201
|
Talic ES, Wooten A, Zeczycki TN, Mansfield KD. RNA Methyltransferase METTL16's Protein Domains Have Differential Functional Effects on Cell Processes. Curr Issues Mol Biol 2023; 45:5460-5480. [PMID: 37504262 PMCID: PMC10378215 DOI: 10.3390/cimb45070346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023] Open
Abstract
METTL16, a human m6A RNA methyltransferase, is currently known for its modification of U6 and MAT2A RNAs. Several studies have identified additional RNAs to which METTL16 binds, however whether METTL16 modifies these RNAs is still in question. Moreover, a recent study determined that METTL16 contains more than one RNA-binding domain, leaving the importance of each individual RNA-binding domain unknown. Here we examined the effects of mutating the METTL16 protein in certain domains on overall cell processes. We chose to mutate the N-terminal RNA-binding domain, the methyltransferase domain, and the C-terminal RNA-binding domain. With these mutants, we identified changes in RNA-binding ability, protein and RNA expression, cell cycle phase occupancy, and proliferation. From the resulting changes in RNA and protein expression, we saw effects on cell cycle, metabolism, intracellular transport, and RNA processing pathways, which varied between the METTL16 mutant lines. We also saw significant effects on the G1 and S phase occupancy times and proliferative ability with some but not all the mutants. We have therefore concluded that while METTL16 may or may not m6A-modify all RNAs it binds, its binding (or lack of) has a significant outcome on a variety of cell processes.
Collapse
Affiliation(s)
- Emily S Talic
- Biochemistry and Molecular Biology Department, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Ashley Wooten
- Mass Spectrometry Core Facility, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Tonya N Zeczycki
- Biochemistry and Molecular Biology Department, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
- Mass Spectrometry Core Facility, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Kyle D Mansfield
- Biochemistry and Molecular Biology Department, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| |
Collapse
|
202
|
Liu J. P300 increases CSNK2A1 expression which accelerates colorectal cancer progression through activation of the PI3K-AKT-mTOR axis. Exp Cell Res 2023:113694. [PMID: 37391010 DOI: 10.1016/j.yexcr.2023.113694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 06/07/2023] [Accepted: 06/22/2023] [Indexed: 07/02/2023]
Abstract
Casein kinase 2 alpha 1 (CSNK2A1) is a known oncogene, but its role in the progression of colorectal cancer (CRC) remain undefined. Here, we investigated the effects of CSNK2A1 during CRC development. In the current study, CSNK2A1 expression in the colorectal cancer cell lines (HCT116, SW480, HT29, SW620 and Lovo) vs. normal colorectal cell line (CCD841 CoN) were compared via RT-qPCR and western blotting. The role of CSNK2A1 on CRC growth and metastases were investigated through Transwell assay. Immunofluorescence analysis was used to investigate the expression of EMT-related proteins. The association between P300/H3K27ac and CSNK2A1 were analyzed using UCSC bioinformatics and Chromatin-immunoprecipitation (Ch-IP) assays. Results revealed that both the mRNA and protein levels of CSNK2A1 in HCT116, SW480, HT29, SW620 and Lovo cells were upregulated. Additionally, P300-mediated H3K27ac activation at the CSNK2A1 promoter was found to drive the increase in CSNK2A1 expression. Transwell assay showed that CSNK2A1 overexpression increased the migration and invasion of HCT116 and SW480 cells, which decreased following CSNK2A1 silencing. CSNK2A1 was also found to facilitate EMT in HCT116 cells, evidenced by the increases of N-cadherin, Snail and Vimentin expression, and loss of E-cadherin. Importantly, the levels of p-AKT-S473/AKT, p-AKT-T308/AKT, and p-mTOR/mTOR in cells overexpressing CSNK2A1 were high, but significantly decreased following CSNK2A silencing. The PI3K inhibitor BAY-806946 could reverse the increase in p-AKT-S473/AKT, p-AKT-T308/AKT, p-mTOR/mTOR induced by CSNK2A1 overexpression and suppress CRC cell migration and invasion. In conclusion, we report a positive feedback mechanism through which P300 enhances CSNK2A1 expression and accelerates CRC progression through the activation of the PI3K-AKT-mTOR axis.
Collapse
Affiliation(s)
- Jilong Liu
- Tumor Surgical Department, Beijing Chuiyangliu Hospital, No.2, Chuiyangliu South Street, Chaoyang District, Beijing, 100022, China.
| |
Collapse
|
203
|
Zheng W, Wang M, Chai X, Pan F, Xu M, Wang Y, Lan L, Hu F, Zhang Z, Chen Z. Targeted metabolomics analysis of nucleosides and the identification of biomarkers for colorectal adenomas and colorectal cancer. Front Mol Biosci 2023; 10:1163089. [PMID: 37441164 PMCID: PMC10334214 DOI: 10.3389/fmolb.2023.1163089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/29/2023] [Indexed: 07/15/2023] Open
Abstract
The morbidity and mortality of colorectal cancer (CRC) have been increasing in recent years, and early detection of CRC can improve the survival rate of patients. RNA methylation plays crucial roles in many biological processes and has been implicated in the initiation of various diseases, including cancer. Serum contains a variety of biomolecules and is an important clinical sample for biomarker discovery. In this study, we developed a targeted metabolomics method for the quantitative analysis of nucleosides in human serum samples by using liquid chromatography with tandem mass spectrometry (LC-MS/MS). We successfully quantified the concentrations of nucleosides in serum samples from 51 healthy controls, 37 patients with colorectal adenomas, and 55 patients with CRC. The results showed that the concentrations of N 6-methyladenosine (m6A), N 1-methyladenosine (m1A), and 3-methyluridine (m3U) were increased in patients with CRC, whereas the concentrations of N 2-methylguanosine (m2G), 2'-O-methyluridine (Um), and 2'-O-methylguanosine (Gm) were decreased in patients with CRC, compared with the healthy controls and patients with colorectal adenomas. Moreover, the levels of 2'-O-methyluridine and 2'-O-methylguanosine were lower in patients with colorectal adenomas than those in healthy controls. Interestingly, the levels of Um and Gm gradually decreased in the following order: healthy controls to colorectal adenoma patients to CRC patients. These results revealed that the aberrations of these nucleosides were tightly correlated to colorectal adenomas and CRC. In addition, the present work will stimulate future investigations about the regulatory roles of these nucleosides in the initiation and development of CRC.
Collapse
Affiliation(s)
- Weifang Zheng
- Lanxi Hospital of Traditional Chinese Medicine, Jinhua, China
| | - Mingwei Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| | | | - Fuzhen Pan
- Lanxi Hospital of Traditional Chinese Medicine, Jinhua, China
| | - Meihui Xu
- Lanxi Hospital of Traditional Chinese Medicine, Jinhua, China
| | - Yingchen Wang
- Lanxi Hospital of Traditional Chinese Medicine, Jinhua, China
| | | | - Feiran Hu
- Lanxi Hospital of Traditional Chinese Medicine, Jinhua, China
| | - Zhe Zhang
- Lanxi Red Cross Hospital, Jinhua, China
| | - Zhu Chen
- Lanxi Hospital of Traditional Chinese Medicine, Jinhua, China
| |
Collapse
|
204
|
Zhang Z, Fu J, Zhang Y, Qin X, Wang Y, Xing C. METTL3 regulates N6-methyladenosine modification of ANGPTL3 mRNA and potentiates malignant progression of stomach adenocarcinoma. BMC Gastroenterol 2023; 23:217. [PMID: 37344779 PMCID: PMC10283274 DOI: 10.1186/s12876-023-02844-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/01/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) is associated with mammalian mRNA biogenesis, decay, translation and metabolism, and also contributes greatly to gastrointestinal tumor formation and development. Therefore, the specific mechanisms and signaling pathways mediated by methyltransferase-like 3 (METTL3), which catalyzes the formation of m6A chemical labeling in stomach adenocarcinoma (STAD), are still worth exploring. METHODS Quantitative real-time PCR (qRT-PCR) was constructed to detect the expression of METTL3 in gastric cancer cell lines and patient tissues. The biological function of METTL3 was investigated in vitro/in vivo by Cell Counting Kit-8, colony formation assay, Transwell assay and nude mouse tumorigenesis assay. Based on the LinkedOmics database, the genes co-expressed with METTL3 in the TCGA STAD cohort were analyzed to clarify the downstream targets of METTL3. Methylated RNA immunoprecipitation-qPCR (MeRIP-qPCR) and RNA stability analysis were employed to explore the mechanism of METTL3 in gastric cancer progression. RESULTS We analyzed TCGA data and found that METTL3 was frequently elevated in STAD, and demonstrated that METTL3 was present at high levels in clinical STAD tissues and cells. High METTL3 expression was more likely to have advanced TNM tumors and distant metastasis. On the other hand, METTL3 silencing effectively impeded the higher oncogenic capacity of AGS and HGC27 cells in vivo and in vitro, as reflected by slowed cell growth and diminished migration and invasion capacities. Continued mining of the TCGA dataset identified the co-expression of angiopoietin-like 3 (ANGPTL3) and METTL3 in STAD. Lower level of ANGPTL3 was related to increased level of METTL3 in STAD samples and shorter survival times in STAD patients. ANGPTL3 enrichment limited the growth and metastasis of STAD cells. Besides, ANGPTL3 mRNA levels could be decreased by METTL3-dominated m6A modifications, a result derived from a combination of MeRIP-qPCR and RNA half-life experiments. Importantly, the inhibitory effect of METTL3 silencing on cancer could be reversed to some extent by ANGPTL3 inhibition. CONCLUSIONS Overall, our findings suggested that METTL3 functioned an oncogenic role in STAD by reducing ANGPTL3 expression in an m6A-dependent manner. The discovery of the METTL3-ANGPTL3 axis and its effect on STAD tumor growth will contribute to further studies on the mechanisms of gastric adenocarcinoma development.
Collapse
Affiliation(s)
- Zhijin Zhang
- Department of General Surgery, the Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | - Jun Fu
- Department of General Surgery, Shanghai Eighth People Hospital, Shanghai, 200235, China
| | - Yuhao Zhang
- Department of General Surgery, Shanghai Eighth People Hospital, Shanghai, 200235, China
| | - Xianju Qin
- Department of General Surgery, Shanghai Eighth People Hospital, Shanghai, 200235, China
| | - Yuexia Wang
- Department of General Surgery, Shanghai Eighth People Hospital, Shanghai, 200235, China
| | - Chungen Xing
- Department of General Surgery, the Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou, 215004, Jiangsu, China.
| |
Collapse
|
205
|
Wei W, Zhang ZY, Shi B, Cai Y, Zhang HS, Sun CL, Fei YF, Zhong W, Zhang S, Wang C, He B, Jiang GM, Wang H. METTL16 promotes glycolytic metabolism reprogramming and colorectal cancer progression. J Exp Clin Cancer Res 2023; 42:151. [PMID: 37340443 PMCID: PMC10280857 DOI: 10.1186/s13046-023-02732-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/08/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Glycolysis is the key hallmark of cancer and maintains malignant tumor initiation and progression. The role of N6-methyladenosine (m6A) modification in glycolysis is largely unknown. This study explored the biological function of m6A methyltransferase METTL16 in glycolytic metabolism and revealed a new mechanism for the progression of Colorectal cancer (CRC). METHODS The expression and prognostic value of METTL16 was evaluated using bioinformatics and immunohistochemistry (IHC) assays. The biological functions of METTL16 in CRC progression was analyzed in vivo and in vitro. Glycolytic metabolism assays were used to verify the biological function of METTL16 and Suppressor of glucose by autophagy (SOGA1). The protein/RNA stability, RNA immunoprecipitation (RIP), Co-immunoprecipitation (Co-IP) and RNA pull-down assays were used to explore the potential molecular mechanisms. RESULTS SOGA1 is a direct downstream target of METTL16 and involved in METTL16 mediated glycolysis and CRC progression. METTL16 significantly enhances SOGA1 expression and mRNA stability via binding the "reader" protein insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1). Subsequently, SOGA1 promotes AMP-activated protein kinase (AMPK) complex ubiquitination, inhibits its expression and phosphorylation, thus upregulates pyruvate dehydrogenase kinase 4 (PDK4), a crucial protein controlling glucose metabolism. Moreover, Yin Yang 1 (YY1) can transcriptionally inhibit the expression of METTL16 in CRC cells by directly binding to its promoter. Clinical data showed that METTL16 expression is positively correlated to SOGA1 and PDK4, and is associated with poor prognosis of CRC patients. CONCLUSIONS Our findings suggest that METTL16/SOGA1/PDK4 axis might be promising therapeutic targets for CRC.
Collapse
Affiliation(s)
- Wei Wei
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Zhong-Yuan Zhang
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Bin Shi
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yike Cai
- Center for Certification and Evaluation, Guangdong Drug Administration, Guangzhou, China
| | - Hou-Shun Zhang
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chun-Lei Sun
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yun-Fei Fei
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Wen Zhong
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shuang Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Chen Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Bing He
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Guan-Min Jiang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.
| | - Hao Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China.
| |
Collapse
|
206
|
Wan D, He L, Guo C, Zhong Z, Yan X, Cao J, Xu Q, Zhang H, Duan B. m6A-related lncRNAs predict prognosis and indicate cell cycle in gastric cancer. Front Genet 2023; 14:1140218. [PMID: 37408779 PMCID: PMC10319253 DOI: 10.3389/fgene.2023.1140218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/11/2023] [Indexed: 07/07/2023] Open
Abstract
Background: N6-methyladenosine (m6A) modification is a common epigenetic methylation modification of RNA, which plays an important role in gastric carcinogenesis and progression by regulating long non-coding RNA (lncRNA). This study is aimed to investigate the potential prognostic signatures of m6A -related lncRNAs in STAD. Methods: The m6A-related lncRNAs with the most significant impact on gastric cancer prognosis in the TCGA database were identified by bioinformatics and machine learning methods. The m6A-related lncRNA prognostic model (m6A-LPS) and nomogram was constructed by Cox regression analysis with the minimum absolute contraction and selection operator (LASSO) algorithm. The functional enrichment analysis of m6A-related lncRNAs was also investigated. The miRTarBase, miRDB and TargetScan databases were utilized to establish a prognosis-related network of competing endogenous RNA (ceRNA) by bioinformatics methods. The correlation of AL391152.1 expressions and cell cycle were experimentally testified by qRT-PCR and flow cytometry. Results: In total, 697 lncRNAs that were identified as m6A-related lncRNAs in GC samples. The survival analysis showed that 18 lncRNAs demonstrated prognostic values. A risk model with 11 lncRNAs was established by Lasso Cox regression, and can predict the prognosis of GC patients. Cox regression analysis and ROC curve indicated that this lncRNA prediction model was an independent risk factor for survival rates. Functional enrichment analysis and ceRNA network revealed that the nomogram was notably associated with cell cycle. qRT-PCR and flow cytometry revealed that downregulation of GC m6A-related lncRNA AL391152.1 could decrease cyclins expression in SGC7901 cells. Conclusion: A m6A-related lncRNAs prognostic model was established in this study, which can be applied to predict prognosis and cell cycle in gastric cancer.
