adeno-associated virus serotype 7. Acta Crystallogr Sect F Struct Biol Cryst Commun 2007; 63:1073-6. [PMID: 18084098 PMCID: PMC2344100 DOI: 10.1107/s1744309107060289] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Accepted: 11/17/2007] [Indexed: 11/10/2022]
Abstract
Crystals of baculovirus-expressed adeno-associated virus serotype 7 capsids diffract X-rays to approximately 3.0 A resolution. The crystals belong to the rhombohedral space group R3, with unit-cell parameters a = 252.4, c = 591.2 A in the hexagonal setting. The diffraction data were processed and reduced to an overall completeness of 79.0% and an R(merge) of 12.0%. There are three viral capsids in the unit cell. The icosahedral threefold axis is coincident with the crystallographic threefold axis, resulting in one third of a capsid (20 monomers) per crystallographic asymmetric unit. The orientation of the viral capsid has been determined by rotation-function searches and is positioned at (0, 0, 0) by packing considerations.
Collapse
Affiliation(s)
- Odayme Quesada
- Department of Biochemistry and Molecular Biology, McKnight Brain Institute, Center for Structural Biology, University of Florida, Gainesville, FL 32610, USA
| | - Brittney Gurda
- Department of Biochemistry and Molecular Biology, McKnight Brain Institute, Center for Structural Biology, University of Florida, Gainesville, FL 32610, USA
| | - Lakshmanan Govindasamy
- Department of Biochemistry and Molecular Biology, McKnight Brain Institute, Center for Structural Biology, University of Florida, Gainesville, FL 32610, USA
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, McKnight Brain Institute, Center for Structural Biology, University of Florida, Gainesville, FL 32610, USA
| | - Erik Kohlbrenner
- Division of Cell and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
| | - George Aslanidi
- Division of Cell and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
| | - Sergei Zolotukhin
- Division of Cell and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
| | - Nicholas Muzyczka
- Department of Molecular Genetics and Microbiology and Powell Gene Therapy Center, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, McKnight Brain Institute, Center for Structural Biology, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
205
|
Royo NC, Vandenberghe LH, Ma JY, Hauspurg A, Yu L, Maronski M, Johnston J, Dichter MA, Wilson JM, Watson DJ. Specific AAV serotypes stably transduce primary hippocampal and cortical cultures with high efficiency and low toxicity. Brain Res 2007; 1190:15-22. [PMID: 18054899 DOI: 10.1016/j.brainres.2007.11.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 10/09/2007] [Accepted: 11/01/2007] [Indexed: 01/01/2023]
Abstract
Most current methods of gene delivery for primary cultured hippocampal neurons are limited by toxicity, transient expression, the use of immature neurons and/or low efficiency. We performed a direct comparison of seven serotypes of adeno-associated virus (AAV) vectors for genetic manipulation of primary cultured neurons in vitro. Serotypes 1, 2, 7, 8 and 9 mediated highly efficient, nontoxic, stable long-term gene expression in cultured cortical and hippocampal neurons aged 0-4 weeks in vitro; serotypes 5 and 6 were associated with toxicity at high doses. AAV1 transduced over 90% of all cells with approximately 80% of the transduced cells being neurons. The method was readily adapted to a high-throughput format to demonstrate neurotrophin-mediated neuroprotection from glutamate toxicity in cultured neurons at 2 weeks in vitro. These vectors should prove highly useful for efficient overexpression or downregulation of genes in primary neuronal cultures at any developmental stage.
Collapse
Affiliation(s)
- Nicolas C Royo
- Department of Neurosurgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
206
|
White K, Büning H, Kritz A, Janicki H, McVey J, Perabo L, Murphy G, Odenthal M, Work LM, Hallek M, Nicklin SA, Baker AH. Engineering adeno-associated virus 2 vectors for targeted gene delivery to atherosclerotic lesions. Gene Ther 2007; 15:443-51. [PMID: 18004401 DOI: 10.1038/sj.gt.3303077] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Targeted delivery of biological agents to atherosclerotic plaques may provide a novel treatment and/or useful tool for imaging of atherosclerosis in vivo. However, there are no known viral vectors that possess the desired tropism. Two plaque-targeting peptides, CAPGPSKSC (CAP) and CNHRYMQMC (CNH) were inserted into the capsid of adeno-associated virus 2 (AAV2) to assess vector retargeting. AAV2-CNH produced significantly higher levels of transduction than unmodified AAV2 in human, murine and rat endothelial cells, whereas transduction of nontarget HeLa cells was unaltered. Transduction studies and surface plasmon resonance suggest that AAV2-CNH uses membrane type 1 matrix metalloproteinase as a surface receptor. AAV2-CAP only produced higher levels of transduction in rat endothelial cells, possibly because the virus was found to be affected by proteasomal degradation. In vivo substantially higher levels of both peptide-modified AAV2 vectors was detected in the brachiocephalic artery (site of advanced atherosclerotic plaques) and aorta, whereas reduced levels were detected in all other organs examined. These results suggest that in the AAV2 platform the peptides are exposed on the capsid surface in a way that enables efficient receptor binding and so creates effective atherosclerotic plaque targeted vectors.
Collapse
Affiliation(s)
- K White
- British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
207
|
Jang JH, Lim KI, Schaffer DV. Library selection and directed evolution approaches to engineering targeted viral vectors. Biotechnol Bioeng 2007; 98:515-24. [PMID: 17614321 DOI: 10.1002/bit.21541] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Gene therapy, to delivery of genetic material to a patient for therapeutic benefit, has significant promise for translating basic knowledge of disease mechanism into biomedical treatments. The clinical development of the field has been slowed, however, by the need for improvements in the properties and capabilities of gene delivery vehicles. Vehicles based on viruses offer the potential for efficient gene delivery, but because viruses did not evolve to serve human therapeutic needs, many of their properties require significant improvement, including their safety, efficiency, and capacity for targeted gene delivery. Since viruses are highly complex biological entities, engineering such properties at the molecular level can be challenging. However, there has been significant progress in developing approaches that mimic the mechanisms by which viruses arose in the first place. In particular, library-based selection, the generation of one diverse genetic library and selection for new properties, and directed evolution, based on the multiple rounds of library generation and selection for iterative improvement of function, have strong potential in engineering novel properties into these complex biomolecular assemblies. This review will discuss progress in the application of peptide display, library selection, and directed evolution technologies toward engineering vectors based on retrovirus, adeno-associated virus, and adenovirus that are capable of targeted delivery to specific cell types. In addition to creating biomedically useful products, these approaches have future potential to yield novel insights into viral structure-function relationships.
Collapse
Affiliation(s)
- Jae-Hyung Jang
- Department of Chemical Engineering and Helen Wills Neuroscience Institute, University of California, 201 Gilman Hall, Berkeley, California 94720, USA
| | | | | |
Collapse
|
208
|
Michelfelder S, Lee MK, deLima-Hahn E, Wilmes T, Kaul F, Müller O, Kleinschmidt JA, Trepel M. Vectors selected from adeno-associated viral display peptide libraries for leukemia cell-targeted cytotoxic gene therapy. Exp Hematol 2007; 35:1766-76. [PMID: 17920758 DOI: 10.1016/j.exphem.2007.07.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 07/17/2007] [Accepted: 07/23/2007] [Indexed: 01/02/2023]
Abstract
OBJECTIVE For acute myeloid leukemia (AML), gene therapy may be used to treat patients refractory to conventional chemotherapy. However, availability of vectors sufficiently and specifically transducing this cell type is very limited. METHOD Here we report the selection of capsid-modified adeno-associated viral (AAV) vectors targeting Kasumi-1 AML cells by screening random AAV displayed peptide libraries. RESULTS The peptide inserts of the enriched capsid mutants share a common sequence motif. The same motif was selected in an independent library screening on HL-60 AML cells. Recombinant targeted vectors displaying the selected peptides transduced the target leukemia cells they have been selected on up to 500-fold more efficiently compared to AAV vectors with control peptide inserts. One of the selected clones (NQVGSWS) also efficiently transduced all members of a panel of four other AML cell lines. Binding and blocking experiments showed that NQVGSWS binding to leukemia cells is independent of the wild-type AAV-2 receptor heparin sulfate proteoglycan. Transduction assays on a panel of hematopoietic and nonhematopoietic cell lines showed that the NQVGSWS capsid was able to overcome resistance to AAV transduction, especially in hematopoietic cancer cells, whereas normal peripheral blood mononuclear cells and CD34(+) hematopoietic progenitor cells were not transduced. CONCLUSIONS Consequently, recombinant targeted NQVGSWS AAV vectors harboring a suicide gene conferred selective killing to Kasumi-1 cells, but not to control cells. This suggests that the AAV mutant selected here may be used as a tool to target therapeutic genes to AML cells.
Collapse
Affiliation(s)
- Stefan Michelfelder
- Department of Hematology and Oncology, University of Freiburg Medical Center, Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
209
|
Knappe M, Bodevin S, Selinka HC, Spillmann D, Streeck RE, Chen XS, Lindahl U, Sapp M. Surface-exposed amino acid residues of HPV16 L1 protein mediating interaction with cell surface heparan sulfate. J Biol Chem 2007; 282:27913-22. [PMID: 17640876 DOI: 10.1074/jbc.m705127200] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Efficient infection of cells by human papillomaviruses (HPVs) and pseudovirions requires primary interaction with cell surface proteoglycans with apparent preference for species carrying heparan sulfate (HS) side chains. To identify residues contributing to virus/cell interaction, we performed point mutational analysis of the HPV16 major capsid protein, L1, targeting surface-exposed amino acid residues. Replacement of lysine residues 278, 356, or 361 for alanine reduced cell binding and infectivity of pseudovirions. Various combinations of these amino acid exchanges further decreased cell attachment and infectivity with residual infectivity of less than 5% for the triple mutant, suggesting that these lysine residues cooperate in HS binding. Single, double, or triple exchanges for arginine did not impair infectivity, demonstrating that interaction is dependent on charge distribution rather than sequence-specific. The lysine residues are located within a pocket on the capsomere surface, which was previously proposed as the putative receptor binding site. Fab fragments of binding-neutralizing antibody H16.56E that recognize an epitope directly adjacent to lysine residues strongly reduced HS-mediated cell binding, further corroborating our findings. In contrast, mutation of basic surface residues located in the cleft between capsomeres outside this pocket did not significantly reduce interaction with HS or resulted in assembly-deficient proteins. Computer-simulated heparin docking suggested that all three lysine residues can form hydrogen bonds with 2-O-, 6-O-, and N-sulfate groups of a single HS molecule with a minimal saccharide domain length of eight monomer units. This prediction was experimentally confirmed in binding experiments using capsid protein, heparin molecules of defined length, and sulfate group modifications.
