201
|
Meazza R, Falco M, Marcenaro S, Loiacono F, Canevali P, Bellora F, Tuberosa C, Locatelli F, Micalizzi C, Moretta A, Mingari MC, Moretta L, Aricò M, Bottino C, Pende D. Inhibitory 2B4 contributes to NK cell education and immunological derangements in XLP1 patients. Eur J Immunol 2017; 47:1051-1061. [PMID: 28386908 DOI: 10.1002/eji.201646885] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/20/2017] [Accepted: 03/28/2017] [Indexed: 11/09/2022]
Abstract
X-linked lymphoproliferative disease 1 (XLP1) is an inherited immunodeficiency, caused by mutations in SH2D1A encoding Signaling Lymphocyte Activation Molecule (SLAM)-associated protein (SAP). In XLP1, 2B4, upon engagement with CD48, has inhibitory instead of activating function. This causes a selective inability of cytotoxic effectors to kill EBV-infected cells, with dramatic clinical sequelae. Here, we investigated the NK cell education in XLP1, upon characterization of killer Ig-like receptor (KIR)/KIR-L genotype and phenotypic repertoire of self-HLA class I specific inhibitory NK receptors (self-iNKRs). We also analyzed NK-cell cytotoxicity against CD48+ or CD48- KIR-ligand matched or autologous hematopoietic cells in XLP1 patients and healthy controls. XLP1 NK cells may show a defective phenotypic repertoire with substantial proportion of cells lacking self-iNKR. These NK cells are cytotoxic and the inhibitory 2B4/CD48 pathway plays a major role to prevent killing of CD48+ EBV-transformed B cells and M1 macrophages. Importantly, self-iNKR defective NK cells kill CD48- targets, such as mature DCs. Self-iNKR- NK cells in XLP1 patients are functional even in resting conditions, suggesting a role of the inhibitory 2B4/CD48 pathway in the education process during NK-cell maturation. Killing of autologous mature DC by self-iNKR defective XLP1 NK cells may impair adaptive responses, further exacerbating the patients' immune defect.
Collapse
Affiliation(s)
- Raffaella Meazza
- Dipartimento delle Terapie Oncologiche Integrate, IRCCS AOU San Martino-IST, Genoa, Italy
| | - Michela Falco
- Dipartimento di Ricerca e Diagnostica, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Stefania Marcenaro
- Dipartimento di Ricerca e Diagnostica, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Fabrizio Loiacono
- Dipartimento delle Terapie Oncologiche Integrate, IRCCS AOU San Martino-IST, Genoa, Italy.,Dipartimento di Ricerca e Diagnostica, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Paolo Canevali
- Dipartimento di Ricerca e Diagnostica, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Francesca Bellora
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genoa, Italy
| | - Claudia Tuberosa
- Dipartimento delle Terapie Oncologiche Integrate, IRCCS AOU San Martino-IST, Genoa, Italy.,Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genoa, Italy
| | - Franco Locatelli
- Dipartimento di Oncoematologia Pediatrica, IRCCS Ospedale Bambino Gesù, Rome, Italy.,Università di Pavia, Pavia, Italy
| | - Concetta Micalizzi
- Dipartimento di Oncoematologia Pediatrica, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Alessandro Moretta
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genoa, Italy
| | - Maria C Mingari
- Dipartimento delle Terapie Oncologiche Integrate, IRCCS AOU San Martino-IST, Genoa, Italy.,Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genoa, Italy
| | - Lorenzo Moretta
- Dipartimento dei Laboratori, Area di Ricerca di Immunologia, IRCCS Ospedale Bambino Gesù, Rome, Italy
| | | | - Cristina Bottino
- Dipartimento di Ricerca e Diagnostica, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genoa, Italy
| | - Daniela Pende
- Dipartimento delle Terapie Oncologiche Integrate, IRCCS AOU San Martino-IST, Genoa, Italy
| |
Collapse
|
202
|
ITIM receptors: more than just inhibitors of platelet activation. Blood 2017; 129:3407-3418. [PMID: 28465343 DOI: 10.1182/blood-2016-12-720185] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/24/2017] [Indexed: 12/12/2022] Open
Abstract
Since their discovery, immunoreceptor tyrosine-based inhibition motif (ITIM)-containing receptors have been shown to inhibit signaling from immunoreceptor tyrosine-based activation motif (ITAM)-containing receptors in almost all hematopoietic cells, including platelets. However, a growing body of evidence has emerged demonstrating that this is an oversimplification, and that ITIM-containing receptors are versatile regulators of platelet signal transduction, with functions beyond inhibiting ITAM-mediated platelet activation. PECAM-1 was the first ITIM-containing receptor identified in platelets and appeared to conform to the established model of ITIM-mediated attenuation of ITAM-driven activation. PECAM-1 was therefore widely accepted as a major negative regulator of platelet activation and thrombosis for many years, but more recent findings suggest a more complex role for this receptor, including the facilitation of αIIbβ3-mediated platelet functions. Since the identification of PECAM-1, several other ITIM-containing platelet receptors have been discovered. These include G6b-B, a critical regulator of platelet reactivity and production, and the noncanonical ITIM-containing receptor TREM-like transcript-1, which is localized to α-granules in resting platelets, binds fibrinogen, and acts as a positive regulator of platelet activation. Despite structural similarities and shared binding partners, including the Src homology 2 domain-containing protein-tyrosine phosphatases Shp1 and Shp2, knockout and transgenic mouse models have revealed distinct phenotypes and nonredundant functions for each ITIM-containing receptor in the context of platelet homeostasis. These roles are likely influenced by receptor density, compartmentalization, and as-yet unknown binding partners. In this review, we discuss the diverse repertoire of ITIM-containing receptors in platelets, highlighting intriguing new functions, controversies, and future areas of investigation.
Collapse
|
203
|
Chen J, Zhong MC, Guo H, Davidson D, Mishel S, Lu Y, Rhee I, Pérez-Quintero LA, Zhang S, Cruz-Munoz ME, Wu N, Vinh DC, Sinha M, Calderon V, Lowell CA, Danska JS, Veillette A. SLAMF7 is critical for phagocytosis of haematopoietic tumour cells via Mac-1 integrin. Nature 2017; 544:493-497. [PMID: 28424516 DOI: 10.1038/nature22076] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 03/15/2017] [Indexed: 12/31/2022]
Abstract
Cancer cells elude anti-tumour immunity through multiple mechanisms, including upregulated expression of ligands for inhibitory immune checkpoint receptors. Phagocytosis by macrophages plays a critical role in cancer control. Therapeutic blockade of signal regulatory protein (SIRP)-α, an inhibitory receptor on macrophages, or of its ligand CD47 expressed on tumour cells, improves tumour cell elimination in vitro and in vivo, suggesting that blockade of the SIRPα-CD47 checkpoint could be useful in treating human cancer. However, the pro-phagocytic receptor(s) responsible for tumour cell phagocytosis is(are) largely unknown. Here we find that macrophages are much more efficient at phagocytosis of haematopoietic tumour cells, compared with non-haematopoietic tumour cells, in response to SIRPα-CD47 blockade. Using a mouse lacking the signalling lymphocytic activation molecule (SLAM) family of homotypic haematopoietic cell-specific receptors, we determined that phagocytosis of haematopoietic tumour cells during SIRPα-CD47 blockade was strictly dependent on SLAM family receptors in vitro and in vivo. In both mouse and human cells, this function required a single SLAM family member, SLAMF7 (also known as CRACC, CS1, CD319), expressed on macrophages and tumour cell targets. In contrast to most SLAM receptor functions, SLAMF7-mediated phagocytosis was independent of signalling lymphocyte activation molecule-associated protein (SAP) adaptors. Instead, it depended on the ability of SLAMF7 to interact with integrin Mac-1 (refs 18, 19, 20) and utilize signals involving immunoreceptor tyrosine-based activation motifs. These findings elucidate the mechanism by which macrophages engulf and destroy haematopoietic tumour cells. They also reveal a novel SAP adaptor-independent function for a SLAM receptor. Lastly, they suggest that patients with tumours expressing SLAMF7 are more likely to respond to SIRPα-CD47 blockade therapy.
Collapse
Affiliation(s)
- Jun Chen
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada
| | - Ming-Chao Zhong
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada
| | - Huaijian Guo
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada.,Department of Medicine, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Dominique Davidson
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada
| | - Sabrin Mishel
- Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Yan Lu
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada
| | - Inmoo Rhee
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada.,Department of Medicine, McGill University, Montréal, Québec H3G 1Y6, Canada.,Department of Bioscience and Biotechnology, Sejong University, Seoul 143-747, South Korea
| | - Luis-Alberto Pérez-Quintero
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada.,Department of Medicine, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Shaohua Zhang
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada
| | - Mario-Ernesto Cruz-Munoz
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada.,School of Medicine, University of Morelos, Cuernavaca 62350, Mexico
| | - Ning Wu
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada
| | - Donald C Vinh
- Infectious Disease Susceptibility Program, McGill University Health Centre (MUHC) and Research Institute-MUHC (RI-MUHC), Montréal, Québec H4A 3J1, Canada.,Department of Human Genetics, McGill University, Montréal, Québec H3A 1B1, Canada
| | - Meenal Sinha
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California 94143, USA
| | - Virginie Calderon
- Bioinformatics Core Facility, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada
| | - Clifford A Lowell
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California 94143, USA
| | - Jayne S Danska
- Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - André Veillette
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada.,Department of Medicine, McGill University, Montréal, Québec H3G 1Y6, Canada.,Department of Medicine, University of Montréal, Montréal, Québec H3T 1J4, Canada
| |
Collapse
|
204
|
Baglaenko Y, Cruz Tleugabulova M, Gracey E, Talaei N, Manion KP, Chang NH, Ferri DM, Mallevaey T, Wither JE. Invariant NKT Cell Activation Is Potentiated by Homotypic trans-Ly108 Interactions. THE JOURNAL OF IMMUNOLOGY 2017; 198:3949-3962. [PMID: 28373584 DOI: 10.4049/jimmunol.1601369] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 03/07/2017] [Indexed: 01/27/2023]
Abstract
Invariant NKT (iNKT) cells are innate lymphocytes that respond to glycolipids presented by the MHC class Ib molecule CD1d and are rapidly activated to produce large quantities of cytokines and chemokines. iNKT cell development uniquely depends on interactions between double-positive thymocytes that provide key homotypic interactions between signaling lymphocyte activation molecule (SLAM) family members. However, the role of SLAM receptors in the differentiation of iNKT cell effector subsets and activation has not been explored. In this article, we show that C57BL/6 mice containing the New Zealand Black Slam locus have profound alterations in Ly108, CD150, and Ly9 expression that is associated with iNKT cell hyporesponsiveness. This loss of function was only apparent when dendritic cells and iNKT cells had a loss of SLAM receptor expression. Using small interfering RNA knockdowns and peptide-blocking strategies, we demonstrated that trans-Ly108 interactions between dendritic cells and iNKT cells are critical for robust activation. LY108 costimulation similarly increased human iNKT cell activation. Thus, in addition to its established role in iNKT cell ontogeny, Ly108 regulates iNKT cell function in mice and humans.
Collapse
Affiliation(s)
- Yuriy Baglaenko
- Krembil Research Institute, University Health Network, Toronto, Ontario M5T 2S8, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and
| | | | - Eric Gracey
- Krembil Research Institute, University Health Network, Toronto, Ontario M5T 2S8, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and
| | - Nafiseh Talaei
- Krembil Research Institute, University Health Network, Toronto, Ontario M5T 2S8, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and
| | - Kieran Patricia Manion
- Krembil Research Institute, University Health Network, Toronto, Ontario M5T 2S8, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and
| | - Nan-Hua Chang
- Krembil Research Institute, University Health Network, Toronto, Ontario M5T 2S8, Canada
| | - Dario Michael Ferri
- Krembil Research Institute, University Health Network, Toronto, Ontario M5T 2S8, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and
| | - Thierry Mallevaey
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and
| | - Joan E Wither
- Krembil Research Institute, University Health Network, Toronto, Ontario M5T 2S8, Canada; .,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and.,Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
205
|
Radhakrishnan SV, Bhardwaj N, Luetkens T, Atanackovic D. Novel anti-myeloma immunotherapies targeting the SLAM family of receptors. Oncoimmunology 2017. [PMID: 28638731 DOI: 10.1080/2162402x.2017.1308618] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Treatment for multiple myeloma (MM) has significantly advanced in the last decade with the introduction of proteasome inhibitors and immunomodulatory therapies. Unfortunately, MM continues to cause significant morbidity and most patients eventually succumb to the disease. As in other areas of cancer, immunotherapy in MM has also evolved and holds promise to deliver long-lasting remissions or even cure. The signaling lymphocyte activation molecules (SLAM) family of surface proteins represents a group of potential targets for immunotherapy in MM as some of the family members are expressed consistently on plasma cells and also on myeloma propagating pre-plasma cells. Here, we review the SLAM family members in detail, describe their tissue distribution, biologic pathways, as well as relevant pre-clinical studies and clinical trials in MM. Our review demonstrates the value of SLAM family receptors as potential targets for anti-myeloma immunotherapies and outlines how immunotherapeutic approaches can be developed.
