201
|
|
202
|
Tao ZF, Hasvold LA, Leverson JD, Han EK, Guan R, Johnson EF, Stoll VS, Stewart KD, Stamper G, Soni N, Bouska JJ, Luo Y, Sowin TJ, Lin NH, Giranda VS, Rosenberg SH, Penning TD. Discovery of 3H-benzo[4,5]thieno[3,2-d]pyrimidin-4-ones as potent, highly selective, and orally bioavailable inhibitors of the human protooncogene proviral insertion site in moloney murine leukemia virus (PIM) kinases. J Med Chem 2009; 52:6621-36. [PMID: 19842661 DOI: 10.1021/jm900943h] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Pim-1, Pim-2, and Pim-3 are a family of serine/threonine kinases which have been found to be overexpressed in a variety of hematopoietic malignancies and solid tumors. Benzothienopyrimidinones were discovered as a novel class of Pim inhibitors that potently inhibit all three Pim kinases with subnanomolar to low single-digit nanomolar K(i) values and exhibit excellent selectivity against a panel of diverse kinases. Protein crystal structures of the bound Pim-1 complexes of benzothienopyrimidinones 3b (PDB code 3JYA), 6e (PDB code 3JYO), and 12b (PDB code 3JXW) were determined and used to guide SAR studies. Multiple compounds exhibited potent antiproliferative activity in K562 and MV4-11 cells with submicromolar EC(50) values. For example, compound 14j inhibited the growth of K562 cells with an EC(50) value of 1.7 muM and showed K(i) values of 2, 3, and 0.5 nM against Pim-1, Pim-2, and Pim-3, respectively. These novel Pim kinase inhibitors efficiently interrupted the phosphorylation of Bad in both K562 and LnCaP-Bad cell lines, indicating that their potent biological activities are mechanism-based. The pharmacokinetics of 14j was studied in CD-1 mice and shown to exhibit bioavailability of 76% after oral dosing. ADME profiling of 14j suggested a long half-life in both human and mouse liver microsomes, good permeability, modest protein binding, and no CYP inhibition below 20 muM concentration.
Collapse
Affiliation(s)
- Zhi-Fu Tao
- Cancer Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois 60064, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Akué-Gédu R, Rossignol E, Azzaro S, Knapp S, Filippakopoulos P, Bullock AN, Bain J, Cohen P, Prudhomme M, Anizon F, Moreau P. Synthesis, kinase inhibitory potencies, and in vitro antiproliferative evaluation of new Pim kinase inhibitors. J Med Chem 2009; 52:6369-81. [PMID: 19788246 DOI: 10.1021/jm901018f] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Members of the Pim kinase family have been identified as promising targets for the development of antitumor agents. After a screening of pyrrolo[2,3-a]- and [3,2-a]carbazole derivatives toward 66 protein kinases, we identified pyrrolo[2,3-a]carbazole as a new scaffold to design potent Pim kinase inhibitors. In particular, compound 9 was identified as a low nM selective Pim inhibitor. Additionally, several pyrrolo[2,3-a]carbazole derivatives showed selectivity for Pim-1 and Pim-3 over Pim-2. In vitro antiproliferative activities of 9 and 28, the most potent Pim inhibitors identified, were evaluated toward three human solid cancer cell lines (PA1, PC3, and DU145) and one human fibroblast primary culture, revealing IC50 values in the micromolar range. Finally, the crystal structure of Pim-1 complexed with lead compound 9 was determined. The structure revealed a non-ATP mimetic binding mode with no hydrogen bonds formed with the kinase hinge region and explained the selectivity of pyrrolo[2,3-a]carbazole derivatives for Pim kinases.
Collapse
Affiliation(s)
- Rufine Akué-Gédu
- Clermont Université, Université Blaise Pascal, Laboratoire SEESIB, F-63177 Aubière, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
204
|
A small molecule inhibitor of Pim protein kinases blocks the growth of precursor T-cell lymphoblastic leukemia/lymphoma. Blood 2009; 115:824-33. [PMID: 19965690 DOI: 10.1182/blood-2009-07-233445] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The serine/threonine Pim kinases are up-regulated in specific hematologic neoplasms, and play an important role in key signal transduction pathways, including those regulated by MYC, MYCN, FLT3-ITD, BCR-ABL, HOXA9, and EWS fusions. We demonstrate that SMI-4a, a novel benzylidene-thiazolidine-2, 4-dione small molecule inhibitor of the Pim kinases, kills a wide range of both myeloid and lymphoid cell lines with precursor T-cell lymphoblastic leukemia/lymphoma (pre-T-LBL/T-ALL) being highly sensitive. Incubation of pre-T-LBL cells with SMI-4a induced G1 phase cell-cycle arrest secondary to a dose-dependent induction of p27(Kip1), apoptosis through the mitochondrial pathway, and inhibition of the mammalian target of rapamycin C1 (mTORC1) pathway based on decreases in phospho-p70 S6K and phospho-4E-BP1, 2 substrates of this enzyme. In addition, treatment of these cells with SMI-4a was found to induce phosphorylation of extracellular signal-related kinase1/2 (ERK1/2), and the combination of SMI-4a and a mitogen-activated protein kinase kinase 1/2 (MEK1/2) inhibitor was highly synergistic in killing pre-T-LBL cells. In immunodeficient mice carrying subcutaneous pre-T-LBL tumors, treatment twice daily with SMI-4a caused a significant delay in the tumor growth without any change in the weight, blood counts, or chemistries. Our data suggest that inhibition of the Pim protein kinases may be developed as a therapeutic strategy for the treatment of pre-T-LBL.
Collapse
|
205
|
Fröjmark AS, Badhai J, Klar J, Thuveson M, Schuster J, Dahl N. Cooperative effect of ribosomal protein s19 and Pim-1 kinase on murine c-Myc expression and myeloid/erythroid cellularity. J Mol Med (Berl) 2009; 88:39-46. [DOI: 10.1007/s00109-009-0558-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 10/01/2009] [Accepted: 10/22/2009] [Indexed: 12/11/2022]
|
206
|
Bullock AN, Russo S, Amos A, Pagano N, Bregman H, Debreczeni JÉ, Lee WH, von Delft F, Meggers E, Knapp S. Crystal structure of the PIM2 kinase in complex with an organoruthenium inhibitor. PLoS One 2009; 4:e7112. [PMID: 19841674 PMCID: PMC2743286 DOI: 10.1371/journal.pone.0007112] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Accepted: 04/29/2009] [Indexed: 01/23/2023] Open
Abstract
Background The serine/threonine kinase PIM2 is highly expressed in human leukemia and lymphomas and has been shown to positively regulate survival and proliferation of tumor cells. Its diverse ATP site makes PIM2 a promising target for the development of anticancer agents. To date our knowledge of catalytic domain structures of the PIM kinase family is limited to PIM1 which has been extensively studied and which shares about 50% sequence identity with PIM2. Principal Findings Here we determined the crystal structure of PIM2 in complex with an organoruthenium complex (inhibition in sub-nanomolar level). Due to its extraordinary shape complementarity this stable organometallic compound is a highly potent inhibitor of PIM kinases. Significance The structure of PIM2 revealed several differences to PIM1 which may be explored further to generate isoform selective inhibitors. It has also demonstrated how an organometallic inhibitor can be adapted to the binding site of protein kinases to generate highly potent inhibitors. Enhanced version This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web plugin are available in Text S1.
Collapse
Affiliation(s)
- Alex N. Bullock
- University of Oxford, Structural Genomics Consortium, Oxford, United Kingdom
| | - Santina Russo
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - Ann Amos
- University of Oxford, Structural Genomics Consortium, Oxford, United Kingdom
| | - Nicholas Pagano
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse, Marburg, Germany
| | - Howard Bregman
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Judit É. Debreczeni
- University of Oxford, Structural Genomics Consortium, Oxford, United Kingdom
| | - Wen Hwa Lee
- University of Oxford, Structural Genomics Consortium, Oxford, United Kingdom
| | - Frank von Delft
- University of Oxford, Structural Genomics Consortium, Oxford, United Kingdom
| | - Eric Meggers
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse, Marburg, Germany
| | - Stefan Knapp
- University of Oxford, Structural Genomics Consortium, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
207
|
Willert M, Augstein A, Poitz DM, Schmeisser A, Strasser RH, Braun-Dullaeus RC. Transcriptional regulation of Pim-1 kinase in vascular smooth muscle cells and its role for proliferation. Basic Res Cardiol 2009; 105:267-77. [PMID: 19711112 DOI: 10.1007/s00395-009-0055-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 07/22/2009] [Accepted: 08/18/2009] [Indexed: 12/24/2022]
Abstract
The Ser/Thr-protein kinase Pim-1 has been discovered as a novel transducer of survival- and cell cycle promoting signals in the hematopoietic cell system. Although its significance for proliferation of vascular smooth muscle cells (VSMC) in vitro and neointima formation in vivo has been suggested recently, the mechanism has barely been characterized. This study aimed to foster the understanding of Pim-1 expression and regulation in murine VSMC in response to factors typically present within the atherosclerotic plaque. While oxidative stress, VEGF-A165 and angiotensin II did not have any effect on Pim-1 expression, VSMC strongly increased (3-fold) Pim-1 mRNA upon stimulation with PDGF(bb), followed by its protein upregulation. Half life of Pim-1 RNA and protein were determined to be 25 min and 6 h, respectively. PDGF(bb) induced a strong, 10-fold increase in BrdU-uptake, a marker of proliferation. This was effectively blocked by either Pim-1-specific inhibitor quercetagetin or adenovirally introduced Pim-1 shRNA. We further identified the signaling pathways linking PDGF(bb) to Pim-1 in VSMC: as expected, we determined transcriptional stimulation of Pim-1 via Janus-activated kinase (Jak), but also an additional pathway involving protein kinase C (PKC) and the mitogen-activated protein kinase Mek1/2. Blockade of Akt signaling did, however, not interfere with Pim-1 upregulation, suggesting an independence of either survival system. PDGF(bb)-induced proliferation of VSMC is partly attributed to transcriptionally upregulated Pim-1 and was assigned to distinct cell signaling. Our findings help to understand the fundamental processes of vasculoproliferative diseases thus opening avenues for its prevention and treatment.
