201
|
Voltage-Dependent Rhythmogenic Property of Respiratory Pre-Bötzinger Complex Glutamatergic, Dbx1-Derived, and Somatostatin-Expressing Neuron Populations Revealed by Graded Optogenetic Inhibition. eNeuro 2016; 3:eN-NWR-0081-16. [PMID: 27275007 PMCID: PMC4891766 DOI: 10.1523/eneuro.0081-16.2016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 05/12/2016] [Indexed: 11/21/2022] Open
Abstract
The rhythm of breathing in mammals, originating within the brainstem pre-Bötzinger complex (pre-BötC), is presumed to be generated by glutamatergic neurons, but this has not been directly demonstrated. Additionally, developmental expression of the transcription factor Dbx1 or expression of the neuropeptide somatostatin (Sst), has been proposed as a marker for the rhythmogenic pre-BötC glutamatergic neurons, but it is unknown whether these other two phenotypically defined neuronal populations are functionally equivalent to glutamatergic neurons with regard to rhythm generation. To address these problems, we comparatively investigated, by optogenetic approaches, the roles of pre-BötC glutamatergic, Dbx1-derived, and Sst-expressing neurons in respiratory rhythm generation in neonatal transgenic mouse medullary slices in vitro and also more intact adult perfused brainstem-spinal cord preparations in situ. We established three different triple-transgenic mouse lines with Cre-driven Archaerhodopsin-3 (Arch) expression selectively in glutamatergic, Dbx1-derived, or Sst-expressing neurons for targeted photoinhibition. In each line, we identified subpopulations of rhythmically active, Arch-expressing pre-BötC inspiratory neurons by whole-cell recordings in medullary slice preparations in vitro, and established that Arch-mediated hyperpolarization of these inspiratory neurons was laser power dependent with equal efficacy. By site- and population-specific graded photoinhibition, we then demonstrated that inspiratory frequency was reduced by each population with the same neuronal voltage-dependent frequency control mechanism in each state of the respiratory network examined. We infer that enough of the rhythmogenic pre-BötC glutamatergic neurons also have the Dbx1 and Sst expression phenotypes, and thus all three phenotypes share the same voltage-dependent frequency control property.
Collapse
|
202
|
Abstract
Neural networks that can generate rhythmic motor output in the absence of sensory feedback, commonly called central pattern generators (CPGs), are involved in many vital functions such as locomotion or respiration. In certain circumstances, these neural networks must interact to produce coordinated motor behavior adapted to environmental constraints and to satisfy the basic needs of an organism. In this context, we recently reported the existence of an ascending excitatory influence from lumbar locomotor CPG circuitry to the medullary respiratory networks that is able to depolarize neurons of the parafacial respiratory group during fictive locomotion and to subsequently induce an increased respiratory rhythmicity (Le Gal et al., 2014b). Here, using an isolated in vitro brainstem-spinal cord preparation from neonatal rat in which the respiratory and the locomotor networks remain intact, we show that during fictive locomotion induced either pharmacologically or by sacrocaudal afferent stimulation, the activity of both thoracolumbar expiratory motoneurons and interneurons is rhythmically modulated with the locomotor activity. Completely absent in spinal inspiratory cells, this rhythmic pattern is highly correlated with the hindlimb ipsilateral flexor activities. Furthermore, silencing brainstem neural circuits by pharmacological manipulation revealed that this locomotor-related drive to expiratory motoneurons is solely dependent on propriospinal pathways. Together these data provide the first evidence in the newborn rat spinal cord for the existence of bimodal respiratory-locomotor motoneurons and interneurons onto which both central efferent expiratory and locomotor drives converge, presumably facilitating the coordination between the rhythmogenic networks responsible for two different motor functions. Significance statement: In freely moving animals, distant regions of the brain and spinal cord controlling distinct motor acts must interact to produce the best adapted behavioral response to environmental constraints. In this context, it is well established that locomotion and respiration must to be tightly coordinated to reduce muscular interferences and facilitate breathing rate acceleration during exercise. Here, using electrophysiological recordings in an isolated in vitro brainstem-spinal cord preparation from neonatal rat, we report that the locomotor-related signal produced by the lumbar central pattern generator for locomotion selectively modulates the intracellular activity of spinal respiratory neurons engaged in expiration. Our results thus contribute to our understanding of the cellular bases for coordinating the rhythmic neural circuitry responsible for different behaviors.
Collapse
|
203
|
Arshavsky YI, Deliagina TG, Orlovsky GN. Central Pattern Generators: Mechanisms of Operation and Their Role in Controlling Automatic Movements. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s11055-016-0299-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
204
|
Perturbations of Respiratory Rhythm and Pattern by Disrupting Synaptic Inhibition within Pre-Bötzinger and Bötzinger Complexes. eNeuro 2016; 3:eN-NWR-0011-16. [PMID: 27200412 PMCID: PMC4867025 DOI: 10.1523/eneuro.0011-16.2016] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 04/15/2016] [Accepted: 04/18/2016] [Indexed: 11/21/2022] Open
Abstract
The pre-Bötzinger (pre-BötC) and Bötzinger (BötC) complexes are the brainstem compartments containing interneurons considered to be critically involved in generating respiratory rhythm and motor pattern in mammals. The pre-Bötzinger (pre-BötC) and Bötzinger (BötC) complexes are the brainstem compartments containing interneurons considered to be critically involved in generating respiratory rhythm and motor pattern in mammals. Current models postulate that both generation of the rhythm and coordination of the inspiratory-expiratory pattern involve inhibitory synaptic interactions within and between these regions. Both regions contain glycinergic and GABAergic neurons, and rhythmically active neurons in these regions receive appropriately coordinated phasic inhibition necessary for generation of the normal three-phase respiratory pattern. However, recent experiments attempting to disrupt glycinergic and GABAergic postsynaptic inhibition in the pre-BötC and BötC in adult rats in vivo have questioned the critical role of synaptic inhibition in these regions, as well as the importance of the BötC, which contradicts previous physiological and pharmacological studies. To further evaluate the roles of synaptic inhibition and the BötC, we bilaterally microinjected the GABAA receptor antagonist gabazine and glycinergic receptor antagonist strychnine into the pre-BötC or BötC in anesthetized adult rats in vivo and in perfused in situ brainstem–spinal cord preparations from juvenile rats. Muscimol was microinjected to suppress neuronal activity in the pre-BötC or BötC. In both preparations, disrupting inhibition within pre-BötC or BötC caused major site-specific perturbations of the rhythm and disrupted the three-phase motor pattern, in some experiments terminating rhythmic motor output. Suppressing BötC activity also potently disturbed the rhythm and motor pattern. We conclude that inhibitory circuit interactions within and between the pre-BötC and BötC critically regulate rhythmogenesis and are required for normal respiratory motor pattern generation.
Collapse
|
205
|
Barna BF, Takakura AC, Mulkey DK, Moreira TS. Purinergic receptor blockade in the retrotrapezoid nucleus attenuates the respiratory chemoreflexes in awake rats. Acta Physiol (Oxf) 2016; 217:80-93. [PMID: 26647910 DOI: 10.1111/apha.12637] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/06/2015] [Accepted: 11/26/2015] [Indexed: 01/21/2023]
Abstract
AIM Recent evidence suggests that adenosine triphosfate (ATP)-mediated purinergic signalling at the level of the rostral ventrolateral medulla contributes to both central and peripheral chemoreceptor control of breathing and blood pressure: neurones in the retrotrapezoid nucleus (RTN) function as central chemoreceptors in part by responding to CO2 -evoked ATP release by activation of yet unknown P2 receptors, and nearby catecholaminergic C1 neurones regulate blood pressure responses to peripheral chemoreceptor activation by a P2Y1 receptor-dependent mechanism. However, potential contributions of purinergic signalling in the RTN to cardiorespiratory function in conscious animals have not been tested. METHODS Cardiorespiratory activity of unrestrained awake rats was measured in response to RTN injections of ATP, and during exposure to hypercapnia (7% CO2 ) or hypoxia (8% O2 ) under control conditions and after bilateral RTN injections of P2 receptor blockers (PPADS or MRS2179). RESULTS Unilateral injection of ATP into the RTN increased cardiorespiratory output by a P2-receptor-dependent mechanism. We also show that bilateral RTN injections of a non-specific P2 receptor blocker (pyridoxal-phosphate-6-azophenyl-2',4'-disulfonate (PPADS) reduced the ventilatory response to hypercapnia (7% CO2 ) and hypoxia (8% O2 ) in unanesthetized rats. Conversely, bilateral injections of a specific P2Y1 receptor blocker (MRS2179) into the RTN had no measurable effect on ventilatory responses elicited by hypercapnia or hypoxia. CONCLUSION These data exclude P2Y1 receptor involvement in the chemosensory control of breathing at the level of the RTN and show that ATP-mediated purinergic signalling contributes to central and peripheral chemoreflex control of breathing and blood pressure in awake rats.