Collapse
Affiliation(s)
- Sabarinath Venniyil Radhakrishnan
- Multiple Myeloma Program & Cancer Immunotherapy, Hematology and Hematologic Malignancies, University of Utah/Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Neelam Bhardwaj
- Multiple Myeloma Program & Cancer Immunotherapy, Hematology and Hematologic Malignancies, University of Utah/Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Tim Luetkens
- Multiple Myeloma Program & Cancer Immunotherapy, Hematology and Hematologic Malignancies, University of Utah/Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Djordje Atanackovic
- Multiple Myeloma Program & Cancer Immunotherapy, Hematology and Hematologic Malignancies, University of Utah/Huntsman Cancer Institute, Salt Lake City, UT, USA
| |
Collapse
|
206
|
The Measles Virus Receptor SLAMF1 Can Mediate Particle Endocytosis. J Virol 2017; 91:JVI.02255-16. [PMID: 28100610 PMCID: PMC5355598 DOI: 10.1128/jvi.02255-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/03/2017] [Indexed: 12/11/2022] Open
Abstract
The signaling lymphocyte activation molecule F1 (SLAMF1) is both a microbial sensor and entry receptor for measles virus (MeV). Herein, we describe a new role for SLAMF1 to mediate MeV endocytosis that is in contrast with the alternative, and generally accepted, model that MeV genome enters cells only after fusion at the cell surface. We demonstrated that MeV engagement of SLAMF1 induces dramatic but transient morphological changes, most prominently in the formation of membrane blebs, which were shown to colocalize with incoming viral particles, and rearrangement of the actin cytoskeleton in infected cells. MeV infection was dependent on these dynamic cytoskeletal changes as well as fluid uptake through a macropinocytosis-like pathway as chemical inhibition of these processes inhibited entry. Moreover, we identified a role for the RhoA-ROCK-myosin II signaling axis in this MeV internalization process, highlighting a novel role for this recently characterized pathway in virus entry. Our study shows that MeV can hijack a microbial sensor normally involved in bacterial phagocytosis to drive endocytosis using a complex pathway that shares features with canonical viral macropinocytosis, phagocytosis, and mechanotransduction. This uptake pathway is specific to SLAMF1-positive cells and occurs within 60 min of viral attachment. Measles virus remains a significant cause of mortality in human populations, and this research sheds new light on the very first steps of infection of this important pathogen. IMPORTANCE Measles is a significant disease in humans and is estimated to have killed over 200 million people since records began. According to current World Health Organization statistics, it still kills over 100,000 people a year, mostly children in the developing world. The causative agent, measles virus, is a small enveloped RNA virus that infects a broad range of cells during infection. In particular, immune cells are infected via interactions between glycoproteins found on the surface of the virus and SLAMF1, the immune cell receptor. In this study, we have investigated the steps governing entry of measles virus into SLAMF1-positive cells and identified endocytic uptake of viral particles. This research will impact our understanding of morbillivirus-related immunosuppression as well as the application of measles virus as an oncolytic therapeutic.
Collapse
|
207
|
Shao JY, Yin WW, Zhang QF, Liu Q, Peng ML, Hu HD, Hu P, Ren H, Zhang DZ. Siglec-7 Defines a Highly Functional Natural Killer Cell Subset and Inhibits Cell-Mediated Activities. Scand J Immunol 2017; 84:182-90. [PMID: 27312286 DOI: 10.1111/sji.12455] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/06/2016] [Indexed: 12/23/2022]
Abstract
Sialic acid-binding immunoglobulin-like lectin-7 (Siglec-7) is an inhibitory receptor expressed on natural killer (NK) cells. In this study, we investigated the relationship between Siglec-7 expression and NK cell functions. Siglec-7 was highly expressed on NK cells and was preferentially expressed by mature NK cells from peripheral blood of healthy adults. Siglec-7(+) NK cells displayed higher levels of activating receptors CD38, CD16, DNAM1, NKp30 and NKp46, but lower levels of inhibitory receptors such as NKG2A and CD158b, compared with Siglec-7(-) NK cells. Functional tests showed that Siglec-7(+) NK cells displayed more CD107a degranulation and IFN-γ production than Siglec-7(-) NK cells. Siglec-7 inhibited NK cell functions when interacting with specific antibodies. These data suggest that Siglec-7 defines a highly functional NK cell subset and suppresses NK cell-mediated functions when cross-linked with specific antibodies.
Collapse
Affiliation(s)
- J-Y Shao
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - W-W Yin
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Q-F Zhang
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Q Liu
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - M-L Peng
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - H-D Hu
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - P Hu
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - H Ren
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - D-Z Zhang
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
208
|
Gavriatopoulou M, Terpos E, Kastritis E, Dimopoulos MA. Efficacy and safety of elotuzumab for the treatment of multiple myeloma. Expert Opin Drug Saf 2017; 16:237-245. [PMID: 28060563 DOI: 10.1080/14740338.2017.1279603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Multiple myeloma (MM) is the second most common hematologic malignancy and despite significant outcome improvements with novel agents, the majority of patients will eventually relapse and develop treatment resistance. Immunotherapy is emerging as a promising therapeutic approach in MM. Areas covered: Elotuzumab is a monoclonal antibody directly targeting the SLAMF7 receptor, expressed on normal and malignant plasma cells. Elotuzumab has no meaningful antimyeloma activity when given as monotherapy to patients with relapsed or refractory MM (RRMM). However, it demonstrated significant antimyeloma activity in preclinical studies and when it is combined with other antimyeloma agents (i.e. bortezomib or lenalidomide) in clinical trials, it improved response and clinical outcomes with no additive toxicity. This review provides a brief description of the elotuzumab mechanism of action and an overview on its efficacy in preclinical and clinical trials, including its safety and toxicity profile. Expert commentary: Based on the results of a phase 3 clinical trial (ELOQUENT-2), which compared lenalidomide and dexamethasone with or without elotuzumab in patients with RRMM, elotuzumab was approved by FDA in November 2015 for MM patients who received 1-3 prior lines of therapy. Studies with combinations of elotuzumab with other anti-myeloma drugs in different phases of MM are ongoing.
Collapse
Affiliation(s)
- Maria Gavriatopoulou
- a Department of Clinical Therapeutics , National and Kapodistrian University of Athens, School of Medicine, Alexandra General Hospital , Athens , Greece
| | - Evangelos Terpos
- a Department of Clinical Therapeutics , National and Kapodistrian University of Athens, School of Medicine, Alexandra General Hospital , Athens , Greece
| | - Efstathios Kastritis
- a Department of Clinical Therapeutics , National and Kapodistrian University of Athens, School of Medicine, Alexandra General Hospital , Athens , Greece
| | - Meletios A Dimopoulos
- a Department of Clinical Therapeutics , National and Kapodistrian University of Athens, School of Medicine, Alexandra General Hospital , Athens , Greece
| |
Collapse
|
209
|
Chung C. Role of Immunotherapy in Targeting the Bone Marrow Microenvironment in Multiple Myeloma: An Evolving Therapeutic Strategy. Pharmacotherapy 2017; 37:129-143. [PMID: 27870103 DOI: 10.1002/phar.1871] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Multiple myeloma (referred to henceforth as myeloma) is a B-cell malignancy characterized by unregulated growth of plasma cells in the bone marrow. The treatment paradigm for myeloma underwent significant evolution in the last decade, with an improved understanding of the pathogenesis of the disease as well as the development of therapeutic agents that target not only the tumor cells but also their microenvironment. Despite these therapeutic advances, the prognosis of patients with relapsed or refractory myeloma remains poor. Accordingly, a need exists for new therapeutic avenues that can overcome resistance to current therapies and improve survival outcomes. In addition, myeloma is associated with progressive immune dysregulation, with defects in T-cell immunity, natural killer cell function, and the antigen-presenting capacity of dendritic cells, resulting in a tumor microenvironment that promotes disease tolerance and progression. Together, the immunosuppressive microenvironment and oncogenic mutations activate signaling networks that promote myeloma cell survival. Immunotherapy incorporates novel treatment options (e.g., monoclonal antibodies, antibody-drug conjugates, chimeric antigen receptor T-cell therapy, immune checkpoint inhibitors, bispecific antibodies, and tumor vaccines) either alone or in combination with existing lines of therapies (e.g., immunomodulatory agents, proteasome inhibitors, and histone deacetylase inhibitors) to enhance the host anti myeloma immunity within the bone marrow microenvironment and improve clinical response. Following the U.S. Food and Drug Administration approval of daratumumab and elotuzumab in 2015, more immunotherapeutic agents are expected to be become available as valuable treatment options in the near future. This review provides a basic understanding of the role of immunotherapy in modulating the bone marrow tumor microenvironment and its role in the treatment of myeloma. Clinical efficacy and safety of recently approved therapeutic monoclonal antibodies (daratumumab, elotuzumab) are discussed, along with the therapeutic potential of emerging immunotherapies (antibody-drug conjugates, chimeric antigen receptor T-cell therapy, tumor vaccines, and immune checkpoint inhibitors).
Collapse
|
210
|
Chen S, Cai C, Li Z, Liu G, Wang Y, Blonska M, Li D, Du J, Lin X, Yang M, Dong Z. Dissection of SAP-dependent and SAP-independent SLAM family signaling in NKT cell development and humoral immunity. J Exp Med 2017; 214:475-489. [PMID: 28049627 PMCID: PMC5294859 DOI: 10.1084/jem.20161312] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/29/2016] [Accepted: 12/12/2016] [Indexed: 12/27/2022] Open
Abstract
Chen et al. dissect SAP-dependent and SAP-independent SLAM family signaling in the regulation of NKT cell development and follicular T helper cell differentiation using a novel mouse model lacking all seven SLAM family receptors. Signaling lymphocytic activation molecule (SLAM)–associated protein (SAP) mutations in X-linked lymphoproliferative disease (XLP) lead to defective NKT cell development and impaired humoral immunity. Because of the redundancy of SLAM family receptors (SFRs) and the complexity of SAP actions, how SFRs and SAP mediate these processes remains elusive. Here, we examined NKT cell development and humoral immunity in mice completely deficient in SFR. We found that SFR deficiency severely impaired NKT cell development. In contrast to SAP deficiency, SFR deficiency caused no apparent defect in follicular helper T (TFH) cell differentiation. Intriguingly, the deletion of SFRs completely rescued the severe defect in TFH cell generation caused by SAP deficiency, whereas SFR deletion had a minimal effect on the defective NKT cell development in SAP-deficient mice. These findings suggest that SAP-dependent activating SFR signaling is essential for NKT cell selection; however, SFR signaling is inhibitory in SAP-deficient TFH cells. Thus, our current study revises our understanding of the mechanisms underlying T cell defects in patients with XLP.
Collapse
Affiliation(s)
- Shasha Chen
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100086, China
| | - Chenxu Cai
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100086, China
| | - Zehua Li
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100086, China
| | - Guangao Liu
- Biomedical Translational Research Institute, Jinan University, Guangzhou 510632, China
| | - Yuande Wang
- Biomedical Translational Research Institute, Jinan University, Guangzhou 510632, China
| | - Marzenna Blonska
- Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136
| | - Dan Li
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100086, China
| | - Juan Du
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100086, China
| | - Xin Lin
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100086, China
| | - Meixiang Yang
- Biomedical Translational Research Institute, Jinan University, Guangzhou 510632, China
| | - Zhongjun Dong
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100086, China
| |
Collapse
|
211
|
Huang YH, Tsai K, Tan SY, Kang S, Ford ML, Harder KW, Priatel JJ. 2B4-SAP signaling is required for the priming of naive CD8 + T cells by antigen-expressing B cells and B lymphoma cells. Oncoimmunology 2016; 6:e1267094. [PMID: 28344876 DOI: 10.1080/2162402x.2016.1267094] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/22/2016] [Accepted: 11/24/2016] [Indexed: 10/20/2022] Open
Abstract
Mutations in SH2D1A gene that encodes SAP (SLAM-associated protein) result in X-linked lymphoproliferative disease (XLP), a rare primary immunodeficiency disease defined by exquisite sensitivity to the B-lymphotropic Epstein-Barr virus (EBV) and B cell lymphomas. However, the precise mechanism of how the loss of SAP function contributes to extreme vulnerability to EBV and the development of B cell lymphomas remains unclear. Here, we investigate the hypothesis that SAP is critical for CD8+ T cell immune surveillance of antigen (Ag)-expressing B cells or B lymphoma cells under conditions of defined T cell receptor (TCR) signaling. Sh2d1a-/- CD8+ T cells exhibited greatly diminished proliferation relative to wild type when Ag-presenting-B cells or -B lymphoma cells served as the primary Ag-presenting cell (APC). By contrast, Sh2d1a-/- CD8+ T cells responded equivalently to wild-type CD8+ T cells when B cell-depleted splenocytes, melanoma cells or breast carcinoma cells performed Ag presentation. Through application of signaling lymphocyte activation molecule (SLAM) family receptor blocking antibodies or SLAM family receptor-deficient CD8+ T cells and APCs, we found that CD48 engagement on the B cell surface by 2B4 is crucial for initiating SAP-dependent signaling required for the Ag-driven CD8+ T cell proliferation and differentiation. Altogether, a pivotal role for SAP in promoting the expansion and differentiation of B cell-primed viral-specific naive CD8+ T cells may explain the selective immune deficiency of XLP patients to EBV and B cell lymphomas.