Collapse
Affiliation(s)
- Manuela Willert
- Internal Medicine, Department of Cardiology and Intensive Care, University of Technology Dresden, Dresden, Germany
| | | | | | | | | | | |
Collapse
|
208
|
Grundler R, Brault L, Gasser C, Bullock AN, Dechow T, Woetzel S, Pogacic V, Villa A, Ehret S, Berridge G, Spoo A, Dierks C, Biondi A, Knapp S, Duyster J, Schwaller J. Dissection of PIM serine/threonine kinases in FLT3-ITD-induced leukemogenesis reveals PIM1 as regulator of CXCL12-CXCR4-mediated homing and migration. ACTA ACUST UNITED AC 2009; 206:1957-70. [PMID: 19687226 PMCID: PMC2737164 DOI: 10.1084/jem.20082074] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
FLT3-ITD–mediated leukemogenesis is associated with increased expression of oncogenic PIM serine/threonine kinases. To dissect their role in FLT3-ITD–mediated transformation, we performed bone marrow reconstitution assays. Unexpectedly, FLT3-ITD cells deficient for PIM1 failed to reconstitute lethally irradiated recipients, whereas lack of PIM2 induction did not interfere with FLT3-ITD–induced disease. PIM1-deficient bone marrow showed defects in homing and migration and displayed decreased surface CXCR4 expression and impaired CXCL12–CXCR4 signaling. Through small interfering RNA–mediated knockdown, chemical inhibition, expression of a dominant-negative mutant, and/or reexpression in knockout cells, we found PIM1 activity to be essential for proper CXCR4 surface expression and migration of cells toward a CXCL12 gradient. Purified PIM1 led to the phosphorylation of serine 339 in the CXCR4 intracellular domain in vitro, a site known to be essential for normal receptor recycling. In primary leukemic blasts, high levels of surface CXCR4 were associated with increased PIM1 expression, and this could be significantly reduced by a small molecule PIM inhibitor in some patients. Our data suggest that PIM1 activity is important for homing and migration of hematopoietic cells through modification of CXCR4. Because CXCR4 also regulates homing and maintenance of cancer stem cells, PIM1 inhibitors may exert their antitumor effects in part by interfering with interactions with the microenvironment.
Collapse
Affiliation(s)
- Rebekka Grundler
- Department of Internal Medicine III, Technical University, Munich 81739, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
209
|
Liu D, He M, Yi B, Guo WH, Que AL, Zhang JX. Pim-3 protects against cardiomyocyte apoptosis in anoxia/reoxygenation injury via p38-mediated signal pathway. Int J Biochem Cell Biol 2009; 41:2315-22. [PMID: 19505587 DOI: 10.1016/j.biocel.2009.05.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 05/12/2009] [Accepted: 05/28/2009] [Indexed: 01/18/2023]
Abstract
Although anoxic preconditioning (APC) in the myocardium has been investigated for many years, its physiological mechanism is still not completely understood. Increasing evidence indicates that transiently increased resistance to ischemic damage following APC is dependent on de novo proteins synthesis. However, the key effector pathway(s) associated with APC still remains unclear. The proto-oncogene Pim kinase belongs to a serine/threoine protein kinase family, consists of Pim-1, Pim-2 and Pim-3 and has been implicated in stimulating cell growth and inhibiting cell apoptosis. Therefore we assumed that Pim-3 expression might be aberrantly induced in cardiomyocytes that were subjected to anoxia/reoxygenation (A/R) injury and that Pim-3 might also contribute to cardio-protection after APC. To address this hypothesis, we cloned a Pim-3 expression vector, transfected it into rat cardiomyocytes, and examined Pim-3 expression in rat cardiomyocytes that were subjected to A/R injury. Moreover, we studied the role of three major MAPK pathways, e.g. p38 MAPK, JNK, and ERK1/2, in order to evaluate the molecular mechanism underlying Pim-3 up-regulation and A/R induced cardiomyocyte injury. Our experiments showed that APC induced an up-regulation of Pim-3 and the transfection of Pim-3 gene into the cardiomyocytes attenuated A/R injury. The inhibition of p38 MAPK by SB203580 abolished both the Pim-3 up-regulation and the cardio-protection provided by APC. Overall, these results suggest that APC could act to protect the heart from A/R injury with cooperation from the proto-oncogene Pim-3; in addition, it up-regulates Pim-3 expression through a p38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Dan Liu
- Jiangxi Provincial Key Laboratory of Molecular Medicine, Second Affiliated Hospital, Nanchang University, 1 Minde Road, Nanchang 330006, Jiangxi Province, PR China
| | | | | | | | | | | |
Collapse
|
210
|
Structure-based design of 3-aryl-6-amino-triazolo[4,3-b]pyridazine inhibitors of Pim-1 kinase. Bioorg Med Chem Lett 2009; 19:3019-22. [DOI: 10.1016/j.bmcl.2009.04.061] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 04/03/2009] [Accepted: 04/07/2009] [Indexed: 11/21/2022]
|
211
|
Zhang P, Wang H, Min X, Wang Y, Tang J, Cheng J, Li D, Chen X, Cheng F, Wang N, Yang H. Pim-3 is expressed in endothelial cells and promotes vascular tube formation. J Cell Physiol 2009; 220:82-90. [PMID: 19229879 DOI: 10.1002/jcp.21733] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pim-3 is a member of proto-oncogene Pim family that encodes serine/threonine kinases. Pim proteins regulate both apoptosis and cellular metabolism by phosphorylating their substrates. Here, we report for the first time that Pim-3 is highly expressed at mRNA and protein levels in endothelial cells (ECs). We found that Pim-3 is concentrated at the cellular lamellipodia and co-localized with focal adhesion kinase (FAK). Pim-3 was dispersed from lamellipodia when ECs were treated with cytochalasin D, an inhibitor of actin polymerization. In addition, small-interfering RNA (siRNA)-mediated gene knockdown of Pim-3 significantly impaired EC spreading, migration, and proliferation, leading to a reduction in tube-like structure formation in a Matrigel assay. These results provide the novel evidence that Pim-3 plays an essential role in EC spreading and migration, suggesting that Pim-3 may be an important molecular target for the development of small-molecule inhibitors of angiogenesis.
Collapse
Affiliation(s)
- Peng Zhang
- Institute of Cardiovascular Science, DongFeng Hospital, YunYang Medical College, Hubei, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Abstract
Biological actions resulting from phosphoinositide synthesis trigger multiple downstream signalling cascades by recruiting proteins with pleckstrin homology domains, including phosphoinositide-dependent kinase-1 and protein kinase B (also known as Akt). Retrospectively, more attention has been focused on the plasma membrane-associated interactions of these molecules and resulting cytoplasmic target activation. The complex biological activities exerted by Akt activation suggest, however, that more subtle and complex subcellular control mechanisms are involved. This review examines the regulation of Akt activity from the perspective of subcellular compartmentalization and focuses specifically upon the actions of Akt activation downstream from phosphoinositide synthesis that influence cell biology by altering nuclear signalling leading to Pim-1 kinase induction as well as hexokinase phosphorylation that, together with Akt, serves to preserve mitochondrial integrity.
Collapse
Affiliation(s)
- Shigeki Miyamoto
- Department of Pharmacology, University of California, La Jolla, San Diego, CA 92093-0636, USA
| | - Marta Rubio
- Department of Biology, SDSU Heart Institute, San Diego State University, NLS 426, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Mark A. Sussman
- Department of Biology, SDSU Heart Institute, San Diego State University, NLS 426, 5500 Campanile Drive, San Diego, CA 92182, USA
- Corresponding author. Tel: +1 619 594 2983; +1 619 594 2610. E-mail address:
| |
Collapse
|
213
|
De-novo identification of PPARgamma/RXR binding sites and direct targets during adipogenesis. PLoS One 2009; 4:e4907. [PMID: 19300518 PMCID: PMC2654672 DOI: 10.1371/journal.pone.0004907] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Accepted: 01/28/2009] [Indexed: 12/21/2022] Open
Abstract
Background The pathophysiology of obesity and type 2 diabetes mellitus is associated with abnormalities in endocrine signaling in adipose tissue and one of the key signaling affectors operative in these disorders is the nuclear hormone transcription factor peroxisome proliferator-activated receptor-γ (PPARγ). PPARγ has pleiotropic functions affecting a wide range of fundamental biological processes including the regulation of genes that modulate insulin sensitivity, adipocyte differentiation, inflammation and atherosclerosis. To date, only a limited number of direct targets for PPARγ have been identified through research using the well established pre-adipogenic cell line, 3T3-L1. In order to obtain a genome-wide view of PPARγ binding sites, we applied the pair end-tagging technology (ChIP-PET) to map PPARγ binding sites in 3T3-L1 preadipocyte cells. Methodology/Principal Findings Coupling gene expression profile analysis with ChIP-PET, we identified in a genome-wide manner over 7700 DNA binding sites of the transcription factor PPARγ and its heterodimeric partner RXR during the course of adipocyte differentiation. Our validation studies prove that the identified sites are bona fide binding sites for both PPARγ and RXR and that they are functionally capable of driving PPARγ specific transcription. Our results strongly indicate that PPARγ is the predominant heterodimerization partner for RXR during late stages of adipocyte differentiation. Additionally, we find that PPARγ/RXR association is enriched within the proximity of the 5′ region of the transcription start site and this association is significantly associated with transcriptional up-regulation of genes involved in fatty acid and lipid metabolism confirming the role of PPARγ as the master transcriptional regulator of adipogenesis. Evolutionary conservation analysis of these binding sites is greater when adjacent to up-regulated genes than down-regulated genes, suggesting the primordial function of PPARγ/RXR is in the induction of genes. Our functional validations resulted in identifying novel PPARγ direct targets that have not been previously reported to promote adipogenic differentiation. Conclusions/Significance We have identified in a genome-wide manner the binding sites of PPARγ and RXR during the course of adipogenic differentiation in 3T3L1 cells, and provide an important resource for the study of PPARγ function in the context of adipocyte differentiation.
