201
|
Wang F, He J, Liu S, Gao A, Yang L, Sun G, Ding W, Li CY, Gou F, He M, Wang F, Wang X, Zhao X, Zhu P, Hao S, Ma Y, Cheng H, Yu J, Cheng T. A comprehensive RNA editome reveals that edited Azin1 partners with DDX1 to enable hematopoietic stem cell differentiation. Blood 2021; 138:1939-1952. [PMID: 34388251 PMCID: PMC8602937 DOI: 10.1182/blood.2021011314] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 08/06/2021] [Indexed: 11/20/2022] Open
Abstract
Adenosine-to-inosine RNA editing and the catalyzing enzyme adenosine deaminase are both essential for hematopoietic development and differentiation. However, the RNA editome during hematopoiesis and the underlying mechanisms are poorly defined. Here, we sorted 12 murine adult hematopoietic cell populations at different stages and identified 30 796 editing sites through RNA sequencing. The dynamic landscape of the RNA editome comprises stage- and group-specific and stable editing patterns, but undergoes significant changes during lineage commitment. Notably, we found that antizyme inhibitor 1 (Azin1) was highly edited in hematopoietic stem and progenitor cells (HSPCs). Azin1 editing results in an amino acid change to induce Azin1 protein (AZI) translocation to the nucleus, enhanced AZI binding affinity for DEAD box polypeptide 1 to alter the chromatin distribution of the latter, and altered expression of multiple hematopoietic regulators that ultimately promote HSPC differentiation. Our findings have delineated an essential role for Azin1 RNA editing in hematopoietic cells, and our data set is a valuable resource for studying RNA editing on a more general basis.
Collapse
Affiliation(s)
- Fengjiao Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Tianjin, China
| | - Jiahuan He
- State Key Laboratory of Medical Molecular Biology, Key Laboratory of RNA Regulation and Hematopoiesis, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, School of Basic Medicine, CAMS and Peking Union Medical College, Beijing, China
| | - Siqi Liu
- State Key Laboratory of Medical Molecular Biology, Key Laboratory of RNA Regulation and Hematopoiesis, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, School of Basic Medicine, CAMS and Peking Union Medical College, Beijing, China
| | - Ai Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Tianjin, China
| | - Liu Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Tianjin, China
| | - Guohuan Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Tianjin, China
| | - Wanqiu Ding
- Institute of Molecular Medicine, Peking University, Beijing, China; and
| | - Chuan-Yun Li
- Institute of Molecular Medicine, Peking University, Beijing, China; and
| | - Fanglin Gou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Tianjin, China
| | - Manman He
- State Key Laboratory of Medical Molecular Biology, Key Laboratory of RNA Regulation and Hematopoiesis, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, School of Basic Medicine, CAMS and Peking Union Medical College, Beijing, China
| | - Fang Wang
- State Key Laboratory of Medical Molecular Biology, Key Laboratory of RNA Regulation and Hematopoiesis, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, School of Basic Medicine, CAMS and Peking Union Medical College, Beijing, China
| | - Xiaoshuang Wang
- State Key Laboratory of Medical Molecular Biology, Key Laboratory of RNA Regulation and Hematopoiesis, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, School of Basic Medicine, CAMS and Peking Union Medical College, Beijing, China
| | - Xiangnan Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Tianjin, China
| | - Ping Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Department of Stem Cell and Regenerative Medicine, CAMS and Peking Union Medical College, Tianjin, China
| | - Sha Hao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Department of Stem Cell and Regenerative Medicine, CAMS and Peking Union Medical College, Tianjin, China
| | - Yanni Ma
- State Key Laboratory of Medical Molecular Biology, Key Laboratory of RNA Regulation and Hematopoiesis, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, School of Basic Medicine, CAMS and Peking Union Medical College, Beijing, China
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Department of Stem Cell and Regenerative Medicine, CAMS and Peking Union Medical College, Tianjin, China
| | - Jia Yu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Tianjin, China
- State Key Laboratory of Medical Molecular Biology, Key Laboratory of RNA Regulation and Hematopoiesis, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, School of Basic Medicine, CAMS and Peking Union Medical College, Beijing, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Department of Stem Cell and Regenerative Medicine, CAMS and Peking Union Medical College, Tianjin, China
| |
Collapse
|
202
|
The landscape of coding RNA editing events in pediatric cancer. BMC Cancer 2021; 21:1233. [PMID: 34789196 PMCID: PMC8597231 DOI: 10.1186/s12885-021-08956-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/02/2021] [Indexed: 01/09/2023] Open
Abstract
Background RNA editing leads to post-transcriptional variation in protein sequences and has important biological implications. We sought to elucidate the landscape of RNA editing events across pediatric cancers. Methods Using RNA-Seq data mapped by a pipeline designed to minimize mapping ambiguity, we investigated RNA editing in 711 pediatric cancers from the St. Jude/Washington University Pediatric Cancer Genome Project focusing on coding variants which can potentially increase protein sequence diversity. We combined de novo detection using paired tumor DNA-RNA data with analysis of known RNA editing sites. Results We identified 722 unique RNA editing sites in coding regions across pediatric cancers, 70% of which were nonsynonymous recoding variants. Nearly all editing sites represented the canonical A-to-I (n = 706) or C-to-U sites (n = 14). RNA editing was enriched in brain tumors compared to other cancers, including editing of glutamate receptors and ion channels involved in neurotransmitter signaling. RNA editing profiles of each pediatric cancer subtype resembled those of the corresponding normal tissue profiled by the Genotype-Tissue Expression (GTEx) project. Conclusions In this first comprehensive analysis of RNA editing events in pediatric cancer, we found that the RNA editing profile of each cancer subtype is similar to its normal tissue of origin. Tumor-specific RNA editing events were not identified indicating that successful immunotherapeutic targeting of RNA-edited peptides in pediatric cancer should rely on increased antigen presentation on tumor cells compared to normal but not on tumor-specific RNA editing per se. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08956-5.
Collapse
|
203
|
Yeo JY, Gan SKE. Peering into Avian Influenza A(H5N8) for a Framework towards Pandemic Preparedness. Viruses 2021; 13:2276. [PMID: 34835082 PMCID: PMC8622263 DOI: 10.3390/v13112276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/20/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022] Open
Abstract
2014 marked the first emergence of avian influenza A(H5N8) in Jeonbuk Province, South Korea, which then quickly spread worldwide. In the midst of the 2020-2021 H5N8 outbreak, it spread to domestic poultry and wild waterfowl shorebirds, leading to the first human infection in Astrakhan Oblast, Russia. Despite being clinically asymptomatic and without direct human-to-human transmission, the World Health Organization stressed the need for continued risk assessment given the nature of Influenza to reassort and generate novel strains. Given its promiscuity and easy cross to humans, the urgency to understand the mechanisms of possible species jumping to avert disastrous pandemics is increasing. Addressing the epidemiology of H5N8, its mechanisms of species jumping and its implications, mutational and reassortment libraries can potentially be built, allowing them to be tested on various models complemented with deep-sequencing and automation. With knowledge on mutational patterns, cellular pathways, drug resistance mechanisms and effects of host proteins, we can be better prepared against H5N8 and other influenza A viruses.
Collapse
Affiliation(s)
- Joshua Yi Yeo
- Antibody & Product Development Lab, EDDC-BII, Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore;
| | - Samuel Ken-En Gan
- Antibody & Product Development Lab, EDDC-BII, Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore;
- APD SKEG Pte Ltd., Singapore 439444, Singapore
| |
Collapse
|
204
|
Choudhry H. High-throughput screening to identify potential inhibitors of the Zα domain of the adenosine deaminase 1 (ADAR1). Saudi J Biol Sci 2021; 28:6297-6304. [PMID: 34759749 PMCID: PMC8568724 DOI: 10.1016/j.sjbs.2021.06.080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/26/2021] [Accepted: 06/27/2021] [Indexed: 11/26/2022] Open
Abstract
Adenosine deaminases acting on RNA 1 (ADAR1) are enzymes involved in editing adenosine to inosine in the dsRNAs of cells associated with cancer development. The p150 isoform of ADAR1 is the only isoform containing the Zα domain that binds to both Z-DNA and Z-RNA. The Zα domain is suggested to modulate the immune response and could be a suitable target for antiviral treatment and cancer immunotherapy. In this study, we aimed to identify potential inhibitors for ADAR1 protein that bind the Zα domain using molecular docking and simulation tools. Virtual docking and molecular dynamics simulation approaches were used to screen the potential activity of 2115 FDA-approved compounds on the Zα domain of ADAR1 and filtered for to obtain the top-scoring hits. The top three compounds with the best XP Gscore—namely alendronate (−7.045), etidronate (−6.923), and zoledronate (−6.77)—were subjected to 50 ns simulations to characterize complex stability and identify the fundamental interactions that contribute to inhibition of the ADAR1 Zα domain. The three compounds were shown to interact with Lys169, Lys170, Asn173, and Tyr177 of the Zα domain-like helical backbone of Z-RNA. The study provides a comprehensive and novel insights of repurposes drugs for the inhibition of ADAR1 function.
Collapse
Affiliation(s)
- Hani Choudhry
- Department of Biochemistry, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
205
|
Inoue M, Nakahama T, Yamasaki R, Shibuya T, Kim JI, Todo H, Xing Y, Kato Y, Morii E, Kawahara Y. An Aicardi-Goutières Syndrome-Causative Point Mutation in Adar1 Gene Invokes Multiorgan Inflammation and Late-Onset Encephalopathy in Mice. THE JOURNAL OF IMMUNOLOGY 2021; 207:3016-3027. [PMID: 34772697 DOI: 10.4049/jimmunol.2100526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/13/2021] [Indexed: 12/23/2022]
Abstract
Aicardi-Goutières syndrome (AGS) is a congenital inflammatory disorder accompanied by overactivated type I IFN signaling and encephalopathy with leukodystrophy and intracranial calcification. To date, none of the mouse models carrying an AGS-causative mutation has mimicked such brain pathology. Here, we established a mutant mouse model carrying a K948N point mutation, corresponding to an AGS-causative K999N mutation, located in a deaminase domain of the Adar1 gene that encodes an RNA editing enzyme. Adar1K948N/K948N mice displayed postnatal growth retardation. Hyperplasia of splenic white pulps with germinal centers and hepatic focal inflammation were observed from 2 mo of age. Inflammation developed in the lungs and heart with lymphocyte infiltration in an age-dependent manner. Furthermore, white matter abnormalities with astrocytosis and microgliosis were detected at 1 y of age. The increased expression of IFN-stimulated genes was detected in multiple organs, including the brain, from birth. In addition, single-nucleus RNA sequencing revealed that this elevated expression of IFN-stimulated genes was commonly observed in all neuronal subtypes, including neurons, oligodendrocytes, and astrocytes. We further showed that a K948N point mutation reduced the RNA editing activity of ADAR1 in vivo. The pathological abnormalities found in Adar1K948N/K948N mice were ameliorated by either the concurrent deletion of MDA5, a cytosolic sensor of unedited transcripts, or the sole expression of active ADAR1 p150, an isoform of ADAR1. Collectively, such data suggest that although the degree is mild, Adar1K948N/K948N mice mimic multiple AGS phenotypes, including encephalopathy, which is caused by reduced RNA editing activity of the ADAR1 p150 isoform.