Collapse
Affiliation(s)
- B. F. Barna
- Department of Physiology and Biophysics; Institute of Biomedical Science; University of São Paulo; São Paulo SP Brazil
| | - A. C. Takakura
- Department of Pharmacology; Institute of Biomedical Science; University of São Paulo; São Paulo SP Brazil
| | - D. K. Mulkey
- Department of Physiology and Neurobiology; University of Connecticut; Storrs CT USA
| | - T. S. Moreira
- Department of Physiology and Biophysics; Institute of Biomedical Science; University of São Paulo; São Paulo SP Brazil
| |
Collapse
|
206
|
Georges M, Morawiec E, Raux M, Gonzalez-Bermejo J, Pradat PF, Similowski T, Morélot-Panzini C. Cortical drive to breathe in amyotrophic lateral sclerosis: a dyspnoea-worsening defence? Eur Respir J 2016; 47:1818-28. [DOI: 10.1183/13993003.01686-2015] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 01/19/2016] [Indexed: 11/05/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease causing diaphragm weakness that can be partially compensated by inspiratory neck muscle recruitment. This disappears during sleep, which is compatible with a cortical contribution to the drive to breathe. We hypothesised that ALS patients with respiratory failure exhibit respiratory-related cortical activity, relieved by noninvasive ventilation (NIV) and related to dyspnoea.We studied 14 ALS patients with respiratory failure. Electroencephalographic recordings (EEGs) and electromyographic recordings of inspiratory neck muscles were performed during spontaneous breathing and NIV. Dyspnoea was evaluated using the Multidimensional Dyspnea Profile.Eight patients exhibited slow EEG negativities preceding inspiration (pre-inspiratory potentials) during spontaneous breathing. Pre-inspiratory potentials were attenuated during NIV (p=0.04). Patients without pre-inspiratory potentials presented more advanced forms of ALS and more severe respiratory impairment, but less severe dyspnoea. Patients with pre-inspiratory potentials had stronger inspiratory neck muscle activation and more severe dyspnoea during spontaneous breathing.ALS-related diaphragm weakness can engage cortical resources to augment the neural drive to breathe. This might reflect a compensatory mechanism, with the intensity of dyspnoea a negative consequence. Disease progression and the corresponding neural loss could abolish this phenomenon. A putative cognitive cost should be investigated.
Collapse
|
207
|
Joubert F, Perrin-Terrin AS, Verkaeren E, Cardot P, Fiamma MN, Frugière A, Rivals I, Similowski T, Straus C, Bodineau L. Desogestrel enhances ventilation in ondine patients: Animal data involving serotoninergic systems. Neuropharmacology 2016; 107:339-350. [PMID: 27040794 DOI: 10.1016/j.neuropharm.2016.03.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 02/25/2016] [Accepted: 03/24/2016] [Indexed: 01/09/2023]
Abstract
Congenital central hypoventilation syndrome (CCHS) is a neurorespiratory disease characterized by life-threatening sleep-related hypoventilation involving an alteration of CO2/H(+) chemosensitivity. Incidental findings have suggested that desogestrel may allow recovery of the ventilatory response to CO2. The effects of desogestrel on resting ventilation have not been reported. This study was designed to test the hypothesis that desogestrel strengthens baseline ventilation by analyzing the ventilation of CCHS patients. Rodent models were used in order to determine the mechanisms involved. Ventilation in CCHS patients was measured with a pneumotachometer. In mice, ventilatory neural activity was recorded from ex vivo medullary-spinal cord preparations, ventilation was measured by plethysmography and c-fos expression was studied in medullary respiratory nuclei. Desogestrel increased baseline respiratory frequency of CCHS patients leading to a decrease in their PETCO2. In medullary spinal-cord preparations or in vivo mice, the metabolite of desogestrel, etonogestrel, induced an increase in respiratory frequency that necessitated the functioning of serotoninergic systems, and modulated GABAA and NMDA ventilatory regulations. c-FOS analysis showed the involvement of medullary respiratory groups of cell including serotoninergic neurons of the raphe pallidus and raphe obscurus nuclei that seem to play a key role. Thus, desogestrel may improve resting ventilation in CCHS patients by a stimulant effect on baseline respiratory frequency. Our data open up clinical perspectives based on the combination of this progestin with serotoninergic drugs to enhance ventilation in CCHS patients.
Collapse
Affiliation(s)
- Fanny Joubert
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S1158 Neurophysiologie respiratoire expérimentale et clinique, F-75013, Paris, France
| | - Anne-Sophie Perrin-Terrin
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S1158 Neurophysiologie respiratoire expérimentale et clinique, F-75013, Paris, France; University Paris 13, Sorbonne Paris Cité, Laboratory "Hypoxia & Lung" EA2363, 74 rue Marcel Cachin, 93017, Bobigny, France
| | - Emilienne Verkaeren
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S1158 Neurophysiologie respiratoire expérimentale et clinique, F-75013, Paris, France
| | - Philippe Cardot
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S1158 Neurophysiologie respiratoire expérimentale et clinique, F-75013, Paris, France
| | - Marie-Noëlle Fiamma
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S1158 Neurophysiologie respiratoire expérimentale et clinique, F-75013, Paris, France
| | - Alain Frugière
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S1158 Neurophysiologie respiratoire expérimentale et clinique, F-75013, Paris, France
| | - Isabelle Rivals
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S1158 Neurophysiologie respiratoire expérimentale et clinique, F-75013, Paris, France; Équipe de Statistique Appliquée, ESPCI ParisTech, PSL Research University, F-75005, Paris, France
| | - Thomas Similowski
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S1158 Neurophysiologie respiratoire expérimentale et clinique, F-75013, Paris, France; AP-HP, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Service de Pneumologie et Réanimation Médicale (Département "R3S"), F-75013, Paris, France; AP-HP, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Branche "Adultes" du Centre de Référence du Syndrome d'Ondine, F-75013, Paris, France
| | - Christian Straus
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S1158 Neurophysiologie respiratoire expérimentale et clinique, F-75013, Paris, France; AP-HP, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Branche "Adultes" du Centre de Référence du Syndrome d'Ondine, F-75013, Paris, France; AP-HP, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Service d'Explorations Fonctionnelles de la Respiration, de l'Exercice et de la Dyspnée (Département "R3S"), Paris, France
| | - Laurence Bodineau
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S1158 Neurophysiologie respiratoire expérimentale et clinique, F-75013, Paris, France.
| |
Collapse
|
208
|
Edlow BL, McNab JA, Witzel T, Kinney HC. The Structural Connectome of the Human Central Homeostatic Network. Brain Connect 2016; 6:187-200. [PMID: 26530629 PMCID: PMC4827322 DOI: 10.1089/brain.2015.0378] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Homeostatic adaptations to stress are regulated by interactions between the brainstem and regions of the forebrain, including limbic sites related to respiratory, autonomic, affective, and cognitive processing. Neuroanatomic connections between these homeostatic regions, however, have not been thoroughly identified in the human brain. In this study, we perform diffusion spectrum imaging tractography using the MGH-USC Connectome MRI scanner to visualize structural connections in the human brain linking autonomic and cardiorespiratory nuclei in the midbrain, pons, and medulla oblongata with forebrain sites critical to homeostatic control. Probabilistic tractography analyses in six healthy adults revealed connections between six brainstem nuclei and seven forebrain regions, several over long distances between the caudal medulla and cerebral cortex. The strongest evidence for brainstem-homeostatic forebrain connectivity in this study was between the brainstem midline raphe and the medial temporal lobe. The subiculum and amygdala were the sampled forebrain nodes with the most extensive brainstem connections. Within the human brainstem-homeostatic forebrain connectome, we observed that a lateral forebrain bundle, whose connectivity is distinct from that of rodents and nonhuman primates, is the primary conduit for connections between the brainstem and medial temporal lobe. This study supports the concept that interconnected brainstem and forebrain nodes form an integrated central homeostatic network (CHN) in the human brain. Our findings provide an initial foundation for elucidating the neuroanatomic basis of homeostasis in the normal human brain, as well as for mapping CHN disconnections in patients with disorders of homeostasis, including sudden and unexpected death, and epilepsy.