Collapse
|
214
|
Cheng F, Weidner-Glunde M, Varjosalo M, Rainio EM, Lehtonen A, Schulz TF, Koskinen PJ, Taipale J, Ojala PM. KSHV reactivation from latency requires Pim-1 and Pim-3 kinases to inactivate the latency-associated nuclear antigen LANA. PLoS Pathog 2009; 5:e1000324. [PMID: 19266083 PMCID: PMC2648312 DOI: 10.1371/journal.ppat.1000324] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 02/03/2009] [Indexed: 12/21/2022] Open
Abstract
Host signal-transduction pathways are intimately involved in the switch between latency and productive infection of herpes viruses. As with other herpes viruses, infection by Kaposi's sarcoma herpesvirus (KSHV) displays these two phases. During latency only few viral genes are expressed, while in the productive infection the virus is reactivated with initiation of extensive viral DNA replication and gene expression, resulting in production of new viral particles. Viral reactivation is crucial for KSHV pathogenesis and contributes to the progression of KS. We have recently identified Pim-1 as a kinase reactivating KSHV upon over-expression. Here we show that another Pim family kinase, Pim-3, also induces viral reactivation. We demonstrate that expression of both Pim-1 and Pim-3 is induced in response to physiological and chemical reactivation in naturally KSHV-infected cells, and we show that they are required for KSHV reactivation under these conditions. Furthermore, our data indicate that Pim-1 and Pim-3 contribute to viral reactivation by phosphorylating the KSHV latency-associated nuclear antigen (LANA) on serine residues 205 and 206. This counteracts the LANA–mediated repression of the KSHV lytic gene transcription. The identification of Pim family kinases as novel cellular regulators of the gammaherpesvirus life cycle facilitates a deeper understanding of virus–host interactions during reactivation and may represent potential novel targets for therapeutic intervention. The switch from latency to productive viral replication (reactivation) is a crucial decision in the viral life cycle, and recent clinico-epidemiological studies support the importance of lytic replication in the development and progression of Kaposi's sarcoma. Hence, cellular signaling pathways operative during viral reactivation could represent potential novel targets for therapeutic intervention. Our work identifies Pim-1 and Pim-3 kinases as essential key regulators of the gammaherpesvirus life cycle. These kinases target the hallmark of KSHV latency, the LANA protein, by phosphorylation, which abolishes its ability to act as a transcriptional suppressor of viral lytic replication. This study facilitates a deeper understanding of virus–host interactions during reactivation and provides novel opportunities for pharmacological control and intervention also in virus-associated cancers.
Collapse
Affiliation(s)
- Fang Cheng
- Genome-Scale Biology Program, Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | | | - Markku Varjosalo
- Genome-Scale Biology Program, Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- Department of Molecular Medicine, National Public Health Institute (KTL), Helsinki, Finland
| | - Eeva-Marja Rainio
- Turku Centre for Biotechnology, BioCity, Turku, Finland
- Department of Biology, University of Turku, Turku, Finland
| | - Anne Lehtonen
- Genome-Scale Biology Program, Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Thomas F. Schulz
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Päivi J. Koskinen
- Turku Centre for Biotechnology, BioCity, Turku, Finland
- Department of Biology, University of Turku, Turku, Finland
| | - Jussi Taipale
- Genome-Scale Biology Program, Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- Department of Molecular Medicine, National Public Health Institute (KTL), Helsinki, Finland
| | - Päivi M. Ojala
- Genome-Scale Biology Program, Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- The Foundation for the Finnish Cancer Institute, Finland
- * E-mail:
| |
Collapse
|
215
|
Qian K, Wang L, Cywin CL, Farmer BT, Hickey E, Homon C, Jakes S, Kashem MA, Lee G, Leonard S, Li J, Magboo R, Mao W, Pack E, Peng C, Prokopowicz A, Welzel M, Wolak J, Morwick T. Hit to Lead Account of the Discovery of a New Class of Inhibitors of Pim Kinases and Crystallographic Studies Revealing an Unusual Kinase Binding Mode. J Med Chem 2009; 52:1814-27. [DOI: 10.1021/jm801242y] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Kevin Qian
- Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06801-0368
| | - Lian Wang
- Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06801-0368
| | - Charles L. Cywin
- Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06801-0368
| | - Bennett T. Farmer
- Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06801-0368
| | - Eugene Hickey
- Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06801-0368
| | - Carol Homon
- Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06801-0368
| | - Scott Jakes
- Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06801-0368
| | - Mohammed A. Kashem
- Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06801-0368
| | - George Lee
- Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06801-0368
| | - Scott Leonard
- Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06801-0368
| | - Jun Li
- Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06801-0368
| | - Ronald Magboo
- Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06801-0368
| | - Wang Mao
- Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06801-0368
| | - Edward Pack
- Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06801-0368
| | - Charlene Peng
- Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06801-0368
| | - Anthony Prokopowicz
- Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06801-0368
| | - Morgan Welzel
- Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06801-0368
| | - John Wolak
- Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06801-0368
| | - Tina Morwick
- Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06801-0368
| |
Collapse
|
216
|
Kim DS, Sung JS, Shin ES, Ryu JS, Choi IK, Park KH, Park Y, Kim EB, Park SJ, Kim YH. Association of single nucleotide polymorphisms in PIM-1 gene with the risk of Korean lung cancer. Cancer Res Treat 2008; 40:190-6. [PMID: 19688129 DOI: 10.4143/crt.2008.40.4.190] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 10/14/2008] [Indexed: 01/30/2023] Open
Abstract
PURPOSE The expression of the PIM-1 gene, which is a proto-oncogene that encodes a serine/threonine kinase, is associated with multiple cellular functions such as proliferation, differentiation, apoptosis and tumorigenesis. In particular, several studies have reported that the PIM-1 gene is associated with the development of lymphoma, leukemia and prostate cancer. Therefore, this study was conducted to evaluate the association between the single nucleotide polymorphisms in the PIM-1 gene and the risk of lung cancer occurrence in the Korean population. MATERIALS AND METHODS To evaluate the role of the PIM-1 gene in the development of lung cancer, the genotypes of the PIM-1 gene were determined in 408 lung cancer patients and 410 normal subjects. RESULTS We found that the T-C-T-C haplotypes of the PIM-1 gene (-1196 T>C, IVS4 +55 T>C, IVS4 +1416 T>A and +3684 C>A) were associated with an increased risk of lung cancer [adjusted odds ratio (aOR): 3.98; 95% CI: 1.24 approximately 12.75, p-value: 0.020]. In particular, these haplotypes showed an increased risk of lung cancer in males (aOR: 5.67; 95% CI: 1.32~24.30, p-value: 0.019) and smokers (aOR: 7.82; 95% CI: 1.75 approximately 34.98, p-value: 0.007). CONCLUSIONS The present results suggest that the T-C-T-C haplotype of the PIM-1 gene could influence the risk of developing smoking-related lung cancer in the Korean population. Additional functional studies with an larger sample sized analysis are warranted to reconfirm our findings.
Collapse
Affiliation(s)
- Dae Sik Kim
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
217
|
The suppressors of cytokine signalling E3 ligases behave as tumour suppressors. Biochem Soc Trans 2008; 36:464-8. [PMID: 18481982 DOI: 10.1042/bst0360464] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Many studies have suggested that E3 ubiquitin ligases can behave as either oncogenes or tumour suppressor genes and, recently, it has become clear that the SOCS (suppressor of cytokine signalling) E3 ligases fit this mould. While most cancer-associated E3s regulate the cell cycle or DNA repair, the SOCS proteins inhibit growth factor responses by degrading signalling intermediates such as JAKs (Janus kinases) via the SOCS-box-associated ECS (Elongin-Cullin-SOCS) E3 ligase. Clinical studies have found that (epi)genetic (mutation or methylation) phenomena can occur in many solid tumours and a growing number of clinical findings reveal post-translational modifications that disrupt SOCS function in haematological malignancy. In the present review, we provide a summary of the functions of the SOCS E3s and propose the potential use of members of this family as diagnostic markers and therapeutic targets in cancer.
Collapse
|
218
|
Hsi ED, Jung SH, Lai R, Johnson JL, Cook JR, Jones D, Devos S, Cheson BD, Damon LE, Said J. Ki67 and PIM1 expression predict outcome in mantle cell lymphoma treated with high dose therapy, stem cell transplantation and rituximab: a Cancer and Leukemia Group B 59909 correlative science study. Leuk Lymphoma 2008; 49:2081-90. [PMID: 19021050 PMCID: PMC4011712 DOI: 10.1080/10428190802419640] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The proliferation index in mantle cell lymphoma (MCL) has not been validated in the context of aggressive therapy regimens in the rituximab era. We assessed Ki67 and PIM1 (a cell cycle-related gene upregulated in blastoid MCL) expression by immunohistochemistry in a phase II study Cancer and Leukemia Group B 59909 of aggressive chemotherapy and rituximab followed by autologous stem cell transplantation plus rituximab in untreated MCL patients <70 years of age. As a continuous variable or using a cutoff of 35%, higher image analysis (IA Ki67, n = 52) was associated with shorter progression free survival (PFS) (P < or = 0.030) and event free survival (EFS) (P < or = 0.017). PIM1 expression (n = 50) was associated with PFS (P = 0.033) and EFS (P = 0.043). Bivariate Cox models showed IA Ki67 and PIM1 were independent of clinical factors. High Ki67 (>35%) is an important independent prognostic marker in aggressively treated MCL in the rituximab era. PIM1 expression predicts poor outcome and, given its potential role as a therapeutic target, deserves further study.
Collapse
Affiliation(s)
- Eric D Hsi
- Department of Clinical Pathology, Cleveland Clinic, Cleveland, OH 44195, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
219
|
Morishita D, Katayama R, Sekimizu K, Tsuruo T, Fujita N. Pim kinases promote cell cycle progression by phosphorylating and down-regulating p27Kip1 at the transcriptional and posttranscriptional levels. Cancer Res 2008; 68:5076-85. [PMID: 18593906 DOI: 10.1158/0008-5472.can-08-0634] [Citation(s) in RCA: 230] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The serine/threonine kinase Pim is known to promote cell cycle progression and to inhibit apoptosis leading to tumorigenesis. However, the precise mechanisms remain unclear. We show, herein, that all the Pim family members (Pim1, Pim2, and Pim3) bind to and directly phosphorylate the cyclin-dependent kinase inhibitor p27(Kip1) at threonine-157 and threonine-198 residues in cells and in vitro. The Pim-mediated phosphorylation induced p27(Kip1) binding to 14-3-3 protein, resulting in its nuclear export and proteasome-dependent degradation. Ectopic expression of Pim kinases overcome the G(1) arrest mediated by wild-type p27(Kip1) but not by phosphorylation-resistant T157A-p27(Kip1) or T198A-p27(Kip1). In addition to the posttranslational regulations, p27(Kip1) promoter assay revealed that Pim kinases also had the ability to suppress p27(Kip1) transcription. Pim-mediated phosphorylation and inactivation of forkhead transcription factors, FoxO1a and FoxO3a, was involved in the transcriptional repression of the p27(Kip1) gene. In contrast, inhibition of Pim signaling by expressing the dominant-negative form of Pim1 increased nuclear p27(Kip1) level and attenuated cell proliferation. Because the CDK inhibitor p27(Kip1) plays a crucial role in tumor suppression by inhibiting abnormal cell cycle progression, Pim kinases promote cell cycle progression and tumorigenesis by down-regulating p27(Kip1) expression at both transcriptional and posttranslational levels.