Collapse
Affiliation(s)
- Maal Inoue
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Taisuke Nakahama
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Ryuichiro Yamasaki
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Toshiharu Shibuya
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Jung In Kim
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hiroyuki Todo
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yanfang Xing
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yuki Kato
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Eiichi Morii
- Department of Pathology, Graduate School of Medicine, Osaka University, Osaka, Japan; and
| | - Yukio Kawahara
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan; .,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan.,Genome Editing Research and Development Center, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
206
|
Vlachogiannis NI, Sachse M, Georgiopoulos G, Zormpas E, Bampatsias D, Delialis D, Bonini F, Galyfos G, Sigala F, Stamatelopoulos K, Gatsiou A, Stellos K. Adenosine-to-inosine Alu RNA editing controls the stability of the pro-inflammatory long noncoding RNA NEAT1 in atherosclerotic cardiovascular disease. J Mol Cell Cardiol 2021; 160:111-120. [PMID: 34302813 PMCID: PMC8585018 DOI: 10.1016/j.yjmcc.2021.07.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/21/2021] [Accepted: 07/16/2021] [Indexed: 12/24/2022]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as critical regulators in human disease including atherosclerosis. However, the mechanisms involved in the post-transcriptional regulation of the expression of disease-associated lncRNAs are not fully understood. Gene expression studies revealed that Nuclear Paraspeckle Assembly Transcript 1 (NEAT1) lncRNA expression was increased by >2-fold in peripheral blood mononuclear cells (PBMCs) derived from patients with coronary artery disease (CAD) or in carotid artery atherosclerotic plaques. We observed a linear association between NEAT1 lncRNA expression and prevalence of CAD which was independent of age, sex, cardiovascular traditional risk factors and renal function. NEAT1 expression was induced by TNF-α, while silencing of NEAT1 profoundly attenuated the TNF-α-induced vascular endothelial cell pro-inflammatory response as defined by the expression of CXCL8, CCL2, VCAM1 and ICAM1. Overexpression of the RNA editing enzyme adenosine deaminase acting on RNA-1 (ADAR1), but not of its editing-deficient mutant, upregulated NEAT1 levels. Conversely, silencing of ADAR1 suppressed the basal levels and the TNF-α-induced increase of NEAT1. NEAT1 lncRNA expression was strongly associated with ADAR1 in CAD and peripheral arterial vascular disease. RNA editing mapping studies revealed the presence of several inosines in close proximity to AU-rich elements within the AluSx3+/AluJo- double-stranded RNA complex. Silencing of the stabilizing RNA-binding protein AUF1 reduced NEAT1 levels while silencing of ADAR1 profoundly affected the binding capacity of AUF1 to NEAT1. Together, our findings propose a mechanism by which ADAR1-catalyzed A-to-I RNA editing controls NEAT1 lncRNA stability in ASCVD.
Collapse
Affiliation(s)
- Nikolaos I Vlachogiannis
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK; Department of Cardiology, Freeman Hospital, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Marco Sachse
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK; Vascular Inflammation and RNA Metabolism Laboratory, Institute for Vascular Signalling, JW Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Georgios Georgiopoulos
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleftherios Zormpas
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Dimitrios Bampatsias
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Delialis
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Francesca Bonini
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK; Vascular Inflammation and RNA Metabolism Laboratory, Institute for Vascular Signalling, JW Goethe University Frankfurt, Frankfurt am Main, Germany
| | - George Galyfos
- First Propaedeutic Department of Surgery, National and Kapodistrian University of Athens, Hippocration Hospital, Athens, Greece
| | - Fragiska Sigala
- First Propaedeutic Department of Surgery, National and Kapodistrian University of Athens, Hippocration Hospital, Athens, Greece
| | - Kimon Stamatelopoulos
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Aikaterini Gatsiou
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK.
| | - Konstantinos Stellos
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK; Department of Cardiology, Freeman Hospital, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; Vascular Inflammation and RNA Metabolism Laboratory, Institute for Vascular Signalling, JW Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
207
|
Nakahama T, Kawahara Y. Deciphering the Biological Significance of ADAR1-Z-RNA Interactions. Int J Mol Sci 2021; 22:ijms222111435. [PMID: 34768866 PMCID: PMC8584189 DOI: 10.3390/ijms222111435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/24/2022] Open
Abstract
Adenosine deaminase acting on RNA 1 (ADAR1) is an enzyme responsible for double-stranded RNA (dsRNA)-specific adenosine-to-inosine RNA editing, which is estimated to occur at over 100 million sites in humans. ADAR1 is composed of two isoforms transcribed from different promoters: p150 and N-terminal truncated p110. Deletion of ADAR1 p150 in mice activates melanoma differentiation-associated protein 5 (MDA5)-sensing pathway, which recognizes endogenous unedited RNA as non-self. In contrast, we have recently demonstrated that ADAR1 p110-mediated RNA editing does not contribute to this function, implying that a unique Z-DNA/RNA-binding domain α (Zα) in the N terminus of ADAR1 p150 provides specific RNA editing, which is critical for preventing MDA5 activation. In addition, a mutation in the Zα domain is identified in patients with Aicardi–Goutières syndrome (AGS), an inherited encephalopathy characterized by overproduction of type I interferon. Accordingly, we and other groups have recently demonstrated that Adar1 Zα-mutated mice show MDA5-dependent type I interferon responses. Furthermore, one such mutant mouse carrying a W197A point mutation in the Zα domain, which inhibits Z-RNA binding, manifests AGS-like encephalopathy. These findings collectively suggest that Z-RNA binding by ADAR1 p150 is essential for proper RNA editing at certain sites, preventing aberrant MDA5 activation.
Collapse
Affiliation(s)
- Taisuke Nakahama
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan;
| | - Yukio Kawahara
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan;
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka 565-0871, Japan
- Correspondence: ; Tel.: +81-6-6879-3827
| |
Collapse
|
208
|
Karki R, Sundaram B, Sharma BR, Lee S, Malireddi RKS, Nguyen LN, Christgen S, Zheng M, Wang Y, Samir P, Neale G, Vogel P, Kanneganti TD. ADAR1 restricts ZBP1-mediated immune response and PANoptosis to promote tumorigenesis. Cell Rep 2021; 37:109858. [PMID: 34686350 PMCID: PMC8853634 DOI: 10.1016/j.celrep.2021.109858] [Citation(s) in RCA: 189] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/12/2021] [Accepted: 09/28/2021] [Indexed: 01/04/2023] Open
Abstract
Cell death provides host defense and maintains homeostasis. Zα-containing molecules are essential for these processes. Z-DNA binding protein 1 (ZBP1) activates inflammatory cell death, PANoptosis, whereas adenosine deaminase acting on RNA 1 (ADAR1) serves as an RNA editor to maintain homeostasis. Here, we identify and characterize ADAR1's interaction with ZBP1, defining its role in cell death regulation and tumorigenesis. Combining interferons (IFNs) and nuclear export inhibitors (NEIs) activates ZBP1-dependent PANoptosis. ADAR1 suppresses this PANoptosis by interacting with the Zα2 domain of ZBP1 to limit ZBP1 and RIPK3 interactions. Adar1fl/flLysMcre mice are resistant to development of colorectal cancer and melanoma, but deletion of the ZBP1 Zα2 domain restores tumorigenesis in these mice. In addition, treating wild-type mice with IFN-γ and the NEI KPT-330 regresses melanoma in a ZBP1-dependent manner. Our findings suggest that ADAR1 suppresses ZBP1-mediated PANoptosis, promoting tumorigenesis. Defining the functions of ADAR1 and ZBP1 in cell death is fundamental to informing therapeutic strategies for cancer and other diseases.
Collapse
MESH Headings
- Adenosine Deaminase/genetics
- Adenosine Deaminase/metabolism
- Animals
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Cell Death
- Cell Transformation, Neoplastic/immunology
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Colorectal Neoplasms/drug therapy
- Colorectal Neoplasms/enzymology
- Colorectal Neoplasms/immunology
- Colorectal Neoplasms/pathology
- Female
- Gene Expression Regulation, Neoplastic
- HEK293 Cells
- Humans
- Hydrazines/pharmacology
- Interferon-gamma/pharmacology
- Male
- Melanoma, Experimental/drug therapy
- Melanoma, Experimental/enzymology
- Melanoma, Experimental/immunology
- Melanoma, Experimental/pathology
- Mice, Inbred C57BL
- Mice, Knockout
- Necroptosis
- Pyroptosis
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Receptor-Interacting Protein Serine-Threonine Kinases/genetics
- Receptor-Interacting Protein Serine-Threonine Kinases/metabolism
- Signal Transduction
- Skin Neoplasms/drug therapy
- Skin Neoplasms/enzymology
- Skin Neoplasms/immunology
- Skin Neoplasms/pathology
- Triazoles/pharmacology
- Mice
Collapse
Affiliation(s)
- Rajendra Karki
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Balamurugan Sundaram
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Bhesh Raj Sharma
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - SangJoon Lee
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | - Lam Nhat Nguyen
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shelbi Christgen
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Min Zheng
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yaqiu Wang
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Parimal Samir
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Geoffrey Neale
- Hartwell Center for Bioinformatics & Biotechnology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Peter Vogel
- Animal Resources Center and Veterinary Pathology Core, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | |
Collapse
|
209
|
Soler M, Davalos V, Sánchez-Castillo A, Mora-Martinez C, Setién F, Siqueira E, Castro de Moura M, Esteller M, Guil S. The transcribed ultraconserved region uc.160+ enhances processing and A-to-I editing of the miR-376 cluster: hypermethylation improves glioma prognosis. Mol Oncol 2021; 16:648-664. [PMID: 34665919 PMCID: PMC8807354 DOI: 10.1002/1878-0261.13121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/01/2021] [Accepted: 10/15/2021] [Indexed: 11/11/2022] Open
Abstract
Transcribed ultraconserved regions (T‐UCRs) are noncoding RNAs derived from DNA sequences that are entirely conserved across species. Their expression is altered in many tumor types, and, although a role for T‐UCRs as regulators of gene expression has been proposed, their functions remain largely unknown. Herein, we describe the epigenetic silencing of the uc.160+ T‐UCR in gliomas and mechanistically define a novel RNA–RNA regulatory network in which uc.160+ modulates the biogenesis of several members of the miR‐376 cluster. This includes the positive regulation of primary microRNA (pri‐miRNA) cleavage and an enhanced A‐to‐I editing on its mature sequence. As a consequence, the expression of uc.160+ affects the downstream, miR‐376‐regulated genes, including the transcriptional coregulators RING1 and YY1‐binding protein (RYBP) and forkhead box P2 (FOXP2). Finally, we elucidate the clinical impact of our findings, showing that hypermethylation of the uc.160+ CpG island is an independent prognostic factor associated with better overall survival in lower‐grade gliomas, highlighting the importance of T‐UCRs in cancer pathophysiology.
Collapse
Affiliation(s)
- Marta Soler
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain
| | - Veronica Davalos
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain
| | - Anaís Sánchez-Castillo
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, The Netherlands
| | - Carlos Mora-Martinez
- Centre of Excellence in Experimental and Computational Developmental Biology, Institute of Biotechnology, University of Helsinki, Finland
| | - Fernando Setién
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain
| | - Edilene Siqueira
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain.,Conselho Nacional de Desenvolvimento Cientifico e Tecnológico (CNPq), Brasilia, Brazil
| | | | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain.,Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.,Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Spain
| | - Sonia Guil
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain.,Germans Trias i Pujol Health Science Research Institute, Barcelona, Spain
| |
Collapse
|
210
|
Hao W, Liu G, Wang W, Shen W, Zhao Y, Sun J, Yang Q, Zhang Y, Fan W, Pei S, Chen Z, Xu D, Qin T. RNA Editing and Its Roles in Plant Organelles. Front Genet 2021; 12:757109. [PMID: 34659369 PMCID: PMC8511385 DOI: 10.3389/fgene.2021.757109] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 08/25/2021] [Indexed: 11/13/2022] Open
Abstract
RNA editing, a vital supplement to the central dogma, yields genetic information on RNA products that are different from their DNA templates. The conversion of C-to-U in mitochondria and plastids is the main kind of RNA editing in plants. Various factors have been demonstrated to be involved in RNA editing. In this minireview, we summarized the factors and mechanisms involved in RNA editing in plant organelles. Recently, the rapid development of deep sequencing has revealed many RNA editing events in plant organelles, and we further reviewed these events identified through deep sequencing data. Numerous studies have shown that RNA editing plays essential roles in diverse processes, such as the biogenesis of chloroplasts and mitochondria, seed development, and stress and hormone responses. Finally, we discussed the functions of RNA editing in plant organelles.