Collapse
Affiliation(s)
- Dong Wan
- Endoscopy Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lingnan He
- Endoscopy Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Cheng Guo
- Endoscopy Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zishao Zhong
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xiaohan Yan
- Endoscopy Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jia Cao
- Endoscopy Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qinwei Xu
- Endoscopy Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haibin Zhang
- Endoscopy Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bensong Duan
- Endoscopy Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
207
|
Wang E, Li Y, Li H, Liu Y, Ming R, Wei J, Du P, Li X, Zong S, Xiao H. METTL3 Reduces Oxidative Stress-induced Apoptosis in Presbycusis by Regulating the N6-methyladenosine Level of SIRT1 mRNA. Neuroscience 2023; 521:110-122. [PMID: 37087022 DOI: 10.1016/j.neuroscience.2023.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 04/24/2023]
Abstract
N6-methyl adenosine (m6A) modification is known to play a crucial role in various aging-related diseases. However, its involvement in presbycusis, a type of age-related hearing loss, is not yet clear. We examined the changes in oxidative stress levels in both plasma of presbycusis patients and mice. To determine the expression of m6A and its functional enzymes, we used liquid chromatography tandem-mass spectrometry (LC-MS/MS), enzyme-linked immunosorbent assay (ELISA), and RT-PCR to analyze the total RNA of presbycusis patients blood cells (n = 8). Additionally, we detected the expression of m6A functional enzymes in the cochlea of presbycusis mice using immunohistochemistry. We assessed the effects of m6A methyltransferase METTL3 on SIRT1 protein expression, reactive oxygen species (ROS) levels, and apoptosis in an oxidative stress model of organ of Corti 1 (OC1) cells. To observe the effect on SIRT1 protein expression, we interfered with the m6A recognition protein IGF2BP3 using siRNA. In both presbycusis patients and mice, there was an increased level of oxidative stress in plasma.There was a decrease in the expression of m6A, METTL3, and IGF2BP3 in presbycusis patients blood cells. The expression of METTL3 and IGF2BP3 was also reduced in the cochlea of presbycusis mice. In OC1 cells, METTL3 positively regulated SIRT1 protein levels, while reversely regulated the level of ROS and apoptosis. IGF2BP3 was found to be involved in the regulation of SIRT1 protein expression. In addition, METTL3 may play a protective role in oxidative stress-induced injury of OC1 cells, while both METTL3 and IGF2BP3 cooperatively regulate the level of m6A and the fate of SIRT1 mRNA in OC1 cells.
Collapse
Affiliation(s)
- Enhao Wang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Li
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Hejie Li
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingzhao Liu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruijie Ming
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Wei
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peiyu Du
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangrui Li
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shimin Zong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Hongjun Xiao
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
208
|
Li Z, Zhang X, Weng W, Zhang G, Ren Q, Tian Y. Cross-talk of RNA modification "writers" describes tumor stemness and microenvironment and guides personalized immunotherapy for gastric cancer. Aging (Albany NY) 2023; 15:5445-5481. [PMID: 37319315 PMCID: PMC10333070 DOI: 10.18632/aging.204802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/27/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND RNA modifications, TME, and cancer stemness play significant roles in tumor development and immunotherapy. The study investigated cross-talk and RNA modification roles in the TME, cancer stemness, and immunotherapy of gastric cancer (GC). METHODS We applied an unsupervised clustering method to distinguish RNA modification patterns in GC. GSVA and ssGSEA algorithms were applied. The WM_Score model was constructed for evaluating the RNA modification-related subtypes. Also, we conducted an association analysis between the WM_Score and biological and clinical features in GC and explored the WM_Score model's predictive value in immunotherapy. RESULTS We identified four RNA modification patterns with diverse survival and TME features. One pattern consistent with the immune-inflamed tumor phenotype showed a better prognosis. Patients in WM_Score high group were related to adverse clinical outcomes, immune suppression, stromal activation, and enhanced cancer stemness, while WM_Score low group showed opposite results. The WM_Score was correlated with genetic, epigenetic alterations, and post-transcriptional modifications in GC. Low WM_Score was related to enhanced efficacy of anti-PD-1/L1 immunotherapy. CONCLUSIONS We revealed the cross-talk of four RNA modification types and their functions in GC, providing a scoring system for GC prognosis and personalized immunotherapy predictions.
Collapse
Affiliation(s)
- Zhuoqi Li
- Radiotherapy Department, Shandong Second Provincial General Hospital, Shandong University, Jinan, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Peking University, Beijing, China
| | - Xuehong Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Peking University, Beijing, China
| | - Wenjie Weng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Peking University, Beijing, China
| | - Ge Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Peking University, Beijing, China
| | - Qianwen Ren
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Peking University, Beijing, China
| | - Yuan Tian
- Radiotherapy Department, Shandong Second Provincial General Hospital, Shandong University, Jinan, China
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
| |
Collapse
|
209
|
Han S, Tian Z, Tian H, Han H, Zhao J, Jiao Y, Wang C, Hao H, Wang S, Fu J, Xue D, Sun H, Li P. HDGF promotes gefitinib resistance by activating the PI3K/AKT and MEK/ERK signaling pathways in non-small cell lung cancer. Cell Death Discov 2023; 9:181. [PMID: 37301856 DOI: 10.1038/s41420-023-01476-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Hepatoma-derived growth factor (HDGF) expression is associated with poor prognosis in non-small cell lung cancer (NSCLC); however, whether HDGF affects gefitinib resistance in NSCLC remains unknown. This study aimed to explore the role of HDGF in gefitinib resistance in NSCLC and to discover the underlying mechanisms. Stable HDGF knockout or overexpression cell lines were generated to perform experiments in vitro and in vivo. HDGF concentrations were determined using an ELISA kit. HDGF overexpression exacerbated the malignant phenotype of NSCLC cells, while HDGF knockdown exerted the opposite effects. Furthermore, PC-9 cells, which were initially gefitinib-sensitive, became resistant to gefitinib treatment after HDGF overexpression, whereas HDGF knockdown enhanced gefitinib sensitivity in H1975 cells, which were initially gefitinib-resistant. Higher levels of HDGF in plasma or tumor tissue also indicated gefitinib resistance. The effects of HDGF on promoting the gefitinib resistance were largely attenuated by MK2206 (Akt inhibitor) or U0126 (ERK inhibitor). Mechanistically, gefitinib treatment provoked HDGF expression and activated the Akt and ERK pathways, which were independent of EGFR phosphorylation. In summary, HDGF contributes to gefitinib resistance by activating the Akt and ERK signaling pathways. The higher HDGF levels may predict poor efficacy for TKI treatment, thus it has the potential to serve as a new target for overcoming tyrosine kinase inhibitor resistance in combating NSCLC.
Collapse
Affiliation(s)
- Shuyan Han
- Department of Integration of Chinese and Western Medicine, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Zhihua Tian
- Central Laboratory, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Huifang Tian
- Central Laboratory, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Haibo Han
- The Tissue Bank, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jun Zhao
- Department of Thoracic Medical Oncology, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Yanna Jiao
- Department of Integration of Chinese and Western Medicine, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Chunli Wang
- Department of Oncology, Infectious Disease Hospital of Heilongjiang Province, Harbin, 150030, China
| | - Huifeng Hao
- Department of Integration of Chinese and Western Medicine, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Shan Wang
- Department of Integration of Chinese and Western Medicine, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jialei Fu
- Department of Integration of Chinese and Western Medicine, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Dong Xue
- Department of Integration of Chinese and Western Medicine, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Hong Sun
- Department of Integration of Chinese and Western Medicine, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Pingping Li
- Department of Integration of Chinese and Western Medicine, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|
210
|
Xu X, Ma L, Zhang X, Guo S, Guo W, Wang Y, Qiu S, Tian X, Miao Y, Yu Y, Wang J. A positive feedback circuit between RN7SK snRNA and m 6A readers is essential for tumorigenesis. Mol Ther 2023; 31:1615-1635. [PMID: 36566349 PMCID: PMC10277899 DOI: 10.1016/j.ymthe.2022.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/29/2022] [Accepted: 12/20/2022] [Indexed: 12/26/2022] Open
Abstract
N6-Methyladenosine (m6A) RNA modification, methylation at the N6 position of adenosine, plays critical roles in tumorigenesis. m6A readers recognize m6A modifications and thus act as key executors for the biological consequences of RNA methylation. However, knowledge about the regulatory mechanism(s) of m6A readers is extremely limited. In this study, RN7SK was identified as a small nuclear RNA that interacts with m6A readers. m6A readers recognized and facilitated secondary structure formation of m6A-modified RN7SK, which in turn prevented m6A reader mRNA degradation from exonucleases. Thus, a positive feedback circuit between RN7SK and m6A readers is established in tumor cells. From findings on the interaction with RN7SK, new m6A readers, such as EWS RNA binding protein 1 (EWSR1) and KH RNA binding domain containing, signal transduction-associated 1 (KHDRBS1), were identified and shown to boost Wnt/β-catenin signaling and tumorigenesis by suppressing translation of Cullin1 (CUL1). Moreover, several Food and Drug Administration-approved small molecules were demonstrated to reduce RN7SK expression and inhibit tumorigenesis. Together, these findings reveal a common regulatory mechanism of m6A readers and indicate that targeting RN7SK has strong potential for tumor treatment.
Collapse
Affiliation(s)
- Xin Xu
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241, West Huaihai Rd, Shanghai 200030, China; Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241, West Huaihai Rd, Shanghai 200030, China
| | - Lifang Ma
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241, West Huaihai Rd, Shanghai 200030, China
| | - Xiao Zhang
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241, West Huaihai Rd, Shanghai 200030, China
| | - Susu Guo
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241, West Huaihai Rd, Shanghai 200030, China
| | - Wanxin Guo
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241, West Huaihai Rd, Shanghai 200030, China
| | - Yikun Wang
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241, West Huaihai Rd, Shanghai 200030, China
| | - Shiyu Qiu
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241, West Huaihai Rd, Shanghai 200030, China; Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241, West Huaihai Rd, Shanghai 200030, China
| | - Xiaoting Tian
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241, West Huaihai Rd, Shanghai 200030, China
| | - Yayou Miao
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241, West Huaihai Rd, Shanghai 200030, China
| | - Yongchun Yu
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241, West Huaihai Rd, Shanghai 200030, China
| | - Jiayi Wang
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241, West Huaihai Rd, Shanghai 200030, China; Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241, West Huaihai Rd, Shanghai 200030, China; College of Medical Technology, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin ER Rd, Shanghai 200025, China.
| |
Collapse
|
211
|
Zhu TY, Hong LL, Ling ZQ. Oncofetal protein IGF2BPs in human cancer: functions, mechanisms and therapeutic potential. Biomark Res 2023; 11:62. [PMID: 37280679 PMCID: PMC10245617 DOI: 10.1186/s40364-023-00499-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023] Open
Abstract
N6-methyladenosine (m6A) is the most prevalent and well-characterized internal chemical modification in eukaryotic RNA, influencing gene expression and phenotypic changes by controlling RNA fate. Insulin-like growth factor-2 mRNA-binding proteins (IGF2BPs) preferentially function as m6A effector proteins, promoting stability and translation of m6A-modified RNAs. IGF2BPs, particularly IGF2BP1 and IGF2BP3, are widely recognized as oncofetal proteins predominantly expressed in cancer rather than normal tissues, playing a critical role in tumor initiation and progression. Consequently, IGF2BPs hold potential for clinical applications and serve as a good choice for targeted treatment strategies. In this review, we discuss the functions and mechanisms of IGF2BPs as m6A readers and explore the therapeutic potential of targeting IGF2BPs in human cancer.
Collapse
Affiliation(s)
- Tian-Yu Zhu
- Zhejiang Cancer Hospital, Hangzhou, 310022, Zhejiang, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, Zhejiang, China
- The Second School of Clinical Medicine, Wenzhou Medical University, No.109 Xueyuan West Road, Wenzhou, 325027 Zhejiang, China
- Jinhua People's Hospital, No.267 Danxi East Road, Jinhua, 321000 Zhejiang, China
| | - Lian-Lian Hong
- Zhejiang Cancer Hospital, Hangzhou, 310022, Zhejiang, China
| | - Zhi-Qiang Ling
- Zhejiang Cancer Hospital, Hangzhou, 310022, Zhejiang, China.
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, Zhejiang, China.