Collapse
Affiliation(s)
- Daisuke Morishita
- Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, The University of Tokyo, Tokyo, Japan
| | | | | | | | | |
Collapse
|
220
|
Basham B, Sathe M, Grein J, McClanahan T, D'Andrea A, Lees E, Rascle A. In vivo identification of novel STAT5 target genes. Nucleic Acids Res 2008; 36:3802-18. [PMID: 18492722 PMCID: PMC2441806 DOI: 10.1093/nar/gkn271] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
STAT5A and STAT5B proteins belong to the family of signal transducers and activators of transcription. They are encoded by two separate genes with 91% identity in their amino acid sequences. Despite their high degree of conservation, STAT5A and STAT5B exert non-redundant functions, resulting at least in part from differences in target gene activation. To better characterize the differential contribution of STAT5A and STAT5B in gene regulation, we performed single or double knockdown of STAT5A and STAT5B using small interfering RNA. Subsequent gene expression profiling and RT-qPCR analyses of IL-3-stimulated Ba/F3-β cells led to the identification of putative novel STAT5 target genes. Chromatin immunoprecipitation assays analyzing the corresponding gene loci identified unusual STAT5 binding sites compared to conventional STAT5 responsive elements. Some of the STAT5 targets identified are upregulated in several human cancers, suggesting that they might represent potential oncogenes in STAT5-associated malignancies.
Collapse
Affiliation(s)
- Beth Basham
- Schering-Plough Biopharma, 901 California Avenue, Palo Alto, CA 94304, USA
| | | | | | | | | | | | | |
Collapse
|
221
|
Hogan C, Hutchison C, Marcar L, Milne D, Saville M, Goodlad J, Kernohan N, Meek D. Elevated levels of oncogenic protein kinase Pim-1 induce the p53 pathway in cultured cells and correlate with increased Mdm2 in mantle cell lymphoma. J Biol Chem 2008; 283:18012-23. [PMID: 18467333 DOI: 10.1074/jbc.m709695200] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Mutation of the p53 gene is a common event during tumor pathogenesis. Other mechanisms, such as mdm2 amplification, provide alternative routes through which dysfunction of the p53 pathway is promoted. Here, we address the hypothesis that elevated expression of pim oncogenes might suppress p53 by regulating Mdm2. At a physiological level, we show that endogenous Pim-1 and Pim-2 interact with endogenous Mdm2. Additionally, the Pim kinases phosphorylate Mdm2 in vitro and in cultured cells at Ser(166) and Ser(186), two previously identified targets of other signaling pathways, including Akt. Surprisingly, at high levels of Pim expression, as would occur in tumors, active, but not inactive, Pim-1 or Pim-2 blocks the degradation of both p53 and Mdm2 in a manner that is independent of Mdm2 phosphorylation, leading to increased p53 levels and, proportionately, p53-dependent transactivation. Additionally, Pim-1 induces endogenous ARF, p53, Mdm2, and p21 in primary murine embryo fibroblasts and stimulates senescence-associated beta-galactosidase levels, consistent with the induction of senescence. Immunohistochemical analysis of a cohort of 33 human mantle cell lymphomas shows that elevated expression of Pim-1 occurs in 42% of cases, with elevated Pim-2 occurring in 9% of cases, all of which also express Pim-1. Notably, elevated Pim-1 correlates with elevated Mdm2 in MCL with a p value of 0.003. Taken together, our data are consistent with the idea that Pim normally interacts with the p53 pathway but, when expressed at pathological levels, behaves as a classic dominant oncogene that stimulates a protective response through induction of the p53 pathway.
Collapse
Affiliation(s)
- Carol Hogan
- Biomedical Research Centre, Division of Pathology and Neuroscience, Maternal and Child Health Sciences, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | | | | | | | | | | | | | | |
Collapse
|
222
|
Zhang Y, Wang Z, Li X, Magnuson NS. Pim kinase-dependent inhibition of c-Myc degradation. Oncogene 2008; 27:4809-19. [PMID: 18438430 DOI: 10.1038/onc.2008.123] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Pim kinases are found to be highly expressed in leukemia, lymphoma, prostate and pancreatic cancer. Bitransgenic mice overexpressing either Pim-1 or Pim-2 and c-Myc succumb to pre-B-cell lymphoma at a strikingly accelerated speed. Despite that Pim-1/Pim-2 has long been recognized as a strong synergistic partner with c-Myc in tumorigenesis, the mechanism underlying the synergism is still not well understood. Overexpression of Pim-1/Pim-2 kinase dramatically stabilizes c-Myc in vivo, and the stabilization is partially mediated by phosphorylation of c-Myc by Pim kinase on a novel site, Ser329. We provide evidence that Pim-2 is more efficient in directly phosphorylating c-Myc Ser329 to stabilize c-Myc. In contrast, we find that Pim-1 is more effective in mediating a decrease in c-Myc Thr58 phosphorylation and an increase in c-Myc Ser62 phosphorylation than in phosphorylating Ser329. In either case, through stabilizing c-Myc, Pim-1/Pim-2 kinases enhance the transcriptional activity of c-Myc. Also knocking down either Pim-1 or Pim-2 dramatically decreases the endogenous levels of c-Myc and thus, its transcriptional activity. Finally, coexpression of the Pim kinases and c-Myc enhances the transforming activity of c-Myc as does the phosphomimic mutant of c-Myc on Ser329. We conclude that these findings appear to explain at least in part the mechanism underlying the synergism between the Pim kinases and c-Myc in tumorigenesis.
Collapse
Affiliation(s)
- Y Zhang
- School of Molecular Biosciences, Washington State University, Pullman, WA 99163, USA
| | | | | | | |
Collapse
|
223
|
Abstract
EPO functions primarily as an erythroblast survival factor, and its antiapoptotic actions have been proposed to involve predominantly PI3-kinase and BCL-X pathways. Presently, the nature of EPO-regulated survival genes has been investigated through transcriptome analyses of highly responsive, primary bone marrow erythroblasts. Two proapoptotic factors, Bim and FoxO3a, were rapidly repressed not only via the wild-type EPOR, but also by PY-deficient knocked-in EPOR alleles. In parallel, Pim1 and Pim3 kinases and Irs2 were induced. For this survival gene set, induction failed via a PY-null EPOR-HM allele, but was restored upon reconstitution of a PY343 STAT5-binding site within a related EPOR-H allele. Notably, EPOR-HM supports erythropoiesis at steady state but not during anemia, while EPOR-H exhibits near wild-type EPOR activities. EPOR-H and the wild-type EPOR (but not EPOR-HM) also markedly stimulated the expression of Trb3 pseudokinase, and intracellular serpin, Serpina-3G. For SERPINA-3G and TRB3, ectopic expression in EPO-dependent progenitors furthermore significantly inhibited apoptosis due to cytokine withdrawal. BCL-XL and BCL2 also were studied, but in highly responsive Kit(pos)CD71(high)Ter119(neg) erythroblasts, neither was EPO modulated. EPOR survival circuits therefore include the repression of Bim plus FoxO3a, and EPOR/PY343/STAT5-dependent stimulation of Pim1, Pim3, Irs2 plus Serpina-3G, and Trb3 as new antiapoptotic effectors.
Collapse
|
224
|
Effects of Electroacupuncture at the Conception Vessel on Proliferation and Differentiation of Nerve Stem Cells in the Inferior Zone of the Lateral Ventricle in Cerebral Ischemia Rats. J TRADIT CHIN MED 2008; 28:58-63. [DOI: 10.1016/s0254-6272(08)60015-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
225
|
Davis RA, Simpson MM, Nugent RB, Carroll AR, Avery VM, Rali T, Chen H, Qurallo B, Quinn RJ. Pim2 inhibitors from the Papua New Guinean plant Cupaniopsis macropetala. JOURNAL OF NATURAL PRODUCTS 2008; 71:451-452. [PMID: 18163587 DOI: 10.1021/np070431w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Bioassay-guided fractionation of an organic extract from the leaves of Cupaniopsis macropetala resulted in the isolation of a new alkaloid, galloyl tyramine ( 1), together with the known flavonoid glycoside quercitrin ( 2). The structure of 1 was determined following 1D and 2D NMR, IR, UV, and MS data analysis. Compounds 1 and 2 displayed IC 50 values of 161 and 25 microM, respectively, in a Pim2 enzyme assay.
Collapse
Affiliation(s)
- Rohan A Davis
- Eskitis Institute, Griffith University, Brisbane, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
226
|
The Jak2V617F oncogene associated with myeloproliferative diseases requires a functional FERM domain for transformation and for expression of the Myc and Pim proto-oncogenes. Blood 2008; 111:3751-9. [PMID: 18216297 DOI: 10.1182/blood-2007-07-102186] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The V617F activating point mutation in Jak2 is associated with a proportion of myeloproliferative disorders. In normal hematopoietic cells, Jak2 signals only when associated with a growth factor receptor, such as the erythropoietin receptor (EpoR). We sought to identify the molecular requirements for activation of Jak2V617F by introducing a point mutation in the FERM domain (Y114A), required for receptor binding. Whereas BaF3.EpoR cells are readily transformed by Jak2V617F to Epo independence, we found that the addition of the FERM domain mutation blocked transformation and the induction of reactive oxygen species. Further, while cells expressing Jak2V617F had constitutive activation of STAT5, cells expressing Jak2V617F/Y114A did not, suggesting that signaling is defective at a very proximal level. In addition, expression of the Myc and Pim proto-oncogenes by Jak2V617F was found to be FERM domain dependent. An inducible constitutively active STAT5 mutant expressed in BaF3 cells was sufficient to induce Myc and Pim. Finally, the FERM domain in Jak2V617F was also required for abnormal hematopoiesis in transduced primary murine fetal liver cells. Overall, our results suggest that constitutive activation of Jak2 requires an intact FERM domain for a transforming phenotype, and is necessary for activation of the major target of Jak2, STAT5.