Collapse
Affiliation(s)
- Wei Hao
- College of Medical Technology, Beihua University, Jilin City, China
| | - Guoxiang Liu
- Key Laboratory of Tobacco Improvement and Biotechnology, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Weipeng Wang
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang, China
| | - Wei Shen
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, SAR China
| | - Yuping Zhao
- Beijing City River and Lake Management Office, Beijing, China
| | - Jialiang Sun
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang, China
| | - Qiuyue Yang
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang, China
| | - Yaxin Zhang
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang, China
| | - Wenjia Fan
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang, China
| | - Shuaishuai Pei
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang, China
| | - Zhuanqing Chen
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang, China
| | - Dongbei Xu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Tengfei Qin
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang, China
| |
Collapse
|
211
|
Adetula AA, Fan X, Zhang Y, Yao Y, Yan J, Chen M, Tang Y, Liu Y, Yi G, Li K, Tang Z. Landscape of tissue-specific RNA Editome provides insight into co-regulated and altered gene expression in pigs ( Sus-scrofa). RNA Biol 2021; 18:439-450. [PMID: 34314293 PMCID: PMC8677025 DOI: 10.1080/15476286.2021.1954380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 11/08/2022] Open
Abstract
RNA editing generates genetic diversity in mammals by altering amino acid sequences, miRNA targeting site sequences, influencing the stability of targeted RNAs, and causing changes in gene expression. However, the extent to which RNA editing affect gene expression via modifying miRNA binding site remains unexplored. Here, we first profiled the dynamic A-to-I RNA editome across tissues of Duroc and Luchuan pigs. The RNA editing events at the miRNA binding sites were generated. The biological function of the differentially edited gene in skeletal muscle was further characterized in pig muscle-derived satellite cells. RNA editome analysis revealed a total of 171,909 A-to-I RNA editing sites (RESs), and examination of its features showed that these A-to-I editing sites were mainly located in SINE retrotransposons PRE-1/Pre0_SS element. Analysis of differentially edited sites (DESs) revealed a total of 4,552 DESs across tissues between Duroc and Luchuan pigs, and functional category enrichment analysis of differentially edited gene (DEG) sets highlighted a significant association and enrichment of tissue-developmental pathways including TGF-beta, PI3K-Akt, AMPK, and Wnt signaling pathways. Moreover, we found that RNA editing events at the miRNA binding sites in the 3'-UTR of HSPA12B mRNA could prevent the miRNA-mediated mRNA downregulation of HSPA12B in the muscle-derived satellite (MDS) cell, consistent with the results obtained from the Luchuan skeletal muscle. This study represents the most systematic attempt to characterize the significance of RNA editing in regulating gene expression, particularly in skeletal muscle, constituting a new layer of regulation to understand the genetic mechanisms behind phenotype variance in animals.Abbreviations: A-to-I: Adenosine-to-inosine; ADAR: Adenosine deaminase acting on RNA; RES: RNA editing site; DEG: Differentially edited gene; DES: Differentially edited site; FDR: False discovery rate; GO: Gene Ontology; KEGG: Kyoto Encyclopaedia of Genes and Genomes; MDS cell: musclederived satellite cell; RPKM: Reads per kilobase of exon model in a gene per million mapped reads; UTR: Untranslated coding regions.
Collapse
Affiliation(s)
- Adeyinka A. Adetula
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Group of Pig Genome and Design Breeding, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xinhao Fan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Group of Pig Genome and Design Breeding, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yongsheng Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Group of Pig Genome and Design Breeding, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yilong Yao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Group of Pig Genome and Design Breeding, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Junyu Yan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Group of Pig Genome and Design Breeding, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Muya Chen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Group of Pig Genome and Design Breeding, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yijie Tang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Group of Pig Genome and Design Breeding, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yuwen Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Group of Pig Genome and Design Breeding, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Kunpeng Institute of Modern Agriculture at Foshan, Foshan, China
- GuangXi Engineering Centre for Resource Development of Bama Xiang Pig, Bama, China
| | - Guoqiang Yi
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Group of Pig Genome and Design Breeding, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Kunpeng Institute of Modern Agriculture at Foshan, Foshan, China
- GuangXi Engineering Centre for Resource Development of Bama Xiang Pig, Bama, China
| | - Kui Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhonglin Tang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Group of Pig Genome and Design Breeding, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Kunpeng Institute of Modern Agriculture at Foshan, Foshan, China
- GuangXi Engineering Centre for Resource Development of Bama Xiang Pig, Bama, China
| |
Collapse
|
212
|
Khosravi HM, Jantsch MF. Site-directed RNA editing: recent advances and open challenges. RNA Biol 2021; 18:41-50. [PMID: 34569891 PMCID: PMC8677011 DOI: 10.1080/15476286.2021.1983288] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/25/2021] [Accepted: 09/16/2021] [Indexed: 12/19/2022] Open
Abstract
RNA editing by cytosine and adenosine deaminases changes the identity of the edited bases. While cytosines are converted to uracils, adenines are converted to inosines. If coding regions of mRNAs are affected, the coding potential of the RNA can be changed, depending on the codon affected. The recoding potential of nucleotide deaminases has recently gained attention for their ability to correct genetic mutations by either reverting the mutation itself or by manipulating processing steps such as RNA splicing. In contrast to CRISPR-based DNA-editing approaches, RNA editing events are transient in nature, therefore reducing the risk of long-lasting inadvertent side-effects. Moreover, some RNA-based therapeutics are already FDA approved and their use in targeting multiple cells or organs to restore genetic function has already been shown. In this review, we provide an overview on the current status and technical differences of site-directed RNA-editing approaches. We also discuss advantages and challenges of individual approaches.
Collapse
Affiliation(s)
- Hamid Mansouri Khosravi
- Center of Anatomy & Cell Biology Division of Cell & Developmental Biology Medical, Unviersity of Vienna SchwarzspanierstrasseVienna, Austria
| | - Michael F. Jantsch
- Center of Anatomy & Cell Biology Division of Cell & Developmental Biology Medical, Unviersity of Vienna SchwarzspanierstrasseVienna, Austria
| |
Collapse
|
213
|
Hosaka T, Tsuji H, Kwak S. RNA Editing: A New Therapeutic Target in Amyotrophic Lateral Sclerosis and Other Neurological Diseases. Int J Mol Sci 2021; 22:10958. [PMID: 34681616 PMCID: PMC8536083 DOI: 10.3390/ijms222010958] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/29/2021] [Accepted: 10/08/2021] [Indexed: 12/24/2022] Open
Abstract
The conversion of adenosine to inosine in RNA editing (A-to-I RNA editing) is recognized as a critical post-transcriptional modification of RNA by adenosine deaminases acting on RNAs (ADARs). A-to-I RNA editing occurs predominantly in mammalian and human central nervous systems and can alter the function of translated proteins, including neurotransmitter receptors and ion channels; therefore, the role of dysregulated RNA editing in the pathogenesis of neurological diseases has been speculated. Specifically, the failure of A-to-I RNA editing at the glutamine/arginine (Q/R) site of the GluA2 subunit causes excessive permeability of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors to Ca2+, inducing fatal status epilepticus and the neurodegeneration of motor neurons in mice. Therefore, an RNA editing deficiency at the Q/R site in GluA2 due to the downregulation of ADAR2 in the motor neurons of sporadic amyotrophic lateral sclerosis (ALS) patients suggests that Ca2+-permeable AMPA receptors and the dysregulation of RNA editing are suitable therapeutic targets for ALS. Gene therapy has recently emerged as a new therapeutic opportunity for many heretofore incurable diseases, and RNA editing dysregulation can be a target for gene therapy; therefore, we reviewed neurological diseases associated with dysregulated RNA editing and a new therapeutic approach targeting dysregulated RNA editing, especially one that is effective in ALS.
Collapse
Affiliation(s)
- Takashi Hosaka
- Department of Neurology, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan; (T.H.); (H.T.)
- Department of Internal Medicine, Tsukuba University Hospital Kensei Area Medical Education Center, Chikusei 308-0813, Ibaraki, Japan
- Department of Internal Medicine, Ibaraki Western Medical Center, Chikusei 308-0813, Ibaraki, Japan
| | - Hiroshi Tsuji
- Department of Neurology, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan; (T.H.); (H.T.)
| | - Shin Kwak
- Department of Neurology, Tokyo Medical University, Shinjuku-ku, Tokyo 160-0023, Japan
| |
Collapse
|
214
|
Li X, Zhu R, Yuan Y, Cai Z, Liang S, Bian J, Xu G. Double-stranded RNA-specific adenosine deaminase-knockdown inhibits the proliferation and induces apoptosis of DU145 and PC3 cells by promoting the phosphorylation of H2A.X variant histone. Oncol Lett 2021; 22:764. [PMID: 34589143 PMCID: PMC8442165 DOI: 10.3892/ol.2021.13025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/28/2021] [Indexed: 02/06/2023] Open
Abstract
Double-stranded RNA-specific adenosine deaminase (ADAR1) is a member of the adenosine deaminases acting on RNA family that catalyze the adenosine-to-inosine editing of double-stranded RNA substrates. Several studies have reported that ADAR1 is closely associated with numerous malignancies. However, the functional roles of ADAR1 in prostate cancer (PCa) have not been fully elucidated. Thus, the present study aimed to investigate the effects of ADAR1 on PCa. The results demonstrated that ADAR1 was highly expressed in PCa tissues compared with normal tissues. Furthermore, the protein expression level of ADAR1 was significantly increased in castration-resistant PCa (CRPCa) tissues and CRPCa cell lines. Thus, these findings indicated that ADAR1 may act as a tumor promoter for PCa development. Next, the potential effects of ADAR1-knockdown on the proliferation of DU145 and PC3 cells were investigated. ADAR1 was knocked down via small interfering RNA transfection, which was found to exert antitumor effects on DU145 and PC3 cells at 24 and 48 h post transfection. Furthermore, a significant positive association was observed between ADAR1-knockdown and the apoptosis of DU145 and PC3 cells, which increased the phosphorylation of H2A.X variant histone. The results of the present study indicated a positive association between ADAR1 expression and PCa, which may promote the development of CRPCa. Moreover, ADAR1-knockdown may serve as a tumor suppressor and represent a potential target for the treatment of PCa.
Collapse
Affiliation(s)
- Xiezhao Li
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Rui Zhu
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Yaoji Yuan
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Zhiduan Cai
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Siyang Liang
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Jun Bian
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Guibin Xu
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| |
Collapse
|
215
|
Mutations in the adenosine deaminase ADAR1 that prevent endogenous Z-RNA binding induce Aicardi-Goutières-syndrome-like encephalopathy. Immunity 2021; 54:1976-1988.e7. [PMID: 34525338 DOI: 10.1016/j.immuni.2021.08.022] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/27/2021] [Accepted: 08/18/2021] [Indexed: 11/22/2022]
Abstract
Mutations in the adenosine-to-inosine RNA-editing enzyme ADAR1 p150, including point mutations in the Z-RNA recognition domain Zα, are associated with Aicardi-Goutières syndrome (AGS). Here, we examined the in vivo relevance of ADAR1 binding of Z-RNA. Mutation of W197 in Zα, which abolished Z-RNA binding, reduced RNA editing. Adar1W197A/W197A mice displayed severe growth retardation after birth, broad expression of interferon-stimulated genes (ISGs), and abnormal development of multiple organs. Notably, malformation of the brain was accompanied by white matter vacuolation and gliosis, reminiscent of AGS-associated encephalopathy. Concurrent deletion of the double-stranded RNA sensor MDA5 ameliorated these abnormalities. ADAR1 (W197A) expression increased in a feedback manner downstream of type I interferons, resulting in increased RNA editing at a subset of, but not all, ADAR1 target sites. This increased expression did not ameliorate inflammation in Adar1W197A/W197A mice. Thus, editing of select endogenous RNAs by ADAR1 is essential for preventing inappropriate MDA5-mediated inflammation, with relevance to the pathogenesis of AGS.
Collapse
|
216
|
Schwarz AP, Kovalenko AA, Zakharova MV, Zaitsev AV. The application of the self-probing primer PCR for quantitative expression analysis of R607Q (un)edited GluA2 AMPA receptor mRNA. Biochem Biophys Res Commun 2021; 569:174-178. [PMID: 34252589 DOI: 10.1016/j.bbrc.2021.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/06/2021] [Indexed: 11/20/2022]
Abstract
Adenosine deaminase-dependent RNA editing is a widespread universal mechanism of posttranscriptional gene function modulation. Changes in RNA editing level may contribute to various physiological and pathological processes. In the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) glutamate receptor GluA2 subunit, A-I editing in the Q607R site leads to dramatic changes in function, making the receptor channel calcium-impermeable. A standard approach for quantifying (un)edited RNAs is based on endpoint PCR (Sanger sequencing or restriction analysis), a time-consuming and semiquantitative method. We aimed to develop RT-qPCR assays to quantify rat Q607R (A-I) edited/unedited mRNA in samples in the present work. Based on self-probing PCR detection chemistry, described initially for detecting short DNA fragments, we designed and optimised RT-qPCR assays to quantify Q607R (un)edited mRNA. We used self-probing primer PCR technology for mRNA quantification for the first time. Using a novel assay, we confirmed that Q607R GluA2 mRNA editing was increased in 14-day- (P14) or 21-day-old (P21) postnatal brain tissue (hippocampus) compared to the embryonic brain (whole brains at E20) in Wistar rats. Q607R unedited GluA2 mRNA was detectable by our assay in the cDNA of mature brain tissue compared to that derived through classical methods. Thus, self-probing primer PCR detection chemistry is an easy-to-use approach for RT-qPCR analysis of RNA editing.