Collapse
Affiliation(s)
- Brian L. Edlow
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Jennifer A. McNab
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts
- Department of Radiology, R.M. Lucas Center for Imaging, Stanford University, Stanford, California
| | - Thomas Witzel
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Hannah C. Kinney
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
209
|
Affiliation(s)
- Thiago S Moreira
- Department of Physiology and Biophysics, University of São Paulo, São Paulo, SP, 05508, Brazil
| | | |
Collapse
|
210
|
Abstract
Unravelling the functional operation of neuronal networks and linking cellular activity to specific behavioural outcomes are among the biggest challenges in neuroscience. In this broad field of research, substantial progress has been made in studies of the spinal networks that control locomotion. Through united efforts using electrophysiological and molecular genetic network approaches and behavioural studies in phylogenetically diverse experimental models, the organization of locomotor networks has begun to be decoded. The emergent themes from this research are that the locomotor networks have a modular organization with distinct transmitter and molecular codes and that their organization is reconfigured with changes to the speed of locomotion or changes in gait.
Collapse
Affiliation(s)
- Ole Kiehn
- Mammalian Locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, Retziusväg 8, 17177 Stockholm, Sweden
| |
Collapse
|
211
|
Haw AJ, Meyer LC, Greer JJ, Fuller A. Ampakine CX1942 attenuates opioid-induced respiratory depression and corrects the hypoxaemic effects of etorphine in immobilized goats (Capra hircus). Vet Anaesth Analg 2016; 43:528-38. [PMID: 27531058 DOI: 10.1111/vaa.12358] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 01/05/2016] [Indexed: 12/19/2022]
Abstract
OBJECTIVES To determine whether CX1942 reverses respiratory depression in etorphine-immobilized goats, and to compare its effects with those of doxapram hydrochloride. STUDY DESIGN A prospective, crossover experimental trial conducted at 1753 m.a.s.l. ANIMALS Eight adult female Boer goats (Capra hircus) with a mean ± standard deviation mass of 27.1 ± 1.6 kg. METHODS Following immobilization with 0.1 mg kg(-1) etorphine, goats received one of doxapram, CX1942 or sterile water intravenously, in random order in three trials. Respiratory rate, ventilation and tidal volume were measured continuously. Arterial blood samples for the determination of PaO2 , PaCO2 , pH and SaO2 were taken 2 minutes before and then at 5 minute intervals after drug administration for 25 minutes. RESULTS Doxapram corrected etorphine-induced respiratory depression but also led to arousal and hyperventilation at 2 minutes after its administration, as indicated by the low PaCO2 (27.8 ± 4.5 mmHg) and ventilation of 5.32 ± 5.24 L minute(-1) above pre-immobilization values. CX1942 improved respiratory parameters and corrected etorphine's hypoxaemic effects more gradually than did doxapram, with a more sustained improvement in PaO2 and SaO2 in comparison with the control trial. CONCLUSIONS CX1942 attenuated opioid-induced respiratory depression and corrected the hypoxaemic effects of etorphine in immobilized goats. CLINICAL RELEVANCE Ampakines potentially offer advantages over doxapram, a conventional treatment, in reversing etorphine-induced respiratory depression without causing unwanted side effects, particularly arousal, in immobilized animals.
Collapse
Affiliation(s)
- Anna J Haw
- Brain Function Research Group, Faculty of Health Sciences, School of Physiology, University of the Witwatersrand, Parktown, South Africa
| | - Leith Cr Meyer
- Brain Function Research Group, Faculty of Health Sciences, School of Physiology, University of the Witwatersrand, Parktown, South Africa.,Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - John J Greer
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Andrea Fuller
- Brain Function Research Group, Faculty of Health Sciences, School of Physiology, University of the Witwatersrand, Parktown, South Africa.,Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| |
Collapse
|
212
|
Silva JN, Tanabe FM, Moreira TS, Takakura AC. Neuroanatomical and physiological evidence that the retrotrapezoid nucleus/parafacial region regulates expiration in adult rats. Respir Physiol Neurobiol 2016; 227:9-22. [PMID: 26900003 DOI: 10.1016/j.resp.2016.02.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 02/11/2016] [Accepted: 02/11/2016] [Indexed: 01/09/2023]
Abstract
The rostroventrolateral medulla contains two functional neuronal populations: (1) the parafacial respiratory group (pFRG) neurons and (2) the chemosensitive retrotrapezoid nucleus (RTN) neurons. Using anatomical and physiological techniques, we investigated the role of the RTN/pFRG in CO2-induced active expiration (AE) in urethane-anesthetized rats. Anterograde tracing using biotinylated dextran amine (BDA) revealed dense neuronal projections emanating from the RTN/pFRG to the caudal ventral respiratory group (cVRG), 60% of which contained vesicular glutamate transporter-2. The minority (16%) of the RTN projections to the cVRG emanated from Phox2b positive neurons. Hypercapnia (10% CO2) increased DiaEMG and elicited AbdEMG activity. Bilateral injections of muscimol (2mM) into the RTN/pFRG reduced the activation of DiaEMG (23±4%) and abolished AE-induced by chemoreflex stimulation. Taken together, these results support the presence of direct excitatory projections from RTN/pFRG neurons to cVRG expiratory premotor neurons, playing a role in the generation/modulation of AE.
Collapse
Affiliation(s)
- Josiane N Silva
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (USP), 05508-000 São Paulo, SP, Brazil
| | - Fabiola M Tanabe
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (USP), 05508-000 São Paulo, SP, Brazil
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of São Paulo (USP), 05508-000 São Paulo, SP, Brazil
| | - Ana C Takakura
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (USP), 05508-000 São Paulo, SP, Brazil.
| |
Collapse
|
213
|
Jones SE, Dutschmann M. Testing the hypothesis of neurodegeneracy in respiratory network function with a priori transected arterially perfused brain stem preparation of rat. J Neurophysiol 2016; 115:2593-607. [PMID: 26888109 DOI: 10.1152/jn.01073.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/12/2016] [Indexed: 11/22/2022] Open
Abstract
Degeneracy of respiratory network function would imply that anatomically discrete aspects of the brain stem are capable of producing respiratory rhythm. To test this theory we a priori transected brain stem preparations before reperfusion and reoxygenation at 4 rostrocaudal levels: 1.5 mm caudal to obex (n = 5), at obex (n = 5), and 1.5 (n = 7) and 3 mm (n = 6) rostral to obex. The respiratory activity of these preparations was assessed via recordings of phrenic and vagal nerves and lumbar spinal expiratory motor output. Preparations with a priori transection at level of the caudal brain stem did not produce stable rhythmic respiratory bursting, even when the arterial chemoreceptors were stimulated with sodium cyanide (NaCN). Reperfusion of brain stems that preserved the pre-Bötzinger complex (pre-BötC) showed spontaneous and sustained rhythmic respiratory bursting at low phrenic nerve activity (PNA) amplitude that occurred simultaneously in all respiratory motor outputs. We refer to this rhythm as the pre-BötC burstlet-type rhythm. Conserving circuitry up to the pontomedullary junction consistently produced robust high-amplitude PNA at lower burst rates, whereas sequential motor patterning across the respiratory motor outputs remained absent. Some of the rostrally transected preparations expressed both burstlet-type and regular PNA amplitude rhythms. Further analysis showed that the burstlet-type rhythm and high-amplitude PNA had 1:2 quantal relation, with burstlets appearing to trigger high-amplitude bursts. We conclude that no degenerate rhythmogenic circuits are located in the caudal medulla oblongata and confirm the pre-BötC as the primary rhythmogenic kernel. The absence of sequential motor patterning in a priori transected preparations suggests that pontine circuits govern respiratory pattern formation.