Collapse
|
227
|
Pim-1 and Pim-2 kinases are required for efficient pre-B-cell transformation by v-Abl oncogene. Blood 2007; 111:1677-85. [PMID: 18042805 DOI: 10.1182/blood-2007-04-083808] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The precise mechanisms by which Abl oncogenes transform hematopoietic cells are unknown. We have examined the role of Pim kinases in v-Abl-mediated transformation. In v-Abl transformants, expression of Pim-1 and Pim-2, but not Pim-3, is dependent on Abl kinase activity. Transformation assays demonstrate that v-Abl cannot efficiently transform bone marrow cells derived from Pim-1(-/-)/Pim-2(-/-) mice. Ectopic expression of either Pim-1 or Pim-2 in Pim-1(-/-)/Pim-2(-/-) cells restores transformation by v-Abl, strongly suggesting that either Pim-1 or Pim-2 is required for v-Abl-mediated tumorigenesis. Interestingly, the combined deficiency of Pim-1, Pim-2, and Suppressor of Cytokine Signalling (SOCS)-1 resulted in partial restoration of v-Abl transformation efficiency. In addition, Pim kinases are involved in modification of SOCS-1 and in regulating SOCS-1 protein levels in v-Abl-transformed cells. Furthermore, Pim kinases regulate the proapoptotic proteins Bcl-XS and BAD. Pim kinases inhibit the expression of Bcl-XS. Pim deficiency decreases the phosphorylation levels of BAD, whereas ectopic expression of Pim-1 increases the amount of phospho-BAD. This correlates with an increased protection from apoptosis in Abl transformants expressing Pim kinases. Together, these data suggest that Pim kinases play a key role in the v-Abl transformation, possibly via participating in modulation of SOCS-1 and via regulating the apoptotic signaling.
Collapse
|
228
|
Ghinassi B, Verrucci M, Jelicic K, Di Noia A, Migliaccio G, Migliaccio AR. Interleukin-3 and erythropoietin cooperate in the regulation of the expression of erythroid-specific transcription factors during erythroid differentiation. Exp Hematol 2007; 35:735-47. [PMID: 17577923 DOI: 10.1016/j.exphem.2007.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To characterize how interleukin-3 and erythropoietin regulate cell fate by modulating the expression of lineage-specific transcription factors. METHODS This study analyzed mRNA and protein levels, gene transcription rates, and mRNA and protein stabilities of erythroid-specific transcription factors in lineage-restricted cells derived from the 32D cell line cultured either in interleukin-3 or erythropoietin. RESULTS Erythroid 32D subclones expressed levels of Idl, Gata-2, and Scl comparable and levels of Eklf and Gata-1 higher than those expressed by myeloid subclones. While maintained in interleukin-3, erythroid cells remained immature despite their high expression of Gata-1, Gata-2, Scl, Eklf, and Idl. Switching the erythroid cells to erythropoietin induced cell maturation (within 48 hours) and reduced expression of Gata-2 and Idl (in 24 hours) but did not alter the expression of Gata-1. The effects of interleukin-3 were mostly mediated by increases in transcription rates (Scl and Gata-2), and that of erythropoietin was apparently due to increased mRNA and protein (Gata-1, Scl, and Eklf) stability. In particular, erythropoietin increased the stability of the processed and transcriptionally more active form of GATA-1 protein. CONCLUSIONS These results suggest that interleukin-3 and erythropoietin cooperate to establish the lineage-specific transcription factor milieu of erythroid cells: interleukin-3 regulates mainly gene transcription and erythropoietin consistently increases mRNA and protein stability.
Collapse
Affiliation(s)
- Barbara Ghinassi
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore Sanità, Rome, Italy
| | | | | | | | | | | |
Collapse
|
229
|
Bohensky J, Shapiro IM, Leshinsky S, Watanabe H, Srinivas V. PIM-2 is an independent regulator of chondrocyte survival and autophagy in the epiphyseal growth plate. J Cell Physiol 2007; 213:246-51. [PMID: 17476689 DOI: 10.1002/jcp.21117] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The overall goal of the investigation was to examine the activity and role of the PIM serine/threonine protein kinases in the growth plate. We showed for the first time that PIM-2 was highly expressed in epiphyseal chondrocytes and that the kinase was required for critical activities linked to cell survival. These activities were independent of those mediated by Akt-1. It was noted that PIM-2 protected chondrocytes from rapamycin sensitized (TOR inhibited) cell death. Since inhibition of mTOR caused autophagy, we examined the autophagic response of PIM-2 silenced cells. We showed that PIM-2 promoted expression and organization of autophagic proteins LC3, and Beclin-1 and enhanced lysosomal acidification. At the same time, PIM-2 modulated the activity of a key regulator of apoptosis, BAD. Since BAD inhibition and Beclin-1 expression activated autophagy, it is likely that induction of the autophagic pathway would serve to inhibit apoptosis and preserve the life of the terminally differentiated chondrocyte. We conclude that PIM-2 regulates a new intermediate stage in the differentiation pathway, the induction of autophagy.
Collapse
Affiliation(s)
- Jolene Bohensky
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | |
Collapse
|
230
|
Zhang Y, Wang Z, Magnuson NS. Pim-1 kinase-dependent phosphorylation of p21Cip1/WAF1 regulates its stability and cellular localization in H1299 cells. Mol Cancer Res 2007; 5:909-22. [PMID: 17855660 DOI: 10.1158/1541-7786.mcr-06-0388] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Previous studies from our laboratory showed that p21Cip1/WAF1 can be phosphorylated by Pim-1 kinase in vitro, implying that part of the function of Pim-1 might involve influencing the cell cycle. In the present study, site-directed mutagenesis and phosphorylated-specific antibodies were used as tools to identify the sites phosphorylated by Pim-1 and the consequences of this phosphorylation. What we found was that Pim-1 can efficiently phosphorylate p21 on Thr145 in vitro using recombinant protein and in vivo in intact cells. Unexpectedly, we found that Ser146 is a second site that is phosphorylated in vivo, but this phosphorylation event seems to be an indirect result of Pim-1 expression. More importantly, the consequences of phosphorylation of either Thr145 or Ser146 are distinct. When p21 is phosphorylated on Thr145, it localizes to the nucleus and results in the disruption of the association between proliferating cell nuclear antigen and p21. Furthermore, phosphorylation of Thr145 promotes stabilization of p21. On the other hand, when p21 is phosphorylated on Ser146, it localizes primarily in the cytoplasm and the effect of phosphorylation on stability is minimal. Cotransfection of wild-type Pim-1 with p21 increases the rate of proliferation compared with cotransfection of p21 with kinase-dead Pim-1. Knocking down Pim-1 expression greatly decreases the rate of proliferation of H1299 cells and their ability to grow in soft agar. These data suggest that Pim-1 overexpression may contribute to tumorigenesis in part by influencing the cellular localization and stability of p21 and by promoting cell proliferation.
Collapse
Affiliation(s)
- Yandong Zhang
- School of Molecular Biosciences, Washington State University, Pullman, WA 99163, USA
| | | | | |
Collapse
|
231
|
Agrawal S, Koschmieder S, Bäumer N, Reddy NGP, Berdel WE, Müller-Tidow C, Serve H. Pim2 complements Flt3 wild-type receptor in hematopoietic progenitor cell transformation. Leukemia 2007; 22:78-86. [DOI: 10.1038/sj.leu.2404988] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
232
|
|
233
|
Schwemmers S, Will B, Waller CF, Abdulkarim K, Johansson P, Andreasson B, Pahl HL. JAK2V617F-negative ET patients do not display constitutively active JAK/STAT signaling. Exp Hematol 2007; 35:1695-703. [PMID: 17764814 PMCID: PMC2270411 DOI: 10.1016/j.exphem.2007.07.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 06/25/2007] [Accepted: 07/10/2007] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Presence of the JAK2V617F mutation in only 40% to 60% of patients with essential thrombocythemia (ET) underscores the heterogeneity of this myeloproliferative disorder (MPD). Several distinct mutations, either in JAK2 (exon 12) or in c-Mpl (W515L) have been described in subsets of other MPDs, polycythemia vera, and idiopathic myelofibrosis. Analogous to JAK2,V617F these mutations cause constitutive JAK2 and signal transducer and activation of transcription (STAT) activation. It has therefore been proposed that constitutive activation of the JAK/STAT pathway underlies the molecular etiology of all MPDs. We investigated the alternative hypothesis that distinct alterations, separate from the JAK/STAT signal transduction pathway, underlie a subset of JAK2V617F-negative ET. METHODS cDNA microarrays and quantitative reverse transcriptase polymerase chain reactions were used to compare gene expression in 40 ET patients with and without the JAK2V617F mutation. RESULTS Unsupervised clustering of gene-expression patterns in ET patients revealed two distinct subclasses of patients. These subclasses differed in presence or absence of the JAK2V617F mutation. Patients lacking the JAK2V617F mutation displayed significantly lower expression of the JAK/STAT target genes Pim-1 and suppressor of cytokine signaling-2. In addition, JAK2V617F-negative patients showed lower levels of STAT3 phosphorylation. CONCLUSIONS These data demonstrate that a large proportion of JAK2V617F-negative ET patients do not display constitutive JAK/STAT signaling. Hence, we propose that alterations in different signal transduction pathways can lead to the clinical phenotype of ET. Elucidation of novel ET-inducing changes will facilitate both a molecular classification of ET and development of rationally designed therapies.