Collapse
Affiliation(s)
- Alexander P Schwarz
- Laboratory of Molecular Mechanisms of Neuronal Interactions, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Torez Avenue 44, 199223, St. Petersburg, Russia.
| | - Anna A Kovalenko
- Laboratory of Molecular Mechanisms of Neuronal Interactions, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Torez Avenue 44, 199223, St. Petersburg, Russia
| | - Maria V Zakharova
- Laboratory of Molecular Mechanisms of Neuronal Interactions, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Torez Avenue 44, 199223, St. Petersburg, Russia
| | - Aleksey V Zaitsev
- Laboratory of Molecular Mechanisms of Neuronal Interactions, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Torez Avenue 44, 199223, St. Petersburg, Russia
| |
Collapse
|
217
|
Valadon C, Namy O. The Importance of the Epi-Transcriptome in Translation Fidelity. Noncoding RNA 2021; 7:51. [PMID: 34564313 PMCID: PMC8482273 DOI: 10.3390/ncrna7030051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/17/2021] [Accepted: 08/22/2021] [Indexed: 12/11/2022] Open
Abstract
RNA modifications play an essential role in determining RNA fate. Recent studies have revealed the effects of such modifications on all steps of RNA metabolism. These modifications range from the addition of simple groups, such as methyl groups, to the addition of highly complex structures, such as sugars. Their consequences for translation fidelity are not always well documented. Unlike the well-known m6A modification, they are thought to have direct effects on either the folding of the molecule or the ability of tRNAs to bind their codons. Here we describe how modifications found in tRNAs anticodon-loop, rRNA, and mRNA can affect translation fidelity, and how approaches based on direct manipulations of the level of RNA modification could potentially be used to modulate translation for the treatment of human genetic diseases.
Collapse
Affiliation(s)
| | - Olivier Namy
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France;
| |
Collapse
|
218
|
Shoshan Y, Liscovitch-Brauer N, Rosenthal JJC, Eisenberg E. Adaptive Proteome Diversification by Nonsynonymous A-to-I RNA Editing in Coleoid Cephalopods. Mol Biol Evol 2021; 38:3775-3788. [PMID: 34022057 PMCID: PMC8382921 DOI: 10.1093/molbev/msab154] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
RNA editing by the ADAR enzymes converts selected adenosines into inosines, biological mimics for guanosines. By doing so, it alters protein-coding sequences, resulting in novel protein products that diversify the proteome beyond its genomic blueprint. Recoding is exceptionally abundant in the neural tissues of coleoid cephalopods (octopuses, squids, and cuttlefishes), with an over-representation of nonsynonymous edits suggesting positive selection. However, the extent to which proteome diversification by recoding provides an adaptive advantage is not known. It was recently suggested that the role of evolutionarily conserved edits is to compensate for harmful genomic substitutions, and that there is no added value in having an editable codon as compared with a restoration of the preferred genomic allele. Here, we show that this hypothesis fails to explain the evolutionary dynamics of recoding sites in coleoids. Instead, our results indicate that a large fraction of the shared, strongly recoded, sites in coleoids have been selected for proteome diversification, meaning that the fitness of an editable A is higher than an uneditable A or a genomically encoded G.
Collapse
Affiliation(s)
- Yoav Shoshan
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
| | - Noa Liscovitch-Brauer
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
| | | | - Eli Eisenberg
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
219
|
Qi X, Lin Y, Chen J, Shen B. Decoding competing endogenous RNA networks for cancer biomarker discovery. Brief Bioinform 2021; 21:441-457. [PMID: 30715152 DOI: 10.1093/bib/bbz006] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/13/2018] [Accepted: 12/25/2018] [Indexed: 02/05/2023] Open
Abstract
Crosstalk between competing endogenous RNAs (ceRNAs) is mediated by shared microRNAs (miRNAs) and plays important roles both in normal physiology and tumorigenesis; thus, it is attractive for systems-level decoding of gene regulation. As ceRNA networks link the function of miRNAs with that of transcripts sharing the same miRNA response elements (MREs), e.g. pseudogenes, competing mRNAs, long non-coding RNAs, and circular RNAs, the perturbation of crucial interactions in ceRNA networks may contribute to carcinogenesis by affecting the balance of cellular regulatory system. Therefore, discovering biomarkers that indicate cancer initiation, development, and/or therapeutic responses via reconstructing and analyzing ceRNA networks is of clinical significance. In this review, the regulatory function of ceRNAs in cancer and crucial determinants of ceRNA crosstalk are firstly discussed to gain a global understanding of ceRNA-mediated carcinogenesis. Then, computational and experimental approaches for ceRNA network reconstruction and ceRNA validation, respectively, are described from a systems biology perspective. We focus on strategies for biomarker identification based on analyzing ceRNA networks and highlight the translational applications of ceRNA biomarkers for cancer management. This article will shed light on the significance of miRNA-mediated ceRNA interactions and provide important clues for discovering ceRNA network-based biomarker in cancer biology, thereby accelerating the pace of precision medicine and healthcare for cancer patients.
Collapse
Affiliation(s)
- Xin Qi
- Center for Systems Biology, Soochow University, Suzhou, China
| | - Yuxin Lin
- Center for Systems Biology, Soochow University, Suzhou, China
| | - Jiajia Chen
- School of Chemistry, Biology and Material Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Bairong Shen
- Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
220
|
Siddiqui J, Miles WO. RNA editing signatures identify melanoma patients who respond to Pembrolizumab or Nivolumab treatment. Transl Oncol 2021; 14:101197. [PMID: 34388693 PMCID: PMC8363879 DOI: 10.1016/j.tranon.2021.101197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/21/2021] [Accepted: 08/06/2021] [Indexed: 11/18/2022] Open
Abstract
Global RNA editing levels or ADAR expression do not correlate with response to immunotherapy in melanoma patients. RNA editing signatures within genes can segregate patients that will respond to immunotherapy across patient cohorts. Recurrent RNA editing sites, those that are shared between melanoma patients, provide accurate prognostic predictions.
Immunotherapy has improved the prognosis for many melanoma patients; however, our capacity to predict patient responses and to understand the biological differences between patients who will or will not respond is limited. Gene expression profiling of tumors from patients who respond to immunotherapy has focused on deriving primarily immune-related signatures; however, these have shown limited predictive power. Recent studies have highlighted the role of RNA editing in modulating resistance to immunotherapy. To evaluate the utility of RNA editing activity as a discriminative tool in predicting immunotherapy response, we conducted a retrospective analysis of RNA-sequencing data from melanoma patients treated with Pembrolizumab or Nivolumab. Here, we developed RNA editing signatures that can identify patients who will respond to immunotherapy with very high accuracy and confidence. Our analysis demonstrates that RNA editing is a strong discriminative tool for examining sensitivity of melanoma patients to immunotherapy.
Collapse
Affiliation(s)
- Jalal Siddiqui
- Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Wayne O Miles
- Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
221
|
Aicardi-Goutières syndrome-associated mutation at ADAR1 gene locus activates innate immune response in mouse brain. J Neuroinflammation 2021; 18:169. [PMID: 34332594 PMCID: PMC8325854 DOI: 10.1186/s12974-021-02217-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/14/2021] [Indexed: 11/10/2022] Open
Abstract
Background Aicardi-Goutières syndrome (AGS) is a severe infant or juvenile-onset autoimmune disease characterized by inflammatory encephalopathy with an elevated type 1 interferon-stimulated gene (ISG) expression signature in the brain. Mutations in seven different protein-coding genes, all linked to DNA/RNA metabolism or sensing, have been identified in AGS patients, but none of them has been demonstrated to activate the IFN pathway in the brain of an animal. The molecular mechanism of inflammatory encephalopathy in AGS has not been well defined. Adenosine Deaminase Acting on RNA 1 (ADAR1) is one of the AGS-associated genes. It carries out A-to-I RNA editing that converts adenosine to inosine at double-stranded RNA regions. Whether an AGS-associated mutation in ADAR1 activates the IFN pathway and causes autoimmune pathogenesis in the brain is yet to be determined. Methods Mutations in the ADAR1 gene found in AGS patients were introduced into the mouse genome via CRISPR/Cas9 technology. Molecular activities of the specific p.K999N mutation were investigated by measuring the RNA editing levels in brain mRNA substrates of ADAR1 through RNA sequencing analysis. IFN pathway activation in the brain was assessed by measuring ISG expression at the mRNA and protein level through real-time RT-PCR and Luminex assays, respectively. The locations in the brain and neural cell types that express ISGs were determined by RNA in situ hybridization (ISH). Potential AGS-related brain morphologic changes were assessed with immunohistological analysis. Von Kossa and Luxol Fast Blue staining was performed on brain tissue to assess calcification and myelin, respectively. Results Mice bearing the ADAR1 p.K999N were viable though smaller than wild type sibs. RNA sequencing analysis of neuron-specific RNA substrates revealed altered RNA editing activities of the mutant ADAR1 protein. Mutant mice exhibited dramatically elevated levels of multiple ISGs within the brain. RNA ISH of brain sections showed selective activation of ISG expression in neurons and microglia in a patchy pattern. ISG-15 mRNA was upregulated in ADAR1 mutant brain neurons whereas CXCL10 mRNA was elevated in adjacent astroglia. No calcification or gliosis was detected in the mutant brain. Conclusions We demonstrated that an AGS-associated mutation in ADAR1, specifically the p.K999N mutation, activates the IFN pathway in the mouse brain. The ADAR1 p.K999N mutant mouse replicates aspects of the brain interferonopathy of AGS. Neurons and microglia express different ISGs. Basal ganglia calcification and leukodystrophy seen in AGS patients were not observed in K999N mutant mice, indicating that development of the full clinical phenotype may need an additional stimulus besides AGS mutations. This mutant mouse presents a robust tool for the investigation of AGS and neuroinflammatory diseases including the modeling of potential “second hits” that enable severe phenotypes of clinically variable diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02217-9.
Collapse
|
222
|
Ojha N, Diaz Quiroz JF, Rosenthal JJC. In vitro and in cellula site-directed RNA editing using the λNDD-BoxB system. Methods Enzymol 2021; 658:335-358. [PMID: 34517953 DOI: 10.1016/bs.mie.2021.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Site-directed RNA editing (SDRE) exploits the enzymatic activity of Adenosine Deaminases Acting on RNAs (ADAR) to program changes in genetic information as it passes through RNA. ADARs convert adenosine (A) to inosine (I) through a hydrolytic deamination and since I can be read as guanosine (G) during translation, this change can regulate gene function and correct G→A genetic mutations. In SDRE, ADARs are redirected to convert user-defined A's to I's. SDRE also has certain advantages over genome editing because the changes in RNA are reversible and thus safer. In addition, ADARs are endogenously expressed in humans and therefore unlikely to provoke immunological complications when administered. Recently, a variety of systems for SDRE have been developed. Some rely on harnessing endogenously expressed ADARs and other deliver engineered versions of ADAR's catalytic domain. All systems are currently under refinement, and there are still challenges associated with raising their efficiency and specificity to levels that are adequate for therapeutics. This chapter provides a detailed protocol for in vitro and in cellula editing assays using the λNDD-BoxB system, one of the first systems developed for SDRE. The λNDD-BoxB system relies on gRNAs that are linked to the catalytic domain of human ADAR2 through a small RNA binding protein-RNA stem/loop interaction. We provide step-by-step protocols for (a) the construction of guide RNAs and editing enzyme plasmids, and (b) their use in vitro and in cellula for editing assays using a fluorescent protein-based reporter system containing a premature termination codon that can be corrected by editing.