Collapse
Affiliation(s)
- Sarah E Jones
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria, Australia
| | - Mathias Dutschmann
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria, Australia
| |
Collapse
|
214
|
Li P, Janczewski WA, Yackle K, Kam K, Pagliardini S, Krasnow MA, Feldman JL. The peptidergic control circuit for sighing. Nature 2016; 530:293-297. [PMID: 26855425 DOI: 10.1038/nature16964] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 12/30/2015] [Indexed: 02/06/2023]
Abstract
Sighs are long, deep breaths expressing sadness, relief or exhaustion. Sighs also occur spontaneously every few minutes to reinflate alveoli, and sighing increases under hypoxia, stress, and certain psychiatric conditions. Here we use molecular, genetic, and pharmacologic approaches to identify a peptidergic sigh control circuit in murine brain. Small neural subpopulations in a key breathing control centre, the retrotrapezoid nucleus/parafacial respiratory group (RTN/pFRG), express bombesin-like neuropeptide genes neuromedin B (Nmb) or gastrin-releasing peptide (Grp). These project to the preBötzinger Complex (preBötC), the respiratory rhythm generator, which expresses NMB and GRP receptors in overlapping subsets of ~200 neurons. Introducing either neuropeptide into preBötC or onto preBötC slices, induced sighing or in vitro sigh activity, whereas elimination or inhibition of either receptor reduced basal sighing, and inhibition of both abolished it. Ablating receptor-expressing neurons eliminated basal and hypoxia-induced sighing, but left breathing otherwise intact initially. We propose that these overlapping peptidergic pathways comprise the core of a sigh control circuit that integrates physiological and perhaps emotional input to transform normal breaths into sighs.
Collapse
Affiliation(s)
- Peng Li
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, 94305
| | - Wiktor A Janczewski
- Systems Neurobiology Laboratory, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095
| | - Kevin Yackle
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, 94305
| | - Kaiwen Kam
- Systems Neurobiology Laboratory, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095
| | - Silvia Pagliardini
- Systems Neurobiology Laboratory, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095
| | - Mark A Krasnow
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, 94305
| | - Jack L Feldman
- Systems Neurobiology Laboratory, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095
| |
Collapse
|
215
|
|
216
|
Santin JM, Hartzler LK. Control of lung ventilation following overwintering conditions in bullfrogs, Lithobates catesbeianus. J Exp Biol 2016; 219:2003-14. [DOI: 10.1242/jeb.136259] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/14/2016] [Indexed: 12/19/2022]
Abstract
Ranid frogs in northern latitudes survive winter at cold temperatures in aquatic habitats often completely covered by ice. Cold-submerged frogs survive aerobically for several months relying exclusively on cutaneous gas exchange while maintaining temperature-specific acid-base balance. Depending on the overwintering hibernaculum, frogs in northern latitudes could spend several months without access to air, need to breathe, or chemosensory drive to use neuromuscular processes that regulate and enable pulmonary ventilation. Therefore, we performed experiments to determine whether aspects of the respiratory control system of bullfrogs, Lithobates catesbeianus, are maintained or suppressed following minimal use of air breathing in overwintering environments. Based on the necessity for control of lung ventilation in early spring, we hypothesized that critical components of the respiratory control system of bullfrogs would be functional following simulated overwintering. We found that bullfrogs recently removed from simulated overwintering environments exhibited similar resting ventilation when assessed at 24°C compared to warm-acclimated control bullfrogs. Additionally, ventilation met resting metabolic and, presumably, acid-base regulation requirements, indicating preservation of basal respiratory function despite prolonged disuse in the cold. Recently emerged bullfrogs underwent similar increases in ventilation during acute oxygen lack (aerial hypoxia) compared to warm-acclimated frogs; however, CO2-related hyperventilation was significantly blunted following overwintering. Overcoming challenges to gas exchange during overwintering have garnered attention in ectothermic vertebrates, but this study uncovers robust and labile aspects of the respiratory control system at a time point correlating with early spring following minimal/no use of lung breathing in cold-aquatic overwintering habitats.
Collapse
Affiliation(s)
- Joseph M. Santin
- Wright State University, Department of Biological Sciences, 3640 Colonel Glenn. Hwy. Dayton, OH 45435, USA
- Wright State University, Biomedical Sciences PhD Program, 3640 Colonel Glenn. Hwy. Dayton, OH 45435, USA
| | - Lynn K. Hartzler
- Wright State University, Department of Biological Sciences, 3640 Colonel Glenn. Hwy. Dayton, OH 45435, USA
| |
Collapse
|
217
|
Carrascal L, Nieto-González J, Pardillo-Díaz R, Pásaro R, Barrionuevo G, Torres B, Cameron WE, Núñez-Abades P. Time windows for postnatal changes in morphology and membrane excitability of genioglossal and oculomotor motoneurons. World J Neurol 2015; 5:113-131. [DOI: 10.5316/wjn.v5.i4.113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/07/2015] [Accepted: 12/08/2015] [Indexed: 02/06/2023] Open
Abstract
Time windows for postnatal changes in morphology and membrane excitability of genioglossal (GG) and oculomotor (OCM) motoneurons (MNs) are yet to be fully described. Analysis of data on brain slices in vitro of the 2 populations of MNs point to a well-defined developmental program that progresses with common age-related changes characterized by: (1) increase of dendritic surface along with length and reshaping of dendritic tree complexity; (2) disappearance of gap junctions early in development; (3) decrease of membrane passive properties, such as input resistance and time constant, together with an increase in the number of cells displaying sag, and modifications in rheobase; (4) action potential shortening and afterhyperpolarization; and (5) an increase in gain and maximum firing frequency. These modifications take place at different time windows for each motoneuronal population. In GG MNs, active membrane properties change mainly during the first postnatal week, passive membrane properties in the second week, and dendritic increasing length and size in the third week of development. In OCM MNs, changes in passive membrane properties and growth of dendritic size take place during the first postnatal week, while active membrane properties and rheobase change during the second and third weeks of development. The sequential order of changes is inverted between active and passive membrane properties, and growth in size does not temporally coincide for both motoneuron populations. These findings are discussed on the basis of environmental cues related to maturation of the respiratory and OCM systems.