Collapse
Affiliation(s)
- Yu-Hsuan Huang
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevin Tsai
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sara Y Tan
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sohyeong Kang
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mandy L Ford
- Department of Surgery, Emory University , Atlanta, GA, USA
| | - Kenneth W Harder
- Department of Microbiology and Immunology, University of British Columbia , Vancouver, British Columbia, Canada
| | - John J Priatel
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
212
|
Wali S, Sahoo A, Puri S, Alekseev A, Nurieva R. Insights into the development and regulation of T follicular helper cells. Cytokine 2016; 87:9-19. [PMID: 27339151 PMCID: PMC5108526 DOI: 10.1016/j.cyto.2016.06.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 06/07/2016] [Indexed: 12/12/2022]
Abstract
T follicular helper (Tfh) cells are specialized subset of T helper (Th) cells necessary for germinal center reaction, affinity maturation and the differentiation of germinal center B cells to antibody-producing plasma B cells and memory B cells. The differentiation of Tfh cells is a multistage, multifactorial process involving a variety of cytokines, surface molecules and transcription factors. While Tfh cells are critical components of protective immune responses against pathogens, regulation of these cells is crucial to prevent autoimmunity and airway inflammation. Recently, it has been noted that Tfh cells could be potentially implicated either in cancer progression or prevention. Thus, the elucidation of the mechanisms that regulate Tfh cell differentiation, function and fate should highlight potential targets for novel therapeutic approaches. In this review, we summarize the latest advances in our understanding of the regulation of Tfh cell differentiation and their role in health and disease.
Collapse
Affiliation(s)
- Shradha Wali
- Department of Immunology, M. D. Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences at Houston, TX, USA
| | - Anupama Sahoo
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, USA
| | - Sushant Puri
- Department of Immunology, M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Andrei Alekseev
- Department of Immunology, M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Roza Nurieva
- Department of Immunology, M. D. Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences at Houston, TX, USA.
| |
Collapse
|
213
|
Schwartz AM, Putlyaeva LV, Covich M, Klepikova AV, Akulich KA, Vorontsov IE, Korneev KV, Dmitriev SE, Polanovsky OL, Sidorenko SP, Kulakovskiy IV, Kuprash DV. Early B-cell factor 1 (EBF1) is critical for transcriptional control of SLAMF1 gene in human B cells. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1859:1259-68. [PMID: 27424222 DOI: 10.1016/j.bbagrm.2016.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 07/01/2016] [Accepted: 07/12/2016] [Indexed: 10/21/2022]
Abstract
Signaling lymphocytic activation molecule family member 1 (SLAMF1)/CD150 is a co-stimulatory receptor expressed on a variety of hematopoietic cells, in particular on mature lymphocytes activated by specific antigen, costimulation and cytokines. Changes in CD150 expression level have been reported in association with autoimmunity and with B-cell chronic lymphocytic leukemia. We characterized the core promoter for SLAMF1 gene in human B-cell lines and explored binding sites for a number of transcription factors involved in B cell differentiation and activation. Mutations of SP1, STAT6, IRF4, NF-kB, ELF1, TCF3, and SPI1/PU.1 sites resulted in significantly decreased promoter activity of varying magnitude, depending on the cell line tested. The most profound effect on the promoter strength was observed upon mutation of the binding site for Early B-cell factor 1 (EBF1). This mutation produced a 10-20 fold drop in promoter activity and pinpointed EBF1 as the master regulator of human SLAMF1 gene in B cells. We also identified three potent transcriptional enhancers in human SLAMF1 locus, each containing functional EBF1 binding sites. Thus, EBF1 interacts with specific binding sites located both in the promoter and in the enhancer regions of the SLAMF1 gene and is critical for its expression in human B cells.
Collapse
Affiliation(s)
- Anton M Schwartz
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Lidia V Putlyaeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Milica Covich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anna V Klepikova
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Kseniya A Akulich
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Ilya E Vorontsov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Kirill V Korneev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Sergey E Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Oleg L Polanovsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Svetlana P Sidorenko
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Ivan V Kulakovskiy
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry V Kuprash
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
214
|
Guo H, Cranert SA, Lu Y, Zhong MC, Zhang S, Chen J, Li R, Mahl SE, Wu N, Davidson D, Waggoner SN, Veillette A. Deletion of Slam locus in mice reveals inhibitory role of SLAM family in NK cell responses regulated by cytokines and LFA-1. J Exp Med 2016; 213:2187-207. [PMID: 27573813 PMCID: PMC5030809 DOI: 10.1084/jem.20160552] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/01/2016] [Indexed: 11/16/2022] Open
Abstract
Veillette and collaborators generate a mouse model with a deletion spanning the entire 400-kb Slam locus on chromosome 1 to show the overall role of SLAM proteins in NK cell development and function. Signaling lymphocytic activation molecule (SLAM) family receptors (SFRs) can mediate either activating or inhibitory effects during natural killer cell (NK cell) activation. In this study, we addressed the global role, regulation, and mechanism of action of the SLAM family in NK cells by analyzing a mouse lacking the entire ∼400-kilobase Slam locus, which encodes all six SFRs and CD48, the ligand of SFR 2B4. This mouse displayed enhanced NK cell activation responses toward hematopoietic target cells. Analyses of mice lacking individual SFRs showed that the inhibitory function of the Slam locus was due solely to 2B4 and was not influenced positively or negatively by other SFRs. Differences in NK cell responses between recognition of targets expressing or lacking ligands for SFRs were enhanced by IL-12 but suppressed by type I interferon. Cytokines also changed the levels of SLAM-associated protein adaptors, which prevent the inhibitory function of SFRs. The enhanced activation responses of SFR-deficient NK cells were dependent on integrin LFA-1 but not on DNAM-1 or NKG2D. SFR-mediated inhibition prevented the generation of activated forms of LFA-1. Hence, the Slam locus has an overall inhibitory role during NK cell activation that is solely dependent on 2B4. This effect is influenced by cytokines and leads to suppression of LFA-1 activity.
Collapse
Affiliation(s)
- Huaijian Guo
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal, Montréal, Québec H2W 1R7, Canada Department of Medicine, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Stacey A Cranert
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Yan Lu
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal, Montréal, Québec H2W 1R7, Canada
| | - Ming-Chao Zhong
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal, Montréal, Québec H2W 1R7, Canada
| | - Shaohua Zhang
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal, Montréal, Québec H2W 1R7, Canada
| | - Jun Chen
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal, Montréal, Québec H2W 1R7, Canada
| | - Rui Li
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal, Montréal, Québec H2W 1R7, Canada Department of Medicine, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Sarah E Mahl
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Ning Wu
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal, Montréal, Québec H2W 1R7, Canada
| | - Dominique Davidson
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal, Montréal, Québec H2W 1R7, Canada
| | - Stephen N Waggoner
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - André Veillette
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal, Montréal, Québec H2W 1R7, Canada Department of Medicine, McGill University, Montréal, Québec H3G 1Y6, Canada Department of Medicine, University of Montréal, Montréal, Québec H3T 1J4, Canada
| |
Collapse
|
215
|
Hathout Y, Conklin LS, Seol H, Gordish-Dressman H, Brown KJ, Morgenroth LP, Nagaraju K, Heier CR, Damsker JM, van den Anker JN, Henricson E, Clemens PR, Mah JK, McDonald C, Hoffman EP. Serum pharmacodynamic biomarkers for chronic corticosteroid treatment of children. Sci Rep 2016; 6:31727. [PMID: 27530235 PMCID: PMC4987691 DOI: 10.1038/srep31727] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/25/2016] [Indexed: 12/13/2022] Open
Abstract
Corticosteroids are extensively used in pediatrics, yet the burden of side effects is significant. Availability of a simple, fast, and reliable biochemical read out of steroidal drug pharmacodynamics could enable a rapid and objective assessment of safety and efficacy of corticosteroids and aid development of corticosteroid replacement drugs. To identify potential corticosteroid responsive biomarkers we performed proteome profiling of serum samples from DMD and IBD patients with and without corticosteroid treatment using SOMAscan aptamer panel testing 1,129 proteins in <0.1 cc of sera. Ten pro-inflammatory proteins were elevated in untreated patients and suppressed by corticosteroids (MMP12, IL22RA2, CCL22, IGFBP2, FCER2, LY9, ITGa1/b1, LTa1/b2, ANGPT2 and FGG). These are candidate biomarkers for anti-inflammatory efficacy of corticosteroids. Known safety concerns were validated, including elevated non-fasting insulin (insulin resistance), and elevated angiotensinogen (salt retention). These were extended by new candidates for metabolism disturbances (leptin, afamin), stunting of growth (growth hormone binding protein), and connective tissue remodeling (MMP3). Significant suppression of multiple adrenal steroid hormones was also seen in treated children (reductions of 17-hydroxyprogesterone, corticosterone, 11-deoxycortisol and testosterone). A panel of new pharmacodynamic biomarkers for corticosteroids in children was defined. Future studies will need to bridge specific biomarkers to mechanism of drug action, and specific clinical outcomes.
Collapse
Affiliation(s)
- Yetrib Hathout
- Research Center for Genetic Medicine, Children's National Health Systems, Washington, DC 20010, USA
| | - Laurie S Conklin
- Research Center for Genetic Medicine, Children's National Health Systems, Washington, DC 20010, USA
| | - Haeri Seol
- Research Center for Genetic Medicine, Children's National Health Systems, Washington, DC 20010, USA
| | - Heather Gordish-Dressman
- Research Center for Genetic Medicine, Children's National Health Systems, Washington, DC 20010, USA
| | - Kristy J Brown
- Research Center for Genetic Medicine, Children's National Health Systems, Washington, DC 20010, USA
| | - Lauren P Morgenroth
- Research Center for Genetic Medicine, Children's National Health Systems, Washington, DC 20010, USA
| | - Kanneboyina Nagaraju
- Research Center for Genetic Medicine, Children's National Health Systems, Washington, DC 20010, USA
| | - Christopher R Heier
- Research Center for Genetic Medicine, Children's National Health Systems, Washington, DC 20010, USA
| | - Jesse M Damsker
- Research Center for Genetic Medicine, Children's National Health Systems, Washington, DC 20010, USA
| | - John N van den Anker
- Research Center for Genetic Medicine, Children's National Health Systems, Washington, DC 20010, USA
| | - Erik Henricson
- Department of Physical Medicine &Rehabilitation, University of California, Davis School of Medicine, Davis, CA 95618, USA
| | - Paula R Clemens
- Neurology Service, Department of Veterans Affairs Medical Center, Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jean K Mah
- Department of Pediatrics, Alberta Children's Hospital, Calgary, AB, T3B 6A8 Canada
| | - Craig McDonald
- Department of Physical Medicine &Rehabilitation, University of California, Davis School of Medicine, Davis, CA 95618, USA
| | - Eric P Hoffman
- Research Center for Genetic Medicine, Children's National Health Systems, Washington, DC 20010, USA
| |
Collapse
|
216
|
Chevalier N, Macia L, Tan JK, Mason LJ, Robert R, Thorburn AN, Wong CHY, Tsai LM, Bourne K, Brink R, Yu D, Mackay CR. The Role of Follicular Helper T Cell Molecules and Environmental Influences in Autoantibody Production and Progression to Inflammatory Arthritis in Mice. Arthritis Rheumatol 2016; 68:1026-38. [PMID: 26501485 DOI: 10.1002/art.39481] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 10/22/2015] [Indexed: 01/17/2023]
Abstract
OBJECTIVE Antibody-mediated autoimmunity involves cognate interactions between self-reactive T cells and B cells during germinal center (GC) reactions. The aim of this study was to determine the role of essential follicular helper T (Tfh) cell molecules (CXCR5, signaling lymphocytic activation molecule-associated protein) on autoreactive CD4+ cells and the role of certain environmental influences that may determine GC-driven autoantibody production and arthritis development. METHODS We transferred self-reactive CD4+ cells from KRN-Tg mice into recipient mice, which induced autoantibodies and autoinflammatory arthritis. This model allowed manipulation of environmental effects, such as inflammation, and use of transferred cells that were genetically deficient in important Tfh cell-associated molecules. RESULTS A deficiency of signaling lymphocytic activation molecule-associated protein (SAP) in CD4+ cells from KRN-Tg mice completely protected against arthritis, indicating that stable T cell-B cell interactions are required for GC formation, autoantibody production, and arthritis induction. In contrast, a CXCR5 deficiency in CD4+ cells from KRN-Tg mice still induced disease when these cells were transferred into wild-type mice, suggesting that T cell help for B cells could rely on other migration mechanisms. However, various manipulations influenced this system, including elimination of bystander effects through use of CD28(-/-) recipient mice (reduced disease) or use of inflammation-inducing Freund's complete adjuvant (progression to arthritis). We also examined the capacity of preexisting GCs with a nonautoimmune specificity to co-opt autoimmune T cells and observed no evidence for any influence. CONCLUSION In addition to the quality and quantity of cognate CD4+ cell help, external factors such as inflammation and noncognate CD4+ cell bystander activation trigger autoimmunity by shaping events within autoimmune GC responses. SAP is an essential molecule for autoimmune antibody production, whereas the importance of CXCR5 varies depending on the circumstances.
Collapse
Affiliation(s)
- Nina Chevalier
- University Medical Centre Freiburg, Freiburg, Germany, Monash University, Clayton Campus, Melbourne, Victoria, Australia, and Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Laurence Macia
- Monash University, Clayton Campus, Melbourne, Victoria, Australia, and Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Jian K Tan
- Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Linda J Mason
- Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Remy Robert
- Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | | | - Connie H Y Wong
- Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Louis M Tsai
- Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Katherine Bourne
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Robert Brink
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Di Yu
- Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Charles R Mackay
- Monash University, Clayton Campus, Melbourne, Victoria, Australia
| |
Collapse
|
217
|
Chen S, Yang M, Du J, Li D, Li Z, Cai C, Ma Y, Zhang L, Tian Z, Dong Z. The Self-Specific Activation Receptor SLAM Family Is Critical for NK Cell Education. Immunity 2016; 45:292-304. [PMID: 27521267 DOI: 10.1016/j.immuni.2016.07.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 01/26/2016] [Accepted: 05/24/2016] [Indexed: 01/23/2023]
Abstract
NK cell education, a term describing a process for NK cell acquisition of functional competence, is primarily achieved by self-MHC-I-specific inhibitory receptors. In this study, we have demonstrated that SLAM family receptors (SFRs) redundantly expressed on hematopoietic cells function as self-specific activation receptors critical for NK cell education. To overcome gene redundancy, we generated mice simultaneously lacking seven SFRs, revealing that NK-cell-mediated rejection of semi-allogeneic hematopoietic cells largely depended on the presence of SFRs on target cells. This stimulatory effect was determined by the presence of SFR-coupled adaptors; however, SFR-deficient mice displayed enhanced reactivity to hematopoietic cells. These findings demonstrate that SFRs endow NK cells with an ability to kill hematopoietic cells during the effector phase; however, the sustained engagement of SFRs can desensitize NK cell responses during an education process. Therefore, self-specific activating ligands may be "tolerogens" for NK cells, akin to self-antigens that induce T cell tolerance.