Collapse
Affiliation(s)
- Sven Schwemmers
- Department of Experimental Anaesthesiology, University Hospital Freiburg, Center for Clinical Research, Breisacher Str. 66, 79106 Freiburg, Germany
- Department of Biology, Albert-Ludwigs-University Freiburg
| | - Britta Will
- Department of Experimental Anaesthesiology, University Hospital Freiburg, Center for Clinical Research, Breisacher Str. 66, 79106 Freiburg, Germany
- Department of Biology, Albert-Ludwigs-University Freiburg
| | - Cornelius F. Waller
- Department of Medicine I: Hematology, Oncology, University Hospital Freiburg
| | | | | | | | - Heike L. Pahl
- Department of Experimental Anaesthesiology, University Hospital Freiburg, Center for Clinical Research, Breisacher Str. 66, 79106 Freiburg, Germany
- To whom reprint requests should be addressed: Prof. Dr. Heike L. Pahl (Ph.D.), Center for Clinical Research, University Hospital Freiburg, Breisacher Str. 66, 79106 Freiburg, Germany, Tel.: +49-761-270 6340, Fax.: +49-761-270 6341, e-mail:
| |
Collapse
|
234
|
Pogacic V, Bullock AN, Fedorov O, Filippakopoulos P, Gasser C, Biondi A, Meyer-Monard S, Knapp S, Schwaller J. Structural analysis identifies imidazo[1,2-b]pyridazines as PIM kinase inhibitors with in vitro antileukemic activity. Cancer Res 2007; 67:6916-24. [PMID: 17638903 DOI: 10.1158/0008-5472.can-07-0320] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Much attention has recently been focused on PIM kinases as potential targets for the treatment of hematopoietic malignancies and some solid cancers. Using protein stability shift assays, we identified a family of imidazo[1,2-b]pyridazines to specifically interact with and inhibit PIM kinases with low nanomolar potency. The high-resolution crystal structure of a PIM1 inhibitor complex revealed that imidazo[1,2-b]pyridazines surprisingly interact with the NH(2)-terminal lobe helix alphaC rather than with the kinase hinge region. Thus, the identified inhibitors are ATP competitive but not ATP mimetic compounds, explaining their enhanced selectivity with respect to conventional type I kinase inhibitors. One of the identified imidazo[1,2-b]pyridazines (K00135) was further tested in several hematopoietic cellular systems. First, K00135 dose-dependently impaired survival of murine Ba/F3 cells that have been rendered cytokine independent by overexpression of human PIMs. Second, K00135 impaired survival and clonogenic growth of a panel of human acute leukemia cells. Third, exposure of K00135 significantly suppressed in vitro growth of leukemic blasts from five acute myelogenous leukemia patients but not of normal umbilical cord blood mononuclear cells. In vitro kinase assays and immunoblotting using lysates from human MV4;11 leukemic cells showed inhibition of phosphorylation of known PIM downstream targets, such as BAD and eukaryotic translation initiation factor 4E-binding protein 1, by K00135. Taken together, we report a family of small molecules that selectively interact and block PIM kinases and could serve as a lead to develop new targeted antileukemic therapeutics.
Collapse
Affiliation(s)
- Vanda Pogacic
- Department of Research and the Hematology Clinic, University Hospital Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
235
|
Holder S, Lilly M, Brown ML. Comparative molecular field analysis of flavonoid inhibitors of the PIM-1 kinase. Bioorg Med Chem 2007; 15:6463-73. [PMID: 17637507 DOI: 10.1016/j.bmc.2007.06.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2006] [Revised: 05/23/2007] [Accepted: 06/12/2007] [Indexed: 12/31/2022]
Abstract
The PIM-1 protein, the product of the pim-1 oncogene, is a serine/threonine kinase. Dysregulation of the PIM-1 kinase has been implicated in the development of human malignancies including lymphomas, leukemias, and prostate cancer. Comparative molecular field analysis (CoMFA) is a 3-D QSAR technique that has been widely used, with notable success, to correlate biological activity with the steric and electrostatic properties of ligands. We have used a set of 15 flavonoid inhibitors of the PIM-1 kinase, aligned de novo by common substructure, to generate a CoMFA model for the purpose of elucidating the steric and electrostatic properties involved in flavonoid binding to the PIM-1 kinase. Partial least squares correlation between observed and predicted inhibitor potency (expressed as -logIC50), using a non-cross-validated partial least squares analysis, generated a non-cross-validated q2=0.805 for the training set (n=15) of flavonoids. The CoMFA generated steric map indicated that the PIM-1-binding site was sterically hindered, leading to more efficient binding of planar molecules over (R) or (S) compounds. The electrostatic map identified that positive charges near the flavonoid atom C8 and negative charges near C4' increased flavonoid binding. The CoMFA model accurately predicted the potency of a test set of flavonoids (n=6), generating a correlation between observed and predicted potency of q2=0.825. CoMFA models generated from additional alignment rules, which were guided by co-crystal structure ligand orientations, did not improve the correlative value of the model. Superimposing the PIM-1 kinase crystal structure onto the CoMFA contours validated the steric and electrostatic maps, elucidating the amino acid residues that potentially contribute to the CoMFA fields. Thus we have generated the first predictive model that may be used for the rational design of small-molecule inhibitors of the PIM-1 kinase.
Collapse
Affiliation(s)
- Sheldon Holder
- Center for Molecular Biology & Gene Therapy, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | | | | |
Collapse
|
236
|
Gene function in early mouse embryonic stem cell differentiation. BMC Genomics 2007; 8:85. [PMID: 17394647 PMCID: PMC1851713 DOI: 10.1186/1471-2164-8-85] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Accepted: 03/29/2007] [Indexed: 12/20/2022] Open
Abstract
Background Little is known about the genes that drive embryonic stem cell differentiation. However, such knowledge is necessary if we are to exploit the therapeutic potential of stem cells. To uncover the genetic determinants of mouse embryonic stem cell (mESC) differentiation, we have generated and analyzed 11-point time-series of DNA microarray data for three biologically equivalent but genetically distinct mESC lines (R1, J1, and V6.5) undergoing undirected differentiation into embryoid bodies (EBs) over a period of two weeks. Results We identified the initial 12 hour period as reflecting the early stages of mESC differentiation and studied probe sets showing consistent changes of gene expression in that period. Gene function analysis indicated significant up-regulation of genes related to regulation of transcription and mRNA splicing, and down-regulation of genes related to intracellular signaling. Phylogenetic analysis indicated that the genes showing the largest expression changes were more likely to have originated in metazoans. The probe sets with the most consistent gene changes in the three cell lines represented 24 down-regulated and 12 up-regulated genes, all with closely related human homologues. Whereas some of these genes are known to be involved in embryonic developmental processes (e.g. Klf4, Otx2, Smn1, Socs3, Tagln, Tdgf1), our analysis points to others (such as transcription factor Phf21a, extracellular matrix related Lama1 and Cyr61, or endoplasmic reticulum related Sc4mol and Scd2) that have not been previously related to mESC function. The majority of identified functions were related to transcriptional regulation, intracellular signaling, and cytoskeleton. Genes involved in other cellular functions important in ESC differentiation such as chromatin remodeling and transmembrane receptors were not observed in this set. Conclusion Our analysis profiles for the first time gene expression at a very early stage of mESC differentiation, and identifies a functional and phylogenetic signature for the genes involved. The data generated constitute a valuable resource for further studies. All DNA microarray data used in this study are available in the StemBase database of stem cell gene expression data [1] and in the NCBI's GEO database.
Collapse
|
237
|
Mondino A, Mueller DL. mTOR at the crossroads of T cell proliferation and tolerance. Semin Immunol 2007; 19:162-72. [PMID: 17383196 PMCID: PMC1995654 DOI: 10.1016/j.smim.2007.02.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Accepted: 02/19/2007] [Indexed: 12/20/2022]
Abstract
Several events control the activation, proliferation, and the continued Ag responsiveness of naïve and memory T lymphocytes. Here we review the individual contributions of TCR, CD28, and IL-2-driven signaling to T cell proliferation and anergy avoidance. The role of mTOR as a rheostat capable of integrating extracellular, plasma membrane-associated, and intracellular signals with relevance to T cell priming and tolerance is discussed.
Collapse
|
238
|
Hu YL, Passegué E, Fong S, Largman C, Lawrence HJ. Evidence that the Pim1 kinase gene is a direct target of HOXA9. Blood 2007; 109:4732-8. [PMID: 17327400 PMCID: PMC1885524 DOI: 10.1182/blood-2006-08-043356] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The HOXA9 homeoprotein exerts dramatic effects in hematopoiesis. Enforced expression of HOXA9 enhances proliferation of primitive blood cells, expands hematopoietic stem cells (HSCs), and leads to myeloid leukemia. Conversely, loss of HOXA9 inhibits proliferation and impairs HSC function. The pathways by which HOXA9 acts are largely unknown, and although HOXA9 is a transcription factor, few direct target genes have been identified. Our previous study suggested that HOXA9 positively regulates Pim1, an oncogenic kinase. The hematologic phenotypes of Hoxa9- and Pim1-deficient animals are strikingly similar. Here we show that HOXA9 protein binds to the Pim1 promoter and induces Pim1 mRNA and protein in hematopoietic cells. Pim1 protein is diminished in Hoxa9(-/-) cells, and Hoxa9 and Pim1 mRNA levels track together in early hematopoietic compartments. Induction of Pim1 protein by HOXA9 increases the phosphorylation and inactivation of the proapoptotic BAD protein, a target of Pim1. Hoxa9(-/-) cells show increased apoptosis and decreased proliferation, defects that are ameliorated by reintroduction of Pim1. Thus Pim1 appears to be a direct transcriptional target of HOXA9 and a mediator of its antiapoptotic and proproliferative effects in early cells. Since HOXA9 is frequently up-regulated in acute myeloid leukemia, Pim1 may be a therapeutic target in human disease.
Collapse
Affiliation(s)
- Yu-Long Hu
- Hematology Research, Medical Service, UCSF Veterans Affairs Medical Center, University of California-San Francisco, 4150 Clement Street, San Francisco, CA 94121, USA
| | | | | | | | | |
Collapse
|
239
|
Ma J, Arnold HK, Lilly MB, Sears RC, Kraft AS. Negative regulation of Pim-1 protein kinase levels by the B56beta subunit of PP2A. Oncogene 2007; 26:5145-53. [PMID: 17297438 DOI: 10.1038/sj.onc.1210323] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The Pim protein kinases are serine threonine protein kinases that regulate important cellular signaling pathway molecules, and enhance the ability of c-Myc to induce lymphomas. We demonstrate that a cascade of events controls the cellular levels of Pim. We find that overexpression of the protein phosphatase (PP) 2A catalytic subunit decreases the activity and protein levels of Pim-1. This effect is reversed by the application of okadaic acid, an inhibitor of PP2A, and is blocked by SV40 small T antigen that is known to disrupt B subunit binding to PP2A A and C subunits. Pim-1 can coimmunoprecipitate with the PP2A regulatory B subunit, B56beta, but not B56alpha, gamma, delta, epsilon or B55alpha. Using short hairpin RNA targeted at B56beta, we demonstrate that decreasing the level of B56beta increases the half-life of Pim-1 from 0.7 to 2.8 h, and decreases the ubiquitinylation level of Pim-1. We also find that Pin1, a prolyl-isomerase, is capable of binding Pim-1 and leads to a decrease in the protein level of Pim-1. On the basis of these observations, we hypothesize that phosphorylated Pim-1 binds Pin1 allowing the interaction of PP2A through B56beta. Dephosphorylation of Pim-1 then allows for ubiquitinylation and protein degradation of Pim-1.