Collapse
Affiliation(s)
- Maren Knappe
- Institute for Medical Microbiology, University of Mainz, D-55101 Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
210
|
Koerber JT, Maheshri N, Kaspar BK, Schaffer DV. Construction of diverse adeno-associated viral libraries for directed evolution of enhanced gene delivery vehicles. Nat Protoc 2007; 1:701-6. [PMID: 17406299 DOI: 10.1038/nprot.2006.93] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Rational design of improved gene delivery vehicles is a challenging and potentially time-consuming process. As an alternative approach, directed evolution can provide a rapid and efficient means for identifying novel proteins with improved function. Here we describe a methodology for generating very large, random adeno-associated viral (AAV) libraries that can be selected for a desired function. First, the AAV2 cap gene is amplified in an error-prone PCR reaction and further diversified through a staggered extension process. The resulting PCR product is then cloned into pSub2 to generate a diverse (>10(6)) AAV2 plasmid library. Finally, the AAV2 plasmid library is used to package a diverse pool of mutant AAV2 virions, such that particles are composed of a mutant AAV genome surrounded by the capsid proteins encoded in that genome, which can be used for functional screening and evolution. This procedure can be performed in approximately 2 weeks.
Collapse
Affiliation(s)
- James T Koerber
- Department of Chemical Engineering and the Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720-1462, USA
| | | | | | | |
Collapse
|
211
|
Kwon I, Schaffer DV. Designer gene delivery vectors: molecular engineering and evolution of adeno-associated viral vectors for enhanced gene transfer. Pharm Res 2007; 25:489-99. [PMID: 17763830 PMCID: PMC2265771 DOI: 10.1007/s11095-007-9431-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Accepted: 08/03/2007] [Indexed: 12/23/2022]
Abstract
Gene delivery vectors based on adeno-associated virus (AAV) are highly promising due to several desirable features of this parent virus, including a lack of pathogenicity, efficient infection of dividing and non-dividing cells, and sustained maintenance of the viral genome. However, several problems should be addressed to enhance the utility of AAV vectors, particularly those based on AAV2, the best characterized AAV serotype. First, altering viral tropism would be advantageous for broadening its utility in various tissue or cell types. In response to this need, vector pseudotyping, mosaic capsids, and targeting ligand insertion into the capsid have shown promise for altering AAV specificity. In addition, library selection and directed evolution have recently emerged as promising approaches to modulate AAV tropism despite limited knowledge of viral structure-function relationships. Second, pre-existing immunity to AAV must be addressed for successful clinical application of AAV vectors. "Shielding" polymers, site-directed mutagenesis, and alternative AAV serotypes have shown success in avoiding immune neutralization. Furthermore, directed evolution of the AAV capsid is a high throughput approach that has yielded vectors with substantial resistance to neutralizing antibodies. Molecular engineering and directed evolution of AAV vectors therefore offer promise for generating 'designer' gene delivery vectors with enhanced properties.
Collapse
Affiliation(s)
- Inchan Kwon
- Department of Chemical Engineering and Helen Wills Neuroscience Institute, University of California, 201 Gilman Hall, Berkeley, California 94720-1462 USA
| | - David V. Schaffer
- Department of Chemical Engineering and Helen Wills Neuroscience Institute, University of California, 201 Gilman Hall, Berkeley, California 94720-1462 USA
| |
Collapse
|
212
|
Nam HJ, Lane MD, Padron E, Gurda B, McKenna R, Kohlbrenner E, Aslanidi G, Byrne B, Muzyczka N, Zolotukhin S, Agbandje-McKenna M. Structure of adeno-associated virus serotype 8, a gene therapy vector. J Virol 2007; 81:12260-71. [PMID: 17728238 PMCID: PMC2168965 DOI: 10.1128/jvi.01304-07] [Citation(s) in RCA: 187] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Adeno-associated viruses (AAVs) are being developed as gene therapy vectors, and their efficacy could be improved by a detailed understanding of their viral capsid structures. AAV serotype 8 (AAV8) shows a significantly greater liver transduction efficiency than those of other serotypes, which has resulted in efforts to develop this virus as a gene therapy vector for hemophilia A and familial hypercholesterolemia. Pseudotyping studies show that the differential tissue tropism and transduction efficiencies exhibited by the AAVs result from differences in their capsid viral protein (VP) amino acids. Towards identifying the structural features underpinning these disparities, we report the crystal structure of the AAV8 viral capsid determined to 2.6-A resolution. The overall topology of its common overlapping VP is similar to that previously reported for the crystal structures of AAV2 and AAV4, with an eight-stranded beta-barrel and long loops between the beta-strands. The most significant structural differences between AAV8 and AAV2 (the best-characterized serotype) are located on the capsid surface at protrusions surrounding the two-, three-, and fivefold axes at residues reported to control transduction efficiency and antibody recognition for AAV2. In addition, a comparison of the AAV8 and AAV2 capsid surface amino acids showed a reduced distribution of basic charge for AAV8 at the mapped AAV2 heparin sulfate receptor binding region, consistent with an observed non-heparin-binding phenotype for AAV8. Thus, this AAV8 structure provides an additional platform for mutagenesis efforts to characterize AAV capsid regions responsible for differential cellular tropism, transduction, and antigenicity for these promising gene therapy vectors.
Collapse
Affiliation(s)
- Hyun-Joo Nam
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Shen X, Storm T, Kay MA. Characterization of the relationship of AAV capsid domain swapping to liver transduction efficiency. Mol Ther 2007; 15:1955-62. [PMID: 17726459 DOI: 10.1038/sj.mt.6300293] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Recombinant adeno-associated virus (AAV) vectors show promise for use in gene therapy. For liver-targeted gene transfer in animals, AAV vectors pseudotyped with the AAV serotype 8 (AAV8) capsid have definite advantages over the widely used but less efficient serotype AAV2, even though the capsid amino acid sequences are 82% conserved. To demonstrate the mechanism behind the higher liver transduction efficiency associated with AAV8 capsids, we adopted a domain-swapping strategy that would generate 27 chimeric capsid genes containing exchanged domains between AAV2 and AAV8. The resulting chimeric capsids were then used to package AAV genomes with a liver-specific human coagulation factor IX (hFIX) expression cassette. By comparing the transduction efficiencies between vectors pseudotyped with chimeric, AAV2 and AAV8 capsids, we found that the more efficient liver transduction achieved by AAV8 was closely related to the components of its interstrand Loop IV domain, particularly the subloops 1 and 4. These subloops are exposed on opposite sides of a threefold proximal peak on the virion surface, which may function as a critical structural determinant for AAV transduction. Because a single specific peptide component could not explain all the observed differences in the transduction parameters, we suggest that important subloop regions require interaction with other portions of the capsid for their functioning.
Collapse
Affiliation(s)
- Xuan Shen
- Department of Pediatrics, Stanford University, Stanford, California 94305, USA
| | | | | |
Collapse
|
214
|
Lin J, Zhi Y, Mays L, Wilson JM. Vaccines based on novel adeno-associated virus vectors elicit aberrant CD8+ T-cell responses in mice. J Virol 2007; 81:11840-9. [PMID: 17715240 PMCID: PMC2168776 DOI: 10.1128/jvi.01253-07] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We recently discovered an expanded family of adeno-associated viruses (AAVs) that show promise as improved gene therapy vectors. In this study we evaluated the potential of vectors based on several of these novel AAVs as vaccine carriers for human immunodeficiency virus type 1 Gag. Studies with mice indicated that vectors based on AAV type 7 (AAV7), AAV8, and AAV9 demonstrate improved immunogenicity in terms of Gag CD8(+) T-cell and Gag antibody responses. The quality of these antigen-specific responses was evaluated in detail for AAV2/8 vectors and compared to results with an adenovirus vector expressing Gag (AdC7). AAV2/8 produced a vibrant CD8(+) T-cell effector response characterized by coexpression of gamma interferon and tumor necrosis factor alpha as well as in vivo cytolytic activity. No CD8(+) T-cell response generated by any of the AAVs was effectively boosted with AdC7, a result consistent with the finding of a relative lack of cells expressing interleukin-2 (IL-2) or a central memory phenotype at 3 months after the prime. The primary response to an AdC7 vaccine differed from that generated by AAVs in that the peak effector response evolved into populations of Gag-specific T cells expressing high levels of cytokines, including IL-2, and with effector memory and central memory phenotypes. A number of mechanisms could be considered to explain the aberrant activation of CD8(+) T cells by AAV, including insufficient inflammatory responses, CD4 help, and/or chronic antigen expression and T-cell exhaustion. Interestingly, the B-cell response to AAV-encoded Gag was quite vibrant and easily boosted with AdC7.