Collapse
|
218
|
Revill AL, Vann NC, Akins VT, Kottick A, Gray PA, Del Negro CA, Funk GD. Dbx1 precursor cells are a source of inspiratory XII premotoneurons. eLife 2015; 4. [PMID: 26687006 PMCID: PMC4764567 DOI: 10.7554/elife.12301] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/18/2015] [Indexed: 11/28/2022] Open
Abstract
All behaviors require coordinated activation of motoneurons from central command and premotor networks. The genetic identities of premotoneurons providing behaviorally relevant excitation to any pool of respiratory motoneurons remain unknown. Recently, we established in vitro that Dbx1-derived pre-Bötzinger complex neurons are critical for rhythm generation and that a subpopulation serves a premotor function (Wang et al., 2014). Here, we further show that a subpopulation of Dbx1-derived intermediate reticular (IRt) neurons are rhythmically active during inspiration and project to the hypoglossal (XII) nucleus that contains motoneurons important for maintaining airway patency. Laser ablation of Dbx1 IRt neurons, 57% of which are glutamatergic, decreased ipsilateral inspiratory motor output without affecting frequency. We conclude that a subset of Dbx1 IRt neurons is a source of premotor excitatory drive, contributing to the inspiratory behavior of XII motoneurons, as well as a key component of the airway control network whose dysfunction contributes to sleep apnea. DOI:http://dx.doi.org/10.7554/eLife.12301.001
Collapse
Affiliation(s)
- Ann L Revill
- Department of Physiology, Neuroscience and Mental Health Institute, Women and Children's Health Research Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Nikolas C Vann
- Department of Applied Science, The College of William and Mary, Williamsburg, United States
| | - Victoria T Akins
- Department of Applied Science, The College of William and Mary, Williamsburg, United States
| | - Andrew Kottick
- Department of Applied Science, The College of William and Mary, Williamsburg, United States
| | - Paul A Gray
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, United States
| | | | - Gregory D Funk
- Department of Physiology, Neuroscience and Mental Health Institute, Women and Children's Health Research Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| |
Collapse
|
219
|
Dorsal and ventral aspects of the most caudal medullary reticular formation have differential roles in modulation and formation of the respiratory motor pattern in rat. Brain Struct Funct 2015; 221:4353-4368. [DOI: 10.1007/s00429-015-1165-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 11/26/2015] [Indexed: 11/24/2022]
|
220
|
Phillips WS, Herly M, Del Negro CA, Rekling JC. Organotypic slice cultures containing the preBötzinger complex generate respiratory-like rhythms. J Neurophysiol 2015; 115:1063-70. [PMID: 26655824 DOI: 10.1152/jn.00904.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/02/2015] [Indexed: 02/08/2023] Open
Abstract
Study of acute brain stem slice preparations in vitro has advanced our understanding of the cellular and synaptic mechanisms of respiratory rhythm generation, but their inherent limitations preclude long-term manipulation and recording experiments. In the current study, we have developed an organotypic slice culture preparation containing the preBötzinger complex (preBötC), the core inspiratory rhythm generator of the ventrolateral brain stem. We measured bilateral synchronous network oscillations, using calcium-sensitive fluorescent dyes, in both ventrolateral (presumably the preBötC) and dorsomedial regions of slice cultures at 7-43 days in vitro. These calcium oscillations appear to be driven by periodic bursts of inspiratory neuronal activity, because whole cell recordings from ventrolateral neurons in culture revealed inspiratory-like drive potentials, and no oscillatory activity was detected from glial fibrillary associated protein-expressing astrocytes in cultures. Acute slices showed a burst frequency of 10.9 ± 4.2 bursts/min, which was not different from that of brain stem slice cultures (13.7 ± 10.6 bursts/min). However, slice cocultures that include two cerebellar explants placed along the dorsolateral border of the brainstem displayed up to 193% faster burst frequency (22.4 ± 8.3 bursts/min) and higher signal amplitude (340%) compared with acute slices. We conclude that preBötC-containing slice cultures retain inspiratory-like rhythmic function and therefore may facilitate lines of experimentation that involve extended incubation (e.g., genetic transfection or chronic drug exposure) while simultaneously being amenable to imaging and electrophysiology at cellular, synaptic, and network levels.
Collapse
Affiliation(s)
- Wiktor S Phillips
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark; and Department of Applied Science, The College of William and Mary, Williamsburg, Virginia
| | - Mikkel Herly
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark; and
| | | | - Jens C Rekling
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark; and
| |
Collapse
|
221
|
Rousseau JP, Caravagna C. Electrophysiology on Isolated Brainstem-spinal Cord Preparations from Newborn Rodents Allows Neural Respiratory Network Output Recording. J Vis Exp 2015. [PMID: 26649567 DOI: 10.3791/53071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
While it is well known that the central respiratory drive is located in the brainstem, several aspects of its basic function, development, and response to stimuli remain to be fully understood. To overcome the difficulty of accessing the brainstem in the whole animal, isolation of the brainstem and part of the spinal cord is performed. This preparation is maintained in artificial cerebro-spinal fluid where gases, concentrations, and temperature are controlled and monitored. The output signal from the respiratory network is recorded by a suction electrode placed on the fourth ventral root. In this manner, stimuli can be directly applied onto the brainstem, and the effect can be recorded directly. The signal recorded is linked to the inspiratory signal sent to the diaphragm via the phrenic nerve, and can be described as bursts (around 8 bursts per minute). Analysis of these bursts (frequency, amplitude, length, and area under the curve) allows precise characterization of the stimulus effect on the respiratory network. The main limitation of this method is the viability of the preparation beyond the early post-natal stages. Thus, this method greatly focuses on the study of the whole network without the peripheral inputs in the newborn rat.
Collapse
|
222
|
Le S, Turner AJ, Parker LM, Burke PG, Kumar NN, Goodchild AK, McMullan S. Somatostatin 2a receptors are not expressed on functionally identified respiratory neurons in the ventral respiratory column of the rat. J Comp Neurol 2015; 524:1384-98. [PMID: 26470751 DOI: 10.1002/cne.23912] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 10/09/2015] [Accepted: 10/12/2015] [Indexed: 01/09/2023]
Abstract
Microinjection of somatostatin (SST) causes site-specific effects on respiratory phase transition, frequency, and amplitude when microinjected into the ventrolateral medulla (VLM) of the anesthetized rat, suggesting selective expression of SST receptors on different functional classes of respiratory neurons. Of the six subtypes of SST receptor, somatostatin 2a (sst2a ) is the most prevalent in the VLM, and other investigators have suggested that glutamatergic neurons in the preBötzinger Complex (preBötC) that coexpress neurokinin-1 receptor (NK1R), SST, and sst2a are critical for the generation of respiratory rhythm. However, quantitative data describing the distribution of sst2a in respiratory compartments other than preBötC, or on functionally identified respiratory neurons, is absent. Here we examine the medullary expression of sst2a with particular reference to glycinergic/expiratory neurons in the Bötzinger Complex (BötC) and NK1R-immunoreactive/inspiratory neurons in the preBötC. We found robust sst2a expression at all rostrocaudal levels of the VLM, including a large proportion of catecholaminergic neurons, but no colocalization of sst2a and glycine transporter 2 mRNA in the BötC. In the preBötC 54% of sst2a -immunoreactive neurons were also positive for NK1R. sst2a was not observed in any of 52 dye-labeled respiratory interneurons, including seven BötC expiratory-decrementing and 11 preBötC preinspiratory neurons. We conclude that sst2a is not expressed on BötC respiratory neurons and that phasic respiratory activity is a poor predictor of sst2a expression in the preBötC. Therefore, sst2a is unlikely to underlie responses to BötC SST injection, and is sparse or absent on respiratory neurons identified by classical functional criteria. J. Comp. Neurol. 524:1384-1398, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sheng Le
- Faculty of Medicine & Health Sciences, Macquarie University, NSW, Australia
| | - Anita J Turner
- Faculty of Medicine & Health Sciences, Macquarie University, NSW, Australia
| | - Lindsay M Parker
- ARC Center of Excellence for Nanoscale BioPhotonics, Macquarie University, NSW, Australia
| | - Peter G Burke
- Neuroscience Research Australia, Randwick, NSW, Australia
| | - Natasha N Kumar
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Ann K Goodchild
- Faculty of Medicine & Health Sciences, Macquarie University, NSW, Australia
| | - Simon McMullan
- Faculty of Medicine & Health Sciences, Macquarie University, NSW, Australia
| |
Collapse
|
223
|
Synaptic Depression Influences Inspiratory-Expiratory Phase Transition in Dbx1 Interneurons of the preBötzinger Complex in Neonatal Mice. J Neurosci 2015; 35:11606-11. [PMID: 26290237 DOI: 10.1523/jneurosci.0351-15.2015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED The brainstem preBötzinger complex (preBötC) generates the rhythm underlying inspiratory breathing movements and its core interneurons are derived from Dbx1-expressing precursors. Recurrent synaptic excitation is required to initiate inspiratory bursts, but whether excitatory synaptic mechanisms also contribute to inspiratory-expiratory phase transition is unknown. Here, we examined the role of short-term synaptic depression using a rhythmically active neonatal mouse brainstem slice preparation. We show that afferent axonal projections to Dbx1 preBötC neurons undergo activity-dependent depression and we identify a refractory period (∼2 s) after endogenous inspiratory bursts that precludes light-evoked bursts in channelrhodopsin-expressing Dbx1 preBötC neurons. We demonstrate that the duration of the refractory period-but neither the cycle period nor the magnitude of endogenous inspiratory bursts-is sensitive to changes in extracellular Ca(2+). Further, we show that postsynaptic factors are unlikely to explain the refractory period or its modulation by Ca(2+). Our findings are consistent with the hypothesis that short-term synaptic depression in Dbx1 preBötC neurons influences the inspiratory-expiratory phase transition during respiratory rhythmogenesis. SIGNIFICANCE STATEMENT Theories of breathing's neural origins have heretofore focused on intrinsically bursting "pacemaker" cells operating in conjunction with synaptic inhibition for phase transition and cycle timing. However, contemporary studies falsify an obligatory role for pacemaker-like neurons and synaptic inhibition, giving credence to burst-generating mechanisms based on recurrent excitation among glutamatergic interneurons of the respiratory kernel. Here, we investigated the role of short-term synaptic depression in inspiratory-expiratory phase transition. Until now, this role remained an untested prediction of mathematical models. The present data emphasize that synaptic properties of excitatory interneurons of the respiratory rhythmogenic kernel, derived from Dbx1-expressing precursors, may provide the core logic underlying the rhythm for breathing.