Collapse
Affiliation(s)
- Namrata Ojha
- The Eugene Bell Center, The Marine Biological Laboratory, Woods Hole, MA, United States
| | | | - Joshua J C Rosenthal
- The Eugene Bell Center, The Marine Biological Laboratory, Woods Hole, MA, United States.
| |
Collapse
|
223
|
Knutson SD, Arthur RA, Johnston HR, Heemstra JM. Direct Immunodetection of Global A-to-I RNA Editing Activity with a Chemiluminescent Bioassay. Angew Chem Int Ed Engl 2021; 60:17009-17017. [PMID: 33979483 PMCID: PMC8562906 DOI: 10.1002/anie.202102762] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/08/2021] [Indexed: 12/15/2022]
Abstract
Adenosine-to-inosine (A-to-I) editing is a conserved eukaryotic RNA modification that contributes to development, immune response, and overall cellular function. Here, we utilize Endonuclease V (EndoV), which binds specifically to inosine in RNA, to develop an EndoV-linked immunosorbency assay (EndoVLISA) as a rapid, plate-based chemiluminescent method for measuring global A-to-I editing signatures in cellular RNA. We first optimize and validate our assay with chemically synthesized oligonucleotides. We then demonstrate rapid detection of inosine content in treated cell lines, demonstrating equivalent performance against current standard RNA-seq approaches. Lastly, we deploy our EndoVLISA for profiling differential A-to-I RNA editing signatures in normal and diseased human tissue, illustrating the utility of our platform as a diagnostic bioassay. Together, the EndoVLISA method is cost-effective, straightforward, and utilizes common laboratory equipment, offering a highly accessible new approach for studying A-to-I editing. Moreover, the multi-well plate format makes this the first assay amenable for direct high-throughput quantification of A-to-I editing for applications in disease detection and drug development.
Collapse
Affiliation(s)
- Steve D Knutson
- Department of Chemistry, Emory University, 1515 Dickey Dr., Atlanta, GA, 30322, USA
| | - Robert A Arthur
- Emory Integrated Computational Core, Emory University, 101 Woodruff Cir., Atlanta, GA, 30322, USA
- Department of Human Genetics, Emory University, 1365 Clifton Rd, Atlanta, GA, 30322, USA
| | - H Richard Johnston
- Emory Integrated Computational Core, Emory University, 101 Woodruff Cir., Atlanta, GA, 30322, USA
- Department of Human Genetics, Emory University, 1365 Clifton Rd, Atlanta, GA, 30322, USA
| | - Jennifer M Heemstra
- Department of Chemistry, Emory University, 1515 Dickey Dr., Atlanta, GA, 30322, USA
| |
Collapse
|
224
|
Direct Immunodetection of Global A‐to‐I RNA Editing Activity with a Chemiluminescent Bioassay. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
225
|
Stroppel AS, Lappalainen R, Stafforst T. Controlling Site-Directed RNA Editing by Chemically Induced Dimerization. Chemistry 2021; 27:12300-12304. [PMID: 34169589 PMCID: PMC8456898 DOI: 10.1002/chem.202101985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Indexed: 11/24/2022]
Abstract
Various RNA‐targeting approaches have been engineered to modify specific sites on endogenous transcripts, breaking new ground for a variety of basic research tools and promising clinical applications in the future. Here, we combine site‐directed adenosine‐to‐inosine RNA editing with chemically induced dimerization. Specifically, we achieve tight and dose‐dependent control of the editing reaction with gibberellic acid, and obtain editing yields up to 20 % and 44 % in the endogenous STAT1 and GAPDH transcript in cell culture. Furthermore, the disease‐relevant MECP2 R106Q mutation was repaired with editing yields up to 42 %. The introduced principle will enable new applications where temporal or spatiotemporal control of an RNA‐targeting mechanism is desired.
Collapse
Affiliation(s)
- Anna S Stroppel
- Interfaculty Institute of Biochemistry, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Ruth Lappalainen
- Interfaculty Institute of Biochemistry, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Thorsten Stafforst
- Interfaculty Institute of Biochemistry, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| |
Collapse
|
226
|
Tasakis RN, Samaras G, Jamison A, Lee M, Paulus A, Whitehouse G, Verkoczy L, Papavasiliou FN, Diaz M. SARS-CoV-2 variant evolution in the United States: High accumulation of viral mutations over time likely through serial Founder Events and mutational bursts. PLoS One 2021; 16:e0255169. [PMID: 34297786 PMCID: PMC8301627 DOI: 10.1371/journal.pone.0255169] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/11/2021] [Indexed: 12/13/2022] Open
Abstract
Since the first case of COVID-19 in December 2019 in Wuhan, China, SARS-CoV-2 has spread worldwide and within a year and a half has caused 3.56 million deaths globally. With dramatically increasing infection numbers, and the arrival of new variants with increased infectivity, tracking the evolution of its genome is crucial for effectively controlling the pandemic and informing vaccine platform development. Our study explores evolution of SARS-CoV-2 in a representative cohort of sequences covering the entire genome in the United States, through all of 2020 and early 2021. Strikingly, we detected many accumulating Single Nucleotide Variations (SNVs) encoding amino acid changes in the SARS-CoV-2 genome, with a pattern indicative of RNA editing enzymes as major mutators of SARS-CoV-2 genomes. We report three major variants through October of 2020. These revealed 14 key mutations that were found in various combinations among 14 distinct predominant signatures. These signatures likely represent evolutionary lineages of SARS-CoV-2 in the U.S. and reveal clues to its evolution such as a mutational burst in the summer of 2020 likely leading to a homegrown new variant, and a trend towards higher mutational load among viral isolates, but with occasional mutation loss. The last quartile of 2020 revealed a concerning accumulation of mostly novel low frequency replacement mutations in the Spike protein, and a hypermutable glutamine residue near the putative furin cleavage site. Finally, end of the year data and 2021 revealed the gradual increase to prevalence of known variants of concern, particularly B.1.1.7, that have acquired additional Spike mutations. Overall, our results suggest that predominant viral genomes are dynamically evolving over time, with periods of mutational bursts and unabated mutation accumulation. This high level of existing variation, even at low frequencies and especially in the Spike-encoding region may become problematic when super-spreader events, akin to serial Founder Events in evolution, drive these rare mutations to prominence.
Collapse
Affiliation(s)
- Rafail Nikolaos Tasakis
- Division of Immune Diversity, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Georgios Samaras
- Division of Immune Diversity, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Program of Translational Medical Research, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Anna Jamison
- The Nightingale-Bamford School, New York, NY, United States of America
| | - Michelle Lee
- Cornell University, Ithaca, NY, United States of America
| | - Alexandra Paulus
- The Nightingale-Bamford School, New York, NY, United States of America
| | | | - Laurent Verkoczy
- San Diego Biomedical Research Institute (SDBRI), San Diego, CA, United States of America
| | - F. Nina Papavasiliou
- Division of Immune Diversity, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marilyn Diaz
- San Diego Biomedical Research Institute (SDBRI), San Diego, CA, United States of America
| |
Collapse
|
227
|
Lee D, Kapoor A, Lee C, Mudgett M, Beer MA, Chakravarti A. Sequence-based correction of barcode bias in massively parallel reporter assays. Genome Res 2021; 31:1638-1645. [PMID: 34285053 PMCID: PMC8415370 DOI: 10.1101/gr.268599.120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 07/07/2021] [Indexed: 11/24/2022]
Abstract
Massively parallel reporter assays (MPRAs) are a high-throughput method for evaluating in vitro activities of thousands of candidate cis-regulatory elements (CREs). In these assays, candidate sequences are cloned upstream or downstream from a reporter gene tagged by unique DNA sequences. However, tag sequences may themselves affect reporter gene expression and lead to major potential biases in the measured cis-regulatory activity. Here, we present a sequence-based method for correcting tag-sequence-specific effects and show that our method can significantly reduce this source of variation and improve the identification of functional regulatory variants by MPRAs. We also show that our model captures sequence features associated with post-transcriptional regulation of mRNA. Thus, this new method helps not only to improve detection of regulatory signals in MPRA experiments but also to design better MPRA protocols.
Collapse
Affiliation(s)
| | - Ashish Kapoor
- University of Texas Health Science Center at Houston
| | | | | | | | | |
Collapse
|
228
|
Bhakta S, Tsukahara T. Artificial RNA Editing with ADAR for Gene Therapy. Curr Gene Ther 2021; 20:44-54. [PMID: 32416688 DOI: 10.2174/1566523220666200516170137] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/14/2022]
Abstract
Editing mutated genes is a potential way for the treatment of genetic diseases. G-to-A mutations are common in mammals and can be treated by adenosine-to-inosine (A-to-I) editing, a type of substitutional RNA editing. The molecular mechanism of A-to-I editing involves the hydrolytic deamination of adenosine to an inosine base; this reaction is mediated by RNA-specific deaminases, adenosine deaminases acting on RNA (ADARs), family protein. Here, we review recent findings regarding the application of ADARs to restoring the genetic code along with different approaches involved in the process of artificial RNA editing by ADAR. We have also addressed comparative studies of various isoforms of ADARs. Therefore, we will try to provide a detailed overview of the artificial RNA editing and the role of ADAR with a focus on the enzymatic site directed A-to-I editing.
Collapse
Affiliation(s)
- Sonali Bhakta
- Area of Bioscience and Biotechnology, School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomicity, Ishikawa, 923-1292, Japan
| | - Toshifumi Tsukahara
- Area of Bioscience and Biotechnology, School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomicity, Ishikawa, 923-1292, Japan
| |
Collapse
|
229
|
De Paolis V, Lorefice E, Orecchini E, Carissimi C, Laudadio I, Fulci V. Epitranscriptomics: A New Layer of microRNA Regulation in Cancer. Cancers (Basel) 2021; 13:3372. [PMID: 34282776 PMCID: PMC8268402 DOI: 10.3390/cancers13133372] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs are pervasive regulators of gene expression at the post-transcriptional level in metazoan, playing key roles in several physiological and pathological processes. Accordingly, these small non-coding RNAs are also involved in cancer development and progression. Furthermore, miRNAs represent valuable diagnostic and prognostic biomarkers in malignancies. In the last twenty years, the role of RNA modifications in fine-tuning gene expressions at several levels has been unraveled. All RNA species may undergo post-transcriptional modifications, collectively referred to as epitranscriptomic modifications, which, in many instances, affect RNA molecule properties. miRNAs are not an exception, in this respect, and they have been shown to undergo several post-transcriptional modifications. In this review, we will summarize the recent findings concerning miRNA epitranscriptomic modifications, focusing on their potential role in cancer development and progression.
Collapse
Affiliation(s)
| | | | | | - Claudia Carissimi
- Dipartimento di Medicina Molecolare, Sapienza Università di Roma, 00161 Rome, Italy; (V.D.P.); (E.L.); (E.O.); (V.F.)
| | - Ilaria Laudadio
- Dipartimento di Medicina Molecolare, Sapienza Università di Roma, 00161 Rome, Italy; (V.D.P.); (E.L.); (E.O.); (V.F.)
| | | |
Collapse
|
230
|
Stroppel AS, Latifi N, Hanswillemenke A, Tasakis RN, Papavasiliou FN, Stafforst T. Harnessing self-labeling enzymes for selective and concurrent A-to-I and C-to-U RNA base editing. Nucleic Acids Res 2021; 49:e95. [PMID: 34197596 PMCID: PMC8450088 DOI: 10.1093/nar/gkab541] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 05/05/2021] [Accepted: 06/18/2021] [Indexed: 12/26/2022] Open
Abstract
The SNAP-ADAR tool enables precise and efficient A-to-I RNA editing in a guideRNA-dependent manner by applying the self-labeling SNAP-tag enzyme to generate RNA-guided editases in cell culture. Here, we extend this platform by combining the SNAP-tagged tool with further effectors steered by the orthogonal HALO-tag. Due to their small size (ca. 2 kb), both effectors are readily integrated into one genomic locus. We demonstrate selective and concurrent recruitment of ADAR1 and ADAR2 deaminase activity for optimal editing with extended substrate scope and moderate global off-target effects. Furthermore, we combine the recruitment of ADAR1 and APOBEC1 deaminase activity to achieve selective and concurrent A-to-I and C-to-U RNA base editing of endogenous transcripts inside living cells, again with moderate global off-target effects. The platform should be readily transferable to further epitranscriptomic writers and erasers to manipulate epitranscriptomic marks in a programmable way with high molecular precision.