Collapse
Affiliation(s)
- Jianping Lin
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania, 125 S. 31st Street, Philadelphia, PA 19104-3403, USA
| | | | | | | |
Collapse
|
215
|
Grieger JC, Snowdy S, Samulski RJ. Separate basic region motifs within the adeno-associated virus capsid proteins are essential for infectivity and assembly. J Virol 2007; 80:5199-210. [PMID: 16699000 PMCID: PMC1472161 DOI: 10.1128/jvi.02723-05] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Adeno-associated virus (AAV) is gaining momentum as a gene therapy vector for human applications. However, there remain impediments to the development of this virus as a vector. One of these is the incomplete understanding of the biology of the virus, including nuclear targeting of the incoming virion during initial infection, as well as assembly of progeny virions from structural components in the nucleus. Toward this end, we have identified four basic regions (BR) on the AAV2 capsid that represent possible nuclear localization sequence (NLS) motifs. Mutagenesis of BR1 ((120)QAKKRVL(126)) and BR2 ((140)PGKKRPV(146)) had minor effects on viral infectivity ( approximately 4- and approximately 10-fold, respectively), whereas BR3 ((166)PARKRLN(172)) and BR4 ((307)RPKRLN(312)) were found to be essential for infectivity and virion assembly, respectively. Mutagenesis of BR3, which is located in Vp1 and Vp2 capsid proteins, does not interfere with viral production or trafficking of intact AAV capsids to the nuclear periphery but does inhibit transfer of encapsidated DNA into the nucleus. Substitution of the canine parvovirus NLS rescued the BR3 mutant to wild-type (wt) levels, supporting the role of an AAV NLS motif. In addition, rAAV2 containing a mutant form of BR3 in Vp1 and a wt BR3 in Vp2 was found to be infectious, suggesting that the function of BR3 is redundant between Vp1 and Vp2 and that Vp2 may play a role in infectivity. Mutagenesis of BR4 was found to inhibit virion assembly in the nucleus of transfected cells. This affect was not completely due to the inefficient nuclear import of capsid subunits based on Western blot analysis. In fact, aberrant capsid foci were observed in the cytoplasm of transfected cells, compared to the wild type, suggesting a defect in early viral assembly or trafficking. Using three-dimensional structural analysis, the lysine- and arginine-to-asparagine change disrupts hydrogen bonding between these basic residues and adjacent beta strand glutamine residues that may prevent assembly of intact virions. Taken together, these data support that the BR4 domain is essential for virion assembly. Each BR was also found to be conserved in serotypes 1 to 11, suggesting that these regions are significant and function similarly in each serotype. This study establishes the importance of two BR motifs on the AAV2 capsid that are essential for infectivity and virion assembly.
Collapse
Affiliation(s)
- Joshua C Grieger
- Curriculum in Genetics and Molecular Biology, Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7352, USA
| | | | | |
Collapse
|
216
|
Koerber JT, Jang JH, Yu JH, Kane RS, Schaffer DV. Engineering adeno-associated virus for one-step purification via immobilized metal affinity chromatography. Hum Gene Ther 2007; 18:367-78. [PMID: 17437357 DOI: 10.1089/hum.2006.139] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Adeno-associated virus (AAV) is a promising vehicle for gene therapy, which will rely on the generation of high-titer, high-purity recombinant vectors. However, numerous purification protocols can involve challenging optimization or scalability issues, and most AAV serotypes do not bind heparin or sialic acid, used for AAV2/3 or AAV4/5 purification, requiring the development of new chromatography strategies. Immobilized metal affinity chromatography (IMAC) allows for robust protein purification via affinity tags such as the hexahistidine (His(6)) sequence. Through the combination of a diverse AAV2 library and rational peptide insertions, we have located an optimal His(6) tag insertion site within the viral capsid. This mutant and a related AAV8 variant can be purified from clarified cell lysate in a single gravity column step at infectious particle yields exceeding 90%. Furthermore, injection of IMAC-purified vector into the brain demonstrates that it mediates high-efficiency gene delivery in vivo, equivalent to that of wild-type capsid, with minimal immune cell activation. This affinity chromatography method may offer advantages in ease of purification, final vector purity, and process scalability. Moreover, a combined rational design and high-throughput library selection approach can aid in the design of enhanced viral gene delivery vectors.
Collapse
Affiliation(s)
- James T Koerber
- Department of Chemical Engineering and Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
217
|
Schaffer DV, Maheshri N. Directed evolution of AAV mutants for enhanced gene delivery. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2007; 2004:3520-3. [PMID: 17271049 DOI: 10.1109/iembs.2004.1403990] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Gene therapy vehicles must be engineered to overcome numerous barriers that limit delivery efficiency. These barriers arise at every step of the delivery process, including the transit of the vector from injection to a cell surface, receptor binding and uptake, intracellular trafficking, and nuclear entry. The gene transfer properties of the highly promising adeno-associated viral (AAV) vector at each step are determined by its capsid structure. Previous capsid modifications that alter AAV tropism, as well as the existence of multiple AAV serotypes, suggest that the AAV capsid is reasonably plastic. We have taken advantage of this remarkable capsid plasticity to generate a large mutant AAV library (1e6) and select for mutant AAV virons that can overcome several barriers to infection. Specifically, we have selected AAV2 library for infectious particles with altered heparan sulfate (HS) affinity and for the ability to evade an AAV2 immune response. We have generated mutants with lower and higher affinity to heparin, which could prove valuable in controlling the therapeutic zone of an AAV vector in tissues where ECM HS hinders AAV2 diffusion. Furthermore, we have generated vector variants that have resistance to human serum that neutralizes wild type AAV2, yet retain AAV2 gene delivery efficiency. These vectors may enable high gene delivery efficiency even in patients with preexisting immunity, and the locations of point mutations on the capsid surface suggest new regions of functional importance to the virus. These AAV libraries therefore both provide useful variants for gene therapy application and offer a means to dissect AAV biology.
Collapse
Affiliation(s)
- D V Schaffer
- Department of Chemical Engineering and the Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, CA, USA
| | | |
Collapse
|
218
|
Segura MDLM, Kamen A, Lavoie MC, Garnier A. Exploiting heparin-binding properties of MoMLV-based retroviral vectors for affinity chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 846:124-31. [PMID: 16971193 DOI: 10.1016/j.jchromb.2006.08.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Revised: 08/10/2006] [Accepted: 08/21/2006] [Indexed: 12/22/2022]
Abstract
Chromatography is deemed the most promising technology for large-scale purification of viral vectors. The authors have previously shown that heparin affinity chromatography could be successfully employed for the purification of VSV-G pseudotyped Moloney murine leukemia virus (MoMLV)-derived vectors giving excellent results in terms of recovery of active particles, reproducibility and selectivity. In this study, the authors examined whether the ability of retrovirus particles to specifically bind to heparin ligands is restricted to VSV-G pseudotypes produced by 293-based packaging cells. It is shown that VSV-G deficient retrovirus particles are captured by a heparin chromatography column as efficiently as VSV-G containing particles. Most strikingly, RD114 pseudotyped retrovirus particles derived from a HT1080-based cell line were found to bind heparin with the same affinity as 293-derived VSV-G pseudotypes. RD114 pseudotyped retrovirus particles were successfully isolated using heparin affinity chromatography obtaining good recoveries of functional particles (43%). These results indicate that heparin affinity chromatography can be extended to the purification of retroviral vectors produced by different packaging cell lines independently of the Env-protein used for pseudotyping.
Collapse
Affiliation(s)
- María de las Mercedes Segura
- Department of Chemical Engineering and Centre de Recherche sur la Fonction, la Structure et l'Ingénierie des Protéines, Université Laval, Que., Canada G1K 7P4
| | | | | | | |
Collapse
|
219
|
Waterkamp DA, Müller OJ, Ying Y, Trepel M, Kleinschmidt JA. Isolation of targeted AAV2 vectors from novel virus display libraries. J Gene Med 2007; 8:1307-19. [PMID: 16955542 DOI: 10.1002/jgm.967] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Random peptide ligands displayed on viral capsids are emerging tools for selection of targeted gene transfer vectors even without prior knowledge of the potential target cell receptor. We have previously introduced adeno-associated viral (AAV)-displayed peptide libraries that ensure encoding of displayed peptides by the packaged AAV genome. A major limitation of these libraries is their contamination with wild-type (wt) AAV. Here we describe a novel and improved library production system that reliably avoids generation of wt AAV by use of a synthetic cap gene. Selection of targeted AAV vectors from wt-containing and the novel wt-free libraries on cell types with different permissivity for wt AAV2 replication suggested the superiority of the wt-free library. However, from both libraries highly specific peptide sequence motifs were selected which improved transduction of cells with moderate or low permissivity for AAV2 replication. Strong reduction of HeLa cell transduction compared to wt AAV2 and only low level transduction of non-target cells by some selected clones showed that not only the efficiency but also the specificity of gene transfer was improved. In conclusion, our study validates and improves the unique potential of virus display libraries for the development of targeted gene transfer vectors.
Collapse
Affiliation(s)
- Daniel A Waterkamp
- Deutsches Krebsforschungszentrum, Tumor Virologie, Im Neuenheimer Feld 242, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
220
|
Van Vliet K, Blouin V, Agbandje-McKenna M, Snyder RO. Proteolytic mapping of the adeno-associated virus capsid. Mol Ther 2006; 14:809-21. [PMID: 17010669 PMCID: PMC1808542 DOI: 10.1016/j.ymthe.2006.08.1222] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Revised: 08/20/2006] [Accepted: 08/21/2006] [Indexed: 11/28/2022] Open
Abstract
The three-dimensional structures of the viral capsid of three AAV serotypes have previously been determined by X-ray crystallography or cryoelectron microscopy. These studies of AAV and similar studies of autonomous parvoviruses have yielded important structural information about the virions in a low-energy conformation. However, there is little information on the structural properties of AAV virions in solution under physiological conditions. We demonstrate that proteolytic digestion of AAV2 virions with trypsin results in cleavage at a specific site on the capsid surface while the capsid remains intact. The products of digestion were mapped using unique antibodies, protein sequencing, mass spectroscopy, and 3D structure modeling to a region on a surface loop that is common to all three AAV2 structural proteins. Empty AAV2 capsids could be distinguished from full (DNA-containing) capsids, having an increased susceptibility of VP2 to trypsin and being digested more rapidly by chymotrypsin. Proteolytic analysis utilizing trypsin or chymotrypsin was also capable of distinguishing AAV2 from AAV1 and AAV5, as seen by differential susceptibility and unique fragment patterns. These data demonstrate a novel approach for studying the structure of AAV capsids in solution and should be valuable in the testing and engineering of AAV vectors for gene transfer.