- The Second School of Clinical Medicine, Wenzhou Medical University, No.109 Xueyuan West Road, Wenzhou, 325027 Zhejiang, China.
| |
Collapse
|
212
|
Li N, Wei J, Zhang Q, Zhang Q, Liu B. Methyltransferase-like 3 enhances cell proliferation and cisplatin resistance in natural killer/T-cell lymphoma through promoting N6-methyladenosine modification and the stability of staphylococcal nuclease and Tudor domain-containing protein 1 mRNA. Anticancer Drugs 2023; 34:627-639. [PMID: 36730541 DOI: 10.1097/cad.0000000000001433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nasal-type natural killer/T-cell lymphoma (NKTCL) is a typical class of non-Hodgkin's lymphoma, which is quite malignant because of its high resistance to chemotherapy. N6-methyladenosine (m6A) modification, a prevalent modification of eukaryotic RNA, was emerging as an important regulatory mechanism in progression of various tumors. Here, we demonstrated that methyltransferase-like 3 (METTL3), an RNA methyltransferase, was obviously upregulated in human NKTCL cell lines (NK-92, YTS, SNT-8, and SNK-6) compared with normal NK cells. Knockdown of METTL3 noticeably repressed proliferation and facilitated apoptosis in SNT-8 cells, whereas overexpression of METTL3 showed opposite results in SNK-6 cells. In the mechanism exploration, we found that METTL3 stimulated the m6A modification of staphylococcal nuclease and Tudor domain-containing protein 1 (SND1) mRNA, recruited YTH m6A RNA binding protein 1 to recognize the m6A site, thereby enhancing its mRNA stability. Rescue experiments demonstrated that METTL3 significantly prohibited NKTCL cell chemotherapy sensitivity to cisplatin (DDP) through regulating SND1 expression. Furthermore, knockdown of SND1 suppressed tumor growth and reduced DDP resistance in vivo . Taken together, our findings uncovered the role of METTL3 in the regulation of chemotherapy resistance in NKTCL oncogenesis.
Collapse
Affiliation(s)
- Na Li
- Department of Ultrasound, Xi'an Children's Hospital, Xi'an, China
| | | | | | | | | |
Collapse
|
213
|
Xu P, Yang J, Chen Z, Zhang X, Xia Y, Wang S, Wang W, Xu Z. N6-methyladenosine modification of CENPF mRNA facilitates gastric cancer metastasis via regulating FAK nuclear export. Cancer Commun (Lond) 2023; 43:685-705. [PMID: 37256823 PMCID: PMC10259669 DOI: 10.1002/cac2.12443] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/23/2023] [Accepted: 05/16/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND N6-methyladenosine (m6 A) modification is the most common modification that occurs in eukaryotes. Although substantial effort has been made in the prevention and treatment of gastric cancer (GC) in recent years, the prognosis of GC patients remains unsatisfactory. The regulatory mechanism between m6 A modification and GC development needs to be elucidated. In this study, we examined m6 A modification and the downstream mechanism in GC. METHODS Dot blotting assays, The Cancer Genome Atlas analysis, and quantitative real-time PCR (qRT-PCR) were used to measure the m6 A levels in GC tissues. Methylated RNA-immunoprecipitation sequencing and RNA sequencing were performed to identify the targets of m6 A modification. Western blotting, Transwell, wound healing, and angiogenesis assays were conducted to examine the role of centromere protein F (CENPF) in GC in vitro. Xenograft, immunohistochemistry, and in vivo metastasis experiments were conducted to examine the role of CENPF in GC in vivo. Methylated RNA-immunoprecipitation-qPCR, RNA immunoprecipitation-qPCR and RNA pulldown assays were used to verify the m6 A modification sites of CENPF. Gain/loss-of-function and rescue experiments were conducted to determine the relationship between CENPF and the mitogen-activated protein kinase (MAPK) signaling pathway in GC cells. Coimmunoprecipitation, mass spectrometry, qRT-PCR, and immunofluorescence assays were performed to explore the proteins that interact with CENPF and elucidate the regulatory mechanisms between them. RESULTS CENPF was upregulated in GC and facilitated the metastasis of GC both in vitro and in vivo. Mechanistically, increased m6 A modification of CENPF was mediated by methyltransferase 3, and this modified molecule could be recognized by heterogeneous nuclear ribonucleoprotein A2/B1 (HNRNPA2B1), thereby promoting its mRNA stability. In addition, the metastatic phenotype of CENPF was dependent on the MAPK signaling pathway. Furthermore, CENPF could bind to FAK and promote its localization in the cytoplasm. Moreover, we discovered that high expression of CENPF was related to lymphatic invasion and overall survival in GC patients. CONCLUSIONS Our findings revealed that increased m6 A modification of CENPF facilitates the metastasis and angiogenesis of GC through the CENPF/FAK/MAPK and epithelial-mesenchymal transition axis. CENPF expression was correlated with the clinical features of GC patients; therefore, CENPF may serve as a prognostic marker of GC.
Collapse
Affiliation(s)
- Penghui Xu
- Department of General Surgerythe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuP. R. China
| | - Jing Yang
- Department of General Surgerythe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuP. R. China
| | - Zetian Chen
- Department of General Surgerythe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuP. R. China
| | - Xing Zhang
- Department of General Surgerythe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuP. R. China
| | - Yiwen Xia
- Department of General Surgerythe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuP. R. China
| | - Sen Wang
- Department of General Surgerythe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuP. R. China
| | - Weizhi Wang
- Department of General Surgerythe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuP. R. China
| | - Zekuan Xu
- Department of General Surgerythe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuP. R. China
- Collaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjingJiangsuP. R. China
- Jiangsu Key Lab of Cancer BiomarkersPrevention and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjingJiangsuP. R. China
| |
Collapse
|
214
|
Li C, Zhu M, Wang J, Wu H, Liu Y, Huang D. Role of m6A modification in immune microenvironment of digestive system tumors. Biomed Pharmacother 2023; 164:114953. [PMID: 37269812 DOI: 10.1016/j.biopha.2023.114953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/21/2023] [Accepted: 05/27/2023] [Indexed: 06/05/2023] Open
Abstract
Digestive system tumors are huge health problem worldwide, largely attributable to poor dietary choices. The role of RNA modifications in cancer development is an emerging field of research. RNA modifications are associated with the growth and development of various immune cells, which, in turn, regulate the immune response. The majority of RNA modifications are methylation modifications, and the most common type is the N6-methyladenosine (m6A) modification. Here, we reviewed the molecular mechanism of m6A in the immune cells and the role of m6A in the digestive system tumors. However, further studies are required to better understand the role of RNA methylation in human cancers for designing diagnostic and treatment strategies and predicting the prognosis of patients.
Collapse
Affiliation(s)
- Chao Li
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Mengqi Zhu
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Jiajia Wang
- Department of Health Management, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Hengshuang Wu
- Department of Gynecological Pelvis Floor Reconstruction Ward, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Yameng Liu
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Di Huang
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan, China.
| |
Collapse
|
215
|
Liu X, Chen J, Chen W, Xu Y, Shen Y, Xu X. Targeting IGF2BP3 in Cancer. Int J Mol Sci 2023; 24:ijms24119423. [PMID: 37298373 DOI: 10.3390/ijms24119423] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
RNA-binding proteins (RBPs) can regulate multiple pathways by binding to RNAs, playing a variety of functions, such as localization, stability, and immunity. In recent years, with the development of technology, researchers have discovered that RBPs play a key role in the N6-methyladenosine (m6A) modification process. M6A methylation is the most abundant form of RNA modification in eukaryotes, which is defined as methylation on the sixth N atom of adenine in RNA. Insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) is one of the components of m6A binding proteins, which plays an important role in decoding m6A marks and performing various biological functions. IGF2BP3 is abnormally expressed in many human cancers, often associated with poor prognosis. Here, we summarize the physiological role of IGF2BP3 in organisms and describe its role and mechanism in tumors. These data suggest that IGF2BP3 may be a valuable therapeutic target and prognostic marker in the future.
Collapse
Affiliation(s)
- Xin Liu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jiayu Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Wenliang Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yangtao Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yang Shen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ximing Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
216
|
Zhang L, Xu X, Su X. Modifications of noncoding RNAs in cancer and their therapeutic implications. Cell Signal 2023:110726. [PMID: 37230201 DOI: 10.1016/j.cellsig.2023.110726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/06/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
In the last 50 years, over 150 various chemical modifications on RNA molecules, including mRNAs, rRNAs, tRNAs, and other noncoding RNAs (ncRNAs), have been identified and characterized. These RNA modifications regulate RNA biogenesis and biological functions and are widely involved in various physiological processes and diseases, including cancer. In recent decades, broad interest has arisen in the epigenetic modification of ncRNAs due to the increased knowledge of the critical roles of ncRNAs in cancer. In this review, we summarize the various modifications of ncRNAs and highlight their roles in cancer initiation and progression. In particular, we discuss the potential of RNA modifications as novel biomarkers and therapeutic targets in cancer.
Collapse
Affiliation(s)
- Le Zhang
- Center for Reproductive Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia, China
| | - Xiaonan Xu
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612-9497, USA
| | - Xiulan Su
- Clinical Medical Research Center, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia, China.
| |
Collapse
|
217
|
Xia A, Yue Q, Zhu M, Xu J, Liu S, Wu Y, Wang Z, Xu Z, An H, Wang Q, Wang S, Sun B. The cancer-testis lncRNA LINC01977 promotes HCC progression by interacting with RBM39 to prevent Notch2 ubiquitination. Cell Death Discov 2023; 9:169. [PMID: 37198207 PMCID: PMC10192213 DOI: 10.1038/s41420-023-01459-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/19/2023] Open
Abstract
Cancer-testis genes are involved in the occurrence and development of cancer, but the role of cancer-testis-associated lncRNAs (CT-lncRNAs) in hepatocellular carcinoma (HCC) remains to be explored. Here, we discovered a novel CT-lncRNA, LINC01977, based on the Genotype-Tissue Expression (GTEx) and The Cancer Genome Atlas (TCGA) databases. LINC01977 was exclusively expressed in testes and highly expressed in HCC. High LINC01977 levels correlated with poorer overall survival (OS) in individuals with HCC. Functional assays showed that LINC01977 promoted HCC growth and metastasis in vitro and in vivo. Mechanistically, LINC01977 directly bound to RBM39 to promote the further entry of Notch2 into the nucleus, thereby preventing the ubiquitination and degradation of Notch2. Furthermore, the RNA binding protein IGF2BP2, one of the m6A modification readers, enhanced the stability of LINC01977, resulting in its high level in HCC. Therefore, the data suggest that LINC01977 interacts with RBM39 and promotes the progression of HCC by inhibiting Notch2 ubiquitination and degradation, indicating that LINC01977 may be a potential biomarker and therapeutic target for HCC patients.
Collapse
Affiliation(s)
- Anliang Xia
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qi Yue
- Nanjing Drum Tower Hospital, Clinical College of Jiangsu University, Nanjing, China
| | - Mingming Zhu
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jianbo Xu
- Department of Hepatobiliary Surgery, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Siyuan Liu
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yue Wu
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhangding Wang
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhu Xu
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Hongda An
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qiang Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Shouyu Wang
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
- Nanjing Drum Tower Hospital, Clinical College of Jiangsu University, Nanjing, China.
| |
Collapse
|
218
|
Xu Y, Zhang Y, Luo Y, Qiu G, Lu J, He M, Wang Y. Novel insights into the METTL3-METTL14 complex in musculoskeletal diseases. Cell Death Discov 2023; 9:170. [PMID: 37202385 DOI: 10.1038/s41420-023-01435-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 05/20/2023] Open
Abstract
N6-methyladenosine (m6A) modification, catalyzed by methyltransferase complexes (MTCs), plays many roles in multifaceted biological activities. As the most important subunit of MTCs, the METTL3-METTL14 complex is reported to be the initial factor that catalyzes the methylation of adenosines. Recently, accumulating evidence has indicated that the METTL3-METTL14 complex plays a key role in musculoskeletal diseases in an m6A-dependent or -independent manner. Although the functions of m6A modifications in a variety of musculoskeletal diseases have been widely recognized, the critical role of the METTL3-METTL14 complex in certain musculoskeletal disorders, such as osteoporosis, osteoarthritis, rheumatoid arthritis and osteosarcoma, has not been systematically revealed. In the current review, the structure, mechanisms and functions of the METTL3-METTL14 complex and the mechanisms and functions of its downstream pathways in the aforementioned musculoskeletal diseases are categorized and summarized.
Collapse
Affiliation(s)
- Yeqiu Xu
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, 110024, Shenyang, Liaoning, People's Republic of China
| | - Yuanzhuang Zhang
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, 110024, Shenyang, Liaoning, People's Republic of China
| | - Yinzhou Luo
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, 110024, Shenyang, Liaoning, People's Republic of China
| | - Guanzhen Qiu
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, 110024, Shenyang, Liaoning, People's Republic of China
| | - Jie Lu
- Department of Cardiology, Shenyang Fourth People's Hospital, China Medical University, 110031, Shenyang, Liaoning, People's Republic of China
| | - Ming He
- Department of Orthopedics, Shengjing Hospital of China Medical University, 110004, Shenyang, Liaoning, People's Republic of China
| | - Yong Wang
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, 110024, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
219
|
Li X, Zhou Y, Jiang Q, Huang J, Liu Z, Li Y, Guo G. A novel scoring model based on RNA modification "writers" can predict the prognosis and guide immunotherapy in gastric cancer. Funct Integr Genomics 2023; 23:162. [PMID: 37188931 DOI: 10.1007/s10142-023-01098-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/02/2023] [Accepted: 05/11/2023] [Indexed: 05/17/2023]
Abstract
Although extensive research has been carried out on the epigenetic regulation of single RNA modifications in gastric cancer, little is known regarding the crosstalk of four major RNA adenosine modifications, namely, m6A, m1A, alternative polyadenylation and adenosine-to-inosine RNA editing. By analyzing 26 RNA modification "writers" in 1750 gastric cancer samples, we creatively constructed a scoring model called the "Writers" of the RNA Modification Score (WRM_Score), which was able to quantify the RNA modification subtypes of individual patients. In addition, we explored the relationship between WRM_Score and transcriptional and posttranscriptional regulation, tumor microenvironment, clinical features and molecular subtypes. We constructed an RNA modification scoring model including two different subgroups: WRM_Score_low and WRM_Score_high. The former was associated with survival benefit and good efficacy of immune checkpoint inhibitors (ICIs) due to gene repair and immune activation, while the latter was related to poor prognosis and bad efficacy of ICIs because of stromal activation and immunosuppression. The WRM score based on immune and molecular characteristics of the RNA modification pattern is a reliable predictor of the prognosis of gastric cancer and the therapeutic efficacy of immune checkpoint inhibitors in gastric cancer.
Collapse
Affiliation(s)
- Xujia Li
- VIP Department, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Yixin Zhou
- VIP Department, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Qi Jiang
- VIP Department, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Jinsheng Huang
- VIP Department, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Zexian Liu
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Yongqiang Li
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China.