Collapse
Affiliation(s)
- Anna S Stroppel
- Interfaculty Institute of Biochemistry, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Ngadhnjim Latifi
- Interfaculty Institute of Biochemistry, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Alfred Hanswillemenke
- Interfaculty Institute of Biochemistry, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Rafail Nikolaos Tasakis
- Division of Immune Diversity (D150), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,Faculty of Biosciences, University of Heidelberg, 69120 Heidelberg, Germany
| | - F Nina Papavasiliou
- Division of Immune Diversity (D150), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,Faculty of Biosciences, University of Heidelberg, 69120 Heidelberg, Germany
| | - Thorsten Stafforst
- Interfaculty Institute of Biochemistry, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| |
Collapse
|
231
|
Bhakta S, Tsukahara T. Double MS2 guided restoration of genetic code in amber (TAG), opal (TGA) and ochre (TAA) stop codon. Enzyme Microb Technol 2021; 149:109851. [PMID: 34311888 DOI: 10.1016/j.enzmictec.2021.109851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 11/26/2022]
Abstract
The popularity and promise of gene therapy for common genetic diseases are currently increasing. Although effective treatments for genetic disorders are rare, editing of the mutated gene is a possible therapeutic approach for conditions caused by stop codon mutations, including either amber (TAG), opal (TGA) or ochre (TAA) stop codons. Restoration of point-mutated RNAs using artificial RNA editing can be used to modify gene-encoded information and generate functionally distinct proteins from a single gene. By linking the catalytic domain of the RNA editing enzyme, adenosine deaminase acting on RNA (ADAR), to an antisense guide RNA, specific adenosines (A) can be converted to inosine (I), which is recognized as guanosine (G) during translation. In this study, we engineered the deaminase domain of ADAR1 and the MS2 system to target a specific adenosine and restore the G to A mutations. To this end, the ADAR1 deaminase domain was fused with the RNA binding protein, MS2, which binds to MS2 RNA. Guide RNAs of 19 bp were designed to be complementary to target mRNAs, with either 6X stem-loops downstream of the guide RNA and a CMV promoter, or a 1X MS2 stem-loop on either side of the guide RNA and a U6 promoter. The engineered ADAR1 deaminase domain could convert adenosine to inosine at the desired editing site in EGFP, which was edited to contain an amber (TAG), opal (TGA) or ochre (TAA) stop codon. The system could convert the stop codons to a read-through tryptophan codon (TGG) in a cellular system, leading to fluorescence emission, observed using JuLi microscopy. PCR-RFLP and Sanger sequencing of the target transcript were also conducted, revealing an editing efficiency of 20.97 % for the opal stop codon, and 26 % and 17 % for the 5' and 3' A residues, respectively, in the ochre stop codon, using the double MS2. This was a higher editing rate than that achieved using the MS2-6X guide RNA. Observation of restoration of the read-through codon from the three different stop codons over time demonstrated a relatively low percentage of edited codons after 24 h, which increased after 48 h, but decreased again after 72 h. Successful establishment of this system has the potential to represent a new era in the field of gene therapy.
Collapse
Affiliation(s)
- Sonali Bhakta
- Area of Bioscience and Biotechnology, School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomicity, Ishikawa, 923-1292, Japan; Department of Anatomy and Histology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| | - Toshifumi Tsukahara
- Area of Bioscience and Biotechnology, School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomicity, Ishikawa, 923-1292, Japan.
| |
Collapse
|
232
|
Huang J, Lin L, Dong Z, Yang L, Zheng T, Gu W, Zhang Y, Yin T, Sjöstedt E, Mulder J, Uhlén M, Kristiansen K, Bolund L, Luo Y. A porcine brain-wide RNA editing landscape. Commun Biol 2021; 4:717. [PMID: 34112917 PMCID: PMC8192503 DOI: 10.1038/s42003-021-02238-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/18/2021] [Indexed: 11/12/2022] Open
Abstract
Adenosine-to-inosine (A-to-I) RNA editing, catalyzed by ADAR enzymes, is an essential post-transcriptional modification. Although hundreds of thousands of RNA editing sites have been reported in mammals, brain-wide analysis of the RNA editing in the mammalian brain remains rare. Here, a genome-wide RNA-editing investigation is performed in 119 samples, representing 30 anatomically defined subregions in the pig brain. We identify a total of 682,037 A-to-I RNA editing sites of which 97% are not identified before. Within the pig brain, cerebellum and olfactory bulb are regions with most edited transcripts. The editing level of sites residing in protein-coding regions are similar across brain regions, whereas region-distinct editing is observed in repetitive sequences. Highly edited conserved recoding events in pig and human brain are found in neurotransmitter receptors, demonstrating the evolutionary importance of RNA editing in neurotransmission functions. Although potential data biases caused by age, sex or health status are not considered, this study provides a rich resource to better understand the evolutionary importance of post-transcriptional RNA editing.
Collapse
Affiliation(s)
- Jinrong Huang
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Shenzhen, China.
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| | - Lin Lin
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Zhanying Dong
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Shenzhen, China
| | - Ling Yang
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Shenzhen, China
| | - Tianyu Zheng
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Shenzhen, China
| | - Weiwang Gu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Tailang Yin
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Evelina Sjöstedt
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Department of Protein Science, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Jan Mulder
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Mathias Uhlén
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Department of Protein Science, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Lars Bolund
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Shenzhen, China
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Yonglun Luo
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Shenzhen, China.
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
233
|
Wang Y, Song X, Xu T. Identification and Analysis of RNA Editing Events in Ovarian Serous Cystadenoma Using RNA-seq Data. Curr Gene Ther 2021; 21:258-269. [PMID: 33573552 DOI: 10.2174/1566523221666210211111324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Recent studies have revealed thousands of A-to-I RNA editing events in primates. These events are closely related to the occurrence and development of multiple cancers, but the origination and general functions of these events in ovarian cancer remain incompletely understood. OBJECTIVE To further the determination of molecular mechanisms of ovarian cancer from the perspective of RNA editing. METHODS Here, we used the SNP-free RNA editing Identification Toolkit (SPRINT) to detect RNA editing sites. These editing sites were then annotated, and related functional analysis was performed. RESULTS In this study, about 1.7 million RES were detected in each sample, and 98% of these sites were due to A-to-G editing and were mainly distributed in non-coding regions. More than 1,000 A-- to-G RES were detected in CDS regions, and nearly 700 could lead to amino acid changes. Our results also showed that editing in the 3'UTR regions could influence miRNA-target binding. We predicted the network of changed miRNA-mRNA interaction caused by the A-to-I RNA editing sites. We also screened the differential RNA editing sites between ovarian cancer and adjacent normal tissues. We then performed GO and KEGG pathway enrichment analysis on the genes that contained these differential RNA editing sites. Finally, we identified the potential dysregulated RNA editing events in ovarian cancer samples. CONCLUSION This study systematically identified and analyzed RNA editing events in ovarian cancer and laid a foundation to explore the regulatory mechanism of RNA editing and its function in ovarian cancer.
Collapse
Affiliation(s)
- Yulan Wang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Xiaofeng Song
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Tianyi Xu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| |
Collapse
|
234
|
Buchumenski I, Holler K, Appelbaum L, Eisenberg E, Junker JP, Levanon EY. Systematic identification of A-to-I RNA editing in zebrafish development and adult organs. Nucleic Acids Res 2021; 49:4325-4337. [PMID: 33872356 PMCID: PMC8096273 DOI: 10.1093/nar/gkab247] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/05/2021] [Accepted: 04/15/2021] [Indexed: 11/18/2022] Open
Abstract
A-to-I RNA editing is a common post transcriptional mechanism, mediated by the Adenosine deaminase that acts on RNA (ADAR) enzymes, that increases transcript and protein diversity. The study of RNA editing is limited by the absence of editing maps for most model organisms, hindering the understanding of its impact on various physiological conditions. Here, we mapped the vertebrate developmental landscape of A-to-I RNA editing, and generated the first comprehensive atlas of editing sites in zebrafish. Tens of thousands unique editing events and 149 coding sites were identified with high-accuracy. Some of these edited sites are conserved between zebrafish and humans. Sequence analysis of RNA over seven developmental stages revealed high levels of editing activity in early stages of embryogenesis, when embryos rely on maternal mRNAs and proteins. In contrast to the other organisms studied so far, the highest levels of editing were detected in the zebrafish ovary and testes. This resource can serve as the basis for understanding of the role of editing during zebrafish development and maturity.
Collapse
Affiliation(s)
- Ilana Buchumenski
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Karoline Holler
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Lior Appelbaum
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Eli Eisenberg
- Raymond and Beverly Sackler School of Physics and Astronomy and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Jan Philipp Junker
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Erez Y Levanon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
235
|
Shumate KM, Tas ST, Kavalali ET, Emeson RB. RNA editing-mediated regulation of calcium-dependent activator protein for secretion (CAPS1) localization and its impact on synaptic transmission. J Neurochem 2021; 158:182-196. [PMID: 33894004 DOI: 10.1111/jnc.15372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/16/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022]
Abstract
Calcium-dependent activator protein for secretion 1 (CAPS1) is a SNARE accessory protein that facilitates formation of the SNARE complex to enable neurotransmitter release. Messenger RNAs encoding CAPS1 are subject to a site-specific adenosine-to-inosine (A-to-I) editing event resulting in a glutamate-to-glycine (E-to-G) substitution in the C-terminal domain of the encoded protein product. The C-terminal domain of CAPS1 is necessary for its synaptic enrichment and Cadps RNA editing has been shown previously to enhance the release of neuromodulatory transmitters. Using mutant mouse lines engineered to solely express CAPS1 protein isoforms encoded by either the non-edited or edited Cadps transcript, primary neuronal cultures from mouse hippocampus were used to explore the effect of Cadps editing on neurotransmission and CAPS1 synaptic localization at both glutamatergic and GABAergic synapses. While the editing of Cadps does not alter baseline evoked neurotransmission, it enhances short-term synaptic plasticity, specifically short-term depression, at inhibitory synapses. Cadps editing also alters spontaneous inhibitory neurotransmission. Neurons that solely express edited Cadps have a greater proportion of synapses that contain CAPS1 than neurons that solely express non-edited Cadps for both glutamatergic and GABAergic synapses. Editing of Cadps transcripts is regulated by neuronal activity, as global network stimulation increases the extent of transcripts edited in wild-type hippocampal neurons, whereas chronic network silencing decreases the level of Cadps editing. Taken together, these results provide key insights into the importance of Cadps editing in modulating its own synaptic localization, as well as the modulation of neurotransmission at inhibitory synapses in hippocampal neurons.
Collapse
Affiliation(s)
- Kayla M Shumate
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Sadik T Tas
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Ege T Kavalali
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Training Program in Neuroscience, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Ronald B Emeson
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Training Program in Neuroscience, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
236
|
Wang C, Huang M, Chen C, Li Y, Qin N, Ma Z, Fan J, Gong L, Zeng H, Yang L, Xu X, Zhou J, Dai J, Jin G, Hu Z, Ma H, Tan F, Shen H. Identification of A-to-I RNA editing profiles and their clinical relevance in lung adenocarcinoma. SCIENCE CHINA-LIFE SCIENCES 2021; 65:19-32. [PMID: 34050895 DOI: 10.1007/s11427-020-1928-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/03/2021] [Indexed: 12/24/2022]
Abstract
Adenosine-to-inosine (A-to-I) RNA editing is a widespread posttranscriptional modification that has been shown to play an important role in tumorigenesis. Here, we evaluated a total of 19,316 RNA editing sites in the tissues of 80 lung adenocarcinoma (LUAD) patients from our Nanjing Lung Cancer Cohort (NJLCC) and 486 LUAD patients from the TCGA database. The global RNA editing level was significantly increased in tumor tissues and was highly heterogeneous across patients. The high RNA editing level in tumors was attributed to both RNA (ADAR1 expression) and DNA alterations (mutation load). Consensus clustering on RNA editing sites revealed a new molecular subtype (EC3) that was associated with the poorest prognosis of LUAD patients. Importantly, the new classification was independent of classic molecular subtypes based on gene expression or DNA methylation. We further proposed a simplified model including eight RNA editing sites to accurately distinguish the EC3 subtype in our patients. The model was further validated in the TCGA dataset and had an area under the curve (AUC) of the receiver operating characteristic curve of 0.93 (95%CI: 0.91-0.95). In addition, we found that LUAD cell lines with the EC3 subtype were sensitive to four chemotherapy drugs. These findings highlighted the importance of RNA editing events in the tumorigenesis of LUAD and provided insight into the application of RNA editing in the molecular subtyping and clinical treatment of cancer.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personized Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Mingtao Huang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personized Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Congcong Chen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personized Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Yuancheng Li
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personized Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Na Qin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personized Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Zijian Ma
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personized Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Jingyi Fan
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personized Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Linnan Gong
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personized Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Hui Zeng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Liu Yang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personized Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Xianfeng Xu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personized Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Jun Zhou
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personized Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Juncheng Dai
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personized Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Guangfu Jin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personized Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Zhibin Hu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personized Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Hongxia Ma
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China. .,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personized Medicine, Nanjing Medical University, Nanjing, 211166, China.
| | - Fengwei Tan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Hongbing Shen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China. .,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personized Medicine, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
237
|
Wood S, Willbanks A, Cheng JX. The Role of RNA Modifications and RNA-modifying Proteins in Cancer Therapy and Drug Resistance. Curr Cancer Drug Targets 2021; 21:326-352. [PMID: 33504307 DOI: 10.2174/1568009621666210127092828] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 11/22/2022]
Abstract
The advent of new genome-wide sequencing technologies has uncovered abnormal RNA modifications and RNA editing in a variety of human cancers. The discovery of reversible RNA N6-methyladenosine (RNA: m6A) by fat mass and obesity-associated protein (FTO) demethylase has led to exponential publications on the pathophysiological functions of m6A and its corresponding RNA modifying proteins (RMPs) in the past decade. Some excellent reviews have summarized the recent progress in this field. Compared to the extent of research into RNA: m6A and DNA 5-methylcytosine (DNA: m5C), much less is known about other RNA modifications and their associated RMPs, such as the role of RNA: m5C and its RNA cytosine methyltransferases (RCMTs) in cancer therapy and drug resistance. In this review, we will summarize the recent progress surrounding the function, intramolecular distribution and subcellular localization of several major RNA modifications, including 5' cap N7-methylguanosine (m7G) and 2'-O-methylation (Nm), m6A, m5C, A-to-I editing, and the associated RMPs. We will then discuss dysregulation of those RNA modifications and RMPs in cancer and their role in cancer therapy and drug resistance.