Collapse
Affiliation(s)
- J Ma
- Hollings Cancer Center at the Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | |
Collapse
|
240
|
Cheney IW, Yan S, Appleby T, Walker H, Vo T, Yao N, Hamatake R, Hong Z, Wu JZ. Identification and structure-activity relationships of substituted pyridones as inhibitors of Pim-1 kinase. Bioorg Med Chem Lett 2007; 17:1679-83. [PMID: 17251021 DOI: 10.1016/j.bmcl.2006.12.086] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 12/20/2006] [Accepted: 12/22/2006] [Indexed: 11/27/2022]
Abstract
A novel series of highly potent substituted pyridone Pim-1 kinase inhibitors is described. Structural requirements for in vitro activity are outlined as well as a complex crystal structure with the most potent Pim-1 inhibitor reported (IC(50)=50 nM). A hydrogen bond matrix involving the Pim-1 inhibitor, two water molecules, and the catalytic core, together with a potential weak hydrogen bond between an aromatic hydrogen on the R(1) phenyl ring and a main-chain carbonyl of Pim-1, accounts for the overall potency of this inhibitor.
Collapse
Affiliation(s)
- I Wayne Cheney
- Valeant Pharmaceuticals Research and Development, 3300 Hyland Avenue, Costa Mesa, CA 92626, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
241
|
Enzler T, Bonizzi G, Silverman GJ, Otero DC, Widhopf GF, Anzelon-Mills A, Rickert RC, Karin M. Alternative and classical NF-kappa B signaling retain autoreactive B cells in the splenic marginal zone and result in lupus-like disease. Immunity 2006; 25:403-15. [PMID: 16973390 DOI: 10.1016/j.immuni.2006.07.010] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 04/18/2006] [Accepted: 07/06/2006] [Indexed: 02/04/2023]
Abstract
Expression of B cell-activating factor (BAFF), a critical B cell survival factor, is elevated in autoimmune and lymphoproliferative disorders. Mice overproducing BAFF develop systemic lupus erythematosus (SLE)-like disease and exhibit B cell activation of classical and alternative NF-kappaB-signaling pathways. We used a genetic approach and found that both NF-kappaB-signaling pathways contributed to disease development but act through distinct mechanisms. Whereas BAFF enhanced long-term B cell survival primarily through the alternative, but not the classical, NF-kappaB pathway, it promoted immunoglobulin class switching and generation of pathogenic antibodies through the classical pathway. Activation of the alternative NF-kappaB pathway resulted in integrin upregulation, thereby retaining autoreactive B cells in the splenic marginal zone, a compartment that contributes to their survival. Thus, both classical and alternative NF-kappaB signaling are important for development of lupus-like disease associated with BAFF overproduction. The same mechanisms may be involved in the pathogenesis of human SLE.
Collapse
Affiliation(s)
- Thomas Enzler
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | | | | | | | | | | | | | | |
Collapse
|
242
|
Vaes BLT, Ducy P, Sijbers AM, Hendriks JMA, van Someren EP, de Jong NG, van den Heuvel ER, Olijve W, van Zoelen EJJ, Dechering KJ. Microarray analysis on Runx2-deficient mouse embryos reveals novel Runx2 functions and target genes during intramembranous and endochondral bone formation. Bone 2006; 39:724-38. [PMID: 16774856 DOI: 10.1016/j.bone.2006.04.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Revised: 04/10/2006] [Accepted: 04/20/2006] [Indexed: 10/24/2022]
Abstract
A major challenge in developmental biology is to correlate genome-wide gene expression modulations with developmental processes in vivo. In this study, we analyzed the role of Runx2 during intramembranous and endochondral bone development, by comparing gene expression profiles in 14.5 dpc wild-type and Runx2 (-/-) mice. A total of 1277, 606 and 492 transcripts were found to be significantly modulated by Runx2 in calvaria, forelimbs and hindlimbs, respectively. Bioinformatics analysis indicated that Runx2 not only controls the processes of osteoblast differentiation and chondrocyte maturation, but may also play a role in axon formation and hematopoietic cell commitment during bone development. A total of 41 genes are affected by the Runx2 deletion in both intramembranous and endochondral bone, indicating common pathways between these two developmental modes of bone formation. In addition, we identified genes that are specifically involved in endochondral ossification. In conclusion, our data show that a comparative genome-wide expression analysis of wild-type and mutant mouse models allows the examination of mutant phenotypes in complex tissues.
Collapse
Affiliation(s)
- Bart L T Vaes
- Department of Applied Biology FNWI, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
243
|
Li YY, Popivanova BK, Nagai Y, Ishikura H, Fujii C, Mukaida N. Pim-3, a proto-oncogene with serine/threonine kinase activity, is aberrantly expressed in human pancreatic cancer and phosphorylates bad to block bad-mediated apoptosis in human pancreatic cancer cell lines. Cancer Res 2006; 66:6741-7. [PMID: 16818649 DOI: 10.1158/0008-5472.can-05-4272] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pancreatic cancer still remains a serious health problem with <5% 5-year survival rate for all stages. To develop an effective treatment, it is necessary to identify a target molecule that is crucially involved in pancreatic tumor growth. We previously observed that Pim-3, a member of the proto-oncogene Pim family that expresses serine/threonine kinase activity, was aberrantly expressed in human and mouse hepatomas but not in normal liver. Here, we show that Pim-3 is also expressed in malignant lesions of the pancreas but not in normal pancreatic tissue. Moreover, Pim-3 mRNA and protein were constitutively expressed in all human pancreatic cancer cell lines that we examined and colocalized with the proapoptotic protein Bad. The ablation of endogenous Pim-3 by small hairpin RNA transfection promoted apoptosis, as evidenced by increases in a proportion of cells in the sub-G(1) fraction of the cell cycle and in phosphatidyl serine externalization. A proapoptotic molecule, Bad, was phosphorylated constitutively at Ser(112) but not Ser(136) in human pancreatic cancer cell lines and this phosphorylation is presumed to represent its inactive form. Phosphorylation of Bad and the expression of an antiapoptotic molecule, Bcl-X(L), were reduced by the ablation of endogenous Pim-3. Thus, we provide the first evidence that Pim-3 can inactivate Bad and maintain the expression of Bcl-X(L) and thus prevent apoptosis of human pancreatic cancer cells. This may contribute to the net increase in tumor volume or tumor growth in pancreatic cancer.
Collapse
Affiliation(s)
- Ying-Yi Li
- Division of Molecular Bioregulation and Center for Target Drug Development, Cancer Research Institute, Kanazawa University, Kanazawa 920-0934 , Japan
| | | | | | | | | | | |
Collapse
|
244
|
Ciofani M, Zúñiga-Pflücker JC. A survival guide to early T cell development. Immunol Res 2006; 34:117-32. [PMID: 16760572 DOI: 10.1385/ir:34:2:117] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/15/2022]
Abstract
The survival of immature T cell precursors is dependent on both thymus-derived extrinsic signals and self-autonomous pre-TCR-mediated signals. While the role of cytokines and the pre-TCR in promoting thymocyte survival has been well established, the relationship between pro- and anti-apoptotic signaling cascades remains poorly defined. Recent studies have established a link between cell survival and growth factor-mediated maintenance of cellular metabolism. In this regard, the Notch signaling pathway has emerged as more than an inducer of T lineage commitment and differentiation, but also as a potent trophic factor, promoting the survival and metabolic state of pre-T cells. In this review, we describe current concepts of the intracellular signaling pathways downstream of cell intrinsic and extrinsic factors that dictate survival versus death outcomes during early T cell development.
Collapse
Affiliation(s)
- Maria Ciofani
- Department of Immunology, University of Toronto, and Sunnybrook and Women's Research Institute, 2075 Bayview Ave., Toronto, Ontario, M4N 3M5 Canada
| | | |
Collapse
|
245
|
Bajaj BG, Verma SC, Lan K, Cotter MA, Woodman ZL, Robertson ES. KSHV encoded LANA upregulates Pim-1 and is a substrate for its kinase activity. Virology 2006; 351:18-28. [PMID: 16647097 DOI: 10.1016/j.virol.2006.03.037] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Revised: 02/17/2006] [Accepted: 03/24/2006] [Indexed: 11/18/2022]
Abstract
Pim kinases are proto-oncogenes that are upregulated in a number of B cell cancers, including Epstein-Barr Virus (EBV) associated Burkitt's lymphoma. They have also been shown to be upregulated in Kaposi sarcoma-associated herpes virus (KSHV) infected primary B cells. Most cells in KSHV-associated tumors are latently infected and express only a small subset of viral genes, with KSHV latency associated nuclear antigen (LANA) being constitutively expressed. LANA regulates the transcription of a large number of cellular and viral genes. Here, we show that LANA upregulates transcription from the Pim-1 promoter (pPim-1) and map this activation to a region in the promoter located within the sequence (-681 to +37). We show that LANA expressing cells can proliferate faster and are better protected from drug induced apoptosis. Since transition through cell cycle check points and anti-apoptosis are functions associated with Pim-1, it is likely that higher Pim-1 expression in cells expressing LANA is responsible, at least in part, for this effect. A Pim-1 phosphorylation site was also identified within the amino-terminal domain of LANA. Using in vitro kinase assays, we confirmed that LANA was indeed a Pim-1 substrate, and the failure of Pim-1 to phosphorylate LANA mutated at SS205/6RR identified this site as the specific serine residues phosphorylated by Pim-1. This report provides valuable insight into yet another cellular signaling pathway subverted by KSHV LANA and suggests a contribution to KSHV related oncogenesis.
Collapse
Affiliation(s)
- Bharat G Bajaj
- Department of Microbiology and the Tumor Virology Program, Abramson Comprehensive Cancer Center, University of Pennsylvania Medical School, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
246
|
Kölsch U, Arndt B, Reinhold D, Lindquist JA, Jüling N, Kliche S, Pfeffer K, Bruyns E, Schraven B, Simeoni L. Normal T-cell development and immune functions in TRIM-deficient mice. Mol Cell Biol 2006; 26:3639-48. [PMID: 16612002 PMCID: PMC1447406 DOI: 10.1128/mcb.26.9.3639-3648.2006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The transmembrane adaptor molecule TRIM is strongly expressed within thymus and in peripheral CD4(+) T cells. Previous studies suggested that TRIM is an integral component of the T-cell receptor (TCR)/CD3 complex and might be involved in regulating TCR cycling. To elucidate the in vivo function of TRIM, we generated TRIM-deficient mice by homologous recombination. TRIM(-/-) mice develop normally and are healthy and fertile. However, the animals show a mild reduction in body weight that appears to be due to a decrease in the size and/or cellularity of many organs. The morphology and anatomy of nonlymphoid as well as primary and secondary lymphoid organs is normal. The frequency of thymocyte and peripheral T-cell subsets does not differ from control littermates. In addition, a detailed analysis of lymphocyte development revealed that TRIM is not required for either positive or negative selection. Although TRIM(-/-) CD4(+) T cells showed an augmented phosphorylation of the serine/threonine kinase Akt, the in vitro characterization of peripheral T cells indicated that proliferation, survival, activation-induced cell death, migration, adhesion, TCR internalization and recycling, TCR-mediated calcium fluxes, tyrosine phosphorylation, and mitogen-activated protein family kinase activation are not affected in the absence of TRIM. Similarly, the in vivo immune response to T-dependent and T-independent antigens as well as the clinical course of experimental autoimmune encephalomyelitis, a complex Th1-mediated autoimmune model, is comparable to that of wild-type animals. Collectively, these results demonstrate that TRIM is dispensable for T-cell development and peripheral immune functions. The lack of an evident phenotype could indicate that TRIM shares redundant functions with other transmembrane adaptors involved in regulating the immune response.