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China.
| | - Guifang Guo
- VIP Department, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China.
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China.
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|
220
|
Dai J, Qu T, Yin D, Cui Y, Zhang C, Zhang E, Guo R. LncRNA LINC00969 promotes acquired gefitinib resistance by epigenetically suppressing of NLRP3 at transcriptional and posttranscriptional levels to inhibit pyroptosis in lung cancer. Cell Death Dis 2023; 14:312. [PMID: 37156816 PMCID: PMC10167249 DOI: 10.1038/s41419-023-05840-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/10/2023]
Abstract
Epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) treatment prolongs the survival of lung cancer patients harbouring activating EGFR mutations. However, resistance to EGFR-TKIs is inevitable after long-term treatment. Molecular mechanistic research is of great importance in combatting resistance. A comprehensive investigation of the molecular mechanisms underlying resistance has important implications for overcoming resistance. An accumulating body of evidence shows that lncRNAs can contribute to tumorigenesis and treatment resistance. By bioinformatics analysis, we found that LINC00969 expression was elevated in lung cancer cells with acquired gefitinib resistance. LINC00969 regulated resistance to gefitinib in vitro and in vivo. Mechanistically, gain of H3K4me1 and H3K27Ac led to the activation of LINC00969 expression. LINC00969 interacts with EZH2 and METTL3, transcriptionally regulates the level of H3K27me3 in the NLRP3 promoter region, and posttranscriptionally modifies the m6A level of NLRP3 in an m6A-YTHDF2-dependent manner, thus epigenetically repressing NLRP3 expression to suppress the activation of the NLRP3/caspase-1/GSDMD-related classical pyroptosis signalling pathways, thereby endowing an antipyroptotic phenotype and promoting TKI resistance in lung cancer. Our findings provide a new mechanism for lncRNA-mediated TKI resistance from the new perspective of pyroptosis via simultaneous regulation of histone methylation and RNA methylation. The pivotal role of LINC00969 gives it the potential to be a novel biomarker and therapeutic target for overcoming EGFR-TKI resistance in lung cancer.
Collapse
Affiliation(s)
- Jiali Dai
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China
| | - Tianyu Qu
- Department of Respiratory Medicine, Zhongda Hospital of Southeast University, Nanjing, Jiangsu, 210009, P. R. China
| | - Dandan Yin
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210003, P. R. China
| | - Yanan Cui
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China
| | - Chen Zhang
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China
| | - Erbao Zhang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, P. R. China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, P. R. China.
| | - Renhua Guo
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China.
| |
Collapse
|
221
|
Liu X, Feng M, Hao X, Gao Z, Wu Z, Wang Y, Du L, Wang C. m6A methylation regulates hypoxia-induced pancreatic cancer glycolytic metabolism through ALKBH5-HDAC4-HIF1α positive feedback loop. Oncogene 2023:10.1038/s41388-023-02704-8. [PMID: 37149664 DOI: 10.1038/s41388-023-02704-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 04/12/2023] [Accepted: 04/20/2023] [Indexed: 05/08/2023]
Abstract
Pancreatic cancer (PC) is the most hypoxic cancer type among solid tumors. The dynamic changes of RNA N6-methyl-adenosine (m6A) contribute to tumor cells adaption to hypoxic microenvironmental. However, the regulatory mechanisms of hypoxia response in PC remains elusive. Here, we reported that the m6A demethylase ALKBH5 mediated a decrease of total mRNA m6A modification during hypoxia. Subsequently, methylated RNA immunoprecipitation sequencing (MeRIP-seq) combined with RNA sequencing (RNA-seq) revealed transcriptome-wide gene expression alteration and identified histone deacetylase type 4 (HDAC4) as a key target gene of m6A modification under hypoxic conditionds. Mechanistically, m6A methylation recognized by m6A reader-YTHDF2 enhanced the stability of HDAC4, and then promoted glycolytic metabolism and migration of PC cells. Our assays also demonstrated that hypoxia-induced HDAC4 enhanced HIF1a protein stability, and overexpressed HIF1a promoted transcription of ALKBH5 in hypoxic pancreatic cancer cells. Together, these results found a ALKBH5/HDAC4/HIF1α positive feedback loop for cellular response to hypoxia in pancreatic cancer. Our studies uncover the crosstalk between histone acetylation and RNA methylation modification on layer of epigenetic regulation.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, 247 Beiyuan Street, Jinan, Shandong, 250033, China
| | - Maoxiao Feng
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, 247 Beiyuan Street, Jinan, Shandong, 250033, China
| | - Xiaodong Hao
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, 247 Beiyuan Street, Jinan, Shandong, 250033, China
| | - Zihan Gao
- School of Preclinical Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Zhaoxin Wu
- School of pharmacy, Qingdao University, 308 Ningxia Road, Qingdao, shandong,, 266071, China
| | - Yuli Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, 247 Beiyuan Street, Jinan, Shandong, 250033, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, 247 Beiyuan Street, Jinan, Shandong, 250033, China.
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, 247 Beiyuan Street, Jinan, Shandong, 250033, China.
| |
Collapse
|
222
|
Sopic M, Robinson EL, Emanueli C, Srivastava P, Angione C, Gaetano C, Condorelli G, Martelli F, Pedrazzini T, Devaux Y. Integration of epigenetic regulatory mechanisms in heart failure. Basic Res Cardiol 2023; 118:16. [PMID: 37140699 PMCID: PMC10158703 DOI: 10.1007/s00395-023-00986-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/27/2023] [Accepted: 04/10/2023] [Indexed: 05/05/2023]
Abstract
The number of "omics" approaches is continuously growing. Among others, epigenetics has appeared as an attractive area of investigation by the cardiovascular research community, notably considering its association with disease development. Complex diseases such as cardiovascular diseases have to be tackled using methods integrating different omics levels, so called "multi-omics" approaches. These approaches combine and co-analyze different levels of disease regulation. In this review, we present and discuss the role of epigenetic mechanisms in regulating gene expression and provide an integrated view of how these mechanisms are interlinked and regulate the development of cardiac disease, with a particular attention to heart failure. We focus on DNA, histone, and RNA modifications, and discuss the current methods and tools used for data integration and analysis. Enhancing the knowledge of these regulatory mechanisms may lead to novel therapeutic approaches and biomarkers for precision healthcare and improved clinical outcomes.
Collapse
Affiliation(s)
- Miron Sopic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Emma L Robinson
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Costanza Emanueli
- National Heart & Lung Institute, Imperial College London, London, UK
| | | | - Claudio Angione
- School of Computing, Engineering & Digital Technologies, Teesside University, Tees Valley, Middlesbrough, TS1 3BA, UK
- Centre for Digital Innovation, Teesside University, Campus Heart, Tees Valley, Middlesbrough, TS1 3BX, UK
- National Horizons Centre, Darlington, DL1 1HG, UK
| | - Carlo Gaetano
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 10, 27100, Pavia, Italy
| | - Gianluigi Condorelli
- IRCCS-Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, MI, Italy
- Institute of Genetic and Biomedical Research, National Research Council of Italy, Arnold-Heller-Str.3, 24105, Milan, Italy
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, Via Morandi 30, San Donato Milanese, 20097, Milan, Italy
| | - Thierry Pedrazzini
- Experimental Cardiology Unit, Division of Cardiology, Department of Cardiovascular Medicine, University of Lausanne Medical School, 1011, Lausanne, Switzerland
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445, Strassen, Luxembourg.
| |
Collapse
|
223
|
Chen X, Lu T, Cai Y, Han Y, Ding M, Chu Y, Zhou X, Wang X. KIAA1429-mediated m6A modification of CHST11 promotes progression of diffuse large B-cell lymphoma by regulating Hippo-YAP pathway. Cell Mol Biol Lett 2023; 28:32. [PMID: 37076815 PMCID: PMC10114474 DOI: 10.1186/s11658-023-00445-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/30/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) has been shown to participate in various essential biological processes by regulating the level of target genes. However, the function of m6A modification mediated by KIAA1429 [alias virus-like m6A methyltransferase-associated protein (VIRMA)] during the progression of diffuse large B-cell lymphoma (DLBCL) remains undefined. METHODS The expression and clinical significance of KIAA1429 were verified by our clinical data. CRISPR/Cas9 mediated KIAA1429 deletion, and CRISPR/dCas9-VP64 for activating endogenous KIAA1429 was used to evaluate its biological function. RNA sequencing (RNA-seq), methylated RNA immunoprecipitation sequencing (MeRIP-seq), RNA immunoprecipitation (RIP) assays, luciferase activity assay, RNA stability experiments, and co-immunoprecipitation were performed to investigate the regulatory mechanism of KIAA1429 in DLBCL. Tumor xenograft models were established for in vivo experiments. RESULTS Dysregulated expression of m6A regulators was observed, and a novel predictive model based on m6A score was established in DLBCL. Additionally, elevated KIAA1429 expression was associated with poor prognosis of patients with DLBCL. Knockout of KIAA1429 repressed DLBCL cell proliferation, facilitated cell cycle arrest in the G2/M phase, induced apoptosis in vitro, and inhibited tumor growth in vivo. Furthermore, carbohydrate sulfotransferase 11 (CHST11) was identified as a downstream target of KIAA1429, which mediated m6A modification of CHST11 mRNA and then recruited YTHDF2 for reducing CHST11 stability and expression. Inhibition of CHST11 diminished MOB1B expression, resulting in inactivation of Hippo-YAP signaling, reprogramming the expression of Hippo target genes. CONCLUSIONS Our results revealed a new mechanism by which the Hippo-YAP pathway in DLBCL is inactivated by KIAA1429/YTHDF2-coupled epitranscriptional repression of CHST11, highlighting the potential of KIAA1429 as a novel predictive biomarker and therapeutic target for DLBCL progression.
Collapse
Affiliation(s)
- Xiaomin Chen
- Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Tiange Lu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Yiqing Cai
- Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Yang Han
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Mengfei Ding
- Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Yurou Chu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China.
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China.
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| |
Collapse
|
224
|
Tuhongjiang A, Wang F, Zhang C, Pang S, Qu Y, Feng B, Amuti G. Construction of an RNA modification-related gene predictive model associated with prognosis and immunity in gastric cancer. BMC Bioinformatics 2023; 24:147. [PMID: 37061682 PMCID: PMC10105968 DOI: 10.1186/s12859-023-05283-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/12/2023] [Indexed: 04/17/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the most common causes of cancer-related fatalities worldwide, and its progression is associated with RNA modifications. Here, using RNA modification-related genes (RNAMRGs), we aimed to construct a prognostic model for patients with GC. METHODS Based on RNAMRGs, RNA modification scores (RNAMSs) were obtained for GC samples from The Cancer Genome Atlas and were divided into high- and low-RNAMS groups. Differential analysis and weighted correlation network analysis were performed for the differential expressed genes (DEGs) to obtain the key genes. Next, univariate Cox regression, least absolute shrinkage and selection operator, and multivariate Cox regression analyses were performed to obtain the model. According to the model risk score, samples were divided into high- and low-risk groups. Enrichment analysis and immunoassays were performed for the DEGs in these groups. Four external datasets from Gene Expression Omnibus data base were used to test the accuracy of the predictive model. RESULTS We identified SELP and CST2 as key DEGs, which were used to generate the predictive model. The high-risk group had a worse prognosis compared to the low-risk group (p < 0.05). Enrichment analysis and immunoassays revealed that 144 DEGs related to immune cell infiltration were associated with the Wnt signaling pathway and included hub genes such as ELN. Overall mutation levels, tumor mutation burden, and microsatellite instability were lower, but tumor immune dysfunction and exclusion scores were greater (p < 0.05) in the high-risk group than in the low-risk group. The validation results showed that the prediction model score can accurately predict the prognosis of GC patients. Finally, a nomogram was constructed using the risk score combined with the clinicopathological characteristics of patients with GC. CONCLUSION This risk score from the prediction model related to the tumor microenvironment and immunotherapy could accurately predict the overall survival of GC patients.
Collapse
Affiliation(s)
- Airexiati Tuhongjiang
- Department of Day Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
| | - Feng Wang
- Department of Day Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China.
| | - Chengrong Zhang
- Department of Day Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
| | - Sisi Pang
- Department of Day Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
| | - Yujiang Qu
- Department of Day Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
| | - Bo Feng
- Department of Day Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
| | - Gulimire Amuti
- Department of Day Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
| |
Collapse
|
225
|
Zhu H, Tang X, Zhang H, Zhou M, Liu H, Chu H, Zhang Z. Exosomal circCLIP1 regulates PM 2.5-induced airway obstruction via targeting SEPT10 in vitro. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114750. [PMID: 36950992 DOI: 10.1016/j.ecoenv.2023.114750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/21/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Fine particulate matter (PM2.5) exposure correlates with airway obstruction, but the mechanism remains to be fully elucidated. We aim to investigate the role of exosomal circular RNAs (circRNAs)-mediated communication between airway epithelial cells and airway smooth muscle cells in PM2.5-induced airway obstruction. RNA sequencing revealed that acute PM2.5 exposure altered the expression profiles of 2904 exosomal circRNAs. Among them, exosomal hsa_circ_0029069 (spliced from CLIP1, thus termed circCLIP1 hereafter) with a loop structure was upregulated by PM2.5 exposure and mainly encapsulated in exosomes. Then, the biological functions and the underlying mechanisms were explored by Western blot, RNA immunoprecipitation and RNA pull-down, etc. Phenotypically, exosomal circCLIP1 entered recipient cells, inducing mucus secretion in recipient HBE cells and contractility of sensitive HBSMCs. Mechanistically, circCLIP1 was upregulated by METTL3-mediated N6-methyladenine (m6A) modification in PM2.5-treated producer HBE cells and exosomes, then enhancing the expression of SEPT10 in recipient HBE cells and sensitive HBSMCs. Our study revealed that exosomal circCLIP1 played a critical role in PM2.5-induced airway obstruction and provided a new potential biomarker for the assessment of PM2.5-related adverse effects.