Collapse
Affiliation(s)
- Shasha Chen
- Institute for Immunology, School of Medicine and Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Meixiang Yang
- Biomedical Translational Research Institute, Jinan University, Guangzhou 510632, China
| | - Juan Du
- Institute for Immunology, School of Medicine and Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Dan Li
- Institute for Immunology, School of Medicine and Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zehua Li
- Institute for Immunology, School of Medicine and Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chenxu Cai
- Institute for Immunology, School of Medicine and Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yuanwu Ma
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Comparative Medical Center, Peking Union Medical College, Beijing 100021, China
| | - Lianfeng Zhang
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Comparative Medical Center, Peking Union Medical College, Beijing 100021, China
| | - Zhigang Tian
- School of Life Sciences, University of Sciences and Technology of China, Hefei 230026, China.
| | - Zhongjun Dong
- Institute for Immunology, School of Medicine and Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
218
|
|
219
|
Engagement of SLAMF3 enhances CD4+ T-cell sensitivity to IL-2 and favors regulatory T-cell polarization in systemic lupus erythematosus. Proc Natl Acad Sci U S A 2016; 113:9321-6. [PMID: 27482100 DOI: 10.1073/pnas.1605081113] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Signaling lymphocytic activation molecule family 3 (SLAMF3/Ly9) is a coregulatory molecule implicated in T-cell activation and differentiation. Systemic lupus erythematosus (SLE) is characterized by aberrant T-cell activation and compromised IL-2 production, leading to abnormal regulatory T-cell (Treg) development/function. Here we show that SLAMF3 functions as a costimulator on CD4(+) T cells and influences IL-2 response and T helper cell differentiation. SLAMF3 ligation promotes T-cell responses to IL-2 via up-regulation of CD25 in a small mothers against decapentaplegic homolog 3 (Smad3)-dependent mechanism. This augments the activation of the IL-2/IL-2R/STAT5 pathway and enhances cell proliferation in response to exogenous IL-2. SLAMF3 costimulation promotes Treg differentiation from naïve CD4(+) T cells. Ligation of SLAMF3 receptors on SLE CD4(+) T cells restores IL-2 responses to levels comparable to those seen in healthy controls and promotes functional Treg generation. Taken together, our results suggest that SLAMF3 acts as potential therapeutic target in SLE patients by augmenting sensitivity to IL-2.
Collapse
|
220
|
Boudreault JS, Touzeau C, Moreau P. The role of SLAMF7 in multiple myeloma: impact on therapy. Expert Rev Clin Immunol 2016; 13:67-75. [PMID: 27376202 DOI: 10.1080/1744666x.2016.1209112] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Multiple myeloma (MM), a mature B-cell neoplasm, is the second most common hematologic malignancy worldwide. Despite significant improvements in outcome with new therapies, the majority of responding patients will eventually develop resistance to treatment. Furthermore, patients swith disease refractory to both proteasome inhibitors and immunomodulatory drugs (IMiDs) have a poor prognosis. Areas covered: Several new therapeutic approaches are emerging and immunotherapeutic strategies present an important advance for the treatment of patients with relapsed or refractory MM. Among the monoclonal antibodies under development in MM, those targeting SLAMF7 and CD38 have shown the most consistent benefit in trials to date. In this review, we will specifically focus on elotuzumab (anti-SLAMF7 antibody), and provide a summary of the mechanism of action, the clinical results and the safety profile of this new drug. Expert commentary: Although elotuzumab has no single agent activity in MM, randomized trials in relapsed/refractory MM have demonstrated significantly improved progression-free survival when the agent is added to bortezomib-dexamethasone or lenalidomide-dexamethasone. Furthermore, this agent with its novel mechanism of action can be combined with standard therapies without a significant increase in toxicity. Elotuzumab is a highly effective therapy and future data are necessary to identify the best place for this therapy in the setting of MM.
Collapse
Affiliation(s)
| | - Cyrille Touzeau
- a Hematology Department , University Hospital Hôtel-Dieu , Nantes , France
| | - Philippe Moreau
- a Hematology Department , University Hospital Hôtel-Dieu , Nantes , France
| |
Collapse
|
221
|
Einsele H, Schreder M. Treatment of multiple myeloma with the immunostimulatory SLAMF7 antibody elotuzumab. Ther Adv Hematol 2016; 7:288-301. [PMID: 27695618 PMCID: PMC5026292 DOI: 10.1177/2040620716657993] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Elotuzumab is a humanized monoclonal antibody targeting the extracellular domain of signaling lymphocytic activation molecule F7 (SLAMF7) highly expressed in multiple myeloma cells. Upon binding to myeloma cells, elotuzumab exerts its cytotoxic effects through antibody-dependent cellular cytotoxicity, the antibody-induced selective lysis of tumor cells by activated natural killer (NK) cells. Furthermore, elotuzumab has been shown to directly induce NK-cell activation by binding to SLAMF7 expressed on NK cells and to indirectly modulate T-cell function by promoting the secretion of cytokines from NK cells. In combination with lenalidomide and low-dose dexamethasone, elotuzumab has shown remarkable effects in patients with relapsed or refractory multiple myeloma. In these patients, the risk of disease progression or death was significantly reduced by 30% on elotuzumab. Currently, elotuzumab is being evaluated in various myeloma patient populations and combination regimens. This review discusses the use of elotuzumab as an antimultiple myeloma agent and provides an update on the results of recent clinical trials evaluating the safety and efficacy of elotuzumab for the treatment of multiple myeloma.
Collapse
Affiliation(s)
- Hermann Einsele
- Medizinische Klinik und Poliklinik II, University of Wuerzburg, Oberduerrbacher Straße 6, Haus A3, 97080 Wuerzburg, Germany
| | | |
Collapse
|
222
|
Abstract
Measles is an infectious disease in humans caused by the measles virus (MeV). Before the introduction of an effective measles vaccine, virtually everyone experienced measles during childhood. Symptoms of measles include fever and maculopapular skin rash accompanied by cough, coryza and/or conjunctivitis. MeV causes immunosuppression, and severe sequelae of measles include pneumonia, gastroenteritis, blindness, measles inclusion body encephalitis and subacute sclerosing panencephalitis. Case confirmation depends on clinical presentation and results of laboratory tests, including the detection of anti-MeV IgM antibodies and/or viral RNA. All current measles vaccines contain a live attenuated strain of MeV, and great progress has been made to increase global vaccination coverage to drive down the incidence of measles. However, endemic transmission continues in many parts of the world. Measles remains a considerable cause of childhood mortality worldwide, with estimates that >100,000 fatal cases occur each year. Case fatality ratio estimates vary from <0.01% in industrialized countries to >5% in developing countries. All six WHO regions have set goals to eliminate endemic transmission of MeV by achieving and maintaining high levels of vaccination coverage accompanied by a sensitive surveillance system. Because of the availability of a highly effective and relatively inexpensive vaccine, the monotypic nature of the virus and the lack of an animal reservoir, measles is considered a candidate for eradication.
Collapse
|
223
|
Wang N, Keszei M, Halibozek P, Yigit B, Engel P, Terhorst C. Slamf6 negatively regulates autoimmunity. Clin Immunol 2016; 173:19-26. [PMID: 27368806 DOI: 10.1016/j.clim.2016.06.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 06/27/2016] [Indexed: 10/21/2022]
Abstract
The nine SLAM family (Slamf) receptors are positive or negative regulators of adaptive and innate immune responses, and of several autoimmune diseases. Here we report that the transfer of Slamf6-/- B6 CD4+ T cells into co-isogenic bm12 mice causes SLE-like autoimmunity with elevated levels of autoantibodies. In addition, significantly higher percentages of Tfh cells and IFN-γ-producing CD4+ cells, as well as GC B cells were observed. Interestingly, the expression of the Slamf6-H1 isoform in Slamf6-/- CD4+ T cells did not induce this lupus-like phenotype. By contrast, Slamf1-/- or Slamf5-/- CD4+ T cells caused the same pathology as WT CD4+ T cells. As the transfer of Slamf [1+6]-/- or Slamf [1+5+6]-/- CD4+ T cells induced WT levels of autoantibodies, the presence of Slamf1 was requisite for the induction of increased levels of autoantibodies by Slamf6-/- CD4+ T cells. We conclude that Slamf6 functions as an inhibitory receptor that controls autoimmune responses.
Collapse
Affiliation(s)
- Ninghai Wang
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| | - Marton Keszei
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Peter Halibozek
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Burcu Yigit
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Pablo Engel
- Department of Biomedical Sciences, Medical School, University of Barcelona, Barcelona, Spain
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
224
|
Grosicki S, Barchnicka A. Elotuzumab: a novel immune-stimulating therapy to treat multiple myeloma. Expert Rev Hematol 2016; 9:621-8. [PMID: 27322214 DOI: 10.1080/17474086.2016.1199947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Multiple myeloma (MM), constantly remains debilitating disease, consequently leading to death. Clinical trials involving drugs with different mechanisms of action, carry the expectancy for improvement of treatment outcomes. The results of the currently published studies on the monoclonal antibodies, in particular elotuzumab confirm previous expectations of improving treatment outcomes of such therapy in MM patients. AREAS COVERED This humanized monoclonal antibody targeting surface glycoprotein CS1, expressed commonly on plasma cells and certain cells of the immune system, stimulates the immune system to fight against MM cells. Elotuzumab in the combination with len/dex has been approved by the FDA for treatment of relapsed/refractory MM patients who have received one to three prior therapies. Expert commentary: This review summarizes the chemistry, mechanism of action and preclinical and clinical studies, pharmacodynamics, pharmacokinetics, safety and toxicity of elotuzumab in terms of MM treatment and its potential application in the future.
Collapse
Affiliation(s)
- Sebastian Grosicki
- a Department of Cancer Prevention, School of Public Health , Silesian Medical University , Katowice , Poland
| | - Agnieszka Barchnicka
- b Department of Doctoral Studies, School of Public Health in Bytom , Medical University of Silesia , Katowice , Poland
| |
Collapse
|
225
|
Magen H, Muchtar E. Elotuzumab: the first approved monoclonal antibody for multiple myeloma treatment. Ther Adv Hematol 2016; 7:187-95. [PMID: 27493709 DOI: 10.1177/2040620716652862] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Elotuzumab is a monoclonal antibody directed against the SLAMF7 receptor, expressed on normal and malignant plasma cells with a lower expression on other lymphoid cells such as natural killer (NK) cells. Elotuzumab has no significant antimyeloma activity when given as a single agent to patients with relapsed or refractory multiple myeloma (RRMM). However, when combined with other antimyeloma agents, it results in improved response and outcome. Owing to the results from the landmark ELOQUENT-2 phase III clinical trial, which compared lenalidomide and dexamethasone with or without elotuzumab in patients with RRMM, elotuzumab in combination with lenalidomide and dexamethasone was approved by the American Food and Drug Administration (FDA) in November 2015 for multiple myeloma (MM) patients who received one to three prior lines of therapy. This review will give a brief description of the signaling lymphocytic activation molecule (SLAM) family receptors, the unique SLAMF7 receptor and the mechanism of action of elotuzumab. Thereafter, we will give an overview on its antimyeloma activity in preclinical and clinical trials, including its toxicity profile and management thereof.
Collapse
Affiliation(s)
- Hila Magen
- Institute of Hematology, Davidoff Cancer Center, Beilinson Hospital, Rabin Medical Center, Petah-Tikva, Israel
| | - Eli Muchtar
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
226
|
Huang B, Gomez-Rodriguez J, Preite S, Garrett LJ, Harper UL, Schwartzberg PL. CRISPR-Mediated Triple Knockout of SLAMF1, SLAMF5 and SLAMF6 Supports Positive Signaling Roles in NKT Cell Development. PLoS One 2016; 11:e0156072. [PMID: 27258160 PMCID: PMC4892526 DOI: 10.1371/journal.pone.0156072] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 04/08/2016] [Indexed: 01/04/2023] Open
Abstract
The SLAM family receptors contribute to diverse aspects of lymphocyte biology and signal via the small adaptor molecule SAP. Mutations affecting SAP lead to X-linked lymphoproliferative syndrome Type 1, a severe immunodysregulation characterized by fulminant mononucleosis, dysgammaglobulinemia, and lymphoproliferation/lymphomas. Patients and mice having mutations affecting SAP also lack germinal centers due to a defect in T:B cell interactions and are devoid of invariant NKT (iNKT) cells. However, which and how SLAM family members contribute to these phenotypes remains uncertain. Three SLAM family members: SLAMF1, SLAMF5 and SLAMF6, are highly expressed on T follicular helper cells and germinal center B cells. SLAMF1 and SLAMF6 are also implicated in iNKT development. Although individual receptor knockout mice have limited iNKT and germinal center phenotypes compared to SAP knockout mice, the generation of multi-receptor knockout mice has been challenging, due to the genomic linkage of the genes encoding SLAM family members. Here, we used Cas9/CRISPR-based mutagenesis to generate mutations simultaneously in Slamf1, Slamf5 and Slamf6. Genetic disruption of all three receptors in triple-knockout mice (TKO) did not grossly affect conventional T or B cell development and led to mild defects in germinal center formation post-immunization. However, the TKO worsened defects in iNKT cells development seen in SLAMF6 single gene-targeted mice, supporting data on positive signaling and potential redundancy between these receptors.