Collapse
|
224
|
Bondarenko E, Guimarães DD, Braga VA, Nalivaiko E. Integrity of the dorsolateral periaqueductal grey is essential for the fight-or-flight response, but not the respiratory component of a defense reaction. Respir Physiol Neurobiol 2015; 226:94-101. [PMID: 26519212 DOI: 10.1016/j.resp.2015.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/14/2015] [Accepted: 10/17/2015] [Indexed: 11/26/2022]
Abstract
Periaqueductal grey is believed to be one of the key structures of the central respiratory stress network. Previous studies established that stimulation of the periaqueductal grey, especially its dorsolateral division (dlPAG), evokes tachypnea as well as increases in other autonomic parameters and motor activity. We investigated the effects of blockade of the dlPAG with GABAA agonist muscimol on respiration during stress and presentation of brief alerting stimuli in conscious unrestrained rats. We found that integrity of the dlPAG is not essential for stress-induced increase in basal/resting respiratory rate or for generation of respiratory responses to brief alerting stimuli. However, blockade of the dlPAG reduced the amount of motor activity and concomitant high-frequency respiratory activity during restraint and the first 5min of novelty stress. We conclude that the integrity of the dlPAG is not essential for generation of respiratory component of the defense reaction, but it mediates expression of the fight-or-flight response including its respiratory component.
Collapse
Affiliation(s)
- E Bondarenko
- University of Newcastle, Callaghan, NSW, Australia.
| | - D D Guimarães
- Biotechnology Centre, Federal University of Paraiba, João Pessoa, PB, Brazil
| | - V A Braga
- Biotechnology Centre, Federal University of Paraiba, João Pessoa, PB, Brazil
| | - E Nalivaiko
- University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
225
|
Respiratory pathophysiology with seizures and implications for sudden unexpected death in epilepsy. J Clin Neurophysiol 2015; 32:10-3. [PMID: 25647768 DOI: 10.1097/wnp.0000000000000142] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
SUMMARY There is increasing evidence that periictal respiratory disturbances are an important contributor to the pathophysiological changes leading to sudden unexpected death in epilepsy (SUDEP). In patients with SUDEP occurring in epilepsy monitoring units, respiratory disturbances occurred early in the postictal period and frequently preceded terminal bradycardia and asystole. Periictal hypoxemia and hypercapnia are observed in about one-third of patients undergoing video-EEG telemetry. Pulmonary edema is frequently observed at autopsy in cases of SUDEP and may be relevant as a contributing cause in a subset of SUDEP. Animal studies support the notion that periictal respiratory disturbances are crucial to the pathophysiology of SUDEP. Serotonergic neurons modulate the excitability of the neuronal network generating the respiratory rhythm. Ictal and periictal impairment of serotonergic and glutaminergic neurons involved in the arousal system may also predispose to SUDEP by impeding the patient's ability to reposition the head and facilitate ventilation after a seizure. Periictal functional impairment of serotonergic neurons seems to be important in the pathophysiology of SUDEP and a potential target for pharmacotherapy aimed at SUDEP risk reduction.
Collapse
|
226
|
Feldman JL, Kam K. Facing the challenge of mammalian neural microcircuits: taking a few breaths may help. J Physiol 2015; 593:3-23. [PMID: 25556783 DOI: 10.1113/jphysiol.2014.277632] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 11/01/2014] [Indexed: 12/27/2022] Open
Abstract
Breathing in mammals is a seemingly straightforward behaviour controlled by the brain. A brainstem nucleus called the preBötzinger Complex sits at the core of the neural circuit generating respiratory rhythm. Despite the discovery of this microcircuit almost 25 years ago, the mechanisms controlling breathing remain elusive. Given the apparent simplicity and well-defined nature of regulatory breathing behaviour, the identification of much of the circuitry, and the ability to study breathing in vitro as well as in vivo, many neuroscientists and physiologists are surprised that respiratory rhythm generation is still not well understood. Our view is that conventional rhythmogenic mechanisms involving pacemakers, inhibition or bursting are problematic and that simplifying assumptions commonly made for many vertebrate neural circuits ignore consequential detail. We propose that novel emergent mechanisms govern the generation of respiratory rhythm. That a mammalian function as basic as rhythm generation arises from complex and dynamic molecular, synaptic and neuronal interactions within a diverse neural microcircuit highlights the challenges in understanding neural control of mammalian behaviours, many (considerably) more elaborate than breathing. We suggest that the neural circuit controlling breathing is inimitably tractable and may inspire general strategies for elucidating other neural microcircuits.
Collapse
Affiliation(s)
- Jack L Feldman
- Systems Neurobiology Laboratory, Department of Neurobiology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, USA
| | | |
Collapse
|
227
|
Andrews CG, Pagliardini S. Expiratory activation of abdominal muscle is associated with improved respiratory stability and an increase in minute ventilation in REM epochs of adult rats. J Appl Physiol (1985) 2015; 119:968-74. [PMID: 26338455 DOI: 10.1152/japplphysiol.00420.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 09/01/2015] [Indexed: 01/08/2023] Open
Abstract
Breathing is more vulnerable to apneas and irregular breathing patterns during rapid eye movement (REM) sleep in both humans and rodents. We previously reported that robust and recurrent recruitment of expiratory abdominal (ABD) muscle activity is present in rats during REM epochs despite ongoing REM-induced muscle atonia in skeletal musculature. To develop a further understanding of the characteristics of ABD recruitment during REM epochs and their relationship with breathing patterns and irregularities, we sought to compare REM epochs that displayed ABD muscle recruitment with those that did not, within the same rats. Specifically, we investigated respiratory characteristics that preceded and followed recruitment. We hypothesized that ABD muscle recruitment would be likely to occur following respiratory irregularities and would subsequently contribute to respiratory stability and the maintenance of good ventilation following recruitment. Our data demonstrate that epochs of REM sleep containing ABD recruitments (REM(ABD+)) were characterized by increased respiratory rate variability and increased presence of spontaneous brief central apneas. Within these epochs, respiratory events that displayed ABD muscle activation were preceded by periods of increased respiratory rate variability. Onset of ABD muscle activity increased tidal volume, amplitude of diaphragmatic contractions, and minute ventilation compared with the periods preceding ABD muscle activation. These results show that expiratory muscle activity is more likely recruited when respiration is irregular and its recruitment is subsequently associated with an increase in minute ventilation and a more regular respiratory rhythm.
Collapse
Affiliation(s)
- Colin G Andrews
- Department of Physiology, Women and Children's Health Research Institute, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Silvia Pagliardini
- Department of Physiology, Women and Children's Health Research Institute, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
228
|
Abstract
Recent advances have clarified how the brain detects CO2 to regulate breathing (central respiratory chemoreception). These mechanisms are reviewed and their significance is presented in the general context of CO2/pH homeostasis through breathing. At rest, respiratory chemoreflexes initiated at peripheral and central sites mediate rapid stabilization of arterial PCO2 and pH. Specific brainstem neurons (e.g., retrotrapezoid nucleus, RTN; serotonergic) are activated by PCO2 and stimulate breathing. RTN neurons detect CO2 via intrinsic proton receptors (TASK-2, GPR4), synaptic input from peripheral chemoreceptors and signals from astrocytes. Respiratory chemoreflexes are arousal state dependent whereas chemoreceptor stimulation produces arousal. When abnormal, these interactions lead to sleep-disordered breathing. During exercise, central command and reflexes from exercising muscles produce the breathing stimulation required to maintain arterial PCO2 and pH despite elevated metabolic activity. The neural circuits underlying central command and muscle afferent control of breathing remain elusive and represent a fertile area for future investigation.