Collapse
Affiliation(s)
- Kim Van Vliet
- Department of Molecular Genetics and Microbiology, University of Florida, College of Medicine
| | - Veronique Blouin
- Department of Molecular Genetics and Microbiology, University of Florida, College of Medicine
- Laboratoire de Therapie Genique, INSERM U6 49, CHU Hotel Dieu, Nantes Cedex 1, France
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine
| | - Richard O. Snyder
- Department of Molecular Genetics and Microbiology, University of Florida, College of Medicine
- Powell Gene Therapy Center, University of Florida, College of Medicine
- Department of Pediatrics, University of Florida, College of Medicine
| |
Collapse
|
221
|
Miller EB, Gurda-Whitaker B, Govindasamy L, McKenna R, Zolotukhin S, Muzyczka N, Agbandje-McKenna M. Production, purification and preliminary X-ray crystallographic studies of adeno-associated virus serotype 1. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:1271-4. [PMID: 17142915 PMCID: PMC2225374 DOI: 10.1107/s1744309106048184] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2006] [Accepted: 11/12/2006] [Indexed: 11/10/2022]
Abstract
Crystals of baculovirus-expressed adeno-associated virus serotype 1 (AAV1) capsids have been grown in the rhombohedral space group R32 (unit-cell parameters a = 254.7 A, alpha = 62.3 degrees) and shown to diffract X-rays to at least 2.5 A resolution. The diffraction data were subsequently processed and reduced with an overall R(sym) of 12.3% and a completeness of 89.0%. Based on the unit-cell volume, rotation-function and translation-function results and packing considerations, there is one virus capsid (60 viral proteins) per unit cell and there are ten viral proteins per crystallographic asymmetric unit. The AAV1 capsid shares both the twofold and threefold crystallographic symmetry operators. The AAV1 data have been initially phased using a polyalanine model (based on the crystal structure of AAV4) to 4.0 A resolution and the structure determination and refinement is in progress using tenfold noncrystallographic symmetry electron-density averaging.
Collapse
Affiliation(s)
- Edward B. Miller
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Brittney Gurda-Whitaker
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Lakshmanan Govindasamy
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Sergei Zolotukhin
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Nicholas Muzyczka
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Correspondence e-mail:
| |
Collapse
|
222
|
Wu Z, Miller E, Agbandje-McKenna M, Samulski RJ. Alpha2,3 and alpha2,6 N-linked sialic acids facilitate efficient binding and transduction by adeno-associated virus types 1 and 6. J Virol 2006; 80:9093-103. [PMID: 16940521 PMCID: PMC1563919 DOI: 10.1128/jvi.00895-06] [Citation(s) in RCA: 222] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Recombinant adeno-associated viruses (AAVs) are promising vectors in the field of gene therapy. Different AAV serotypes display distinct tissue tropism, believed to be related to the distribution of their receptors on target cells. Of the 11 well-characterized AAV serotypes, heparan sulfate proteoglycan and sialic acid have been suggested to be the attachment receptors for AAV type 2 and types 4 and 5, respectively. In this report, we identify the receptor for the two closely related serotypes, AAV1 and AAV6. First, we demonstrate using coinfection experiments and luciferase reporter analysis that AAV1 and AAV6 compete for similar receptors. Unlike heparin sulfate, enzymatic or genetic removal of sialic acid markedly reduced AAV1 and AAV6 binding and transduction. Further analysis using lectin staining and lectin competition assays identified that AAV1 and AAV6 use either alpha2,3-linked or alpha2,6-linked sialic acid when transducing numerous cell types (HepG2, Pro-5, and Cos-7). Treatment of cells with proteinase K but not glycolipid inhibitor reduced AAV1 and AAV6 infection, supporting the hypothesis that the sialic acid that facilitates infection is associated with glycoproteins rather than glycolipids. In addition, we determined by inhibitor (N-benzyl GalNAc)- and cell line-specific (Lec-1) studies that AAV1 and AAV6 require N-linked and not O-linked sialic acid. Furthermore, a resialylation experiment on a deficient Lec-2 cell line confirmed a 2,3 and 2,6 N-linked sialic acid requirement, while studies of mucin with O-linked sialic acid showed no inhibition effect for AAV1 and AAV6 transduction on Cos-7 cells. Finally, using a glycan array binding assay we determined that AAV1 efficiently binds to NeuAcalpha2-3GalNAcbeta1-4GlcNAc, as well as two glycoproteins with alpha2,3 and alpha2,6 N-linked sialic acids. Taken together, competition, genetic, inhibitor, enzymatic reconstitution, and glycan array experiments support alpha2,3 and alpha2,6 sialic acids that are present on N-linked glycoproteins as primary receptors for efficient AAV1 and AAV6 viral infection.
Collapse
Affiliation(s)
- Zhijian Wu
- Gene Therapy Center, CB # 7352, 7119 Thurston Building, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7352, USA
| | | | | | | |
Collapse
|
223
|
Asokan A, Hamra JB, Govindasamy L, Agbandje-McKenna M, Samulski RJ. Adeno-associated virus type 2 contains an integrin alpha5beta1 binding domain essential for viral cell entry. J Virol 2006; 80:8961-9. [PMID: 16940508 PMCID: PMC1563945 DOI: 10.1128/jvi.00843-06] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Integrins have been implicated as coreceptors in the infectious pathways of several nonenveloped viruses. For example, adenoviruses are known to interact with alphaV integrins by virtue of a high-affinity arginine-glycine-aspartate (RGD) domain present in the penton bases of the capsids. In the case of adeno-associated virus type 2 (AAV2), which lacks this RGD motif, integrin alphaVbeta5 has been identified as a coreceptor for cellular entry. However, the molecular determinants of AAV2 capsid-integrin interactions and the potential exploitation of alternative integrins as coreceptors by AAV2 have not been established thus far. In this report, we demonstrate that integrin alpha5beta1 serves as an alternative coreceptor for AAV2 infection in human embryonic kidney 293 cells. Such interactions appear to be mediated by a highly conserved domain that contains an asparagine-glycine-arginine (NGR) motif known to bind alpha5beta1 integrin with moderate affinity. The mutation of this domain reduces transduction efficiency by an order of magnitude relative to that of wild-type AAV2 vectors in vitro and in vivo. Further characterization of mutant and wild-type AAV2 capsids through transduction assays in cell lines lacking specific integrins, cell adhesion studies, and cell surface/solid-phase binding assays confirmed the role of the NGR domain in promoting AAV2-integrin interactions. Molecular modeling studies suggest that NGR residues form a surface loop close to the threefold axis of symmetry adjacent to residues previously implicated in binding heparan sulfate, the primary receptor for AAV2. The aforementioned results suggest that the internalization of AAV2 in 293 cells might follow a "click-to-fit" mechanism that involves the cooperative binding of heparan sulfate and alpha5beta1 integrin by the AAV2 capsids.
Collapse
Affiliation(s)
- Aravind Asokan
- Gene Therapy Center, 7113 Thurston Building, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7352, USA
| | | | | | | | | |
Collapse
|
224
|
Seiler MP, Miller AD, Zabner J, Halbert CL. Adeno-associated virus types 5 and 6 use distinct receptors for cell entry. Hum Gene Ther 2006; 17:10-9. [PMID: 16409121 DOI: 10.1089/hum.2006.17.10] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The transduction efficiency of adeno-associated virus (AAV) vectors in various somatic tissues is determined primarily by the viral capsid proteins. In contrast to vectors made with AAV type 2 capsids, those having type 5 or 6 capsids show high transduction rates in airway epithelial cells, in a range that should be sufficient for treating lung disease. Here we have compared the properties of vectors made with AAV5 or AAV6 capsid proteins to determine whether their receptor usage is similar, and found several differences between the viruses. First, an AAV6 vector did not hemagglutinate red blood cells, whereas an AAV5 vector did, and this property was sialic acid dependent. Second, AAV5 vector transduction required sialic acid in all cells tested, whereas AAV6 vector transduction was sialic acid dependent or independent, depending on the target cells tested. Third, levels of an AAV6 vector that interfered with entry of another AAV6 vector only poorly inhibited AAV5 vector transduction and vice versa. These results indicate that AAV5 and AAV6 vectors use distinct cellular receptors for cell entry. Although both AAV5 and AAV6 vectors exhibited high transduction rates in well-differentiated human airway epithelial cultures, they exhibited distinct cell-type transduction profiles in mouse lung that may reflect differences in receptor usage.
Collapse
Affiliation(s)
- Michael P Seiler
- Deparment of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
225
|
Govindasamy L, Padron E, McKenna R, Muzyczka N, Kaludov N, Chiorini JA, Agbandje-McKenna M. Structurally mapping the diverse phenotype of adeno-associated virus serotype 4. J Virol 2006; 80:11556-70. [PMID: 16971437 PMCID: PMC1642620 DOI: 10.1128/jvi.01536-06] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The adeno-associated viruses (AAVs) can package and deliver foreign DNA into cells for corrective gene delivery applications. The AAV serotypes have distinct cell binding, transduction, and antigenic characteristics that have been shown to be dictated by the capsid viral protein (VP) sequence. To understand the contribution of capsid structure to these properties, we have determined the crystal structure of AAV serotype 4 (AAV4), one of the most diverse serotypes with respect to capsid protein sequence and antigenic reactivity. Structural comparison of AAV4 to AAV2 shows conservation of the core beta strands (betaB to betaI) and helical (alphaA) secondary structure elements, which also exist in all other known parvovirus structures. However, surface loop variations (I to IX), some containing compensating structural insertions and deletions in adjacent regions, result in local topological differences on the capsid surface. These include AAV4 having a deeper twofold depression, wider and rounder protrusions surrounding the threefold axes, and a different topology at the top of the fivefold channel from that of AAV2. Also, the previously observed "valleys" between the threefold protrusions, containing AAV2's heparin binding residues, are narrower in AAV4. The observed differences in loop topologies at subunit interfaces are consistent with the inability of AAV2 and AAV4 VPs to combine for mosaic capsid formation in efforts to engineer novel tropisms. Significantly, all of the surface loop variations are associated with amino acids reported to affect receptor recognition, transduction, and anticapsid antibody reactivity for AAV2. This observation suggests that these capsid regions may also play similar roles in the other AAV serotypes.