Collapse
Affiliation(s)
- Uwe Kölsch
- Institute of Immunology, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
247
|
Adam M, Pogacic V, Bendit M, Chappuis R, Nawijn MC, Duyster J, Fox CJ, Thompson CB, Cools J, Schwaller J. Targeting PIM kinases impairs survival of hematopoietic cells transformed by kinase inhibitor-sensitive and kinase inhibitor-resistant forms of Fms-like tyrosine kinase 3 and BCR/ABL. Cancer Res 2006; 66:3828-35. [PMID: 16585210 DOI: 10.1158/0008-5472.can-05-2309] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previous studies have shown that activation of the signal transducer and activator of transcription 5 (STAT5) plays an essential role in leukemogenesis mediated through constitutive activated protein tyrosine kinases (PTK). Because PIM-1 is a STAT5 target gene, we analyzed the role of the family of PIM serine/threonine kinases (PIM-1 to PIM-3) in PTK-mediated transformation of hematopoietic cells. Ba/F3 cells transformed to growth factor independence by various oncogenic PTKs (TEL/JAK2, TEL/TRKC, TEL/ABL, BCR/ABL, FLT3-ITD, and H4/PDGFbetaR) show abundant expression of PIM-1 and PIM-2. Suppression of PIM-1 activity had a negligible effect on transformation. In contrast, expression of kinase-dead PIM-2 mutant (PIM-2KD) led to a rapid decline of survival in Ba/F3 cells transformed by FLT3-ITD but not by other oncogenic PTKs tested. Coexpression of PIM-1KD and PIM-2KD abrogated growth factor-independent growth of Ba/F3 transformed by several PTKs, including BCR/ABL. Targeted down-regulation of PIM-2 by RNA interference (RNAi) selectively abrogated survival of Ba/F3 cells transformed by various Fms-like tyrosine kinase 3 (FLT3)-activating mutants [internal tandem duplication (ITD) and kinase domain] and attenuated growth of human cell lines containing FLT3 mutations. Interestingly, cells transformed by FLT3 and BCR/ABL mutations that confer resistance to small-molecule tyrosine kinase inhibitors were still sensitive to knockdown of PIM-2, or PIM-1 and PIM-2 by RNAi. Our observations indicate that combined inactivation of PIM-1 and PIM-2 interferes with oncogenic PTKs and suggest that PIMs are alternative therapeutic targets in PTK-mediated leukemia. Targeting the PIM kinase family could provide a new avenue to overcome resistance against small-molecule tyrosine kinase inhibitors.
Collapse
MESH Headings
- Animals
- Cell Survival/drug effects
- Cell Survival/genetics
- Cell Survival/physiology
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Fusion Proteins, bcr-abl
- Gene Transfer Techniques
- Hematopoietic Stem Cells/enzymology
- Hematopoietic Stem Cells/pathology
- Leukemia, Experimental/drug therapy
- Leukemia, Experimental/enzymology
- Leukemia, Experimental/genetics
- Leukemia, Experimental/therapy
- Mice
- Mutation
- Protein Kinase Inhibitors/pharmacology
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/biosynthesis
- Protein Serine-Threonine Kinases/genetics
- Protein-Tyrosine Kinases/genetics
- Proto-Oncogene Proteins/antagonists & inhibitors
- Proto-Oncogene Proteins/biosynthesis
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins c-pim-1
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Small Interfering
- fms-Like Tyrosine Kinase 3/antagonists & inhibitors
- fms-Like Tyrosine Kinase 3/biosynthesis
- fms-Like Tyrosine Kinase 3/genetics
- fms-Like Tyrosine Kinase 3/physiology
Collapse
Affiliation(s)
- Myriam Adam
- Department of Pathology, Geneva Medical School, Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
248
|
Haston CK, Tomko TG, Godin N, Kerckhoff L, Hallett MT. Murine candidate bleomycin induced pulmonary fibrosis susceptibility genes identified by gene expression and sequence analysis of linkage regions. J Med Genet 2006; 42:464-73. [PMID: 15937080 PMCID: PMC1736068 DOI: 10.1136/jmg.2004.027938] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Pulmonary fibrosis is a complex disease for which the predisposing genetic variants remain unknown. In a prior study, susceptibility to bleomycin induced pulmonary fibrosis was mapped to loci Blmpf1 and Blmpf2 on chromosomes 17 and 11, respectively, in a C57BL/6J (B6, susceptible) and C3Hf/KAM (C3H, resistant) mouse cross. METHODS Herein, the genetic basis of bleomycin induced pulmonary fibrosis was investigated in an approach combining gene expression and sequencing data with previously mapped linkage intervals. RESULTS In this study, gene expression analysis with microarrays revealed 1892 genes or ESTs (expressed sequence tags) to be differentially expressed between bleomycin treated B6 and C3H mice and 67 of these genetic elements map to Blmpf1 or Blmpf2. This group included genes involved in an oxidative stress response, in apoptosis, and in immune regulation. A comparison of the B6 and C3H sequence, for Blmpf1 and Blmpf2, made using the NCBI database and available C3H sequence, revealed approximately 35% of the genes in these regions contain non-synonymous coding sequence changes. An assessment of genotype/phenotype correlation among other inbred strains revealed 36% of these B6/C3H sequence variations predict for the known bleomycin induced fibrosis susceptibility of the DBA (susceptible) and A/J (resistant) mouse strains. CONCLUSIONS Combining genomics approaches of differential gene expression and sequence variation potentially identifies approximately 5% the linked genes as fibrosis susceptibility candidate genes in this mouse cross.
Collapse
Affiliation(s)
- C K Haston
- Meakins-Christie Laboratories, Department of Medicine, McGill Centre for Bioinformatics, McGill University, Montreal, Canada.
| | | | | | | | | |
Collapse
|
249
|
Bullock AN, Debreczeni JE, Fedorov OY, Nelson A, Marsden BD, Knapp S. Structural basis of inhibitor specificity of the human protooncogene proviral insertion site in moloney murine leukemia virus (PIM-1) kinase. J Med Chem 2006; 48:7604-14. [PMID: 16302800 DOI: 10.1021/jm0504858] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The kinase PIM-1 plays a pivotal role in cytokine signaling and is implicated in the development of a number of tumors. The three-dimensional structure of PIM-1 is characterized by an unique hinge region which lacks a second hydrogen bond donor and makes it particularly important to determine how inhibitors bind to this kinase. We determined the structures of PIM-1 in complex with bisindolylmaleimide (BIM-1) and established the structure-activity relationship (SAR) for this inhibitor class. In addition, we screened a kinase targeted library and identified a number of high affinity inhibitors of PIM-1 such as imidazo[1,2-b]pyridazines, pyrazolo[1,5-a]pyrimidines, and members of the flavonoid family. In this paper we present an initial SAR of the identified scaffolds determined on the basis of a thermostability shift assay, calorimetric binding data, and biochemical assays which may find applications for the treatment of PIM-1 dependent cancer types.
Collapse
Affiliation(s)
- Alex N Bullock
- Structural Genomics Consortium (SGC), Botnar Research Centre, Oxford University, Oxford OX3 7LD, UK.
| | | | | | | | | | | |
Collapse
|
250
|
Macdonald A, Campbell DG, Toth R, McLauchlan H, Hastie CJ, Arthur JSC. Pim kinases phosphorylate multiple sites on Bad and promote 14-3-3 binding and dissociation from Bcl-XL. BMC Cell Biol 2006; 7:1. [PMID: 16403219 PMCID: PMC1368972 DOI: 10.1186/1471-2121-7-1] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Accepted: 01/10/2006] [Indexed: 11/19/2022] Open
Abstract
Background Pim-1, 2 and 3 are a group of enzymes related to the calcium calmodulin family of protein kinases. Over-expression of Pim-1 and Pim-2 in mice promotes the development of lymphomas, and up-regulation of Pim expression has been observed in several human cancers. Results Here we show that the pim kinases are constitutively active when expressed in HEK-293 cells and are able to phosphorylate the Bcl-2 family member Bad on three residues, Ser112, Ser136 and Ser155 in vitro and in cells. In vitro mapping showed that Pim-2 predominantly phosphorylated Ser112, while Pim-1 phosphorylated Ser112, but also Ser136 and Ser155 at a reduced rate compared to Ser112. Pim-3 was found to be the least specific for Ser112, and the most effective at phosphorylating Ser136 and Ser155. Pim-3 was also able to phosphorylate other sites in Bad in vitro, including Ser170, another potential in vivo site. Mutation of Ser136 to alanine prevented the phosphorylation of Ser112 and Ser155 by Pim kinases in HEK-293 cells, suggesting that this site must be phosphorylated first in order to make the other sites accessible. Pim phosphorylation of Bad was also found to promote the 14-3-3 binding of Bad and block its association with Bcl-XL. Conclusion All three Pim kinase family members predominantly phosphorylate Bad on Ser112 and in addition are capable of phosphorylating Bad on multiple sites associated with the inhibition of the pro-apoptotic function of Bad in HEK-293 cells. This would be consistent with the proposed function of Pim kinases in promoting cell proliferation and preventing cell death.
Collapse
Affiliation(s)
- Andrew Macdonald
- MRC Protein Phosphorylation Unit, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - David G Campbell
- MRC Protein Phosphorylation Unit, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Rachel Toth
- MRC Protein Phosphorylation Unit, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Hilary McLauchlan
- Division of Signal Transduction Therapy, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - C James Hastie
- Division of Signal Transduction Therapy, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - J Simon C Arthur
- MRC Protein Phosphorylation Unit, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| |
Collapse
|