Collapse
Affiliation(s)
- Bonnie Huang
- Genetic Disease Research Branch, National Human Genome Research Institute, Bethesda, Maryland, United States of America
| | - Julio Gomez-Rodriguez
- Genetic Disease Research Branch, National Human Genome Research Institute, Bethesda, Maryland, United States of America
| | - Silvia Preite
- Genetic Disease Research Branch, National Human Genome Research Institute, Bethesda, Maryland, United States of America
| | - Lisa J. Garrett
- Embryonic Stem Cell and Transgenic Mouse Core, National Human Genome Research Institute, Bethesda, Maryland, United States of America
| | - Ursula L. Harper
- Genomics Core, National Human Genome Research Institute, National Human Genome Research Institute, Bethesda, Maryland, United States of America
| | - Pamela L. Schwartzberg
- Genetic Disease Research Branch, National Human Genome Research Institute, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
227
|
Hu JK, Crampton JC, Locci M, Crotty S. CRISPR-Mediated Slamf1Δ/Δ Slamf5Δ/Δ Slamf6Δ/Δ Triple Gene Disruption Reveals NKT Cell Defects but Not T Follicular Helper Cell Defects. PLoS One 2016; 11:e0156074. [PMID: 27223891 PMCID: PMC4880187 DOI: 10.1371/journal.pone.0156074] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 04/08/2016] [Indexed: 12/18/2022] Open
Abstract
SAP (SH2D1A) is required intrinsically in CD4 T cells to generate germinal center responses and long-term humoral immunity. SAP binds to SLAM family receptors, including SLAM, CD84, and Ly108 to enhance cytokine secretion and sustained T cell:B cell adhesion, which both improve T follicular helper (Tfh) cell aid to germinal center (GC) B cells. To understand the overlapping roles of multiple SLAM family receptors in germinal center responses, Slamf1Δ/ΔSlamf5Δ/ΔSlamf6Δ/Δ triple gene disruption (Slamf1,5,6Δ/Δ) mice were generated using CRISPR-Cas9 gene editing to eliminate expression of SLAM (CD150), CD84, and Ly108, respectively. Gene targeting was highly efficient, with 6 of 6 alleles disrupted in 14 of 23 pups and the majority of alleles disrupted in the remaining pups. NKT cell differentiation in Slamf1,5,6Δ/Δ mice was defective, but not completely absent. The remaining NKT cells exhibited substantially increased 2B4 (SLAMF4) expression. Surprisingly, there were no overt defects in germinal center responses to acute viral infections or protein immunizations in Slamf1,5,6Δ/Δ mice, unlike Sh2d1a-/- mice. Similarly, in the context of a competitive environment, SLAM family receptor expressing GC Tfh cell, GC B cell, and plasma cell responses exhibited no advantages over Slamf1,5,6Δ/Δ cells.
Collapse
Affiliation(s)
- Joyce K. Hu
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Jordan C. Crampton
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Michela Locci
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
- Department of Medicine, University of California, San Diego School of Medicine, La Jolla, California, United States of America
- * E-mail: (SC)
| |
Collapse
|
228
|
Matalon O, Fried S, Ben-Shmuel A, Pauker MH, Joseph N, Keizer D, Piterburg M, Barda-Saad M. Dephosphorylation of the adaptor LAT and phospholipase C-γ by SHP-1 inhibits natural killer cell cytotoxicity. Sci Signal 2016; 9:ra54. [PMID: 27221712 DOI: 10.1126/scisignal.aad6182] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Natural killer (NK) cells discriminate between healthy cells and virally infected or transformed self-cells by tuning activating and inhibitory signals received through cell surface receptors. Inhibitory receptors inhibit NK cell function by recruiting and activating the tyrosine phosphatase Src homology 2 (SH2) domain-containing protein tyrosine phosphatase-1 (SHP-1) to the plasma membrane. However, to date, the guanine nucleotide exchange factor VAV1 is the only direct SHP-1 substrate identified in NK cells. We reveal that the adaptor protein linker for activation of T cells (LAT) as well as phospholipase C-γ1 (PLC-γ1) and PLC-γ2 are SHP-1 substrates. Dephosphorylation of Tyr(132) in LAT by SHP-1 in NK cells abrogated the recruitment of PLC-γ1 and PLC-γ2 to the immunological synapse between the NK cell and a cancer cell target, which reduced NK cell degranulation and target cell killing. Furthermore, the ubiquitylation of LAT by the E3 ubiquitin ligases c-Cbl and Cbl-b, which was induced by LAT phosphorylation, led to the degradation of LAT in response to the engagement of inhibitory receptors on NK cells, which abrogated NK cell cytotoxicity. Knockdown of the Cbl proteins blocked LAT ubiquitylation, which promoted NK cell function. Expression of a ubiquitylation-resistant mutant LAT blocked inhibitory receptor signaling, enabling cells to become activated. Together, these data identify previously uncharacterized SHP-1 substrates and inhibitory mechanisms that determine the response of NK cells.
Collapse
Affiliation(s)
- Omri Matalon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Sophia Fried
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Aviad Ben-Shmuel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Maor H Pauker
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Noah Joseph
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Danielle Keizer
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Marina Piterburg
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Mira Barda-Saad
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
229
|
Martinez-Martin N, Ramani SR, Hackney JA, Tom I, Wranik BJ, Chan M, Wu J, Paluch MT, Takeda K, Hass PE, Clark H, Gonzalez LC. The extracellular interactome of the human adenovirus family reveals diverse strategies for immunomodulation. Nat Commun 2016; 7:11473. [PMID: 27145901 PMCID: PMC4858740 DOI: 10.1038/ncomms11473] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 03/30/2016] [Indexed: 01/06/2023] Open
Abstract
Viruses encode secreted and cell-surface expressed proteins essential to modulate host immune defenses and establish productive infections. However, to date there has been no systematic study of the extracellular interactome of any human virus. Here we utilize the E3 proteins, diverse and rapidly evolving transmembrane-containing proteins encoded by human adenoviruses, as a model system to survey the extracellular immunomodulatory landscape. From a large-scale protein interaction screen against a microarray of more than 1,500 human proteins, we find and validate 51 previously unidentified virus–host interactions. Our results uncover conserved strategies as well as substantial diversity and multifunctionality in host targeting within and between viral species. Prominent modulation of the leukocyte immunoglobulin-like and signalling lymphocyte activation molecule families and a number of inhibitory receptors were identified as hubs for viral perturbation, suggesting unrecognized immunoregulatory strategies. We describe a virus–host extracellular interaction map of unprecedented scale that provides new insights into viral immunomodulation. Viruses interact with their hosts via secreted and membrane-bound proteins to affect host immune responses and virulence. Here the authors contribute to our understanding of this relationship with an extracellular interaction map of human and adenoviral E3 immunomodulatory proteins.
Collapse
Affiliation(s)
- Nadia Martinez-Martin
- Department of Protein Chemistry, Genentech, 470 East Grand Avenue, South San Francisco, California 94080, USA
| | - Sree R Ramani
- Department of Protein Chemistry, Genentech, 470 East Grand Avenue, South San Francisco, California 94080, USA
| | - Jason A Hackney
- Department of Bioinformatics and Computational Biology, Genentech, 455 East Grand Avenue, South San Francisco, California 94080, USA
| | - Irene Tom
- Department of Protein Chemistry, Genentech, 470 East Grand Avenue, South San Francisco, California 94080, USA
| | - Bernd J Wranik
- Department of Protein Chemistry, Genentech, 470 East Grand Avenue, South San Francisco, California 94080, USA
| | - Michelle Chan
- Department of Protein Chemistry, Genentech, 470 East Grand Avenue, South San Francisco, California 94080, USA
| | - Johnny Wu
- Department of Bioinformatics and Computational Biology, Genentech, 455 East Grand Avenue, South San Francisco, California 94080, USA
| | - Maciej T Paluch
- Department of Protein Chemistry, Genentech, 470 East Grand Avenue, South San Francisco, California 94080, USA
| | - Kentaro Takeda
- Department of Protein Chemistry, Genentech, 470 East Grand Avenue, South San Francisco, California 94080, USA
| | - Philip E Hass
- Department of Protein Chemistry, Genentech, 470 East Grand Avenue, South San Francisco, California 94080, USA
| | - Hilary Clark
- Department of Bioinformatics and Computational Biology, Genentech, 455 East Grand Avenue, South San Francisco, California 94080, USA
| | - Lino C Gonzalez
- Department of Protein Chemistry, Genentech, 470 East Grand Avenue, South San Francisco, California 94080, USA
| |
Collapse
|
230
|
CRACC-targeting Fc-fusion protein induces activation of NK cells and DCs and improves T cell immune responses to antigenic targets. Vaccine 2016; 34:3109-3118. [PMID: 27151882 DOI: 10.1016/j.vaccine.2016.04.068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 04/13/2016] [Accepted: 04/23/2016] [Indexed: 11/20/2022]
Abstract
The CD2-like receptor activating cytotoxic cell (CRACC) receptor is a member of the SLAM family of receptors that are found on several types of immune cells. We previously demonstrated that increasing the abundance of the adaptor protein EAT-2 during vaccination enhanced innate and adaptive immune responses to vaccine antigens. Engagement of the CRACC receptor in the presence of the EAT-2 adaptor generally results in immune cell activation, while activating CRACC signaling in cells that lack EAT-2 adaptor inhibits their effector and regulatory functions. As EAT-2 is the only SAP adaptor that interacts with the CRACC receptor, we hypothesized that technologies that specifically modulate CRACC signaling during vaccination may also improve antigen specific adaptive immune responses. To test this hypothesis, we constructed a CRACC-targeting Fc fusion protein and included it in vaccination attempts. Indeed, mice co-vaccinated with the CRACC-Fc fusion protein and an adenovirus vaccine expressing the HIV-Gag protein had improved Gag-specific T cell responses, as compared to control mice. These responses are characterized by increased numbers of Gag-specific tetramer+ CD8+ T cells and increases in production of IFNγ, TNFα, and IL2, by Gag-specific CD8+ T cells. Moreover, our results revealed that use of the CRACC-Fc fusion protein enhances vaccine-elicited innate immune responses, as characterized by increased dendritic cells (DCs) maturation and IFNγ production from NK cells. This study highlights the importance of CRACC signaling during the induction of an immune response generally, and during vaccinations specifically, and also lends insight into the mechanisms underlying our prior results noting EAT-2-dependent improvements in vaccine efficacy.
Collapse
|
231
|
A hematopoietic cell-driven mechanism involving SLAMF6 receptor, SAP adaptors and SHP-1 phosphatase regulates NK cell education. Nat Immunol 2016; 17:387-96. [PMID: 26878112 DOI: 10.1038/ni.3369] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/07/2015] [Indexed: 12/16/2022]
Abstract
Activation of natural killer (NK) cells by hematopoietic target cells is controlled by the SLAM family of receptors and by the associated SAP family of adaptors. Here we found that SLAM receptors also enhanced NK cell activation by nonhematopoietic target cells, which lack ligands for SLAM receptors. This function was mediated by SLAMF6, a homotypic SLAM receptor found on NK cells and other hematopoietic cells, and was regulated by SAP adaptors, which uncoupled SLAM receptors from phosphatase SHP-1 and diminished the effect of SLAMF6 on NK cell responsiveness toward nonhematopoietic cells. Thus, in addition to their role in NK cell activation by hematopoietic cells, the SLAM-SAP pathways influence responsiveness toward nonhematopoietic targets by a process akin to NK cell 'education'.