Collapse
Affiliation(s)
- Shaun Wood
- Department of Pathology, Hematopathology Section, University of Chicago, Chicago, IL60637, United States
| | - Amber Willbanks
- Department of Pathology, Hematopathology Section, University of Chicago, Chicago, IL60637, United States
| | - Jason X Cheng
- Department of Pathology, Hematopathology Section, University of Chicago, Chicago, IL60637, United States
| |
Collapse
|
238
|
Zhang SY, Zhang SW, Zhang T, Fan XN, Meng J. Recent advances in functional annotation and prediction of the epitranscriptome. Comput Struct Biotechnol J 2021; 19:3015-3026. [PMID: 34136099 PMCID: PMC8175281 DOI: 10.1016/j.csbj.2021.05.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 12/17/2022] Open
Abstract
RNA modifications, in particular N6-methyladenosine (m6A), participate in every stages of RNA metabolism and play diverse roles in essential biological processes and disease pathogenesis. Thanks to the advances in sequencing technology, tens of thousands of RNA modification sites can be identified in a typical high-throughput experiment; however, it remains a major challenge to decipher the functional relevance of these sites, such as, affecting alternative splicing, regulation circuit in essential biological processes or association to diseases. As the focus of RNA epigenetics gradually shifts from site discovery to functional studies, we review here recent progress in functional annotation and prediction of RNA modification sites from a bioinformatics perspective. The review covers naïve annotation with associated biological events, e.g., single nucleotide polymorphism (SNP), RNA binding protein (RBP) and alternative splicing, prediction of key sites and their regulatory functions, inference of disease association, and mining the diagnosis and prognosis value of RNA modification regulators. We further discussed the limitations of existing approaches and some future perspectives.
Collapse
Affiliation(s)
- Song-Yao Zhang
- Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Shao-Wu Zhang
- Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Teng Zhang
- Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xiao-Nan Fan
- Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jia Meng
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
239
|
Freund EC, Sapiro AL, Li Q, Linder S, Moresco JJ, Yates JR, Li JB. Unbiased Identification of trans Regulators of ADAR and A-to-I RNA Editing. Cell Rep 2021; 31:107656. [PMID: 32433965 DOI: 10.1016/j.celrep.2020.107656] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/11/2020] [Accepted: 04/23/2020] [Indexed: 12/20/2022] Open
Abstract
Adenosine-to-inosine RNA editing is catalyzed by adenosine deaminase acting on RNA (ADAR) enzymes that deaminate adenosine to inosine. Although many RNA editing sites are known, few trans regulators have been identified. We perform BioID followed by mass spectrometry to identify trans regulators of ADAR1 and ADAR2 in HeLa and M17 neuroblastoma cells. We identify known and novel ADAR-interacting proteins. Using ENCODE data, we validate and characterize a subset of the novel interactors as global or site-specific RNA editing regulators. Our set of novel trans regulators includes all four members of the DZF-domain-containing family of proteins: ILF3, ILF2, STRBP, and ZFR. We show that these proteins interact with each ADAR and modulate RNA editing levels. We find ILF3 is a broadly influential negative regulator of editing. This work demonstrates the broad roles that RNA binding proteins play in regulating editing levels, and establishes DZF-domain-containing proteins as a group of highly influential RNA editing regulators.
Collapse
Affiliation(s)
- Emily C Freund
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Anne L Sapiro
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Qin Li
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Sandra Linder
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - James J Moresco
- Department of Molecular Medicine, 10550 North Torrey Pines Road, SR302, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - John R Yates
- Department of Molecular Medicine, 10550 North Torrey Pines Road, SR302, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jin Billy Li
- Department of Genetics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
240
|
Sapiro AL, Freund EC, Restrepo L, Qiao HH, Bhate A, Li Q, Ni JQ, Mosca TJ, Li JB. Zinc Finger RNA-Binding Protein Zn72D Regulates ADAR-Mediated RNA Editing in Neurons. Cell Rep 2021; 31:107654. [PMID: 32433963 PMCID: PMC7306179 DOI: 10.1016/j.celrep.2020.107654] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/11/2020] [Accepted: 04/23/2020] [Indexed: 12/14/2022] Open
Abstract
Adenosine-to-inosine RNA editing, catalyzed by adenosine deaminase acting on RNA (ADAR) enzymes, alters RNA sequences from those encoded by DNA. These editing events are dynamically regulated, but few trans regulators of ADARs are known in vivo. Here, we screen RNA-binding proteins for roles in editing regulation with knockdown experiments in the Drosophila brain. We identify zinc-finger protein at 72D (Zn72D) as a regulator of editing levels at a majority of editing sites in the brain. Zn72D both regulates ADAR protein levels and interacts with ADAR in an RNA-dependent fashion, and similar to ADAR, Zn72D is necessary to maintain proper neuromuscular junction architecture and fly mobility. Furthermore, Zn72D’s regulatory role in RNA editing is conserved because the mammalian homolog of Zn72D, Zfr, regulates editing in mouse primary neurons. The broad and conserved regulation of ADAR editing by Zn72D in neurons sustains critically important editing events. Sapiro et al. identify Drosophila Zn72D as an influential regulator of neuronal A-to-I RNA editing and synaptic morphology. Zn72D regulates ADAR levels and editing at a large subset of editing sites, providing insight into the maintenance of critical tissue-specific RNA editing events.
Collapse
Affiliation(s)
- Anne L Sapiro
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Emily C Freund
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Lucas Restrepo
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Huan-Huan Qiao
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Amruta Bhate
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Qin Li
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Jian-Quan Ni
- Gene Regulatory Lab, School of Medicine, Tsinghua University, Beijing, China
| | - Timothy J Mosca
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jin Billy Li
- Department of Genetics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
241
|
Duan Y, Tang X, Lu J. Evolutionary driving forces of A-to-I editing in metazoans. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1666. [PMID: 33998151 DOI: 10.1002/wrna.1666] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/12/2021] [Accepted: 04/24/2021] [Indexed: 11/05/2022]
Abstract
Adenosine-to-inosine (A-to-I) RNA editing is an evolutionarily conserved mechanism that converts adenosines to inosines in metazoans' transcriptomes. However, the landscapes of editomes have considerably changed during evolution. Here, we review some of our current knowledge of A-to-I editing in the metazoan transcriptomes, focusing on the possible evolutionary driving forces underlying the editing events. First, we review the evolution of ADAR gene family in animals. Then, we summarize the recent advances in characterizing the editomes of various metazoan species. Next, we highlight several factors contributing to the interspecies differences in editomes, including variations in copy number and expression patterns of ADAR genes, the differences in genomic architectures and contents, and the differences in the efficacy of natural selection. After that, we review the possible diversifying and restorative effects of the editing (recoding) events that change the protein sequences. Finally, we discuss the possible convergent evolution of RNA editing in distantly related clades. This article is categorized under: RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Yuange Duan
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
| | - Xiaolu Tang
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
| | - Jian Lu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
242
|
Malik TN, Doherty EE, Gaded VM, Hill TM, Beal PA, Emeson RB. Regulation of RNA editing by intracellular acidification. Nucleic Acids Res 2021; 49:4020-4036. [PMID: 33721028 PMCID: PMC8053123 DOI: 10.1093/nar/gkab157] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/03/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022] Open
Abstract
The hydrolytic deamination of adenosine-to-inosine (A-to-I) by RNA editing is a widespread post-transcriptional modification catalyzed by the adenosine deaminase acting on RNA (ADAR) family of proteins. ADAR-mediated RNA editing modulates cellular pathways involved in innate immunity, RNA splicing, RNA interference, and protein recoding, and has been investigated as a strategy for therapeutic intervention of genetic disorders. Despite advances in basic and translational research, the mechanisms regulating RNA editing are poorly understood. Though several trans-acting regulators of editing have been shown to modulate ADAR protein expression, previous studies have not identified factors that modulate ADAR catalytic activity. Here, we show that RNA editing increases upon intracellular acidification, and that these effects are predominantly explained by both enhanced ADAR base-flipping and deamination rate at acidic pH. We also show that the extent of RNA editing increases with the reduction in pH associated with conditions of cellular hypoxia.
Collapse
Affiliation(s)
- Turnee N Malik
- Training Program in Neuroscience, Vanderbilt University, Nashville, TN 37232, USA
| | - Erin E Doherty
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
| | - Vandana M Gaded
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
| | - Theodore M Hill
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Peter A Beal
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
| | - Ronald B Emeson
- Training Program in Neuroscience, Vanderbilt University, Nashville, TN 37232, USA.,Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
243
|
Royan S, Gutmann B, Colas des Francs-Small C, Honkanen S, Schmidberger J, Soet A, Sun YK, Vincis Pereira Sanglard L, Bond CS, Small I. A synthetic RNA editing factor edits its target site in chloroplasts and bacteria. Commun Biol 2021; 4:545. [PMID: 33972654 PMCID: PMC8110955 DOI: 10.1038/s42003-021-02062-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/30/2021] [Indexed: 12/26/2022] Open
Abstract
Members of the pentatricopeptide repeat (PPR) protein family act as specificity factors in C-to-U RNA editing. The expansion of the PPR superfamily in plants provides the sequence variation required for design of consensus-based RNA-binding proteins. We used this approach to design a synthetic RNA editing factor to target one of the sites in the Arabidopsis chloroplast transcriptome recognised by the natural editing factor CHLOROPLAST BIOGENESIS 19 (CLB19). We show that our synthetic editing factor specifically recognises the target sequence in in vitro binding assays. The designed factor is equally specific for the target rpoA site when expressed in chloroplasts and in the bacterium E. coli. This study serves as a successful pilot into the design and application of programmable RNA editing factors based on plant PPR proteins.
Collapse
Affiliation(s)
- Santana Royan
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Bernard Gutmann
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Catherine Colas des Francs-Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Suvi Honkanen
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia.,Synthetic Biology Future Science Platform, CSIRO, Canberra, ACT, Australia
| | - Jason Schmidberger
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Ashley Soet
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Yueming Kelly Sun
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Lilian Vincis Pereira Sanglard
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Charles S Bond
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia.
| |
Collapse
|
244
|
Tai Tay DJ, Song Y, Peng B, Toh TB, Hooi L, Kaixin Toh DF, Hong H, Tang SJ, Han J, Gan WL, Man Chan TH, Krishna MS, Patil KM, Maraswami M, Loh TP, Dan YY, Zhou L, Bonney GK, Kah-Hoe Chow P, Chen G, Kai-Hua Chow E, Le MT, Chen L. Targeting RNA Editing of Antizyme Inhibitor 1: a Potential Oligonucleotide-Based Antisense Therapy for Cancer. Mol Ther 2021; 29:3258-3273. [PMID: 33974998 PMCID: PMC8571177 DOI: 10.1016/j.ymthe.2021.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/29/2021] [Accepted: 05/05/2021] [Indexed: 11/26/2022] Open
Abstract
Dysregulated adenosine-to-inosine (A-to-I) RNA editing is implicated in various cancers. However, no available RNA editing inhibitors have so far been developed to inhibit cancer-associated RNA editing events. Here, we decipher the RNA secondary structure of antizyme inhibitor 1 (AZIN1), one of the best-studied A-to-I editing targets in cancer, by locating its editing site complementary sequence (ECS) at the 3′ end of exon 12. Chemically modified antisense oligonucleotides (ASOs) that target the editing region of AZIN1 caused a substantial exon 11 skipping, whereas ECS-targeting ASOs effectively abolished AZIN1 editing without affecting splicing and translation. We demonstrate that complete 2′-O-methyl (2′-O-Me) sugar ring modification in combination with partial phosphorothioate (PS) backbone modification may be an optimal chemistry for editing inhibition. ASO3.2, which targets the ECS, specifically inhibits cancer cell viability in vitro and tumor incidence and growth in xenograft models. Our results demonstrate that this AZIN1-targeting, ASO-based therapeutics may be applicable to a wide range of tumor types.