Collapse
Affiliation(s)
- Lakshmanan Govindasamy
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, The McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | | | |
Collapse
|
226
|
Sonntag F, Bleker S, Leuchs B, Fischer R, Kleinschmidt JA. Adeno-associated virus type 2 capsids with externalized VP1/VP2 trafficking domains are generated prior to passage through the cytoplasm and are maintained until uncoating occurs in the nucleus. J Virol 2006; 80:11040-54. [PMID: 16956943 PMCID: PMC1642181 DOI: 10.1128/jvi.01056-06] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Common features of parvovirus capsids are open pores at the fivefold symmetry axes that traverse the virion shell. Upon limited heat treatment in vitro, the pores can function as portals to externalize VP1/VP2 protein N-terminal sequences which harbor infection-relevant functional domains, such as a phospholipase A(2) catalytic domain. Here we show that adeno-associated virus type 2 (AAV2) also exposes its VP1/VP2 N termini in vivo during infection, presumably in the endosomal compartment. This conformational change is influenced by treatment with lysosomotropic reagents. While incubation of cells with bafilomycin A1 reduced exposure of VP1/VP2 N termini, incubation with chloroquine stimulated externalization transiently. N-terminally located basic amino acid clusters with nuclear localization activity also become exposed in this process and are accessible on the virus capsid when it enters the cytoplasm. This is an obligatory step in AAV2 infection. However, a direct role of these sequences in nuclear translocation of viral capsids could not be determined by microinjection of wild-type or mutant viruses. This suggests that further modifications of the capsid have to take place in a precytoplasmic entry step that prepares the virus for nuclear entry. Microinjection of several capsid-specific antibodies into the cell nucleus blocked AAV2 infection completely, supporting the conclusion that AAV2 capsids bring the infectious genome into the nucleus.
Collapse
Affiliation(s)
- Florian Sonntag
- German Cancer Research Center, Infection and Cancer, Im Neuenheimer Feld 242, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
227
|
Wu Z, Asokan A, Grieger JC, Govindasamy L, Agbandje-McKenna M, Samulski RJ. Single amino acid changes can influence titer, heparin binding, and tissue tropism in different adeno-associated virus serotypes. J Virol 2006; 80:11393-7. [PMID: 16943302 PMCID: PMC1642158 DOI: 10.1128/jvi.01288-06] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Despite the high degree of sequence homology between adeno-associated virus (AAV) serotype 1 and 6 capsids (99.2%), these viruses have different liver transduction profiles when tested as vectors. Examination of the six amino acid residues that differ between AAV1 and AAV6 revealed that a lysine-to-glutamate change (K531E) suppresses the heparin binding ability of AAV6. In addition, the same mutation in AAV6 reduces transgene expression to levels similar to those achieved with AAV1 in HepG2 cells in vitro and in mouse liver following portal vein administration. In corollary, the converse E531K mutation in AAV1 imparts heparin binding ability and increases transduction efficiency. Extraction of vector genomes from liver tissue suggests that the lysine 531 residue assists in preferential transduction of parenchymal cells by AAV6 vectors in comparison with AAV1. Lysine 531 is unique to AAV6 among other known AAV serotypes and is located in a basic cluster near the spikes that surround the icosahedral threefold axes of the AAV capsid. Similar to studies with autonomous parvoviruses, this study describes the first example of single amino acid changes that can explain differential phenotypes such as viral titer, receptor binding, and tissue tropism exhibited by closely related AAV serotypes. In particular, a single lysine residue appears to provide the critical minimum charged surface required for interacting with heparin through electrostatic interaction and simultaneously plays an unrelated yet critical role in the liver tropism of AAV6 vectors.
Collapse
Affiliation(s)
- Zhijian Wu
- Gene Therapy Center, 7113 Thurston Building, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7352, USA
| | | | | | | | | | | |
Collapse
|
228
|
Perabo L, Goldnau D, White K, Endell J, Boucas J, Humme S, Work LM, Janicki H, Hallek M, Baker AH, Büning H. Heparan sulfate proteoglycan binding properties of adeno-associated virus retargeting mutants and consequences for their in vivo tropism. J Virol 2006; 80:7265-9. [PMID: 16809332 PMCID: PMC1489073 DOI: 10.1128/jvi.00076-06] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adeno-associated virus type 2 (AAV-2) targeting vectors have been generated by insertion of ligand peptides into the viral capsid at amino acid position 587. This procedure ablates binding of heparan sulfate proteoglycan (HSPG), AAV-2's primary receptor, in some but not all mutants. Using an AAV-2 display library, we investigated molecular mechanisms responsible for this phenotype, demonstrating that peptides containing a net negative charge are prone to confer an HSPG nonbinding phenotype. Interestingly, in vivo studies correlated the inability to bind to HSPG with liver and spleen detargeting in mice after systemic application, suggesting several strategies to improve efficiency of AAV-2 retargeting to alternative tissues.
Collapse
Affiliation(s)
- Luca Perabo
- Genzentrum, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
229
|
Murray S, Nilsson CL, Hare JT, Emmett MR, Korostelev A, Ongley H, Marshall AG, Chapman MS. Characterization of the capsid protein glycosylation of adeno-associated virus type 2 by high-resolution mass spectrometry. J Virol 2006; 80:6171-6. [PMID: 16731956 PMCID: PMC1472596 DOI: 10.1128/jvi.02417-05] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Adeno-associated virus type 2 (AAV-2) capsid proteins have eight sequence motifs that are potential sites for O- or N-linked glycosylation. Three are in prominent surface locations, close to the sites of cellular receptor attachment and to neutralizing epitopes on or near protrusions surrounding the three-fold axes, raising the possibility that AAV-2 might use glycosylation as a means of immune escape or for preventing reattachment on release of progeny virus. Peptide mapping and structural analysis by Fourier transform ion cyclotron resonance mass spectrometry demonstrates, however, no glycosylation of the capsid protein for virus prepared in cultured HeLa cells.
Collapse
Affiliation(s)
- Sarah Murray
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380, USA
| | | | | | | | | | | | | | | |
Collapse
|
230
|
Shi W, Hemminki A, Bartlett JS. Capsid modifications overcome low heterogeneous expression of heparan sulfate proteoglycan that limits AAV2-mediated gene transfer and therapeutic efficacy in human ovarian carcinoma. Gynecol Oncol 2006; 103:1054-62. [PMID: 16870238 DOI: 10.1016/j.ygyno.2006.06.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Revised: 06/06/2006] [Accepted: 06/13/2006] [Indexed: 11/21/2022]
Abstract
OBJECTIVES Capsid-modified AAV vectors can mediate enhanced gene transfer to neoplasms characterized by low AAV receptor expression. Here we sought to determine the therapeutic potential of a capsid-modified AAV vector for gene therapy of ovarian carcinoma (OvCa). METHODS We tested a panel of OvCa cell lines for AAV2-mediated gene transduction and for sensitivity to ganciclovir (GCV) following AAVHSVtk administration. Levels of AAV internalization and attachment receptor were assessed by flow cytometry and immunohistochemistry. The role of receptors in AAV-mediated gene transfer was assessed by competition assays. Finally, we examined the ability of a modified vector with an integrin-binding RGD motif inserted into the AAV capsid to improve gene delivery to OvCa and enhance AAVHSVtk/GCV-mediated killing by cytotoxicity assay. RESULTS All OvCa cell lines were poorly transduced with AAV2 vectors and showed variably sensitive to AAVHSVtk/GCV. While OvCa cell lines expressed AAV2 internalization receptors (alphav integrins), expression of the AAV2 attachment receptor, HSPG, was variable and not detected on many lines. Analysis of archived clinical specimens showed no detectable HSPG expression on approximately 45% of primary human tumors. Gene transfer to OvCa was increased several fold using the RGD-modified vector. Gene transfer was independent of HSPG and specific to the targeted receptor. Importantly, the RGD-modified capsid markedly increased the ability of the AAVHSVtk to kill OvCa cells in the presence of GCV. CONCLUSIONS The development of AAV vectors targeted to cell surface receptors other than HSPG will be critical to the advancement of AAV-mediated gene therapy for treating OvCa.
Collapse
Affiliation(s)
- Wenfang Shi
- Division of Molecular Medicine, Department of Pediatrics, College of Medicine and Public Health, The Ohio State University, Columbus, OH 43210-1393, USA, and Department of Oncology, Helsinki University Central Hospital, Finland
| | | | | |
Collapse
|
231
|
Vandenberghe LH, Wang L, Somanathan S, Zhi Y, Figueredo J, Calcedo R, Sanmiguel J, Desai RA, Chen CS, Johnston J, Grant RL, Gao G, Wilson JM. Heparin binding directs activation of T cells against adeno-associated virus serotype 2 capsid. Nat Med 2006; 12:967-71. [PMID: 16845388 DOI: 10.1038/nm1445] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Accepted: 06/12/2006] [Indexed: 01/02/2023]
Abstract
Activation of T cells to the capsid of adeno-associated virus (AAV) serotype 2 vectors has been implicated in liver toxicity in a recent human gene therapy trial of hemophilia B. To further investigate this kind of toxicity, we evaluated T-cell responses to AAV capsids after intramuscular injection of vectors into mice and nonhuman primates. High levels of T cells specific to capsids of vectors based on AAV2 and a phylogenetically related AAV variant were detected. Vectors from other AAV clades such as AAV8 (ref. 3), however, did not lead to activation of capsid-specific T cells. Through the generation of AAV2-AAV8 hybrids and the creation of site-directed mutations, we mapped the domain that directs the activation of T cells to the RXXR motif on VP3, which was previously shown to confer binding of the virion to heparan sulfate proteoglycan (HSPG). Evaluation of natural and engineered AAV variants showed direct correlations between heparin binding, uptake into human dendritic cells (DCs) and activation of capsid-specific T cells. The role of heparin binding in the activation of CD8(+) T cells may be useful in modulating the immunogenicity of antigens and improving the safety profile of existing AAV vectors for gene therapy.