Collapse
|
232
|
Low M, Infantino S, Grigoriadis G, Tarlinton D. Targeting plasma cells: are we any closer to a panacea for diseases of antibody-secreting cells? Immunol Rev 2016; 270:78-94. [DOI: 10.1111/imr.12388] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Michael Low
- Immunology Division; Walter and Eliza Hall Institute of Medical Research; University of Melbourne; Parkville Vic. Australia
- Department of Haematology; Monash Health; Monash Hospital; Clayton Vic. Australia
- Department of Medical Biology; The University of Melbourne; Parkville Vic. Australia
| | - Simona Infantino
- Immunology Division; Walter and Eliza Hall Institute of Medical Research; University of Melbourne; Parkville Vic. Australia
- Department of Medical Biology; The University of Melbourne; Parkville Vic. Australia
| | - George Grigoriadis
- Department of Haematology; Monash Health; Monash Hospital; Clayton Vic. Australia
- School of Clinical Sciences at Monash Health; Monash University; Clayton Vic. Australia
- Centre for Cancer Research; Hudson Institute of Medical Research; Clayton Vic. Australia
- Malignant Haematology and Stem Cell Transplantation Service and Alfred Pathology Service; The Alfred; Melbourne Vic. Australia
| | - David Tarlinton
- Immunology Division; Walter and Eliza Hall Institute of Medical Research; University of Melbourne; Parkville Vic. Australia
- Department of Haematology; Monash Health; Monash Hospital; Clayton Vic. Australia
| |
Collapse
|
233
|
Lissina A, Ambrozak DR, Boswell KL, Yang W, Boritz E, Wakabayashi Y, Iglesias MC, Hashimoto M, Takiguchi M, Haddad E, Douek DC, Zhu J, Koup RA, Yamamoto T, Appay V. Fine-tuning of CD8(+) T-cell effector functions by targeting the 2B4-CD48 interaction. Immunol Cell Biol 2016; 94:583-92. [PMID: 26860368 DOI: 10.1038/icb.2016.17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 01/08/2016] [Accepted: 01/24/2016] [Indexed: 12/22/2022]
Abstract
Polyfunctionality and cytotoxic activity dictate CD8(+) T-cell efficacy in the eradication of infected and malignant cells. The induction of these effector functions depends on the specific interaction between the T-cell receptor (TCR) and its cognate peptide-MHC class I complex, in addition to signals provided by co-stimulatory or co-inhibitory receptors, which can further regulate these functions. Among these receptors, the role of 2B4 is contested, as it has been described as either co-stimulatory or co-inhibitory in modulating T-cell functions. We therefore combined functional, transcriptional and epigenetic approaches to further characterize the impact of disrupting the interaction of 2B4 with its ligand CD48, on the activity of human effector CD8(+) T-cell clones. In this setting, we show that the 2B4-CD48 axis is involved in the fine-tuning of CD8(+) T-cell effector function upon antigenic stimulation. Blocking this interaction resulted in reduced CD8(+) T-cell clone-mediated cytolytic activity, together with a subtle drop in the expression of genes involved in effector function regulation. Our results also imply a variable contribution of the 2B4-CD48 interaction to the modulation of CD8(+) T-cell functional properties, potentially linked to intrinsic levels of T-bet expression and TCR avidity. The present study thus provides further insights into the role of the 2B4-CD48 interaction in the fine regulation of CD8(+) T-cell effector function upon antigenic stimulation.
Collapse
Affiliation(s)
- Anna Lissina
- Sorbonne Universités, UPMC Univ Paris 06, DHU FAST, CR7, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France.,INSERM U1135, CIMI-Paris, Paris, France
| | - David R Ambrozak
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kristin L Boswell
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Wenjing Yang
- Systems Biology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, MD, USA
| | - Eli Boritz
- Human Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Yoshiyuki Wakabayashi
- Systems Biology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, MD, USA
| | - Maria C Iglesias
- Sorbonne Universités, UPMC Univ Paris 06, DHU FAST, CR7, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France.,INSERM U1135, CIMI-Paris, Paris, France
| | - Masao Hashimoto
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | | | - Elias Haddad
- Vaccine and Gene Therapy Institute of Florida, Lucie, FL, USA
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Jun Zhu
- Systems Biology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, MD, USA
| | - Richard A Koup
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Takuya Yamamoto
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Victor Appay
- Sorbonne Universités, UPMC Univ Paris 06, DHU FAST, CR7, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France.,INSERM U1135, CIMI-Paris, Paris, France
| |
Collapse
|
234
|
Macias-Garcia A, Heizmann B, Sellars M, Marchal P, Dali H, Pasquali JL, Muller S, Kastner P, Chan S. Ikaros Is a Negative Regulator of B1 Cell Development and Function. J Biol Chem 2016; 291:9073-86. [PMID: 26841869 DOI: 10.1074/jbc.m115.704239] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Indexed: 12/19/2022] Open
Abstract
B1 B cells secrete most of the circulating natural antibodies and are considered key effector cells of the innate immune response. However, B1 cell-associated antibodies often cross-react with self-antigens, which leads to autoimmunity, and B1 cells have been implicated in cancer. How B1 cell activity is regulated remains unclear. We show that the Ikaros transcription factor is a major negative regulator of B1 cell development and function. Using conditional knock-out mouse models to delete Ikaros at different locations, we show that Ikaros-deficient mice exhibit specific and significant increases in splenic and bone marrow B1 cell numbers, and that the B1 progenitor cell pool is increased ∼10-fold in the bone marrow. Ikaros-null B1 cells resemble WT B1 cells at the molecular and cellular levels, but show a down-regulation of signaling components important for inhibiting proliferation and immunoglobulin production. Ikaros-null B1 cells hyper-react to TLR4 stimulation and secrete high amounts of IgM autoantibodies. These results indicate that Ikaros is required to limit B1 cell homeostasis in the adult.
Collapse
Affiliation(s)
- Alejandra Macias-Garcia
- From the Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch, France
| | - Beate Heizmann
- From the Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch, France,
| | - MacLean Sellars
- From the Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch, France
| | - Patricia Marchal
- From the Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch, France
| | - Hayet Dali
- Institut de Biologie Moléculaire et Cellulaire (IBMC), CNRS UPR3572, 67000 Strasbourg, France
| | - Jean-Louis Pasquali
- From the Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch, France, Institut de Biologie Moléculaire et Cellulaire (IBMC), CNRS UPR3572, 67000 Strasbourg, France, UFR Médecine, Université de Strasbourg, 67000 Strasbourg, France
| | - Sylviane Muller
- Institut de Biologie Moléculaire et Cellulaire (IBMC), CNRS UPR3572, 67000 Strasbourg, France, Institut d'Etudes Avancées, Université de Strasbourg, 67000 Strasbourg, France, and
| | - Philippe Kastner
- From the Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch, France, Faculté de Médecine, Université de Strasbourg, 67000 Strasbourg, France
| | - Susan Chan
- From the Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch, France,
| |
Collapse
|
235
|
van Driel BJ, Liao G, Engel P, Terhorst C. Responses to Microbial Challenges by SLAMF Receptors. Front Immunol 2016; 7:4. [PMID: 26834746 PMCID: PMC4718992 DOI: 10.3389/fimmu.2016.00004] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/06/2016] [Indexed: 12/24/2022] Open
Abstract
The SLAMF family (SLAMF) of cell surface glycoproteins is comprised of nine glycoproteins and while SLAMF1, 3, 5, 6, 7, 8, and 9 are self-ligand receptors, SLAMF2 and SLAMF4 interact with each other. Their interactions induce signal transduction networks in trans, thereby shaping immune cell-cell communications. Collectively, these receptors modulate a wide range of functions, such as myeloid cell and lymphocyte development, and T and B cell responses to microbes and parasites. In addition, several SLAMF receptors serve as microbial sensors, which either positively or negatively modulate the function of macrophages, dendritic cells, neutrophils, and NK cells in response to microbial challenges. The SLAMF receptor-microbe interactions contribute both to intracellular microbicidal activity as well as to migration of phagocytes to the site of inflammation. In this review, we describe the current knowledge on how the SLAMF receptors and their specific adapters SLAM-associated protein and EAT-2 regulate innate and adaptive immune responses to microbes.
Collapse
Affiliation(s)
- Boaz Job van Driel
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| | - Gongxian Liao
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| | - Pablo Engel
- Immunology Unit, Department of Cell Biology, Immunology and Neurosciences, Medical School, University of Barcelona , Barcelona , Spain
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| |
Collapse
|
236
|
Corcoran LM, Tarlinton DM. Regulation of germinal center responses, memory B cells and plasma cell formation-an update. Curr Opin Immunol 2016; 39:59-67. [PMID: 26799208 DOI: 10.1016/j.coi.2015.12.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/21/2015] [Accepted: 12/31/2015] [Indexed: 12/31/2022]
Abstract
Progress in understanding humoral immunity has been accelerated by the powerful experimental approaches of genetics, genomics and imaging. Excellent reviews of these advances appeared in 2015 in celebration of the 50th anniversary of the discovery of B cell and T cell lineages in the chicken. Here we provide a contemporary model of B cell differentiation, highlighting recent publications illuminating germinal center (GC), memory B cell and antibody-secreting plasma cell biology. The important contributions of CD4T cells to antibody responses have been thoroughly reviewed elsewhere.
Collapse
Affiliation(s)
- Lynn M Corcoran
- Molecular Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3052, Australia.
| | - David M Tarlinton
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3052, Australia
| |
Collapse
|
237
|
Spec A, Shindo Y, Burnham CAD, Wilson S, Ablordeppey EA, Beiter ER, Chang K, Drewry AM, Hotchkiss RS. T cells from patients with Candida sepsis display a suppressive immunophenotype. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2016; 20:15. [PMID: 26786705 PMCID: PMC4719210 DOI: 10.1186/s13054-016-1182-z] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 01/05/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND Despite appropriate therapy, Candida bloodstream infections are associated with a mortality rate of approximately 40%. In animal models, impaired immunity due to T cell exhaustion has been implicated in fungal sepsis mortality. The purpose of this study was to determine potential mechanisms of fungal-induced immunosuppression via immunophenotyping of circulating T lymphocytes from patients with microbiologically documented Candida bloodstream infections. METHODS Patients with blood cultures positive for any Candida species were studied. Non-septic critically ill patients with no evidence of bacterial or fungal infection were controls. T cells were analyzed via flow cytometry for cellular activation and for expression of positive and negative co-stimulatory molecules. Both the percentages of cells expressing particular immunophenotypic markers as well as the geometric mean fluorescence intensity (GMFI), a measure of expression of the number of receptors or ligands per cell, were quantitated. RESULTS Twenty-seven patients with Candida bloodstream infections and 16 control patients were studied. Compared to control patients, CD8 T cells from patients with Candidemia had evidence of cellular activation as indicated by increased CD69 expression while CD4 T cells had decreased expression of the major positive co-stimulatory molecule CD28. CD4 and CD8 T cells from patients with Candidemia expressed markers typical of T cell exhaustion as indicated by either increased percentages of or increased MFI for programmed cell death 1 (PD-1) or its ligand (PD-L1). CONCLUSIONS Circulating immune effector cells from patients with Candidemia display an immunophenotype consistent with immunosuppression as evidenced by T cell exhaustion and concomitant downregulation of positive co-stimulatory molecules. These findings may help explain why patients with fungal sepsis have a high mortality despite appropriate antifungal therapy. Development of immunoadjuvants that reverse T cell exhaustion and boost host immunity may offer one way to improve outcome in this highly lethal disorder.
Collapse
Affiliation(s)
- Andrej Spec
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO, 63110, USA
| | - Yuichiro Shindo
- Department of Anesthesiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO, 63110, USA
| | - Carey-Ann D Burnham
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO, 63110, USA
| | - Strother Wilson
- Department of Anesthesiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO, 63110, USA
| | - Enyo A Ablordeppey
- Department of Anesthesiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO, 63110, USA
| | - Evan R Beiter
- Department of Anesthesiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO, 63110, USA
| | - Katherine Chang
- Department of Anesthesiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO, 63110, USA
| | - Anne M Drewry
- Department of Anesthesiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO, 63110, USA
| | - Richard S Hotchkiss
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO, 63110, USA. .,Department of Anesthesiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO, 63110, USA. .,Department of Surgery, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO, 63110, USA.
| |
Collapse
|
238
|
McArdel SL, Terhorst C, Sharpe AH. Roles of CD48 in regulating immunity and tolerance. Clin Immunol 2016; 164:10-20. [PMID: 26794910 DOI: 10.1016/j.clim.2016.01.008] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/14/2016] [Accepted: 01/16/2016] [Indexed: 12/15/2022]
Abstract
CD48, a member of the signaling lymphocyte activation molecule family, participates in adhesion and activation of immune cells. Although constitutively expressed on most hematopoietic cells, CD48 is upregulated on subsets of activated cells. CD48 can have activating roles on T cells, antigen presenting cells and granulocytes, by binding to CD2 or bacterial FimH, and through cell intrinsic effects. Interactions between CD48 and its high affinity ligand CD244 are more complex, with both stimulatory and inhibitory outcomes. CD244:CD48 interactions regulate target cell lysis by NK cells and CTLs, which are important for viral clearance and regulation of effector/memory T cell generation and survival. Here we review roles of CD48 in infection, tolerance, autoimmunity, and allergy, as well as the tools used to investigate this receptor. We discuss stimulatory and regulatory roles for CD48, its potential as a therapeutic target in human disease, and current challenges to investigation of this immunoregulatory receptor.
Collapse
Affiliation(s)
- Shannon L McArdel
- Department of Microbiology and Immunobiology, Evergrande Center for Immunologic Diseases, Harvard Medical School, Boston, MA, USA
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Arlene H Sharpe
- Department of Microbiology and Immunobiology, Evergrande Center for Immunologic Diseases, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
239
|
Cuenca M, Romero X, Sintes J, Terhorst C, Engel P. Targeting of Ly9 (CD229) Disrupts Marginal Zone and B1 B Cell Homeostasis and Antibody Responses. THE JOURNAL OF IMMUNOLOGY 2015; 196:726-37. [PMID: 26667173 DOI: 10.4049/jimmunol.1501266] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 11/10/2015] [Indexed: 12/16/2022]
Abstract
Marginal zone (MZ) and B1 B cells have the capacity to respond to foreign Ags more rapidly than conventional B cells, providing early immune responses to blood-borne pathogens. Ly9 (CD229, SLAMF3), a member of the signaling lymphocytic activation molecule family receptors, has been implicated in the development and function of innate T lymphocytes. In this article, we provide evidence that in Ly9-deficient mice splenic transitional 1, MZ, and B1a B cells are markedly expanded, whereas development of B lymphocytes in bone marrow is unaltered. Consistent with an increased number of these B cell subsets, we detected elevated levels of IgG3 natural Abs and a striking increase of T-independent type II Abs after immunization with 2,4,6-trinitrophenyl-Ficoll in the serum of Ly9-deficient mice. The notion that Ly9 could be a negative regulator of innate-like B cell responses was supported by the observation that administering an mAb directed against Ly9 to wild-type mice selectively eliminated splenic MZ B cells and significantly reduced the numbers of B1 and transitional 1 B cells. In addition, Ly9 mAb dramatically diminished in vivo humoral responses and caused a selective downregulation of the CD19/CD21/CD81 complex on B cells and concomitantly an impaired B cell survival and activation in an Fc-independent manner. We conclude that altered signaling caused by the absence of Ly9 or induced by anti-Ly9 may negatively regulate development and function of innate-like B cells by modulating B cell activation thresholds. The results suggest that Ly9 could serve as a novel target for the treatment of B cell-related diseases.