Collapse
Affiliation(s)
- Daryl Jin Tai Tay
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599
| | - Yangyang Song
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599
| | - Boya Peng
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600; Department of Biomedical Sciences, School of Veterinary Medicine and Life Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Tan Boon Toh
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599; The N.1 Institute for Health (N.1), 28 Medical Dr, Singapore 117456
| | - Lissa Hooi
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599
| | - Desiree-Faye Kaixin Toh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 21 Nanyang Link, Singapore 637371
| | - HuiQi Hong
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, Singapore 117593
| | - Sze Jing Tang
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599
| | - Jian Han
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599
| | - Wei Liang Gan
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599
| | - Tim Hon Man Chan
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599
| | - Manchugondanahalli S Krishna
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 21 Nanyang Link, Singapore 637371
| | - Kiran M Patil
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 21 Nanyang Link, Singapore 637371
| | - Manikantha Maraswami
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 21 Nanyang Link, Singapore 637371
| | - Teck Peng Loh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 21 Nanyang Link, Singapore 637371
| | - Yock Young Dan
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599; Division of Gastroenterology and Hepatology, National University Health System, Singapore 119228
| | - Lei Zhou
- Division of Gastroenterology and Hepatology, National University Health System, Singapore 119228
| | - Glenn Kunnath Bonney
- Division of Hepatobiliary and Liver Transplantation Surgery, National University Health System, Singapore 119228
| | - Pierce Kah-Hoe Chow
- Division of Surgical Oncology, National Cancer Centre Singapore, Singapore 169610; Department of Hepato-Pancreato-Biliary and Transplant Surgery, Singapore General Hospital, Singapore 169608; Duke-NUS Medical School, Singapore 169857
| | - Gang Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 21 Nanyang Link, Singapore 637371
| | - Edward Kai-Hua Chow
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600; The N.1 Institute for Health (N.1), 28 Medical Dr, Singapore 117456
| | - Minh Tn Le
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600; Department of Biomedical Sciences, School of Veterinary Medicine and Life Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Leilei Chen
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599; Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, Singapore 117594.
| |
Collapse
|
245
|
Roos D, de Boer M. Mutations in cis that affect mRNA synthesis, processing and translation. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166166. [PMID: 33971252 DOI: 10.1016/j.bbadis.2021.166166] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/17/2022]
Abstract
Genetic mutations that cause hereditary diseases usually affect the composition of the transcribed mRNA and its encoded protein, leading to instability of the mRNA and/or the protein. Sometimes, however, such mutations affect the synthesis, the processing or the translation of the mRNA, with similar disastrous effects. We here present an overview of mRNA synthesis, its posttranscriptional modification and its translation into protein. We then indicate which elements in these processes are known to be affected by pathogenic mutations, but we restrict our review to mutations in cis, in the DNA of the gene that encodes the affected protein. These mutations can be in enhancer or promoter regions of the gene, which act as binding sites for transcription factors involved in pre-mRNA synthesis. We also describe mutations in polyadenylation sequences and in splice site regions, exonic and intronic, involved in intron removal. Finally, we include mutations in the Kozak sequence in mRNA, which is involved in protein synthesis. We provide examples of genetic diseases caused by mutations in these DNA regions and refer to databases to help identify these regions. The over-all knowledge of mRNA synthesis, processing and translation is essential for improvement of the diagnosis of patients with genetic diseases.
Collapse
Affiliation(s)
- Dirk Roos
- Sanquin Blood Supply Organization, Dept. of Blood Cell Research, Landsteiner Laboratory, Amsterdam University Medical Centre, location AMC, University of Amsterdam, Amsterdam, the Netherlands.
| | - Martin de Boer
- Sanquin Blood Supply Organization, Dept. of Blood Cell Research, Landsteiner Laboratory, Amsterdam University Medical Centre, location AMC, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
246
|
Kim JI, Nakahama T, Yamasaki R, Costa Cruz PH, Vongpipatana T, Inoue M, Kanou N, Xing Y, Todo H, Shibuya T, Kato Y, Kawahara Y. RNA editing at a limited number of sites is sufficient to prevent MDA5 activation in the mouse brain. PLoS Genet 2021; 17:e1009516. [PMID: 33983932 PMCID: PMC8118328 DOI: 10.1371/journal.pgen.1009516] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/28/2021] [Indexed: 12/22/2022] Open
Abstract
Adenosine deaminase acting on RNA 1 (ADAR1), an enzyme responsible for adenosine-to-inosine RNA editing, is composed of two isoforms: nuclear p110 and cytoplasmic p150. Deletion of Adar1 or Adar1 p150 genes in mice results in embryonic lethality with overexpression of interferon-stimulating genes (ISGs), caused by the aberrant recognition of unedited endogenous transcripts by melanoma differentiation-associated protein 5 (MDA5). However, among numerous RNA editing sites, how many RNA sites require editing, especially by ADAR1 p150, to avoid MDA5 activation and whether ADAR1 p110 contributes to this function remains elusive. In particular, ADAR1 p110 is abundant in the mouse brain where a subtle amount of ADAR1 p150 is expressed, whereas ADAR1 mutations cause Aicardi-Goutières syndrome, in which the brain is one of the most affected organs accompanied by the elevated expression of ISGs. Therefore, understanding RNA editing-mediated prevention of MDA5 activation in the brain is especially important. Here, we established Adar1 p110-specific knockout mice, in which the upregulated expression of ISGs was not observed. This result suggests that ADAR1 p150-mediated RNA editing is enough to suppress MDA5 activation. Therefore, we further created Adar1 p110/Adar2 double knockout mice to identify ADAR1 p150-mediated editing sites. This analysis demonstrated that although the elevated expression of ISGs was not observed, only less than 2% of editing sites were preserved in the brains of Adar1 p110/Adar2 double knockout mice. Of note, we found that some sites were highly edited, which was comparable to those found in wild-type mice, indicating the presence of ADAR1 p150-specific sites. These data suggest that RNA editing at a very limited sites, which is mediated by a subtle amount of ADAR1 p150, is sufficient to prevents MDA5 activation, at least in the mouse brain.
Collapse
Affiliation(s)
- Jung In Kim
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Taisuke Nakahama
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Ryuichiro Yamasaki
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Pedro Henrique Costa Cruz
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Tuangtong Vongpipatana
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Maal Inoue
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Nao Kanou
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yanfang Xing
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hiroyuki Todo
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Toshiharu Shibuya
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yuki Kato
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan
| | - Yukio Kawahara
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan
- Genome Editing Research and Development Center, Graduate School of Medicine, Osaka University, Suita, Japan
| |
Collapse
|
247
|
Liu H, Rauch S, Dickinson BC. Programmable technologies to manipulate gene expression at the RNA level. Curr Opin Chem Biol 2021; 64:27-37. [PMID: 33930627 DOI: 10.1016/j.cbpa.2021.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/26/2022]
Abstract
RNA has long been an enticing therapeutic target, but is now garnering increased attention, largely driven by clinical successes of RNA interference-based drugs. While gene knockdown by well-established RNA interference- and other oligonucleotide-based strategies continues to advance in the clinic, the repertoire of targetable effectors capable of altering gene expression at the RNA level is also rapidly expanding. In this review, we focus on several recently developed bifunctional molecular technologies that both interact with and act upon a target RNA. These new approaches for programmable RNA knockdown, editing, splicing, translation, and chemical modifications stand to provide impactful new modalities for therapeutic development in the coming decades.
Collapse
Affiliation(s)
- Huachun Liu
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Simone Rauch
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Bryan C Dickinson
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
248
|
Willbanks A, Wood S, Cheng JX. RNA Epigenetics: Fine-Tuning Chromatin Plasticity and Transcriptional Regulation, and the Implications in Human Diseases. Genes (Basel) 2021; 12:genes12050627. [PMID: 33922187 PMCID: PMC8145807 DOI: 10.3390/genes12050627] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 02/08/2023] Open
Abstract
Chromatin structure plays an essential role in eukaryotic gene expression and cell identity. Traditionally, DNA and histone modifications have been the focus of chromatin regulation; however, recent molecular and imaging studies have revealed an intimate connection between RNA epigenetics and chromatin structure. Accumulating evidence suggests that RNA serves as the interplay between chromatin and the transcription and splicing machineries within the cell. Additionally, epigenetic modifications of nascent RNAs fine-tune these interactions to regulate gene expression at the co- and post-transcriptional levels in normal cell development and human diseases. This review will provide an overview of recent advances in the emerging field of RNA epigenetics, specifically the role of RNA modifications and RNA modifying proteins in chromatin remodeling, transcription activation and RNA processing, as well as translational implications in human diseases.
Collapse
|
249
|
Conserved long-range base pairings are associated with pre-mRNA processing of human genes. Nat Commun 2021; 12:2300. [PMID: 33863890 PMCID: PMC8052449 DOI: 10.1038/s41467-021-22549-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 03/20/2021] [Indexed: 02/07/2023] Open
Abstract
The ability of nucleic acids to form double-stranded structures is essential for all living systems on Earth. Current knowledge on functional RNA structures is focused on locally-occurring base pairs. However, crosslinking and proximity ligation experiments demonstrated that long-range RNA structures are highly abundant. Here, we present the most complete to-date catalog of conserved complementary regions (PCCRs) in human protein-coding genes. PCCRs tend to occur within introns, suppress intervening exons, and obstruct cryptic and inactive splice sites. Double-stranded structure of PCCRs is supported by decreased icSHAPE nucleotide accessibility, high abundance of RNA editing sites, and frequent occurrence of forked eCLIP peaks. Introns with PCCRs show a distinct splicing pattern in response to RNAPII slowdown suggesting that splicing is widely affected by co-transcriptional RNA folding. The enrichment of 3'-ends within PCCRs raises the intriguing hypothesis that coupling between RNA folding and splicing could mediate co-transcriptional suppression of premature pre-mRNA cleavage and polyadenylation.
Collapse
|
250
|
Liu X, Sun T, Shcherbina A, Li Q, Jarmoskaite I, Kappel K, Ramaswami G, Das R, Kundaje A, Li JB. Learning cis-regulatory principles of ADAR-based RNA editing from CRISPR-mediated mutagenesis. Nat Commun 2021; 12:2165. [PMID: 33846332 PMCID: PMC8041805 DOI: 10.1038/s41467-021-22489-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/15/2021] [Indexed: 11/24/2022] Open
Abstract
Adenosine-to-inosine (A-to-I) RNA editing catalyzed by ADAR enzymes occurs in double-stranded RNAs. Despite a compelling need towards predictive understanding of natural and engineered editing events, how the RNA sequence and structure determine the editing efficiency and specificity (i.e., cis-regulation) is poorly understood. We apply a CRISPR/Cas9-mediated saturation mutagenesis approach to generate libraries of mutations near three natural editing substrates at their endogenous genomic loci. We use machine learning to integrate diverse RNA sequence and structure features to model editing levels measured by deep sequencing. We confirm known features and identify new features important for RNA editing. Training and testing XGBoost algorithm within the same substrate yield models that explain 68 to 86 percent of substrate-specific variation in editing levels. However, the models do not generalize across substrates, suggesting complex and context-dependent regulation patterns. Our integrative approach can be applied to larger scale experiments towards deciphering the RNA editing code.
Collapse
Affiliation(s)
- Xin Liu
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Tao Sun
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Anna Shcherbina
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Qin Li
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Kalli Kappel
- Biophysics Program, Stanford University, Stanford, CA, USA
| | - Gokul Ramaswami
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Rhiju Das
- Department of Biochemistry, Stanford University, Stanford, CA, USA
- Department of Physics, Stanford University, Stanford, CA, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Department of Computer Science, Stanford University, Stanford, CA, USA.
| | - Jin Billy Li
- Department of Genetics, Stanford University, Stanford, CA, USA.
| |
Collapse
|