Collapse
Affiliation(s)
- Luk H Vandenberghe
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, 125 S. 31st Street, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
232
|
Wu Z, Asokan A, Samulski RJ. Adeno-associated virus serotypes: vector toolkit for human gene therapy. Mol Ther 2006; 14:316-27. [PMID: 16824801 DOI: 10.1016/j.ymthe.2006.05.009] [Citation(s) in RCA: 644] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Revised: 05/17/2006] [Accepted: 05/17/2006] [Indexed: 01/11/2023] Open
Abstract
Recombinant adeno-associated viral (AAV) vectors have rapidly advanced to the forefront of gene therapy in the past decade. The exponential progress of AAV-based vectors has been made possible by the isolation of several naturally occurring AAV serotypes and over 100 AAV variants from different animal species. These isolates are ideally suited to development into human gene therapy vectors due to their diverse tissue tropisms and potential to evade preexisting neutralizing antibodies against the common human AAV serotype 2. Despite their prolific application in several animal models of disease, the mechanisms underlying selective tropisms of AAV serotypes remain largely unknown. Efforts to understand cell surface receptor usage and intracellular trafficking pathways exploited by AAV continue to provide significant insight into the biology of AAV vectors. Such unique traits are thought to arise from differences in surface topology of the capsids of AAV serotypes and variants. In addition to the aforementioned naturally evolved AAV isolates, several strategies to engineer hybrid AAV serotype vectors have been formulated in recent years. The generation of mosaic or chimeric vectors through the transcapsidation or marker-rescue/domain-swapping approach, respectively, is notable in this regard. More recently, combinatorial strategies for engineering AAV vectors using error-prone PCR, DNA shuffling, and other molecular cloning techniques have been established. The latter library-based approaches can serve as powerful tools in the generation of low-immunogenic and cell/tissue type-specific AAV vectors for gene delivery. This review is focused on recent developments in the isolation of novel AAV serotypes and isolates, their production and purification, diverse tissue tropisms, mechanisms of cellular entry/trafficking, and capsid structure. Strategies for engineering hybrid AAV vectors derived from AAV serotypes and potential implications of the rapidly expanding AAV vector toolkit are discussed.
Collapse
Affiliation(s)
- Zhijian Wu
- Gene Therapy Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
233
|
Nam HJ, Gurda-Whitaker B, Gan WY, Ilaria S, McKenna R, Mehta P, Alvarez RA, Agbandje-McKenna M. Identification of the sialic acid structures recognized by minute virus of mice and the role of binding affinity in virulence adaptation. J Biol Chem 2006; 281:25670-7. [PMID: 16822863 DOI: 10.1074/jbc.m604421200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sialic acid binding is required for infectious cell surface receptor recognition by parvovirus minute virus of mice (MVM). We have utilized a glycan array consisting of approximately 180 different carbohydrate structures to identify the specific sialosides recognized by the prototype (MVMp) and immunosuppressive (MVMi) strains of MVM plus three virulent mutants of MVMp, MVMp-I362S, MVMp-K368R, and MVMp-I362S/K368R. All of the MVM capsids specifically bound to three structures with a terminal sialic acid-linked alpha2-3 to a common Galbeta1-4GlcNAc motif: Neu5Acalpha2-3Galbeta1-4GlcNAcbeta1-4Galbeta1-4GlcNAc (3'SiaLN-LN), Neu5Acalpha2-3Galbeta1-4GlcNAcbeta1-3Galbeta1-4GlcNAcbeta1-3Galbeta1-4GlcNAc (3'SiaLN-LN-LN), and Neu5Acalpha2-3Galbeta1-4(Fucalpha1-3)-GlcNAcbeta1-3Galbeta1-4(Fucalpha1-3)GlcNAcbeta1-3Galbeta1-4(Fucalpha1-3)GlcNAc (sLe(x)-Le(x)-Le(x)). In addition, MVMi also recognized four multisialylated glycans with terminal alpha2-8 linkages: Neu5Acalpha2-8Neu5Acalpha2-8Neu5Acalpha ((Sia)(3)), Neu5Acalpha2-8Neu5Acalpha2-3Galbeta1-4Glc (GD3), Neu5Acalpha2-8Neu5Acalpha2-8Neu5Acalpha2-3Galbeta1-4Glc (GT3), and Neu5Acalpha2-8Neu5Acalpha2-3(GalNAcbeta1-4)Galbeta1-4Glc (GD2). Interestingly, the virulent MVMp-K368R mutant also recognized GT3. Analysis of the relative binding affinities using a surface plasmon resonance biospecific interaction (BIAcore) assay showed the wild-type MVMp and MVMi capsids binding with higher affinity to selected glycans compared with the virulent MVMp mutants. The reduced affinity of the virulent MVMp mutants are consistent with previous in vitro cell binding assays that had shown weaker binding to permissive cells compared with wild-type MVMp. This study identifies the sialic acid structures recognized by MVM. It also provides rationale for the tropism of MVM for malignant transformed cells that contain sLe(x) motifs and the neurotropism of MVMi, which is likely mediated via interactions with multisialylated glycans known to be tumor cell markers. Finally, the observations further implicate a decreased binding affinity for sialic acid in the in vivo adaptation of MVMp to a virulent phenotype.
Collapse
Affiliation(s)
- Hyun-Joo Nam
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610, USA
| | | | | | | | | | | | | | | |
Collapse
|
234
|
Li C, Bowles DE, van Dyke T, Samulski RJ. Adeno-associated virus vectors: potential applications for cancer gene therapy. Cancer Gene Ther 2006; 12:913-25. [PMID: 15962012 PMCID: PMC1361306 DOI: 10.1038/sj.cgt.7700876] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Augmenting cancer treatment by protein and gene delivery continues to gain momentum based on success in animal models. The primary hurdle of fully exploiting the arsenal of molecular targets and therapeutic transgenes continues to be efficient delivery. Vectors based on adeno-associated virus (AAV) are of particular interest as they are capable of inducing transgene expression in a broad range of tissues for a relatively long time without stimulation of a cell-mediated immune response. Perhaps the most important attribute of AAV vectors is their safety profile in phase I clinical trials ranging from CF to Parkinson's disease. The utility of AAV vectors as a gene delivery agent in cancer therapy is showing promise in preclinical studies. In this review, we will focus on the basic biology of AAV as well as recent progress in the use of this vector in cancer gene therapy.
Collapse
Affiliation(s)
- Chengwen Li
- Gene Therapy Center, University of North Carolina (UNC) at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Dawn E Bowles
- Gene Therapy Center, University of North Carolina (UNC) at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Terry van Dyke
- Department of Biochemistry and Biophysics, University of North Carolina (UNC) at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina (UNC) at Chapel Hill, Chapel Hill, North Carolina 27599, USA; and
| | - Richard Jude Samulski
- Gene Therapy Center, University of North Carolina (UNC) at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Pharmacology, University of North Carolina (UNC) at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Address correspondence and reprint requests to: Professor Richard Jude Samulski/Terry van Dyke, Gene Therapy Center, University of North Carolina (UNC) at Chapel Hill, CB#7352, Chapel Hill, NC27599, USA. E-mails: or
| |
Collapse
|
235
|
Lochrie MA, Tatsuno GP, Arbetman AE, Jones K, Pater C, Smith PH, McDonnell JW, Zhou SZ, Kachi S, Kachi M, Campochiaro PA, Pierce GF, Colosi P. Adeno-associated virus (AAV) capsid genes isolated from rat and mouse liver genomic DNA define two new AAV species distantly related to AAV-5. Virology 2006; 353:68-82. [PMID: 16806384 DOI: 10.1016/j.virol.2006.05.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2006] [Revised: 04/24/2006] [Accepted: 05/18/2006] [Indexed: 02/04/2023]
Abstract
Using polymerase chain reactions and genome walking strategies, adeno-associated virus (AAV)-like capsid genes were isolated from rat and mouse liver genomic DNA, where they are present at <5 copies per cell. These genes define two new species of AAVs since their amino acid sequences are <60% identical to each other or to any other AAV capsid. They are most similar to the AAV-5 and goat AAV capsids. A recombinant vector with the mouse AAV capsid and a lacZ transgene (rAAV-mo.1 lacZ) was able to transduce rodent cell lines in vitro. However, it was not able to transduce eight human cell lines or primary human fibroblasts in vitro. It did not bind heparin and its ability to transduce cells in vitro was not inhibited by heparin, mucin, or sialic acid suggesting it uses a novel entry receptor. rAAV-mo.1 lacZ was 29 times more resistant to in vitro neutralization by pooled, purified human IgG than AAV-2. In vivo, rAAV-mo.1 lacZ efficiently transduced murine ocular cells after a subretinal injection. Intramuscular injection of a rAAV-mo.1 human factor IX (hFIX) vector into mice resulted in no detectable hFIX in plasma, but intravenous injection resulted in high plasma levels of hFIX, equivalent to that obtained from a rAAV-8 hFIX vector. Biodistribution analysis showed that rAAV-mo.1 primarily transduced liver after an intravenous injection. These AAV capsids may be useful for gene transfer in rodents.
Collapse
|
236
|
Adeno-associated virus as a gene therapy vector: vector development, production and clinical applications. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2006. [PMID: 16568890 DOI: 10.1007/10_005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Adeno-associated virus (AAV) has emerged as an attractive vector for gene therapy. AAV vectors have successfully been utilized to promote sustained gene expression in a variety of tissues such as muscle, eye, brain, liver, and lung. As the significance of AAV as a gene therapy vector has been realized over the past years, recent developments in recombinant AAV (rAAV) production and purification have revolutionized the AAV field. It is now possible to produce high yields of vector (10(12)-10(13) genome-containing particles per mL) that are free of contaminating cellular and helper virus proteins. Such vectors have been successfully used in preclinical applications in animal models such as those of hemophilia, lysosomal storage diseases and vision deficiency, all of which have shown therapeutic benefits from rAAV treatment. Clinical trials using rAAV2 for the treatment of hemophilia B, cystic fibrosis, alpha-1-antitrypsin deficiency, and Canavan disease have begun, and reports from these phase I trials support the safety seen in preclinical trials. Eventually, tissue-specific vectors that can potentially evade the immune system will be required to optimize success in gene therapy. In recent years, this has led to the development of retargeted rAAV2 vectors and the identification and characterization of new serotypes from human and nonhuman primates that could potentially achieve these goals. AAV virologists and gene therapists alike have just begun to scratch the surface in terms of the utility of this small virus in a clinical setting. In this chapter, we will provide a comprehensive overview of the recent advances in rAAV vector production and purification, vector development, and clinical applications.