Collapse
Affiliation(s)
- Huanhuan Zhu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center of Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiying Tang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center of Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Huilin Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center of Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Meiyu Zhou
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center of Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hanting Liu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center of Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Haiyan Chu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center of Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center of Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
226
|
Luo J, Wang X, Chen Z, Zhou H, Xiao Y. The role and mechanism of JAK2/STAT3 signaling pathway regulated by m6A methyltransferase KIAA1429 in osteosarcoma. J Bone Oncol 2023; 39:100471. [PMID: 36915895 PMCID: PMC10006691 DOI: 10.1016/j.jbo.2023.100471] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/22/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023] Open
Abstract
Osteosarcoma (OS) is the most malignant bone tumor which mainly occurs in childhood or adolescence. The previous studies indicated that OS is difficult to treat. KIAA1429 is one of the components of m6A complex that regulating the process of m6A modification, which plays a crucial role in tumorigenesis. But the mechanism of KIAA1429 regulating OS cell identity was not entirely clear, which needs further investigate. RT-qPCR and western blotting were applied to determine KIAA1429 expression station in OS cells and tissues. To further detect the KIAA1429 function in OS cells, the ability of proliferation, migration and invasion were analyzed by Edu, wound-healing and transwell experiments respectively. Besides, RNA sequencing was also used to further find the downstream of KIAA1429 regulation and small molecule inhibitor was added to explore the specific role of signaling pathway. Our data found that KIAA1429 is up-regulated in human OS cell lines compared to the human osteoblast cells. Meanwhile, the deletion of KIAA1429 significantly decreased cell proliferation, migration, and invasion. Interestingly, the JAK2/STAT3 signal pathway was involved in KIAA1429 regulation on OS cell characters. The KIAA1429 eliminated OS cells exhibited a decreased activity of JAK2/STAT3 signal. And the addition of JAK2/STAT3 stimulator (colivelin) could distinctly rescue the decreased OS cells' proliferation, migration, and invasion upon KIAA1429 knockdown. In summary, these data demonstrated that KIAA1429/JAK2/STAT3 axis may a new target for OS therapy.
Collapse
Affiliation(s)
- Jiaquan Luo
- Department of Spine Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province 341099, China
| | - Xuhua Wang
- Department of Spine Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province 341099, China
| | - Zhaoyuan Chen
- Department of Spine Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province 341099, China
| | - Huaqiang Zhou
- Department of Spine Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province 341099, China
| | - Yihui Xiao
- Department of Spine Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province 341099, China
| |
Collapse
|
227
|
Xiang D, Gu M, Liu J, Dong W, Yang Z, Wang K, Fu J, Wang H. m6A RNA methylation-mediated upregulation of HLF promotes intrahepatic cholangiocarcinoma progression by regulating the FZD4/β-catenin signaling pathway. Cancer Lett 2023; 560:216144. [PMID: 36958694 DOI: 10.1016/j.canlet.2023.216144] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/25/2023] [Accepted: 03/21/2023] [Indexed: 03/25/2023]
Abstract
Hepatic leukemia factor (HLF) is aberrantly expressed in human malignancies. However, its role in regulating intrahepatic cholangiocarcinoma (ICC) remains unclear. This study aimed to define the role of HLF in ICC progression. Here, we showed that HLF expression is upregulated in ICC and predicts the poor prognosis in patients. Mechanistically, HLF activation in ICC is mediated by METTL3-dependent m6A methylation of the HLF mRNA. As per the results from the loss- or gain-of-function experiments, HLF promoted the self-renewal, tumorigenicity, proliferation and metastasis of ICC cells. RNA-seq and CUT&Tag analyses showed that frizzled-4 (FZD4) and forkhead box Q1 (FOXQ1) are target genes of HLF. Moreover, FOXQ1 transcriptionally activates METTL3 expression, forming a positive feedback loop, which subsequently activates WNT/β-catenin signaling and downstream tumor stemness. Furthermore, HLF expression was positively correlated with METTL3, IGF2BP3, FZD4 and FOXQ1 expression in ICC tissues in a large ICC cohort. The combined IHC panels exhibited a better prognostic value for patients with ICC than any of these components alone. In conclusions, these findings demonstrated that the METTL3/HLF/FOXQ1 regulatory circuit drove FZD4-mediated WNT/β-catenin activation in ICC progression, suggesting that targeting this axis could be novel therapeutic strategy for ICC.
Collapse
Affiliation(s)
- Daimin Xiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute(2), Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China; International Cooperation Laboratory on Signal Transduction, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Third Affiliated Hospital of Naval Military Medical University, Shanghai, 200438, China; National Center for Liver Cancer, Shanghai, China
| | - Mingye Gu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute(2), Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China; International Cooperation Laboratory on Signal Transduction, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Third Affiliated Hospital of Naval Military Medical University, Shanghai, 200438, China
| | - Junyu Liu
- International Cooperation Laboratory on Signal Transduction, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Third Affiliated Hospital of Naval Military Medical University, Shanghai, 200438, China
| | - Wei Dong
- Department of Pathology, Third Affiliated Hospital of Naval Military Medical University, Shanghai, 200438, China
| | - Zhishi Yang
- Department of Hepatic Surgery, Third Affiliated Hospital of Naval Military Medical University, Shanghai, 200438, China
| | - Kui Wang
- Department of Hepatic Surgery, Third Affiliated Hospital of Naval Military Medical University, Shanghai, 200438, China.
| | - Jing Fu
- International Cooperation Laboratory on Signal Transduction, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Third Affiliated Hospital of Naval Military Medical University, Shanghai, 200438, China; National Center for Liver Cancer, Shanghai, China.
| | - Hongyang Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute(2), Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China; International Cooperation Laboratory on Signal Transduction, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Third Affiliated Hospital of Naval Military Medical University, Shanghai, 200438, China; National Center for Liver Cancer, Shanghai, China.
| |
Collapse
|
228
|
Shi G, Li Y, Gao H, Wei Y, Wang Y. Development a m 6A regulators characterized by the immune cell infiltration in stomach adenocarcinoma for predicting the prognosis and immunotherapy response. Aging (Albany NY) 2023; 15:1944-1963. [PMID: 37019148 PMCID: PMC10085598 DOI: 10.18632/aging.204574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/20/2023] [Indexed: 03/19/2023]
Abstract
N6-Methyladenosine (m6A) has attracted growing interest among scholars as an important regulator of mRNA expression. Although the significant role of m6A in multiple biological processes (like proliferation and growth of cancers) has been comprehensively described, an analysis of its possible role in stomach adenocarcinoma (STAD) of tumor immune microenvironment (TIME) remains lacking. The data for RNA expression, single nucleotide polymorphism (SNP), and copy number variation (CNV) were downloaded from The Cancer Genome Atlas (TCGA). Subsequently, 23 m6A regulators were curated, with patients being clustered into three m6A subtypes and m6A-related gene subtypes. Furthermore, they were compared based on overall survival (OS). This study also evaluates the association between m6A regulators and immune as well as response to the treatment. According to the TCGA-STAD cohort, three m6A clusters conformed to three phenotypes, immune-inflamed, immune-dessert, and immune-excluded, respectively. Patients who displayed lower m6A scores presented better overall survival outcomes. The GEO cohort demonstrated that those with a low m6A score had obvious general survival benefits and clinical advantages. Low m6A scores can carry the enhanced neoantigen loads, triggering an immune response. Meanwhile, three anti-PD-1 cohorts have confirmed the value of predicting survival outcomes. The results of this study indicate that m6A regulators are associated with TIME, and the m6A score is an efficient prognostic biomarker and predictive indicator for immunotherapy and chemotherapeutics. Moreover, comprehensive evaluations of m6A regulators in tumors will broaden our comprehension of TIME, efficiently guiding enhancing explorations on immunotherapy and chemotherapy strategies for STAD.
Collapse
Affiliation(s)
- Guodong Shi
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yang Li
- Department of Obstetrics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Huijiang Gao
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yucheng Wei
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuanyong Wang
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi’an, China
| |
Collapse
|
229
|
Identification and experimental validation of ferroptosis-related gene SLC2A3 is involved in rheumatoid arthritis. Eur J Pharmacol 2023; 943:175568. [PMID: 36736942 DOI: 10.1016/j.ejphar.2023.175568] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/04/2023]
Abstract
BACKGROUND Ferroptosis, an iron-dependent manner of lipid peroxidative cell death, has recently been reported to be strongly associated with rheumatoid arthritis (RA). Targeted ferroptosis may be a potential treatment for RA. METHODS We combined bioinformatics analysis and machine learning algorithm to screen the characteristic gene of RA. Moreover, we used gene set enrichment analysis (GSEA) to investigate the biological function of feature gene and CIBERSORT algorithm to analyze the correlation between selected hub gene and immune cells. The CellMiner database was used to predict potential drugs for RA. Finally, it was further verified by in vitro cell experiment. RESULTS SLC2A3 was identified as an important potential biomarker based on bioinformatics methods and machine learning algorithms. SLC2A3 encodes the predominantly neuronal glucose transporter 3 (GLUT3). GSEA showed that SLC2A3 high-expression group was correlated with metabolic pathways. Immune cell infiltration analysis showed that SLC2A3 was positively correlated with activated mast cell expression. RSL3 is an activator of ferroptosis that binds to and inactivates GPX4, mediating ferroptosis regulated by GPX4. In our experiment, we treated synovial fibroblast-like cells of RA (RA-FLS) with RSL3 (Ferroptosis inducers) and found that RSL3 can downregulate SLC2A3 expression and induce ferroptosis in RA-FLS. CONCLUSIONS Our study identifies and validates ferroptosis-related gene SLC2A3 as a potential biomarker for the diagnosis and treatment of RA. It was also found that RSL3 can induce ferroptosis in RA-FLS via lead to the downregulation of SLC2A3.
Collapse
|
230
|
Huang E, Chen L. RNA N 6-methyladenosine modification in female reproductive biology and pathophysiology. Cell Commun Signal 2023; 21:53. [PMID: 36894952 PMCID: PMC9996912 DOI: 10.1186/s12964-023-01078-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 02/12/2023] [Indexed: 03/11/2023] Open
Abstract
Gene expression and posttranscriptional regulation can be strongly influenced by epigenetic modifications. N6-methyladenosine, the most extensive RNA modification, has been revealed to participate in many human diseases. Recently, the role of RNA epigenetic modifications in the pathophysiological mechanism of female reproductive diseases has been intensively studied. RNA m6A modification is involved in oogenesis, embryonic growth, and foetal development, as well as preeclampsia, miscarriage, endometriosis and adenomyosis, polycystic ovary syndrome, premature ovarian failure, and common gynaecological tumours such as cervical cancer, endometrial cancer, and ovarian cancer. In this review, we provide a summary of the research results of m6A on the female reproductive biology and pathophysiology in recent years and aim to discuss future research directions and clinical applications of m6A-related targets. Hopefully, this review will add to our understanding of the cellular mechanisms, diagnostic biomarkers, and underlying therapeutic strategies of female reproductive system diseases. Video Abstract.
Collapse
Affiliation(s)
- Erqing Huang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lijuan Chen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
231
|
Identification of m6A/m5C/m1A-associated LncRNAs for prognostic assessment and immunotherapy in pancreatic cancer. Sci Rep 2023; 13:3661. [PMID: 36871072 PMCID: PMC9985641 DOI: 10.1038/s41598-023-30865-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/02/2023] [Indexed: 03/06/2023] Open
Abstract
Methylation of RNA plays an important role in cancer. Classical forms of such modifications include N6-methyladenine (m6A), 5-methylcytosine (m5C), and N1-methyladenine (m1A). Methylation-regulated long non-coding (lnc) RNAs are involved in various biological processes, such as tumor proliferation, apoptosis, immune escape, invasion, and metastasis. Therefore, we performed an analysis of transcriptomic and clinical data of pancreatic cancer samples in The Cancer Genome Atlas (TCGA). Using the co-expression method, we summarized 44 m6A/m5C/m1A-related genes and obtained 218 methylation-associated lncRNAs. Next, with COX regression, we screened 39 lncRNAs that are strongly associated with prognosis and found that their expression differed significantly between normal tissues and pancreatic cancer samples (P < 0.001). We then used the least absolute shrinkage and selection operator (LASSO) to construct a risk model comprising seven lncRNAs. In validation set, the nomogram generated by combining clinical characteristics accurately predicted the survival probability of pancreatic cancer patients at 1, 2, and 3 years after diagnosis (AUC = 0.652, 0.686, and 0.740, respectively). Tumor microenvironment analysis showed that the high-risk group had significantly more resting memory CD4 T cells, M0 macrophages, and activated dendritic cells and fewer naïve B cells, plasma cells, and CD8 T cells than the low-risk group (both P < 0.05). Most immune-checkpoint genes were significantly different between the high- and low-risk groups (P < 0.05). The Tumor Immune Dysfunction and Exclusion score showed that high-risk patients benefited more from treatment with immune checkpoint inhibitors (P < 0.001). Overall survival was also lower in high-risk patients with more tumor mutations than in low-risk patients with fewer mutations (P < 0.001). Finally, we explored the sensitivity of the high- and low-risk groups to seven candidate drugs. Our findings indicated that m6A/m5C/m1A-associated lncRNAs are potentially useful biomarkers for the early diagnosis and estimating the prognosis of, and ascertaining the responses to immunotherapy in, patients with pancreatic cancer.
Collapse
|
232
|
Sarraf G, Chhabra R. Emerging role of mRNA methylation in regulating the hallmarks of cancer. Biochimie 2023; 206:61-72. [PMID: 36244577 DOI: 10.1016/j.biochi.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/29/2022] [Accepted: 10/10/2022] [Indexed: 11/02/2022]
Abstract
The dynamic chemical modifications of DNA, RNA, and proteins can transform normal cells into malignant ones. While the DNA and protein modifications in cancer have been described extensively in the literature, there are fewer reports about the role of RNA modifications in cancer. There are over 100 forms of RNA modifications and one of these, mRNA methylation, plays a critical role in the malignant properties of the cells. mRNA methylation is a reversible modification responsible for regulating protein expression at the post-transcriptional level. Despite being discovered in the 1970s, a complete understanding of the different proteins involved and the mechanism behind mRNA methylation remains largely unknown. However, these mRNA methylations have been shown to foster cancer hallmarks via specific cellular targets inside the cell. In this review, we provide a brief overview of mRNA methylation and its emerging role in regulating the various hallmarks of cancer.