Collapse
Affiliation(s)
- Patrice G Guyenet
- Department of Pharmacology, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22908-0735, USA.
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22908-0735, USA
| |
Collapse
|
229
|
Mechanisms Leading to Rhythm Cessation in the Respiratory PreBötzinger Complex Due to Piecewise Cumulative Neuronal Deletions. eNeuro 2015; 2:eN-NWR-0031-15. [PMID: 26465010 PMCID: PMC4596029 DOI: 10.1523/eneuro.0031-15.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 08/13/2015] [Accepted: 08/14/2015] [Indexed: 11/22/2022] Open
Abstract
The mammalian breathing rhythm putatively originates from Dbx1-derived interneurons in the preBötzinger complex (preBötC) of the ventral medulla. Cumulative deletion of ∼15% of Dbx1 preBötC neurons in an in vitro breathing model stops rhythmic bursts of respiratory-related motor output. Here we assemble in silico models of preBötC networks using random graphs for structure, and ordinary differential equations for dynamics, to examine the mechanisms responsible for the loss of spontaneous respiratory rhythm and motor output measured experimentally in vitro. Model networks subjected to cellular ablations similarly discontinue functionality. However, our analyses indicate that model preBötC networks remain topologically intact even after rhythm cessation, suggesting that dynamics coupled with structural properties of the underlying network are responsible for rhythm cessation. Simulations show that cumulative cellular ablations diminish the number of neurons that can be recruited to spike per unit time. When the recruitment rate drops below 1 neuron/ms the network stops spontaneous rhythmic activity. Neurons that play pre-eminent roles in rhythmogenesis include those that commence spiking during the quiescent phase between respiratory bursts and those with a high number of incoming synapses, which both play key roles in recruitment, i.e., recurrent excitation leading to network bursts. Selectively ablating neurons with many incoming synapses impairs recurrent excitation and stops spontaneous rhythmic activity and motor output with lower ablation tallies compared with random deletions. This study provides a theoretical framework for the operating mechanism of mammalian central pattern generator networks and their susceptibility to loss-of-function in the case of disease or neurodegeneration.
Collapse
|
230
|
Guinamard R, Bouvagnet P, Hof T, Liu H, Simard C, Sallé L. TRPM4 in cardiac electrical activity. Cardiovasc Res 2015; 108:21-30. [PMID: 26272755 DOI: 10.1093/cvr/cvv213] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 07/31/2015] [Indexed: 11/12/2022] Open
Abstract
TRPM4 forms a non-selective cation channel activated by internal Ca(2+). Its functional expression was demonstrated in cardiomyocytes of several mammalian species including humans, but the channel is also present in many other tissues. The recent characterization of the TRPM4 inhibitor 9-phenanthrol, and the availability of transgenic mice have helped to clarify the role of TRPM4 in cardiac electrical activity, including diastolic depolarization from the sino-atrial node cells in mouse, rat, and rabbit, as well as action potential duration in mouse cardiomyocytes. In rat and mouse, pharmacological inhibition of TRPM4 prevents cardiac ischaemia-reperfusion injuries and decreases the occurrence of arrhythmias. Several studies have identified TRPM4 mutations in patients with inherited cardiac diseases including conduction blocks and Brugada syndrome. This review identifies TRPM4 as a significant actor in cardiac electrophysiology.
Collapse
Affiliation(s)
- Romain Guinamard
- Groupe Signalisation, Electrophysiologie et Imagerie des Lésions d'Ischémie-Reperfusion Myocardique, EA4650, Université de Caen Basse-Normandie, Sciences D, Esplanade de la Paix, CS 14032, 14032 Caen Cedex 5, France
| | | | - Thomas Hof
- Groupe Signalisation, Electrophysiologie et Imagerie des Lésions d'Ischémie-Reperfusion Myocardique, EA4650, Université de Caen Basse-Normandie, Sciences D, Esplanade de la Paix, CS 14032, 14032 Caen Cedex 5, France
| | - Hui Liu
- Department of Anatomy, Hainan Medical College, Haikou, Hainan 571101, China
| | - Christophe Simard
- Groupe Signalisation, Electrophysiologie et Imagerie des Lésions d'Ischémie-Reperfusion Myocardique, EA4650, Université de Caen Basse-Normandie, Sciences D, Esplanade de la Paix, CS 14032, 14032 Caen Cedex 5, France
| | - Laurent Sallé
- Groupe Signalisation, Electrophysiologie et Imagerie des Lésions d'Ischémie-Reperfusion Myocardique, EA4650, Université de Caen Basse-Normandie, Sciences D, Esplanade de la Paix, CS 14032, 14032 Caen Cedex 5, France
| |
Collapse
|
231
|
Ruangkittisakul A, Sharopov S, Kantor C, Kuribayashi J, Mildenberger E, Luhmann H, Kilb W, Ballanyi K. Methylxanthine-evoked perturbation of spontaneous and evoked activities in isolated newborn rat hippocampal networks. Neuroscience 2015; 301:106-20. [DOI: 10.1016/j.neuroscience.2015.05.069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/11/2015] [Accepted: 05/27/2015] [Indexed: 11/29/2022]
|
232
|
Holloway BB, Viar KE, Stornetta RL, Guyenet PG. The retrotrapezoid nucleus stimulates breathing by releasing glutamate in adult conscious mice. Eur J Neurosci 2015; 42:2271-82. [PMID: 26096172 DOI: 10.1111/ejn.12996] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/10/2015] [Accepted: 06/17/2015] [Indexed: 11/30/2022]
Abstract
The retrotrapezoid nucleus (RTN) is a bilateral cluster of neurons located at the ventral surface of the brainstem below the facial nucleus. The RTN is activated by hypercapnia and stabilises arterial Pco2 by adjusting lung ventilation in a feedback manner. RTN neurons contain vesicular glutamate transporter-2 (Vglut2) transcripts (Slc17a6), and their synaptic boutons are Vglut2-immunoreactive. Here, we used optogenetics to test whether the RTN increases ventilation in conscious adult mice by releasing glutamate. Neurons located below the facial motor nucleus were transduced unilaterally to express channelrhodopsin-2 (ChR2)-enhanced yellow fluorescent protein, with lentiviral vectors that employ the Phox2b-activated artificial promoter PRSx8. The targeted population consisted of two types of Phox2b-expressing neuron: non-catecholaminergic neurons (putative RTN chemoreceptors) and catecholaminergic (C1) neurons. Opto-activation of a mix of ChR2-expressing RTN and C1 neurons produced a powerful stimulus frequency-dependent (5-15 Hz) stimulation of breathing in control conscious mice. Respiratory stimulation was comparable in mice in which dopamine-β-hydroxylase (DβH)-positive neurons no longer expressed Vglut2 (DβH(C) (re/0);;Vglut2(fl/fl)). In a third group of mice, i.e. DβH(+/+);;Vglut2(fl/fl) mice, we injected a mixture of PRSx8-Cre lentiviral vector and Cre-dependent ChR2 adeno-associated virus 2 unilaterally into the RTN; this procedure deleted Vglut2 from ChR2-expressing neurons regardless of whether or not they were catecholaminergic. The ventilatory response elicited by photostimulation of ChR2-positive neurons was almost completely absent in these mice. Resting ventilatory parameters were identical in the three groups of mice, and their brains contained similar numbers of ChR2-positive catecholaminergic and non-catecholaminergic neurons. From these results, we conclude that RTN neurons increase breathing in conscious adult mice by releasing glutamate.