Collapse
Affiliation(s)
- Marta Cuenca
- Immunology Unit, Department of Cell Biology, Immunology and Neurosciences, Medical School, University of Barcelona, Barcelona 08036, Spain; and
| | - Xavier Romero
- Immunology Unit, Department of Cell Biology, Immunology and Neurosciences, Medical School, University of Barcelona, Barcelona 08036, Spain; and
| | - Jordi Sintes
- Immunology Unit, Department of Cell Biology, Immunology and Neurosciences, Medical School, University of Barcelona, Barcelona 08036, Spain; and
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Pablo Engel
- Immunology Unit, Department of Cell Biology, Immunology and Neurosciences, Medical School, University of Barcelona, Barcelona 08036, Spain; and
| |
Collapse
|
240
|
Wu N, Veillette A. SLAM family receptors in normal immunity and immune pathologies. Curr Opin Immunol 2015; 38:45-51. [PMID: 26682762 DOI: 10.1016/j.coi.2015.11.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/13/2015] [Accepted: 11/16/2015] [Indexed: 12/23/2022]
Abstract
The signaling lymphocytic activation molecule (SLAM) family is a group of six receptors restricted to hematopoietic cells. Most of these receptors are self-ligands, and thus are triggered in the context of interactions between hematopoietic cells. By way of their cytoplasmic domain, SLAM-related receptors associate with the SLAM-associated protein (SAP) family of adaptors, which control the signals and functions of SLAM family receptors. Recent findings have provided new insights into the key roles of SLAM family receptors in normal immunity, their involvement in human diseases and their usefulness as drug targets to treat human malignancies. These data are reviewed herein.
Collapse
Affiliation(s)
- Ning Wu
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec, Canada H2W 1R7.
| | - André Veillette
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec, Canada H2W 1R7; Department of Medicine, University of Montréal, Montréal, Québec, Canada H3T 1J4; Department of Medicine, McGill University, Montréal, Québec, Canada H3G 1Y6.
| |
Collapse
|
241
|
Elotuzumab in combination with lenalidomide and dexamethasone in patients with relapsed multiple myeloma: final phase 2 results from the randomised, open-label, phase 1b-2 dose-escalation study. LANCET HAEMATOLOGY 2015; 2:e516-27. [PMID: 26686406 DOI: 10.1016/s2352-3026(15)00197-0] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 09/08/2015] [Accepted: 09/10/2015] [Indexed: 01/04/2023]
Abstract
BACKGROUND Elotuzumab, an immunostimulatory monoclonal antibody targeting signalling lymphocytic activation molecule (SLAM) family member 7 (SLAMF7), selectively kills SLAMF7-expressing myeloma cells through direct activation and engagement of the innate immune system, and thus might have clinical benefit in the treatment of myeloma. In phase 1 of this phase 1b-2 study, 82% of patients with relapsed multiple myeloma who were given elotuzumab plus lenalidomide and dexamethasone achieved an overall response. Here we report the final phase 2 results. METHODS We did this randomised, multicentre, open-label, dose-escalation study (1703) at 17 hospitals in the USA, Canada, France, and Germany. Patients aged at least 18 years with confirmed, relapsed multiple myeloma, Eastern Cooperative Oncology Group performance status 0-2, and one to three previous therapies but no previous lenalidomide were eligible for phase 2. We randomly assigned patients (1:1) to either 10 mg/kg or 20 mg/kg intravenous elotuzumab plus oral lenalidomide (25 mg) and dexamethasone (40 mg). We stratified patients on the basis of the number of previous therapies (one versus two or three), and status of previous treatment with immunomodulatory drugs (yes or no), and used permuted block randomisation with a block size of four. Treatment was given in 28-day cycles until disease progression or unacceptable toxic effects occurred (elotuzumab was given on days 1, 8, 15, and 22 for cycles 1 to 2 and days 1 and 15 for subsequent cycles; lenalidomide was given on days 1-21 and dexamethasone once per week). The primary endpoint was the proportion of patients who achieved an objective response according to International Myeloma Working Group criteria. Primary analyses were done in the intention-to-treat population, and safety was analysed in all patients who received at least one dose of study drugs. This study is registered with ClinicalTrials.gov, number NCT00742560. FINDINGS Between Jan 4, 2010, and Dec 21, 2010, we recruited and randomly assigned 73 patients to elotuzumab (36 to 10 mg/kg, 37 to 20 mg/kg). At data cutoff (Jan 16, 2014), 13 patients remained on treatment (six on 10 mg/kg, seven on 20 mg/kg). 61 (84%) patients achieved an objective response (33 [92%] with 10 mg/kg, 28 [76%] with 20 mg/kg); 31 (42%) a very good partial response (17 [47%] with 10 mg/kg, 14 [38%] with 20 mg/kg); and 20 (27%) a partial response (10 [28%] with 10 mg/kg, 10 [27%] with 20 mg/kg). The most common treatment-emergent adverse events of any grade were diarrhoea (48 [66%]), muscle spasms (45 [62%]), and fatigue (41 [56%]). 57 (78%) patients had grade 3-4 events, the most common of which were lymphopenia (15 [21%]) and neutropenia (14 [19%]). Three deaths occurred, none related to the study drugs. INTERPRETATION Elotuzumab combined with lenalidomide and dexamethasone in patients with relapsed multiple myeloma showed acceptable safety and efficacy that seems better than that previously noted with lenalidomide and dexamethasone only. Phase 3 trials are in progress. FUNDING Bristol-Myers Squibb, AbbVie Biotherapeutics.
Collapse
|
242
|
Allorecognition proteins in an invertebrate exhibit homophilic interactions. Curr Biol 2015; 25:2845-2850. [PMID: 26455308 DOI: 10.1016/j.cub.2015.09.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/31/2015] [Accepted: 09/11/2015] [Indexed: 11/21/2022]
Abstract
Sessile colonial invertebrates-animals such as sponges, corals, bryozoans, and ascidians-can distinguish between their own tissues and those of conspecifics upon contact [1]. This ability, called allorecognition, mediates spatial competition and can prevent stem cell parasitism by ensuring that colonies only fuse with self or close kin. In every taxon studied to date, allorecognition is controlled by one or more highly polymorphic genes [2-8]. However, in no case is it understood how the proteins encoded by these genes discriminate self from non-self. In the cnidarian Hydractinia symbiolongicarpus, allorecognition is controlled by at least two highly polymorphic allorecognition genes, Alr1 and Alr2 [3, 5, 9-12]. Sequence variation at each gene predicts allorecognition in laboratory strains such that colonies reject if they do not share a common allele at either locus, fuse temporarily if they share an allele at only one locus, or fuse permanently if they share an allele at both genes [5, 9]. Here, we show that the gene products of Alr1 and Alr2 (Alr1 and Alr2) are self-ligands with extraordinary specificity. Using an in vitro cell aggregation assay, we found that Alr1 and Alr2 bind to themselves homophilically across opposing cell membranes. For both proteins, each isoform bound only to itself or to an isoform of nearly identical sequence. These results provide a mechanistic explanation for the exquisite specificity of Hydractinia allorecognition. Our results also indicate that hydroids have evolved a molecular strategy of self-recognition that is unique among characterized allorecognition systems within and outside invertebrates.
Collapse
|
243
|
Talaei N, Yu T, Manion K, Bremner R, Wither JE. Identification of the SLAM Adapter Molecule EAT-2 as a Lupus-Susceptibility Gene That Acts through Impaired Negative Regulation of Dendritic Cell Signaling. THE JOURNAL OF IMMUNOLOGY 2015; 195:4623-31. [PMID: 26432891 DOI: 10.4049/jimmunol.1500552] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 07/23/2015] [Indexed: 01/06/2023]
Abstract
We showed previously that C57BL/6 congenic mice with an introgressed homozygous 70 cM (125.6 Mb) to 100 cM (179.8 Mb) interval on c1 from the lupus-prone New Zealand Black (NZB) mouse develop high titers of antinuclear Abs and severe glomerulonephritis. Using subcongenic mice, we found that a genetic locus in the 88-96 cM region was associated with altered dendritic cell (DC) function and synergized with T cell functional defects to promote expansion of pathogenic proinflammatory T cell subsets. In this article, we show that the promoter region of the NZB gene encoding the SLAM signaling pathway adapter molecule EWS-activated transcript 2 (EAT-2) is polymorphic, which results in an ∼ 70% reduction in EAT-2 in DC. Silencing of the EAT-2 gene in DC that lacked this polymorphism led to increased production of IL-12 and enhanced differentiation of T cells to a Th1 phenotype in T cell-DC cocultures, reproducing the phenotype observed for DC from congenic mice with the NZB c1 70-100 cM interval. SLAM signaling was shown to inhibit production of IL-12 by CD40L-activated DCs. Consistent with a role for EAT-2 in this inhibition, knockdown of EAT-2 resulted in increased production of IL-12 by CD40-stimulated DC. Assessment of downstream signaling following CD40 cross-linking in the presence or absence of SLAM cross-linking revealed that SLAM coengagement blocked activation of p38 MAPK and JNK signaling pathways in DC, which was reversed in DC with the NZB EAT-2 allele. We conclude that EAT-2 negatively regulates cytokine production in DC downstream of SLAM engagement and that a genetic polymorphism that disturbs this process promotes the development of lupus.
Collapse
Affiliation(s)
- Nafiseh Talaei
- Arthritis Centre of Excellence, Toronto Western Research Institute, University Health Network, Toronto, Ontario M5T 2S8, Canada; Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Tao Yu
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Kieran Manion
- Arthritis Centre of Excellence, Toronto Western Research Institute, University Health Network, Toronto, Ontario M5T 2S8, Canada; Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Rod Bremner
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada; Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, Ontario M5S 1A1, Canada; and
| | - Joan E Wither
- Arthritis Centre of Excellence, Toronto Western Research Institute, University Health Network, Toronto, Ontario M5T 2S8, Canada; Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
244
|
Böttcher JP, Beyer M, Meissner F, Abdullah Z, Sander J, Höchst B, Eickhoff S, Rieckmann JC, Russo C, Bauer T, Flecken T, Giesen D, Engel D, Jung S, Busch DH, Protzer U, Thimme R, Mann M, Kurts C, Schultze JL, Kastenmüller W, Knolle PA. Functional classification of memory CD8(+) T cells by CX3CR1 expression. Nat Commun 2015; 6:8306. [PMID: 26404698 PMCID: PMC4667439 DOI: 10.1038/ncomms9306] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 08/06/2015] [Indexed: 01/01/2023] Open
Abstract
Localization of memory CD8(+) T cells to lymphoid or peripheral tissues is believed to correlate with proliferative capacity or effector function. Here we demonstrate that the fractalkine-receptor/CX3CR1 distinguishes memory CD8(+) T cells with cytotoxic effector function from those with proliferative capacity, independent of tissue-homing properties. CX3CR1-based transcriptome and proteome-profiling defines a core signature of memory CD8(+) T cells with effector function. We find CD62L(hi)CX3CR1(+) memory T cells that reside within lymph nodes. This population shows distinct migration patterns and positioning in proximity to pathogen entry sites. Virus-specific CX3CR1(+) memory CD8(+) T cells are scarce during chronic infection in humans and mice but increase when infection is controlled spontaneously or by therapeutic intervention. This CX3CR1-based functional classification will help to resolve the principles of protective CD8(+) T-cell memory.