Collapse
Affiliation(s)
- Gargi Sarraf
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Ravindresh Chhabra
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India.
| |
Collapse
|
233
|
Peng C, Zheng C, Zhou F, Xie Y, Wang L, Chen D, Zhang X. Targeting FTO by Dac51 contributes to attenuating DSS-induced colitis. Int Immunopharmacol 2023. [DOI: 10.1016/j.intimp.2023.109789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
234
|
Fang Y, Wu X, Gu Y, Shi R, Yu T, Pan Y, Zhang J, Jing X, Ma P, Shu Y. LINC00659 cooperated with ALKBH5 to accelerate gastric cancer progression by stabilising JAK1 mRNA in an m 6 A-YTHDF2-dependent manner. Clin Transl Med 2023; 13:e1205. [PMID: 36864711 PMCID: PMC9982078 DOI: 10.1002/ctm2.1205] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 01/25/2023] [Accepted: 02/14/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND N6-methyladenosine (m6 A) RNA modification is known as a common epigenetic regulation form in eukaryotic cells. Emerging studies show that m6 A in noncoding RNAs makes a difference, and the aberrant expression of m6 A-associated enzymes may cause diseases. The demethylase alkB homologue 5 (ALKBH5) plays diverse roles in different cancers, but its role during gastric cancer (GC) progression is not well known. METHODS The quantitative real-time polymerase chain reaction, immunohistochemistry staining and western blotting assays were used to detect ALKBH5 expression in GC tissues and human GC cell lines. The function assays in vitro and xenograft mouse model in vivo were used to investigate the effects of ALKBH5 during GC progression. RNA sequencing, MeRIP sequencing, RNA stability and luciferase reporter assays were performed to explore the potential molecular mechanisms involved in the function of ALKBH5. RNA binding protein immunoprecipitation sequencing (RIP-seq), RIP and RNA pull-down assays were performed to examine the influence of LINC00659 on the ALKBH5-JAK1 interaction. RESULTS ALKBH5 was highly expressed in GC samples and associated with aggressive clinical features and poor prognosis. ALKBH5 promoted the abilities of GC cell proliferation and metastasis in vitro and in vivo. The m6 A modification on JAK1 mRNA was removed by ALKBH5, which resulted in the upregulated expression of JAK1. LINC00659 facilitated ALKBH5 binding to and upregulated JAK1 mRNA depending on an m6 A-YTHDF2 manner. Silencing of ALKBH5 or LINC00659 disrupted GC tumourigenesis via the JAK1 axis. JAK1 upregulation activated the JAK1/STAT3 pathway in GC. CONCLUSION ALKBH5 promoted GC development via upregulated JAK1 mRNA expression mediated by LINC00659 in an m6 A-YTHDF2-dependent manner, and targeting ALKBH5 may be a promising therapeutic method for GC patients.
Collapse
Affiliation(s)
- Yuan Fang
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingPeople's Republic of China
| | - Xi Wu
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingPeople's Republic of China
| | - Yunru Gu
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingPeople's Republic of China
| | - Run Shi
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingPeople's Republic of China
| | - Tao Yu
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingPeople's Republic of China
| | - Yutian Pan
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingPeople's Republic of China
| | - Jingxin Zhang
- Department of General SurgeryAffiliated People's Hospital of Jiangsu UniversityZhenjiang Clinic School of Nanjing Medical UniversityZhenjiangPeople's Republic of China
| | - Xinming Jing
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingPeople's Republic of China
| | - Pei Ma
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingPeople's Republic of China
| | - Yongqian Shu
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingPeople's Republic of China
- Jiangsu Key Laboratory of Cancer BiomarkersPrevention and TreatmentCollaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjingPeople's Republic of China
| |
Collapse
|
235
|
Gao Y, Yuan L, Ke C, Pei Z, Liu X, Wu R, Kui X, Zhang Y. Caprin-1 plays a role in cell proliferation and Warburg metabolism of esophageal carcinoma by regulating METTL3 and WTAP. J Transl Med 2023; 21:159. [PMID: 36855123 PMCID: PMC9976378 DOI: 10.1186/s12967-023-04001-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/16/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Cytoplasmic activation/proliferation-associated protein-1 (Caprin-1) is implicated in cancer cell proliferation and tumorigenesis; however, its role in the development of esophageal carcinoma (ESCA) has not been examined. METHODS Biological methods and data analysis were used to investigate the expression of Caprin-1 in ESCA tissue and cell lines. We comprehensively analyzed the mRNA expression and prognostic values, signalling pathways of CAPRIN1 in ESCA using public databases online. Biological functions of CAPRIN1 were performed by clorimetric growth assay, EdU staining, colony formation, flow cytometry, apoptosis analysis, Western blot, lactate detection assay, extracellular acidification rates. The underlying mechanism was determined via flow cytometric analysis, Western blot and rescue experiments. In addition, xenograft tumor model was constructed to verify the phenotypes upon CAPRIN1 silencing. RESULTS Caprin-1 expression was significantly elevated in both ESCA tumor tissues and cell lines compared with that in normal adjacent tissues and fibroblasts. Increased CAPRIN1 mRNA expression was significantly associated with clinical prognosis and diagnostic accuracy. The GO enrichment and KEGG pathway analysis CAPRIN1 might be related to immune-related terms, protein binding processes, and metabolic pathways. A significant positive correlation was observed between high Caprin-1 protein levels and lymph node metastasis (P = 0.031), ki-67 (P = 0.023), and 18F- FDG PET/CT parameters (SUVmax (P = 0.002) and SUV mean (P = 0.005)) in 55 ESCA patients. At cut-off values of SUVmax 17.71 and SUVmean 10.14, 18F- FDG PET/CT imaging predicted Caprin-1 expression in ESCA samples with 70.8% sensitivity and 77.4% specificity. In vitro and in vivo assays showed that Caprin-1 knockdown affected ESCA tumor growth. Silencing Caprin-1 inhibited ESCA cell proliferation and glycolysis, and decreased the expression of methyltransferase-like 3 (METTL3) and Wilms' tumor 1-associating protein (WTAP). However, this effect could be partially reversed by the restoration of METTL3 and WTAP expression. CONCLUSIONS Our data suggest that Caprin-1 could serve as a prognostic biomarker and has an oncogenic role in ESCA.
Collapse
Affiliation(s)
- Yan Gao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Department of Pathology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, People's Republic of China
| | - Lingling Yuan
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Department of Pathology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, People's Republic of China
| | - Changbin Ke
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Department of Pathology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, People's Republic of China
| | - Zhijun Pei
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Department of Pathology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, People's Republic of China
| | - Xiaobo Liu
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Department of Pathology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, People's Republic of China
| | - Ruimin Wu
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Department of Pathology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, People's Republic of China
| | - Xueyan Kui
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Department of Pathology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, People's Republic of China
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China.
| |
Collapse
|
236
|
The Comprehensive Analysis of N6-Methyadenosine Writer METTL3 and METTL14 in Gastric Cancer. JOURNAL OF ONCOLOGY 2023; 2023:9822995. [PMID: 36866236 PMCID: PMC9974280 DOI: 10.1155/2023/9822995] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/13/2022] [Accepted: 11/24/2022] [Indexed: 02/23/2023]
Abstract
Methyltransferase-like 3 (METTL3) and methyltransferase-like 14 (METTL14) were two core components of the N6-methyadenosine (m6A) methyltransferase complex (MTC) and played a basic role in maintaining an appropriate m6A level of target genes. In gastric cancer (GC), previous researches on the expression and role of METTL3 and METTL14 were not consistent, and their specific function and mechanism have remained elusive. In this study, the expression of METTL3 and METTL14 was evaluated based on the TCGA database, 9 paired GEO datasets, and our 33 GC patient samples, and METTL3 was highly expressed and acted as a poor prognostic factor, whereas METTL14 showed no significant difference. Moreover, GO and GSEA analyses were performed, and the results pointed out that METTL3 and METTL14 were jointly involved in multiple biological processes, while they could also take part in different oncogenic pathways independently. And BCLAF1 was predicted and identified as a novel shared target of METTL3 and METTL14 in GC. In total, we conducted a comprehensive analysis of METTL3 and METTL14 in GC including their expression, function, and role, which could provide a novel insight into the research of m6A modification in GC.
Collapse
|
237
|
Hou Y, Zhang X, Yao H, Hou L, Zhang Q, Tao E, Zhu X, Jiang S, Ren Y, Hong X, Lu S, Leng X, Xie Y, Gao Y, Liang Y, Zhong T, Long B, Fang JY, Meng X. METTL14 modulates glycolysis to inhibit colorectal tumorigenesis in p53-wild-type cells. EMBO Rep 2023; 24:e56325. [PMID: 36794620 PMCID: PMC10074077 DOI: 10.15252/embr.202256325] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/19/2023] [Accepted: 01/27/2023] [Indexed: 02/17/2023] Open
Abstract
The frequency of p53 mutations in colorectal cancer (CRC) is approximately 40-50%. A variety of therapies are being developed to target tumors expressing mutant p53. However, potential therapeutic targets for CRC expressing wild-type p53 are rare. In this study, we show that METTL14 is transcriptionally activated by wild-type p53 and suppresses tumor growth only in p53-wild-type (p53-WT) CRC cells. METTL14 deletion promotes both AOM/DSS and AOM-induced CRC growth in mouse models with the intestinal epithelial cell-specific knockout of METTL14. Additionally, METTL14 restrains aerobic glycolysis in p53-WT CRC, by repressing SLC2A3 and PGAM1 expression via selectively promoting m6 A-YTHDF2-dependent pri-miR-6769b/pri-miR-499a processing. Biosynthetic mature miR-6769b-3p and miR-499a-3p decrease SLC2A3 and PGAM1 levels, respectively, and suppress malignant phenotypes. Clinically, METTL14 only acts as a beneficial prognosis factor for the overall survival of p53-WT CRC patients. These results uncover a new mechanism for METTL14 inactivation in tumors and, most importantly, reveal that the activation of METTL14 is a critical mechanism for p53-dependent cancer growth inhibition, which could be targeted for therapy in p53-WT CRC.
Collapse
Affiliation(s)
- Yichao Hou
- Shanghai Key Laboratory of Gut Microecology and Associated Major Diseases Research, Digestive Disease Research and Clinical Translation Center, Department of Gastroenterology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xintian Zhang
- Shanghai Key Laboratory of Gut Microecology and Associated Major Diseases Research, Digestive Disease Research and Clinical Translation Center, Department of Gastroenterology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Han Yao
- Shanghai Key Laboratory of Gut Microecology and Associated Major Diseases Research, Digestive Disease Research and Clinical Translation Center, Department of Gastroenterology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lidan Hou
- Shanghai Key Laboratory of Gut Microecology and Associated Major Diseases Research, Digestive Disease Research and Clinical Translation Center, Department of Gastroenterology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qingwei Zhang
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Enwei Tao
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoqiang Zhu
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shanshan Jiang
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yimeng Ren
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xialu Hong
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shiyuan Lu
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoxu Leng
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yile Xie
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yaqi Gao
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Liang
- Shanghai Key Laboratory of Gut Microecology and Associated Major Diseases Research, Digestive Disease Research and Clinical Translation Center, Department of Gastroenterology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ting Zhong
- Shanghai Key Laboratory of Gut Microecology and Associated Major Diseases Research, Digestive Disease Research and Clinical Translation Center, Department of Gastroenterology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bohan Long
- Shanghai Key Laboratory of Gut Microecology and Associated Major Diseases Research, Digestive Disease Research and Clinical Translation Center, Department of Gastroenterology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing-Yuan Fang
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangjun Meng
- Shanghai Key Laboratory of Gut Microecology and Associated Major Diseases Research, Digestive Disease Research and Clinical Translation Center, Department of Gastroenterology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
238
|
Hashemi M, Roshanzamir SM, Paskeh MDA, Karimian SS, Mahdavi MS, Kheirabad SK, Naeemi S, Taheriazam A, Salimimoghaddam S, Entezari M, Mirzaei S, Samarghandian S. Non-coding RNAs and exosomal ncRNAs in multiple myeloma: An emphasis on molecular pathways. Eur J Pharmacol 2023; 941:175380. [PMID: 36627099 DOI: 10.1016/j.ejphar.2022.175380] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/11/2022] [Accepted: 11/03/2022] [Indexed: 01/08/2023]
Abstract
One of the most common hematological malignancies is multiple myeloma (MM) that its mortality and morbidity have increased. The incidence rate of MM is suggested to be higher in Europe and various kinds of therapeutic strategies including stem cell transplantation. However, MM treatment is still challenging and gene therapy has been shown to be promising. The non-coding RNAs (ncRNAs) including miRNAs, lncRNAs and circRNAs are considered as key players in initiation, development and progression of MM. In the present review, the role of ncRNAs in MM progression and drug resistance is highlighted to provide new insights for future experiments for their targeting and treatment of MM. The miRNAs affect proliferation and invasion of MM cells, and targeting tumor-promoting miRNAs can induce apoptosis and cell cycle arrest, and reduces proliferation of MM cells. Furthermore, miRNA regulation is of importance for modulating metastasis and chemotherapy response of tumor cells. The lncRNAs exert the same function and determine proliferation, migration and therapy response of MM cells. Notably, lncRNAs mainly target miRNAs in regulating MM progression. The circRNAs also target different molecular pathways in regulating MM malignancy that miRNAs are the most well-known ones. Furthermore, clinical application of ncRNAs in MM is discussed.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sophie Mousavian Roshanzamir
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Seyedeh Sara Karimian
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahdiyeh Sadat Mahdavi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Simin Khorsand Kheirabad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sahar Naeemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Shokooh Salimimoghaddam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
239
|
Tűzesi Á, Hallal S, Satgunaseelan L, Buckland ME, Alexander KL. Understanding the Epitranscriptome for Avant-Garde Brain Tumour Diagnostics. Cancers (Basel) 2023; 15:cancers15041232. [PMID: 36831575 PMCID: PMC9954771 DOI: 10.3390/cancers15041232] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
RNA modifications are diverse, dynamic, and reversible transcript alterations rapidly gaining attention due to their newly defined RNA regulatory roles in cellular pathways and pathogenic mechanisms. The exciting emerging field of 'epitranscriptomics' is predominantly centred on studying the most abundant mRNA modification, N6-methyladenine (m6A). The m6A mark, similar to many other RNA modifications, is strictly regulated by so-called 'writer', 'reader', and 'eraser' protein species. The abundance of genes coding for the expression of these regulator proteins and m6A levels shows great potential as diagnostic and predictive tools across several cancer fields. This review explores our current understanding of RNA modifications in glioma biology and the potential of epitranscriptomics to develop new diagnostic and predictive classification tools that can stratify these highly complex and heterogeneous brain tumours.