Collapse
|
237
|
Schmidt M, Grot E, Cervenka P, Wainer S, Buck C, Chiorini JA. Identification and characterization of novel adeno-associated virus isolates in ATCC virus stocks. J Virol 2006; 80:5082-5. [PMID: 16641301 PMCID: PMC1472088 DOI: 10.1128/jvi.80.10.5082-5085.2006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adeno-associated viruses (AAVs) depend on a helper virus for efficient replication. To identify novel AAV isolates, we screened a diverse set of virus isolates for the presence of AAV DNA. AAVs found in 10 simian adenovirus isolates showed greater than 96% homology to AAV1 and AAV6 but had distinct biological properties. Two representatives of this group, AAV(VR-195) and AAV(VR-355), were studied in more detail. While the novel AAVs had high sequence homologies and required sialic acid for cell binding and transduction, differences were observed in lectin competition, resulting in distinct tropisms in human cancer cell lines.
Collapse
Affiliation(s)
- Michael Schmidt
- Gene Therapy and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institute of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
238
|
Shi X, Fang G, Shi W, Bartlett JS. Insertional mutagenesis at positions 520 and 584 of adeno-associated virus type 2 (AAV2) capsid gene and generation of AAV2 vectors with eliminated heparin- binding ability and introduced novel tropism. Hum Gene Ther 2006; 17:353-61. [PMID: 16544984 DOI: 10.1089/hum.2006.17.353] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recombinant adeno-associated virus (AAV) vectors are promising in the context of gene therapy because of their ability to mediate efficient gene transfer and stable gene expression. AAV2 uses heparin sulfate as its primary receptor, which is widely expressed on the various tissues and organs. This limits the application of AAV2 in targeting specific tissues. To make an AAV2 vector with modified tropism, we constructed various AAV2 capsid mutants by inserting RGD-4C peptide at position 520 and/or at position 584. Eight mutants were generated, identified, and characterized. Heparin-binding ability was completely abrogated in five mutants, and partially reduced in three mutants. Solid-phase ELISA and gene transduction assays confirmed that the novel tropism is determined by the introduced RGD epitope, which binds to cellular integrin receptor. Our observations suggest that simultaneous modification at both sites, tentatively involved in heparin binding, results in altered tropism and improved transduction efficiency in vitro.
Collapse
Affiliation(s)
- Xiangqun Shi
- Department of Neurology, Lanzhou Military District General Hospital, Lanzhou 730050, People's Republic of China
| | | | | | | |
Collapse
|
239
|
Boyle MP, Enke RA, Reynolds JB, Mogayzel PJ, Guggino WB, Zeitlin PL. Membrane-associated heparan sulfate is not required for rAAV-2 infection of human respiratory epithelia. Virol J 2006; 3:29. [PMID: 16630361 PMCID: PMC1459113 DOI: 10.1186/1743-422x-3-29] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Accepted: 04/22/2006] [Indexed: 11/23/2022] Open
Abstract
Background Adeno-associated virus type 2 (AAV-2) attachment and internalization is thought to be mediated by host cell membrane-associated heparan sulfate proteoglycans (HSPG). Lack of HSPG on the apical membrane of respiratory epithelial cells has been identified as a reason for inefficient rAAV-2 infection in pulmonary applications in-vivo. The aim of this investigation was to determine the necessity of cell membrane HSPG for efficient infection by rAAV-2. Results Rates of transduction with rAAV2-CMV-EGFP3 in several different immortalized airway epithelial cell lines were determined at different multiplicities of infection (MOI) before and after removal of membrane HSPG by heparinase III. Removal of HSPG decreased the efficacy of infection with rAAV2 by only 30–35% at MOI ≤ 100 for all of respiratory cell lines tested, and had even less effect at an MOI of 1000. Studies in mutant Chinese Hamster Ovary cell lines known to be completely deficient in surface HSPG also demonstrated only moderate effect of absence of HSPG on rAAV-2 infection efficacy. However, mutant CHO cells lacking all membrane proteoglycans demonstrated dramatic reduction in susceptibility to rAAV-2 infection, suggesting a role of membrane glycosaminoglycans other than HSPG in mediating rAAV-2 infection. Conclusion Lack of cell membrane HSPG in pulmonary epithelia and other cell lines results in only moderate decrease in susceptibility to rAAV-2 infection, and this decrease may be less important at high MOIs. Other cell membrane glycosaminoglycans can play a role in permitting attachment and subsequent rAAV-2 internalization. Targeting alternative membrane glycosaminoglycans may aid in improving the efficacy of rAAV-2 for pulmonary applications.
Collapse
Affiliation(s)
- Michael P Boyle
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore MD 21205, USA
| | - Raymond A Enke
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore MD 21205, USA
| | - Jeffrey B Reynolds
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore MD 21205, USA
| | - Peter J Mogayzel
- Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore MD 21205, USA
| | - William B Guggino
- Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore MD 21205, USA
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore MD 21205, USA
| | - Pamela L Zeitlin
- Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore MD 21205, USA
| |
Collapse
|
240
|
Arnold GS, Sasser AK, Stachler MD, Bartlett JS. Metabolic biotinylation provides a unique platform for the purification and targeting of multiple AAV vector serotypes. Mol Ther 2006; 14:97-106. [PMID: 16624620 DOI: 10.1016/j.ymthe.2006.02.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Revised: 02/23/2006] [Accepted: 02/24/2006] [Indexed: 10/24/2022] Open
Abstract
The development of rationally designed targeted gene delivery vectors is an important focus for gene therapy. While genetic modification of AAV can produce vectors with modified tropism, incorporation of targeting peptides into the structural context of the AAV virion often results in loss of function or loss of virion integrity. To address this issue, we have developed a targeting system using metabolically biotinylated AAV. We generated serotype 1, 2, 3, 4, and 5 AAV capsids with small peptide insertions that are metabolically biotinylated in packaging cells during vector production by coexpression of the Escherichia coli BirA, biotin ligase, gene. Biotin moieties are exposed on the surface of assembled AAV particles and can interact with avidin. Metabolically biotinylated AAV vectors produced in this manner maintained endogenous titer and tissue tropism, could be purified on monomeric avidin resin, and could be retargeted to cells engineered to express an artificial avidin-biotin receptor. This technology provides not only a single platform for the purification of multiple AAV vector serotypes, but also a means for the development of multiple targeted AAV vectors utilizing a single capsid modification via straightforward avidin-biotin ligand coupling.
Collapse
Affiliation(s)
- Gregory S Arnold
- Gene Therapy Center, Columbus Children's Research Institute, Columbus Children's Hospital, Columbus, OH 43205, USA
| | | | | | | |
Collapse
|
241
|
López-Bueno A, Rubio MP, Bryant N, McKenna R, Agbandje-McKenna M, Almendral JM. Host-selected amino acid changes at the sialic acid binding pocket of the parvovirus capsid modulate cell binding affinity and determine virulence. J Virol 2006; 80:1563-73. [PMID: 16415031 PMCID: PMC1346950 DOI: 10.1128/jvi.80.3.1563-1573.2006] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The role of receptor recognition in the emergence of virulent viruses was investigated in the infection of severe combined immunodeficient (SCID) mice by the apathogenic prototype strain of the parvovirus minute virus of mice (MVMp). Genetic analysis of isolated MVMp viral clones (n = 48) emerging in mice, including lethal variants, showed only one of three single changes (V325M, I362S, or K368R) in the common sequence of the two capsid proteins. As was found for the parental isolates, the constructed recombinant viruses harboring the I362S or the K368R single substitutions in the capsid sequence, or mutations at both sites, showed a large-plaque phenotype and lower avidity than the wild type for cells in the cytotoxic interaction with two permissive fibroblast cell lines in vitro and caused a lethal disease in SCID mice when inoculated by the natural oronasal route. Significantly, the productive adsorption of MVMp variants carrying any of the three mutations selected through parallel evolution in mice showed higher sensitivity to the treatment of cells by neuraminidase than that of the wild type, indicating a lower affinity of the viral particle for the sialic acid component of the receptor. Consistent with this, the X-ray crystal structure of the MVMp capsids soaked with sialic acid (N-acetyl neuraminic acid) showed the sugar allocated in the depression at the twofold axis of symmetry (termed the dimple), immediately adjacent to residues I362 and K368, which are located on the wall of the dimple, and approximately 22 A away from V325 in a threefold-related monomer. This is the first reported crystal structure identifying an infectious receptor attachment site on a parvovirus capsid. We conclude that the affinity of the interactions of sialic-acid-containing receptors with residues at or surrounding the dimple can evolutionarily regulate parvovirus pathogenicity and adaptation to new hosts.
Collapse
Affiliation(s)
- Alberto López-Bueno
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Cantoblanco, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
242
|
Villanueva RA, Rouillé Y, Dubuisson J. Interactions between virus proteins and host cell membranes during the viral life cycle. ACTA ACUST UNITED AC 2006; 245:171-244. [PMID: 16125548 PMCID: PMC7112339 DOI: 10.1016/s0074-7696(05)45006-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The structure and function of cells are critically dependent on membranes, which not only separate the interior of the cell from its environment but also define the internal compartments. It is therefore not surprising that the major steps of the life cycle of viruses of animals and plants also depend on cellular membranes. Indeed, interactions of viral proteins with host cell membranes are important for viruses to enter into host cells, replicate their genome, and produce progeny particles. To replicate its genome, a virus first needs to cross the plasma membrane. Some viruses can also modify intracellular membranes of host cells to create a compartment in which genome replication will take place. Finally, some viruses acquire an envelope, which is derived either from the plasma membrane or an internal membrane of the host cell. This paper reviews recent findings on the interactions of viral proteins with host cell membranes during the viral life cycle.