Collapse
Affiliation(s)
- Jan P. Böttcher
- Institute of Experimental Immunology, Universitätsklinikum Bonn, Sigmund-Freud-Street 25, Bonn 53105, Germany
| | - Marc Beyer
- Genomics and Immunoregulation, LIMES-Institute, Universität Bonn, Carl-Troll-Street 31, Bonn 53115, Germany
| | - Felix Meissner
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, München 82152, Germany
| | - Zeinab Abdullah
- Institute of Experimental Immunology, Universitätsklinikum Bonn, Sigmund-Freud-Street 25, Bonn 53105, Germany
| | - Jil Sander
- Genomics and Immunoregulation, LIMES-Institute, Universität Bonn, Carl-Troll-Street 31, Bonn 53115, Germany
| | - Bastian Höchst
- Institute of Molecular Immunology and Experimental Oncology, Technische Universität München, Ismaninger Street 22, München 81675, Germany
| | - Sarah Eickhoff
- Institute of Experimental Immunology, Universitätsklinikum Bonn, Sigmund-Freud-Street 25, Bonn 53105, Germany
| | - Jan C. Rieckmann
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, München 82152, Germany
| | - Caroline Russo
- Institute of Virology, Technische Universität München, Troger Street 30, München 81675, Germany
| | - Tanja Bauer
- Institute of Virology, Technische Universität München, Troger Street 30, München 81675, Germany
| | - Tobias Flecken
- Clinic for Internal Medicine II, Universitätsklinikum Freiburg, Hugstetter Street 55, Freiburg 79106, Germany
| | - Dominik Giesen
- Clinic for Internal Medicine II, Universitätsklinikum Freiburg, Hugstetter Street 55, Freiburg 79106, Germany
| | - Daniel Engel
- Institute of Experimental Immunology, Universitätsklinikum Bonn, Sigmund-Freud-Street 25, Bonn 53105, Germany
| | - Steffen Jung
- Weizmann Institute of Science, Rehovot 76100, Israel
| | - Dirk H. Busch
- Institute of Microbiology, Immunology and Hygiene, Technische Universität München, Troger Street 30, München 81675, Germany
| | - Ulrike Protzer
- Institute of Virology, Technische Universität München, Troger Street 30, München 81675, Germany
| | - Robert Thimme
- Clinic for Internal Medicine II, Universitätsklinikum Freiburg, Hugstetter Street 55, Freiburg 79106, Germany
| | - Matthias Mann
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, München 82152, Germany
| | - Christian Kurts
- Institute of Experimental Immunology, Universitätsklinikum Bonn, Sigmund-Freud-Street 25, Bonn 53105, Germany
| | - Joachim L. Schultze
- Genomics and Immunoregulation, LIMES-Institute, Universität Bonn, Carl-Troll-Street 31, Bonn 53115, Germany
| | - Wolfgang Kastenmüller
- Institute of Experimental Immunology, Universitätsklinikum Bonn, Sigmund-Freud-Street 25, Bonn 53105, Germany
| | - Percy A. Knolle
- Institute of Experimental Immunology, Universitätsklinikum Bonn, Sigmund-Freud-Street 25, Bonn 53105, Germany
- Institute of Molecular Immunology and Experimental Oncology, Technische Universität München, Ismaninger Street 22, München 81675, Germany
| |
Collapse
|
245
|
Margraf S, Garner LI, Wilson TJ, Brown MH. A polymorphism in a phosphotyrosine signalling motif of CD229 (Ly9, SLAMF3) alters SH2 domain binding and T-cell activation. Immunology 2015. [PMID: 26221972 PMCID: PMC4610628 DOI: 10.1111/imm.12513] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Signalling lymphocyte activation molecule (SLAM) family members regulate activation and inhibition in the innate and adaptive immune systems. Genome‐wide association studies identified their genetic locus (1q23) as highly polymorphic and associated with susceptibility to systemic lupus erythematosus (SLE). Here we show that the Val602 variant of the non‐synonymous single nucleotide polymorphism (SNP) rs509749 in the SLAM family member CD229 (Ly9, SLAMF3) has a two‐fold lower affinity compared with the SLE‐associated Met602 variant for the small adaptor protein SAP. Comparison of the two variants in T‐cell lines revealed the Val602 variant to be significantly more highly expressed than CD229 Met602. Activation was diminished in cells expressing CD229 Val602 compared with CD229 Met602 as measured by up‐regulation of CD69. There was no correlation between homozygosity at rs509749 and activation in peripheral blood mononuclear cells from healthy donors. These findings identify potential mechanisms by which a single SNP can perturb fine‐tuning in the immune system with significant functional consequences.
Collapse
Affiliation(s)
- Stefanie Margraf
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Lee I Garner
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Timothy J Wilson
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Marion H Brown
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
246
|
Matsui K, Adelsberger JW, Kemp TJ, Baseler MW, Ledgerwood JE, Pinto LA. Circulating CXCR5⁺CD4⁺ T Follicular-Like Helper Cell and Memory B Cell Responses to Human Papillomavirus Vaccines. PLoS One 2015; 10:e0137195. [PMID: 26333070 PMCID: PMC4557948 DOI: 10.1371/journal.pone.0137195] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 08/13/2015] [Indexed: 11/19/2022] Open
Abstract
Through the interaction of T follicular helper (Tfh) cells and B cells, efficacious vaccines can generate high-affinity, pathogen-neutralizing antibodies, and memory B cells. Using CXCR5, CXCR3, CCR6, CCR7, PD1, and ICOS as markers, Tfh-like cells can be identified in the circulation and be classified into three functionally distinct subsets that are PD1+ICOS+, PD1+ ICOS-, or PD1-ICOS-. We used these markers to identify different subsets of CXCR5+CD4+ Tfh-like cells in response to highly immunogenic and efficacious vaccines for human papillomaviruses (HPV): Cervarix and Gardasil. In this small study, we used PBMC samples from 11 Gardasil recipients, and 8 Cervarix recipients from the Vaccine Research Center 902 Study to examine the induction of circulating Tfh-like cells and IgD-CD38HiCD27+ memory B cells by flow cytometry. PD1+ICOS+ CXCR3+CCR6-CXCR5+CD4+ (Tfh1-like) cells were induced and peaked on Day (D) 7 post-first vaccination, but not as much on D7 post-third vaccination. We also observed a trend toward increase in PD1+ICOS+ CXCR3-CCR6-CXCR5+CD4+ (Tfh2-like) cells for both vaccines, and PD1+ICOS+ CXCR3-CCR6+CXCR5+CD4+ (Tfh17-like) subset was induced by Cervarix post-first vaccination. There were also minimal changes in the other cellular subsets. In addition, Cervarix recipients had more memory B cells post-first vaccination than did Gardasil recipients at D14 and D30. We found frequencies of memory B cells at D30 correlated with anti-HPV16 and 18 antibody titers from D30, and the induction levels of memory B cells at D30 and PD1+ICOS+Tfh1-like cells at D7 post-first vaccination correlated for Cervarix. Our study showed that induction of circulating CXCR5+CD4+ Tfh-like subsets can be detected following immunization with HPV vaccines, and potentially be useful as a marker of immunogenicity of vaccines. However, further investigations should be extended to different cohorts with larger sample size to better understand the functions of these T cells, as well as their relationship with B cells and antibodies.
Collapse
MESH Headings
- Alphapapillomavirus/immunology
- Antibodies, Viral/blood
- B-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/immunology
- Human Papillomavirus Recombinant Vaccine Quadrivalent, Types 6, 11, 16, 18/administration & dosage
- Human Papillomavirus Recombinant Vaccine Quadrivalent, Types 6, 11, 16, 18/immunology
- Humans
- Immunologic Memory
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/immunology
- Papillomavirus Vaccines/administration & dosage
- Papillomavirus Vaccines/immunology
- Receptors, CXCR5/blood
Collapse
Affiliation(s)
- Ken Matsui
- Human Papillomavirus (HPV) Immunology Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Joseph W. Adelsberger
- AIDS Monitoring Laboratory, Clinical Service Program, Applied and Developmental Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Troy J. Kemp
- Human Papillomavirus (HPV) Immunology Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Michael W. Baseler
- AIDS Monitoring Laboratory, Clinical Service Program, Applied and Developmental Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Julie E. Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ligia A. Pinto
- Human Papillomavirus (HPV) Immunology Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| |
Collapse
|
247
|
Signaling Lymphocytic Activation Molecule Family Receptor Homologs in New World Monkey Cytomegaloviruses. J Virol 2015; 89:11323-36. [PMID: 26339044 DOI: 10.1128/jvi.01296-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/21/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Throughout evolution, large DNA viruses have been usurping genes from their hosts to equip themselves with proteins that restrain host immune defenses. Signaling lymphocytic activation molecule (SLAM) family (SLAMF) receptors are involved in the regulation of both innate and adaptive immunity, which occurs upon engagement with their ligands via homotypic or heterotypic interactions. Here we report a total of seven SLAMF genes encoded by the genomes of two cytomegalovirus (CMV) species, squirrel monkey CMV (SMCMV) and owl monkey CMV (OMCMV), that infect New World monkeys. Our results indicate that host genes were captured by retrotranscription at different stages of the CMV-host coevolution. The most recent acquisition led to S1 in SMCMV. S1 is a SLAMF6 homolog with an amino acid sequence identity of 97% to SLAMF6 in its ligand-binding N-terminal Ig domain. We demonstrate that S1 is a cell surface glycoprotein capable of binding to host SLAMF6. Furthermore, the OMCMV genome encodes A33, an LY9 (SLAMF3) homolog, and A43, a CD48 (SLAMF2) homolog, two soluble glycoproteins which recognize their respective cellular counterreceptors and thus are likely to be viral SLAMF decoy receptors. In addition, distinct copies of further divergent CD48 homologs were found to be encoded by both CMV genomes. Remarkably, all these molecules display a number of unique features, including cytoplasmic tails lacking characteristic SLAMF signaling motifs. Taken together, our findings indicate a novel immune evasion mechanism in which incorporation of host SLAMF receptors that retain their ligand-binding properties enables viruses to interfere with SLAMF functions and to supply themselves with convenient structural molds for expanding their immunomodulatory repertoires. IMPORTANCE The way in which viruses shape their genomes under the continual selective pressure exerted by the host immune system is central for their survival. Here, we report that New World monkey cytomegaloviruses have broadly captured and duplicated immune cell receptors of the signaling lymphocyte activation molecule (SLAM) family during host-virus coevolution. Notably, we demonstrate that several of these viral SLAMs exhibit exceptional preservation of their N-terminal immunoglobulin domains, which results in maintenance of their ligand-binding capacities. At the same time, these molecules present distinctive structural properties which include soluble forms and the absence of typical SLAM signaling motifs in their cytoplasmic domains, likely reflecting the evolutionary adaptation undergone to efficiently interfere with host SLAM family activities. The observation that the genomes of other large DNA viruses might bear SLAM family homologs further underscores the importance of these molecules as a novel class of immune regulators and as convenient scaffolds for viral evolution.
Collapse
|
248
|
Song T, Dong C, Xiong S. Signaling lymphocyte-activation molecule SLAMF1 augments mycobacteria BCG-induced inflammatory response and facilitates bacterial clearance. Int J Med Microbiol 2015; 305:572-80. [DOI: 10.1016/j.ijmm.2015.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 07/12/2015] [Accepted: 07/28/2015] [Indexed: 11/16/2022] Open
|
249
|
Chiarini F, Lonetti A, Evangelisti C, Buontempo F, Orsini E, Evangelisti C, Cappellini A, Neri LM, McCubrey JA, Martelli AM. Advances in understanding the acute lymphoblastic leukemia bone marrow microenvironment: From biology to therapeutic targeting. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:449-463. [PMID: 26334291 DOI: 10.1016/j.bbamcr.2015.08.015] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 08/26/2015] [Accepted: 08/27/2015] [Indexed: 02/07/2023]
Abstract
The bone marrow (BM) microenvironment regulates the properties of healthy hematopoietic stem cells (HSCs) localized in specific niches. Two distinct microenvironmental niches have been identified in the BM, the "osteoblastic (endosteal)" and "vascular" niches. Nevertheless, these niches provide sanctuaries where subsets of leukemic cells escape chemotherapy-induced death and acquire a drug-resistant phenotype. Moreover, it is emerging that leukemia cells are able to remodel the BM niches into malignant niches which better support neoplastic cell survival and proliferation. This review focuses on the cellular and molecular biology of microenvironment/leukemia interactions in acute lymphoblastic leukemia (ALL) of both B- and T-cell lineage. We shall also highlight the emerging role of exosomes/microvesicles as efficient messengers for cell-to-cell communication in leukemia settings. Studies on the interactions between the BM microenvironment and ALL cells have led to the discovery of potential therapeutic targets which include cytokines/chemokines and their receptors, adhesion molecules, signal transduction pathways, and hypoxia-related proteins. The complex interplays between leukemic cells and BM microenvironment components provide a rationale for innovative, molecularly targeted therapies, designed to improve ALL patient outcome. A better understanding of the contribution of the BM microenvironment to the process of leukemogenesis and leukemia persistence after initial remission, may provide new targets that will allow destruction of leukemia cells without adversely affecting healthy HSCs. This article is part of a Special Issue entitled: Tumor Microenvironment Regulation of Cancer Cell Survival, Metastasis,Inflammation, and Immune Surveillance edited by Peter Ruvolo and Gregg L. Semenza.
Collapse
Affiliation(s)
- Francesca Chiarini
- Institute of Molecular Genetics, National Research Council, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Annalisa Lonetti
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Camilla Evangelisti
- Institute of Molecular Genetics, National Research Council, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Francesca Buontempo
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Ester Orsini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Cecilia Evangelisti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alessandra Cappellini
- Department of Human Social and Health Sciences, University of Cassino, Cassino, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| |
Collapse
|
250
|
Ray A, Yuan CY, Miller NM, Mei H, Dittel BN. 2B4 Is Dispensable for T-Dependent B Cell Immune Responses, but Its Deficiency Leads to Enhanced T-Independent Responses Due to an Increase in Peritoneal Cavity B1b Cells. PLoS One 2015; 10:e0137314. [PMID: 26323020 PMCID: PMC4554987 DOI: 10.1371/journal.pone.0137314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 08/16/2015] [Indexed: 02/01/2023] Open
Abstract
The signaling lymphocyte activation molecule (SLAM) family plays important roles in adaptive immune responses. Herein, we evaluated whether the SLAM family member 2B4 (CD244) plays a role in immune cell development, homeostasis and antibody responses. We found that the splenic cellularity in Cd244-/- mice was significantly reduced due to a reduction in both CD4 T cells and follicular (Fo) B cells; whereas, the number of peritoneal cavity B cells was increased. These findings led us to examine whether 2B4 modulates B cell immune responses. When we examined T-dependent B cell responses, while there was no difference in the kinetics or magnitude of the antigen-specific IgM and IgG1 antibody response there was a reduction in bone marrow (BM) memory, but not plasma cells in Cd244-/- mice. When we evaluated T-independent immune responses, we found that antigen-specific IgM and IgG3 were elevated in the serum following immunization. These data indicate that 2B4 dampens T-independent B cell responses due to a reduction in peritoneal cavity B cells, but has minimal impact on T-dependent B cell responses.
Collapse
Affiliation(s)
- Avijit Ray
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Cheng-Yin Yuan
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Nichole M Miller
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Hong Mei
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Bonnie N Dittel
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin, United States of America; Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| |
Collapse
|