Collapse
Affiliation(s)
- Ágota Tűzesi
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Susannah Hallal
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
- Department of Neurosurgery, Chris O’Brien Lifehouse, Camperdown, NSW 2050, Australia
| | - Laveniya Satgunaseelan
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
- Sydney Medical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW 2050, Australia
| | - Michael E. Buckland
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Kimberley L. Alexander
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
- Department of Neurosurgery, Chris O’Brien Lifehouse, Camperdown, NSW 2050, Australia
- Correspondence:
| |
Collapse
|
240
|
Wang J, Yu H, Dong W, Zhang C, Hu M, Ma W, Jiang X, Li H, Yang P, Xiang D. N6-Methyladenosine-Mediated Up-Regulation of FZD10 Regulates Liver Cancer Stem Cells' Properties and Lenvatinib Resistance Through WNT/β-Catenin and Hippo Signaling Pathways. Gastroenterology 2023; 164:990-1005. [PMID: 36764493 DOI: 10.1053/j.gastro.2023.01.041] [Citation(s) in RCA: 149] [Impact Index Per Article: 74.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/21/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023]
Abstract
BACKGROUND & AIMS Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide, but there is a deficiency of early diagnosis biomarkers and therapeutic targets. Drug resistance accounts for most HCC-related deaths, yet the mechanisms underlying drug resistance remain poorly understood. METHODS Expression of Frizzled-10 (FZD10) in liver cancer stem cells (CSCs) was identified by means of RNA sequencing and validated by means of real-time polymerase chain reaction and immunohistochemistry. In vitro and in vivo experiments were used to assess the effect of FZD10 on liver CSC expansion and lenvatinib resistance. RNA sequencing, RNA binding protein immunoprecipitation, and luciferase report assays were applied to explore the mechanism underlying FZD10-mediated liver CSCs expansion and lenvatinib resistance. RESULTS Activation of FZD10 in liver CSCs was mediated by METTL3-dependent N6-methyladenosine methylation of FZD10 messenger RNA. Functional studies revealed that FZD10 promotes self-renewal, tumorigenicity, and metastasis of liver CSCs via activating β-catenin and YAP1. The FZD10-β-catenin/YAP1 axis is activated in liver CSCs and predicts poor prognosis. Moreover, FZD10-β-catenin/c-Jun axis transcriptionally activates METTL3 expression, forming a positive feedback loop. Importantly, the FZD10/β-catenin/c-Jun/MEK/ERK axis determines the responses of hepatoma cells to lenvatinib treatment. Analysis of patient cohort, patient-derived tumor organoids, and patient-derived xenografts further suggest that FZD10 might predict lenvatinib clinical benefit in patients with HCC. Furthermore, treatment of lenvatinib-resistant HCC with adeno-associated virus targeting FZD10 or a β-catenin inhibitor restored lenvatinib response. CONCLUSIONS Elevated FZD10 expression promotes expansion of liver CSCs and lenvatinib resistance, indicating that FZD10 expression is a novel prognostic biomarker and therapeutic target for human HCC.
Collapse
Affiliation(s)
- Jinghan Wang
- Department of Hepatobiliary Surgery, East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hongming Yu
- Department of Hepatic Surgery, Third Affiliated Hospital of Naval Military Medical University, Shanghai, China
| | - Wei Dong
- Department of Pathology, Third Affiliated Hospital of Naval Military Medical University, Shanghai, China
| | - Cheng Zhang
- Department of Gastroenterology, Bethune International Peace Hospital, Shijiazhuang, Hebei, China
| | - Mingtai Hu
- Department of Hepatobiliary Surgery, East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wencong Ma
- Department of Hepatobiliary Surgery, East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaoqing Jiang
- Department of Hepatic Surgery, Third Affiliated Hospital of Naval Military Medical University, Shanghai, China.
| | - Hengyu Li
- Department of Breast and Thyroid Surgery, Changhai Hospital, Naval Military Medical University, Shanghai, China.
| | - Pinghua Yang
- Department of Hepatic Surgery, Third Affiliated Hospital of Naval Military Medical University, Shanghai, China.
| | - Daimin Xiang
- Department of Hepatobiliary Surgery, East Hospital, School of Medicine, Tongji University, Shanghai, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
241
|
Qin H, Sheng W, Weng J, Li G, Chen Y, Zhu Y, Wang Q, Chen Y, Yang Q, Yu F, Zeng H, Xiong A. Identification and verification of m7G-Related genes as biomarkers for prognosis of sarcoma. Front Genet 2023; 14:1101683. [PMID: 36816047 PMCID: PMC9935680 DOI: 10.3389/fgene.2023.1101683] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
Background: Increasing evidence indicates a crucial role for N7-methylguanosine (m7G) methylation modification in human disease development, particularly cancer, and aberrant m7G levels are closely associated with tumorigenesis and progression via regulation of the expression of multiple oncogenes and tumor suppressor genes. However, the role of m7G in sarcomas (SARC) has not been adequately evaluated. Materials and methods: Transcriptome and clinical data were gathered from the TCGA database for this study. Normal and SARC groups were compared for the expression of m7G-related genes (m7GRGs). The expression of m7GRGs was verified using real-time quantitative PCR (RT-qPCR) in SARC cell lines. Then, differentially expressed genes (DEGs) were identified between high and low m7GRGs expression groups in SARC samples, and GO enrichment and KEGG pathways were evaluated. Next, prognostic values of m7GRGs were evaluated by Cox regression analysis. Subsequently, a prognostic model was constructed using m7GRGs with good prognostic values by Lasso regression analysis. Besides, the relationships between prognostic m7GRGs and immune infiltration, clinical features, cuproptosis-related genes, and antitumor drugs were investigated in patients with SARC. Finally, a ceRNA regulatory network based on m7GRGs was constructed. Results: The expression of ten m7GRGs was higher in the SARC group than in the control group. DEGs across groups with high and low m7GRGs expression were enriched for adhesion sites and cGMP-PKG. Besides, we constructed a prognostic model that consists of EIF4A1, EIF4G3, NCBP1, and WDR4 m7GRGs for predicting the survival likelihood of sarcoma patients. And the elevated expression of these four prognostic m7GRGs was substantially associated with poor prognosis and elevated expression in SARC cell lines. Moreover, we discovered that these four m7GRGs expressions were negatively correlated with CD4+ T cell levels, dendritic cell level and tumor purity, and positively correlated with tumor mutational burden, microsatellite instability, drug sensitivity and cuproptosis-related genes in patients with sarcomas. Then, a triple regulatory network of mRNA, miRNA, and lncRNA was established. Conclusion: The current study identified EIF4A1, EIF4G3, NCBP1, and WDR4 as prognostic genes for SARC that are associated with m7G.These findings extend our knowledge of m7G methylation in SARC and may guide the development of innovative treatment options.
Collapse
Affiliation(s)
- Haotian Qin
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China,Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Weibei Sheng
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China,Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jian Weng
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China,Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Guoqing Li
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China,Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yingqi Chen
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China,Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yuanchao Zhu
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China,Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Qichang Wang
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China,Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yixiao Chen
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China,Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Qi Yang
- Department of Medical Ultrasound, Peking University Shenzhen Hospital, Shenzhen, China
| | - Fei Yu
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China,Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China,*Correspondence: Fei Yu, ; Hui Zeng, ; Ao Xiong,
| | - Hui Zeng
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China,Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China,*Correspondence: Fei Yu, ; Hui Zeng, ; Ao Xiong,
| | - Ao Xiong
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China,Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China,*Correspondence: Fei Yu, ; Hui Zeng, ; Ao Xiong,
| |
Collapse
|
242
|
You Q, Wang F, Du R, Pi J, Wang H, Huo Y, Liu J, Wang C, Yu J, Yang Y, Zhu L. m 6 A Reader YTHDF1-Targeting Engineered Small Extracellular Vesicles for Gastric Cancer Therapy via Epigenetic and Immune Regulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2204910. [PMID: 36484103 DOI: 10.1002/adma.202204910] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/02/2022] [Indexed: 06/17/2023]
Abstract
N6 -methyladenosine (m6 A) modulators decide the fate of m6 A-modified transcripts and drive cancer development. RNA interference targeting m6 A modulators promise to be an emerging cancer therapy but is challenging due to its poor tumor targeting and high systematic toxicity. Here engineered small extracellular vesicles (sEVs) with high CD47 expression and cyclic arginine-glycine-aspartic (c(RGDyC)) modification are developed for effective delivery of short interfering RNA against m6 A reader YTH N6-methyladenosine RNA binding protein 1 (YTHDF1) to treat gastric cancer via epigenetic and immune regulation. This nanosystem efficiently depletes YTHDF1 expression and suppresses gastric cancer progression and metastasis through hampering frizzled7 translation and inactivating Wnt/β-catenin pathway in an m6 A dependent manner. Loss of YTHDF1 mediates overexpression of interferon (IFN)-γ receptor 1 and enhances IFN-γ response, promoting expression of major histocompatibility complex class I on tumor cells to achieve self-presentation of the immunogenic tumor cells to stimulate strong cytotoxic T lymphocytes responses. CD47 expression on the engineered sEVs can competitively bind with signal regulatory protein α to enhance phagocytosis of the tumor cells by tumor-associated macrophages. This versatile nanoplatform provides an efficient and low toxic strategy to inhibit epigenetic regulators and holds great potential in promoting immunotherapy.
Collapse
Affiliation(s)
- Qing You
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Fang Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, P. R. China
- The Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100005, P. R. China
| | - Rong Du
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jingnan Pi
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, P. R. China
- The Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100005, P. R. China
| | - Huayi Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Translational Medicine Center, Chinese Institute for Brain Research (CIBR), Beijing, 102206, P. R. China
| | - Yue Huo
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, P. R. China
- The Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100005, P. R. China
| | - Jingyi Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chen Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jia Yu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, P. R. China
- The Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100005, P. R. China
| | - Yanlian Yang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ling Zhu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
243
|
Liu J, Huang H, Zhang M, Qing G, Liu H. Intertwined regulation between RNA m 6A modification and cancer metabolism. CELL INSIGHT 2023; 2:100075. [PMID: 37192910 PMCID: PMC10120304 DOI: 10.1016/j.cellin.2022.100075] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 05/18/2023]
Abstract
RNA N6-methyladenosine (m6A) has been identified as the most common, abundant and conserved internal modification in RNA transcripts, especially within eukaryotic messenger RNAs (mRNAs). Accumulating evidence demonstrates that RNA m6A modification exploits a wide range of regulatory mechanisms to control gene expression in pathophysiological processes including cancer. Metabolic reprogramming has been widely recognized as a hallmark of cancer. Cancer cells obtain metabolic adaptation through a variety of endogenous and exogenous signaling pathways to promote cell growth and survival in the microenvironment with limited nutrient supply. Recent emerging evidence reveals reciprocal regulation between the m6A modification and disordered metabolic events in cancer cells, adding more complexity in the cellular network of metabolic rewiring. In this review, we summarize the most recent advances of how RNA methylation affects tumor metabolism and the feedback regulation of m6A modification by metabolic intermediates. We aim to highlight the important connection between RNA m6A modification and cancer metabolism, and expect that studise of RNA m6A and metabolic reprogramming will lead to greater understanding of cancer pathology.
Collapse
Affiliation(s)
- Jiaxu Liu
- Department of Hematology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Hao Huang
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Minghao Zhang
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Guoliang Qing
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Hudan Liu
- Department of Hematology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan, China
| |
Collapse
|
244
|
Lin Z, Wan AH, Sun L, Liang H, Niu Y, Deng Y, Yan S, Wang QP, Bu X, Zhang X, Hu K, Wan G, He W. N6-methyladenosine demethylase FTO enhances chemo-resistance in colorectal cancer through SIVA1-mediated apoptosis. Mol Ther 2023; 31:517-534. [PMID: 36307991 PMCID: PMC9931553 DOI: 10.1016/j.ymthe.2022.10.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 08/01/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
N6-methyladenosine (m6A) is the most pervasive RNA modification and is recognized as a novel epigenetic regulation in RNA metabolism. Although the m6A modification involves various physiological processes, its roles in drug resistance in colorectal cancer (CRC) still remain unknown. We analyzed the RNA expression profile of m6A/A (%) with MRM mass spectrometry in human 5-fluorouracil (5-FU)-resistant CRC tissues, and used the m6A RNA immunoprecipitation assay to validate the m6A-regulated target. Our results have shown that the m6A demethylase FTO was up-regulated in human primary and 5-FU-resistant CRC. Depletion of FTO decreased cell growth, colony formation and metastasis in 5-FU-resistant CRC cells in vitro and in vivo. Mechanistically, we identified SIVA1, a critical apoptotic gene, as a key downstream target of the FTO-mediated m6A demethylation. The m6A demethylation of SIVA1 at the CDS region induced its mRNA degradation via a YTHDF2-dependent mechanism. The SIVA1 levels were negatively correlated with the FTO levels in clinical CRC tissues. Notably, inhibition of FTO significantly reduced the tolerance of 5-FU in 5-FU-resistant CRC cells via the FTO-SIVA1 axis, whereas SIVA1-depletion could restore the m6A-dependent 5-FU sensitivity in CRC cells. In summary, our findings demonstrate a critical role of FTO as an m6A demethylase enhancing chemo-resistance in CRC cells, and suggest that FTO inhibition may restore the sensitivity of chemo-resistant CRC cells to 5-FU.