Collapse
Affiliation(s)
- Rodrigo A Villanueva
- CNRS-UPR2511, Institut de Biologie de Lille, Institut Pasteur de Lille, 59021 Lille Cedex, France
| | | | | |
Collapse
|
243
|
Lochrie MA, Tatsuno GP, Christie B, McDonnell JW, Zhou S, Surosky R, Pierce GF, Colosi P. Mutations on the external surfaces of adeno-associated virus type 2 capsids that affect transduction and neutralization. J Virol 2006; 80:821-34. [PMID: 16378984 PMCID: PMC1346838 DOI: 10.1128/jvi.80.2.821-834.2006] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutations were made at 64 positions on the external surface of the adeno-associated virus type 2 (AAV-2) capsid in regions expected to bind antibodies. The 127 mutations included 57 single alanine substitutions, 41 single nonalanine substitutions, 27 multiple mutations, and 2 insertions. Mutants were assayed for capsid synthesis, heparin binding, in vitro transduction, and binding and neutralization by murine monoclonal and human polyclonal antibodies. All mutants made capsid proteins within a level about 20-fold of that made by the wild type. All but seven mutants bound heparin as well as the wild type. Forty-two mutants transduced human cells at least as well as the wild type, and 10 mutants increased transducing activity up to ninefold more than the wild type. Eighteen adjacent alanine substitutions diminished transduction from 10- to 100,000-fold but had no effect on heparin binding and define an area (dead zone) required for transduction that is distinct from the previously characterized heparin receptor binding site. Mutations that reduced binding and neutralization by a murine monoclonal antibody (A20) were localized, while mutations that reduced neutralization by individual human sera or by pooled human, intravenous immunoglobulin G (IVIG) were dispersed over a larger area. Mutations that reduced binding by A20 also reduced neutralization. However, a mutation that reduced the binding of IVIG by 90% did not reduce neutralization, and mutations that reduced neutralization by IVIG did not reduce its binding. Combinations of mutations did not significantly increase transduction or resistance to neutralization by IVIG. These mutations define areas on the surface of the AAV-2 capsid that are important determinants of transduction and antibody neutralization.
Collapse
|
244
|
Chen CL, Jensen RL, Schnepp BC, Connell MJ, Shell R, Sferra TJ, Bartlett JS, Clark KR, Johnson PR. Molecular characterization of adeno-associated viruses infecting children. J Virol 2006; 79:14781-92. [PMID: 16282478 PMCID: PMC1287571 DOI: 10.1128/jvi.79.23.14781-14792.2005] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although adeno-associated virus (AAV) infection is common in humans, the biology of natural infection is poorly understood. Since it is likely that many primary AAV infections occur during childhood, we set out to characterize the frequency and complexity of circulating AAV isolates in fresh and archived frozen human pediatric tissues. Total cellular DNA was isolated from 175 tissue samples including freshly collected tonsils (n = 101) and archived frozen samples representing spleen (n = 21), lung (n = 16), muscle (n = 15), liver (n = 19), and heart (n = 3). Samples were screened for the presence of AAV and adenovirus sequences by PCR using degenerate primers. AAV DNA was detected in 7 of 101 (7%) tonsil samples and two of 74 other tissues (one spleen and one lung). Adenovirus sequences were identified in 19 of 101 tonsils (19%), but not in any other tissues. Complete capsid gene sequences were recovered from all nine AAV-positive tissues. Sequence analyses showed that eight of the capsid sequences were AAV2-like (approximately 98% amino acid identity), while the single spleen isolate was intermediate between serotypes 2 and 3. Comparison to the available AAV2 crystal structure revealed that the majority of the amino acid substitutions mapped to surface-exposed hypervariable domains. To further characterize the AAV capsid structure in these samples, we used a novel linear rolling-circle amplification method to amplify episomal AAV DNA and isolate infectious molecular clones from several human tissues. Serotype 2-like viruses were generated from these DNA clones and interestingly, failed to bind to a heparin sulfate column. Inspection of the capsid sequence from these two clones (and the other six AAV2-like isolates) revealed that they lacked arginine residues at positions 585 and 588 of the capsid protein, which are thought to be essential for interaction with the heparin sulfate proteoglycan coreceptor. These data provide a framework with which to explore wild-type AAV persistence in vivo and provide additional tools to further define the biodistribution and form of AAV in human tissues.
Collapse
Affiliation(s)
- Chun-Liang Chen
- Center for Gene Therapy, Columbus Children's Research Institute, Columbus, Ohio 43205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Maheshri N, Koerber JT, Kaspar BK, Schaffer DV. Directed evolution of adeno-associated virus yields enhanced gene delivery vectors. Nat Biotechnol 2006; 24:198-204. [PMID: 16429148 DOI: 10.1038/nbt1182] [Citation(s) in RCA: 400] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Accepted: 11/30/2005] [Indexed: 02/06/2023]
Abstract
Adeno-associated viral vectors are highly safe and efficient gene delivery vehicles. However, numerous challenges in vector design remain, including neutralizing antibody responses, tissue transport and infection of resistant cell types. Changes must be made to the viral capsid to overcome these problems; however, very often insufficient information is available for rational design of improvements. We therefore applied a directed evolution approach involving the generation of large mutant capsid libraries and selection of adeno-associated virus (AAV) 2 variants with enhanced properties. High-throughput selection processes were designed to isolate mutants within the library with altered affinities for heparin or the ability to evade antibody neutralization and deliver genes more efficiently than wild-type capsid in the presence of anti-AAV serum. This approach, which can be extended to additional gene delivery challenges and serotypes, directs viral evolution to generate 'designer' gene delivery vectors with specified, enhanced properties.
Collapse
Affiliation(s)
- Narendra Maheshri
- The Department of Chemical Engineering and The Helen Wills Neuroscience Institute, The University of California, Berkeley, California 94720-1462, USA
| | | | | | | |
Collapse
|
246
|
Shi X, Fang G, Shi W. Insertional Mutagenesis at Positions 520 and 584 of Adeno-Associated Virus Type 2 (AAV2) Capsid Gene and Generation of AAV2 Vectors with Eliminated Heparin-Binding Ability and Introduced Novel Tropism. Hum Gene Ther 2006. [DOI: 10.1089/hum.2006.17.ft-177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
247
|
Burger C, Nash K, Mandel RJ. Recombinant adeno-associated viral vectors in the nervous system. Hum Gene Ther 2005; 16:781-91. [PMID: 16000060 DOI: 10.1089/hum.2005.16.781] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recombinant adeno-associated virus 2 (rAAV2) has been extensively used as a gene delivery vector for the nervous system. It targets primarily neurons in the nervous system and results in sustained long-term expression of transgenes. New rAAV serotypes have been characterized and demonstrated to have improved transduction efficiencies in various regions of the brain and spinal cord. This review discusses some properties of rAAV that have been studied in the nervous system such as cell tropism, duration of transgene expression, and distribution of viral transduction, as well as immunity and regulation of transgene expression issues, all of which are important for optimization of the use of rAAV in the nervous system.
Collapse
Affiliation(s)
- Corinna Burger
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA.
| | | | | |
Collapse
|
248
|
Lee GK, Maheshri N, Kaspar B, Schaffer DV. PEG conjugation moderately protects adeno-associated viral vectors against antibody neutralization. Biotechnol Bioeng 2005; 92:24-34. [PMID: 15937953 DOI: 10.1002/bit.20562] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AAV gene therapy vectors have significant clinical promise, but serum neutralization poses a challenge that must be overcome. We have examined the potential of conjugating the AAV surface with activated polyethylene glycol chains to protect the vector from neutralizing antibodies. Two key parameters were investigated: the polymer chain size and the PEG:lysine conjugation ratio. Transduction data revealed that the vector is fully infectious until a critical PEG conjugation reaction ratio was exceeded, and this critical level was found to vary with polymer chain size. At this key conjugation ratio, however, particles were moderately protected from serum neutralization, 2.3-fold over unmodified vector, demonstrating that there is a small window of PEGylation for which particles are still fully infective and benefit from antibody protection. TEM results and structural analysis indicate that the drop of infectivity as the PEG concentration is increased beyond the critical conjugation ratio may be due to a combination of steric interference with viral regions necessary for infection as well as reaction at important lysine residues. However, this first study analyzing the potential of PEG to protect AAV from serum neutralization shows that the approach has promise, which can be further enhanced if the locations of PEG attachment can be more finely controlled.
Collapse
Affiliation(s)
- Gary K Lee
- The Department of Chemical Engineering and, The Helen Wills Neuroscience Institute, The University of California, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
249
|
Seiler MP, Miller AD, Zabner J, Halbert CL. Adeno-Associated Virus Types 5 and 6 Use Distinct Receptors for Cell Entry. Hum Gene Ther 2005. [DOI: 10.1089/hum.2005.17.ft-149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
250
|
Gigout L, Rebollo P, Clement N, Warrington KH, Muzyczka N, Linden RM, Weber T. Altering AAV tropism with mosaic viral capsids. Mol Ther 2005; 11:856-65. [PMID: 15922956 DOI: 10.1016/j.ymthe.2005.03.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Revised: 03/07/2005] [Accepted: 03/07/2005] [Indexed: 11/23/2022] Open
Abstract
Over the past decade, AAV-based vectors have emerged as promising candidates for gene therapeutic applications. Despite the broad tropism of the first eight serotypes identified, certain cell types are refractory to transduction with AAV-based vectors. Furthermore, for certain applications the targeting of specific cell types is desirable. To improve on present methods to alter AAV2 tropism, we take advantage of AAV2 mosaics. Here, we show that AAV2 mosaics have improved infectivity compared with all-mutant virions. Using an AAV2 mutant that contains the immunoglobulin-binding Z34C fragment of protein A, we demonstrate the utility of AAV2 mosaics to alter AAV2 tropism. This system allows us to transduce selectively and efficiently MO7e and Jurkat cells. The use of AAV2 mosaics with a protein A fragment inserted into their capsid, together with targeting antibodies, is a versatile method that allows the specific transduction of a wide array of cell types.
Collapse
Affiliation(s)
- Laure Gigout
- Department of Gene and Cell Medicine, Cell and Developmental Biology, Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY 10029-6574, USA
| | | | | | | | | | | | | |
Collapse
|