Collapse
Affiliation(s)
- Ziyou Lin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Arabella H Wan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| | - Lei Sun
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Heng Liang
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yi Niu
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuan Deng
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shijia Yan
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Qiao-Ping Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510080, China
| | - Xianzhang Bu
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaolei Zhang
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Kunhua Hu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| | - Guohui Wan
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Weiling He
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Center for Precision Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
245
|
Zhao J, Xu H, Su Y, Pan J, Xie S, Xu J, Qin L. Emerging Regulatory Mechanisms of N 6-Methyladenosine Modification in Cancer Metastasis. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:83-100. [PMID: 36939763 PMCID: PMC9883376 DOI: 10.1007/s43657-021-00043-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 12/20/2022]
Abstract
Cancer metastasis is the major cause of cancer-related deaths and accounts for poor therapeutic outcomes. A metastatic cascade is a series of complicated biological processes. N6-methyladenosine (m6A) is the most abundant and conserved epitranscriptomic modification in eukaryotic cells, which has great impacts on RNA production and metabolism, including RNA splicing, processing, degradation and translation. Accumulating evidence demonstrates that m6A plays a critical role in regulating cancer metastasis. However, there is a lack of studies that review the recent advances of m6A in cancer metastasis. Here, we systematically retrieved the functions and mechanisms of how the m6A axis regulates metastasis, and especially summarized the organ-specific liver, lung and brain metastasis mediated by m6A in various cancers. Moreover, we discussed the potential application of m6A modification in cancer diagnosis and therapy, as well as the present limitations and future perspectives of m6A in cancer metastasis. This review provides a comprehensive knowledge on the m6A-mediated regulation of gene expression, which is helpful to extensively understand the complexity of cancer metastasis from a new epitranscriptomic point of view and shed light on the developing novel strategies to anti-metastasis based on m6A alteration.
Collapse
Affiliation(s)
- Jing Zhao
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040 China
- Cancer Metastasis Institute, Fudan University, Shanghai, 200120 China
| | - Hao Xu
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040 China
- Cancer Metastasis Institute, Fudan University, Shanghai, 200120 China
| | - Yinghan Su
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040 China
- Cancer Metastasis Institute, Fudan University, Shanghai, 200120 China
| | - Junjie Pan
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040 China
- Cancer Metastasis Institute, Fudan University, Shanghai, 200120 China
| | - Sunzhe Xie
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040 China
- Cancer Metastasis Institute, Fudan University, Shanghai, 200120 China
| | - Jianfeng Xu
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040 China
- Cancer Metastasis Institute, Fudan University, Shanghai, 200120 China
| | - Lunxiu Qin
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040 China
- Cancer Metastasis Institute, Fudan University, Shanghai, 200120 China
| |
Collapse
|
246
|
Zhou S, Yang K, Chen S, Lian G, Huang Y, Yao H, Zhao Y, Huang K, Yin D, Lin H, Li Y. CCL3 secreted by hepatocytes promotes the metastasis of intrahepatic cholangiocarcinoma by VIRMA-mediated N6-methyladenosine (m 6A) modification. J Transl Med 2023; 21:43. [PMID: 36691046 PMCID: PMC9869516 DOI: 10.1186/s12967-023-03897-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (ICC) is a malignant disease characterized by onset occult, rapid progression, high relapse rate, and high mortality. However, data on how the tumor microenvironment (TME) regulates ICC metastasis at the transcriptomic level remains unclear. This study aimed to explore the mechanisms and interactions between hepatocytes and ICC cells. METHODS We analyzed the interplay between ICC and liver microenvironment through cytokine antibody array analysis. Then we investigated the role of N6-methyladenosine (m6A) modification and the downstream target in vitro, in vivo experiments, and in clinical specimens. RESULTS Our study demonstrated that cytokine CCL3, which is secreted by hepatocytes, promotes tumor metastasis by regulating m6A modification via vir-like m6A methyltransferase associated (VIRMA) in ICC cells. Moreover, immunohistochemical analyses showed that VIRMA correlated with poor outcomes in ICC patients. Finally, we confirmed both in vitro and in vivo that CCL3 could activate VIRMA and its critical downstream target SIRT1, which fuels tumor metastasis in ICC. CONCLUSIONS In conclusion, our results enhanced our understanding of the interaction between hepatocytes and ICC cells, and revealed the molecular mechanism of the CCL3/VIRMA/SIRT1 pathway via m6A-mediated regulation in ICC metastasis. These studies highlight potential targets for the diagnosis, treatment, and prognosis of ICC.
Collapse
Affiliation(s)
- Shurui Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Kege Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Shaojie Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Guoda Lian
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yuzhou Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Hanming Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yue Zhao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Kaihong Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Dong Yin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Haoming Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Department of Pancreato-Biliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Yaqing Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| |
Collapse
|
247
|
Ji T, Gao X, Li D, Huai S, Chi Y, An X, Ji W, Yang S, Li J. Identification and validation of signature for prognosis and immune microenvironment in gastric cancer based on m6A demethylase ALKBH5. Front Oncol 2023; 12:1079402. [PMID: 36686788 PMCID: PMC9853004 DOI: 10.3389/fonc.2022.1079402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/07/2022] [Indexed: 01/07/2023] Open
Abstract
Background N6-methyladenosine (m6A) RNA regulators play important roles in cancers, but their functions and mechanism have not been demonstrated clearly in gastric cancer (GC). Methods In this study, the GC samples with clinical information and RNA transcriptome were downloaded from The Cancer Genome Atlas database. The different expression genes were compared by the absolute value and median ± standard deviation. Samples with complete information were randomly divided into a training dataset and a test dataset. The differential expression genes (DEGs) between ALKBH5-low and ALKBH5-high subgroups were identified in the training dataset and constructed a risk model by Cox and least absolute shrinkage and selection operator regression. The model was testified in test datasets, overall survival (OS) was compared with the Kaplan-Meier method, and immune cell infiltration was calculated by the CIBERSORT algorithm in the low-risk and high-risk subgroups based on the model. The protein levels of ALKBH5 were detected with immunohistochemistry. The relative expression of messenger-ribonucleic acid (mRNA) was detected with quantitative polymerase chain reaction. Results ALKBH5 was the only regulator whose expression was lower in tumor samples than that in normal samples. The low expression of ALKBH5 led to the poor OS of GC patients and seemed to be an independent protective factor. The model based on ALKBH5-regulated genes was validated in both datasets (training/test) and displayed a potential capacity to predict a clinical prognosis. Gene Ontology analysis implied that the DEGs were involved in the immune response; CIBERSORT results indicated that ALKBH5 and its related genes could alter the immune microenvironment of GC. The protein levels of ALKBH5 were verified as lowly expressed in GC tissues. SLC7A2 and CGB3 were downregulated with ALKBH5 knockdown. Conclusions In this study, we found that ALKBH5 might be a suppressor of GC; ALKBH5 and its related genes were latent biomarkers and immunotherapy targets.
Collapse
Affiliation(s)
- Tiannan Ji
- Medical School of Chinese PLA, Beijing, China,Department of Radiotherapy, Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Xiaohui Gao
- Department of Radiotherapy, Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, Beijing, China,Department of Clinical Medicine, Graduate School of Hebei North University, Zhangjiakou, Hebei, China
| | - Dan Li
- Department of Radiotherapy, Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Siyuan Huai
- Department of Radiotherapy, Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yajing Chi
- Department of Radiotherapy, Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, Beijing, China,School of Medicine, Nankai University, Tianjin, China
| | - Xian An
- Department of Radiotherapy, Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Wenyu Ji
- Department of Radiotherapy, Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, Beijing, China,Department of Clinical Medicine, Graduate School of Hebei North University, Zhangjiakou, Hebei, China
| | - Siming Yang
- Department of Radiotherapy, Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Jianxiong Li
- Department of Radiotherapy, Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, Beijing, China,*Correspondence: Jianxiong Li,
| |
Collapse
|
248
|
Li Y, Huang H, Wu S, Zhou Y, Huang T, Jiang J. The Role of RNA m 6A Modification in Cancer Glycolytic Reprogramming. Curr Gene Ther 2023; 23:51-59. [PMID: 36043793 DOI: 10.2174/1566523222666220830150446] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/19/2022] [Accepted: 07/28/2022] [Indexed: 02/08/2023]
Abstract
As one of the main characteristics of neoplasia, metabolic reprogramming provides nutrition and energy to enhance cell proliferation and maintain environment homeostasis. Glycolysis is one of the most important components of cancer metabolism and the Warburg effect contributes to the competitive advantages of cancer cells in the threatened microenvironment. Studies show strong links between N6-methyladenosine (m6A) modification and metabolic recombination of cancer cells. As the most abundant modification in eukaryotic RNA, m6A methylation plays important roles in regulating RNA processing, including splicing, stability, transportation, translation and degradation. The aberration of m6A modification can be observed in a variety of diseases such as diabetes, neurological diseases and cancers. This review describes the mechanisms of m6A on cancer glycolysis and their applications in cancer therapy and prognosis evaluation, aiming to emphasize the importance of targeting m6A in modulating cancer metabolism.
Collapse
Affiliation(s)
- Yuanqi Li
- Tumor Biological Diagnosis and Treatment Center, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, China
- Institute of Cell Therapy, Soochow University, Changzhou 213003, China
| | - Hao Huang
- Tumor Biological Diagnosis and Treatment Center, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, China
- Institute of Cell Therapy, Soochow University, Changzhou 213003, China
| | - Shaoxian Wu
- Tumor Biological Diagnosis and Treatment Center, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, China
- Institute of Cell Therapy, Soochow University, Changzhou 213003, China
| | - You Zhou
- Tumor Biological Diagnosis and Treatment Center, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, China
- Institute of Cell Therapy, Soochow University, Changzhou 213003, China
| | - Tao Huang
- Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jingting Jiang
- Tumor Biological Diagnosis and Treatment Center, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, China
- Institute of Cell Therapy, Soochow University, Changzhou 213003, China
| |
Collapse
|
249
|
Jing Q, Yao H, Li H, Yuan C, Hu J, Zhang P, Wu Y, Zhou Y, Ren X, Yang C, Lei G, Du J, Ke X, Xia J, Tong X. A novel RNA modification prognostic signature for predicting the characteristics of the tumor microenvironment in gastric cancer. Front Oncol 2023; 13:905139. [PMID: 36874129 PMCID: PMC9978099 DOI: 10.3389/fonc.2023.905139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 01/06/2023] [Indexed: 02/18/2023] Open
Abstract
Gastric cancer (GC) is one of the most common neoplastic malignancies, which permutes a fourth of cancer-related mortality globally. RNA modification plays a significant role in tumorigenesis, the underlying molecular mechanism of how different RNA modifications directly affect the tumor microenvironment (TME) in GC is unclear. Here, we profiled the genetic and transcriptional alterations of RNA modification genes (RMGs) in GC samples from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) cohorts. Through the unsupervised clustering algorithm, we identified three distinct RNA modification clusters and found that they participate in different biological pathways and starkly correlate with the clinicopathological characteristics, immune cell infiltration, and prognosis of GC patients. Subsequently, univariate Cox regression analysis unveiled 298 of 684 subtype-related differentially expressed genes (DEGs) are tightly interwoven to prognosis. In addition, we conducted the principal component analysis to develop the RM_Score system, which was used to quantify and predict the prognostic value of RNA modification in GC. Our analysis indicated that patients with high RM_Score were characterized by higher tumor mutational burden, mutation frequency, and microsatellite instability which were more susceptible to immunotherapy and had a favorable prognosis. Altogether, our study uncovered RNA modification signatures that may have a potential role in the TME and prediction of clinicopathological characteristics. Identification of these RNA modifications may provide a new understanding of immunotherapy strategies for gastric cancer.
Collapse
Affiliation(s)
- Qiangan Jing
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China.,Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Hongfeng Yao
- Department of Clinical Laboratory, Zhuji People's Hospital of Zhejiang Province, Zhuji, Zhejiang, China
| | - Huanjuan Li
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chen Yuan
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jiayu Hu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ping Zhang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yunyi Wu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yi Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xueying Ren
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chen Yang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Guojie Lei
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jing Du
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xia Ke
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Jun Xia
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiangmin Tong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China.,Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
250
|
Yang F, Liu Y, Xiao J, Li B, Chen Y, Hu A, Zeng J, Liu Z, Liu H. Circ-CTNNB1 drives aerobic glycolysis and osteosarcoma progression via m6A modification through interacting with RBM15. Cell Prolif 2023; 56:e13344. [PMID: 36181462 DOI: 10.1111/cpr.13344] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/25/2022] [Accepted: 09/15/2022] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVES Circular RNAs (circRNAs) are a subclass of noncoding RNAs, playing essential roles in tumorigenesis and aggressiveness. Recent studies have revealed the pivotal functions of circ-CTNNB1 (a circular RNA derived from CTNNB1) in cancer progression. However, little is known about the role of circ-CTNNB1 in osteosarcoma (OS), a highly malignant bone tumour in children and adolescents. METHODS Circ-CTNNB1 was analysed by qRT-PCR, and the results were confirmed by Sanger sequencing. The interaction and effects between circ-CTNNB1 and RNA binding motif protein 15 (RBM15) were analysed through biotin-labelled RNA pull-down and mass spectrometry, in vitro binding, and RNA electrophoretic mobility shift assays. In vitro and in vivo experiments were performed to evaluate the biological functions and underlying mechanisms of circ-CTNNB1 and RBM15 in OS cells. RESULTS Circ-CTNNB1 was highly expressed in OS tissues and predominantly detected in the nucleus of OS cells. Ectopic expression of circ-CTNNB1 promoted the growth, invasion, and metastasis of OS cells in vitro and in vivo. Mechanistically, circ-CTNNB1 interacted with RBM15 and subsequently promoted the expression of hexokinase 2 (HK2), glucose-6-phosphate isomerase (GPI) and phosphoglycerate kinase 1 (PGK1) through N6-methyladenosine (m6A) modification to facilitate the glycolysis process and activate OS progression. CONCLUSIONS Circ-CTNNB1 drives aerobic glycolysis and OS progression by facilitating RBM15-mediated m6A modification.
Collapse
Affiliation(s)
- Feng Yang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Yangyang Liu
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Jun Xiao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Bo Li
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Yajun Chen
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China.,Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Anpei Hu
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jin Zeng
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Zhili Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Hucheng Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|