Collapse
Affiliation(s)
- Benjamin B Holloway
- Department of Pharmacology, University of Virginia Health System, P.O. Box 800735, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908-0735, USA
| | - Kenneth E Viar
- Department of Pharmacology, University of Virginia Health System, P.O. Box 800735, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908-0735, USA
| | - Ruth L Stornetta
- Department of Pharmacology, University of Virginia Health System, P.O. Box 800735, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908-0735, USA
| | - Patrice G Guyenet
- Department of Pharmacology, University of Virginia Health System, P.O. Box 800735, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908-0735, USA
| |
Collapse
|
233
|
Abdala AP, Paton JFR, Smith JC. Defining inhibitory neurone function in respiratory circuits: opportunities with optogenetics? J Physiol 2015; 593:3033-46. [PMID: 25384785 PMCID: PMC4532524 DOI: 10.1113/jphysiol.2014.280610] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 10/30/2014] [Indexed: 12/22/2022] Open
Abstract
Pharmacological and mathematical modelling studies support the view that synaptic inhibition in mammalian brainstem respiratory circuits is essential for generating normal and stable breathing movements. GABAergic and glycinergic neurones are known components of these circuits but their precise functional roles have not been established, especially within key microcircuits of the respiratory pre-Bötzinger (pre-BötC) and Bötzinger (BötC) complexes involved in phasic control of respiratory pump and airway muscles. Here, we review briefly current concepts of relevant complexities of inhibitory synapses and the importance of synaptic inhibition in the operation of these microcircuits. We highlight results and limitations of classical pharmacological studies that have suggested critical functions of synaptic inhibition. We then explore the potential opportunities for optogenetic strategies that represent a promising new approach for interrogating function of inhibitory circuits, including a hypothetical wish list for optogenetic approaches to allow expedient application of this technology. We conclude that recent technical advances in optogenetics should provide a means to understand the role of functionally select and regionally confined subsets of inhibitory neurones in key respiratory circuits such as those in the pre-BötC and BötC.
Collapse
Affiliation(s)
- Ana Paula Abdala
- School of Physiology and Pharmacology, Bristol CardioVascular, Medical Science Building, University of BristolBristol, UK
| | - Julian F R Paton
- School of Physiology and Pharmacology, Bristol CardioVascular, Medical Science Building, University of BristolBristol, UK
| | - Jeffrey C Smith
- Cellular and Systems Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesda, MD, USA
| |
Collapse
|
234
|
Alsahafi Z, Dickson CT, Pagliardini S. Optogenetic excitation of preBötzinger complex neurons potently drives inspiratory activity in vivo. J Physiol 2015; 593:3673-92. [PMID: 26010654 DOI: 10.1113/jp270471] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/15/2015] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS This study investigates the effects on ventilation of an excitatory stimulus delivered in a spatially and temporally precise manner to the inspiratory oscillator, the preBötzinger complex (preBötC). We used an adeno-associated virus expressing channelrhodopsin driven by the synapsin promoter to target the region of the preBötC. Unilateral optogenetic stimulation of preBötC increased respiratory rate, minute ventilation and increased inspiratory modulated genioglossus muscle activity. Unilateral optogenetic stimulation of preBötC consistently entrained respiratory rate up to 180 breaths min(-1) both in presence of ongoing respiratory activity and in absence of inspiratory activity. Unilateral optogenetic stimulation of preBötC induced a strong phase-independent Type 0 respiratory reset, with a short delay in the response of 100 ms. We identified a refractory period of ∼200 ms where unilateral preBötC optogenetic stimulation is not able to initiate the next respiratory event. ABSTRACT Understanding the sites and mechanisms underlying respiratory rhythmogenesis is of fundamental interest in the field of respiratory neurophysiology. Previous studies demonstrated the necessary and sufficient role of preBötzinger complex (preBötC) in generating inspiratory rhythms in vitro and in vivo. However, the influence of timed activation of the preBötC network in vivo is as yet unknown given the experimental approaches previously used. By unilaterally infecting preBötC neurons using an adeno-associated virus expressing channelrhodopsin we photo-activated the network in order to assess how excitation delivered in a spatially and temporally precise manner to the inspiratory oscillator influences ongoing breathing rhythms and related muscular activity in urethane-anaesthetized rats. We hypothesized that if an excitatory drive is necessary for rhythmogenesis and burst initiation, photo-activation of preBötC not only will increase respiratory rate, but also entrain it over a wide range of frequencies with fast onset, and have little effect on ongoing respiratory rhythm if a stimulus is delivered during inspiration. Stimulation of preBötC neurons consistently increased respiratory rate and entrained respiration up to fourfold baseline conditions. Furthermore, brief pulses of photostimulation delivered at random phases between inspiratory events robustly and consistently induced phase-independent (Type 0) respiratory reset and recruited inspiratory muscle activity at very short delays (∼100 ms). A 200 ms refractory period following inspiration was also identified. These data provide strong evidence for a fine control of inspiratory activity in the preBötC and provide further evidence that the preBötC network constitutes the fundamental oscillator of inspiratory rhythms.
Collapse
Affiliation(s)
- Zaki Alsahafi
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada
| | - Clayton T Dickson
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada.,Department of Psychology, Faculty of Science, University of Alberta, Edmonton, Alberta, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Silvia Pagliardini
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| |
Collapse
|
235
|
Murayama T, Maruyama IN. Alkaline pH sensor molecules. J Neurosci Res 2015; 93:1623-30. [PMID: 26154399 DOI: 10.1002/jnr.23621] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/12/2015] [Accepted: 06/26/2015] [Indexed: 12/22/2022]
Abstract
Animals can survive only within a narrow pH range. This requires continual monitoring of environmental and body-fluid pH. Although a variety of acidic pH sensor molecules have been reported, alkaline pH sensor function is not well understood. This Review describes neuronal alkaline pH sensors, grouped according to whether they monitor extracellular or intracellular alkaline pH. Extracellular sensors include the receptor-type guanylyl cyclase, the insulin receptor-related receptor, ligand-gated Cl- channels, connexin hemichannels, two-pore-domain K+ channels, and transient receptor potential (TRP) channels. Intracellular sensors include TRP channels and gap junction channels. Identification of molecular mechanisms underlying alkaline pH sensing is crucial for understanding how animals respond to environmental alkaline pH and how body-fluid pH is maintained within a narrow range.
Collapse
Affiliation(s)
- Takashi Murayama
- Information Processing Biology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Ichiro N Maruyama
- Information Processing Biology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
236
|
Albersheim-Carter J, Blubaum A, Ballagh IH, Missaghi K, Siuda ER, McMurray G, Bass AH, Dubuc R, Kelley DB, Schmidt MF, Wilson RJA, Gray PA. Testing the evolutionary conservation of vocal motoneurons in vertebrates. Respir Physiol Neurobiol 2015; 224:2-10. [PMID: 26160673 DOI: 10.1016/j.resp.2015.06.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 06/23/2015] [Accepted: 06/29/2015] [Indexed: 11/15/2022]
Abstract
Medullary motoneurons drive vocalization in many vertebrate lineages including fish, amphibians, birds, and mammals. The developmental history of vocal motoneuron populations in each of these lineages remains largely unknown. The highly conserved transcription factor Paired-like Homeobox 2b (Phox2b) is presumed to be expressed in all vertebrate hindbrain branchial motoneurons, including laryngeal motoneurons essential for vocalization in humans. We used immunohistochemistry and in situ hybridization to examine Phox2b protein and mRNA expression in caudal hindbrain and rostral spinal cord motoneuron populations in seven species across five chordate classes. Phox2b was present in motoneurons dedicated to sound production in mice and frogs (bullfrog, African clawed frog), but not those in bird (zebra finch) or bony fish (midshipman, channel catfish). Overall, the pattern of caudal medullary motoneuron Phox2b expression was conserved across vertebrates and similar to expression in sea lamprey. These observations suggest that motoneurons dedicated to sound production in vertebrates are not derived from a single developmentally or evolutionarily conserved progenitor pool.
Collapse
Affiliation(s)
- Jacob Albersheim-Carter
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Aleksandar Blubaum
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Irene H Ballagh
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Kianoush Missaghi
- Department of Exercise Science, Faculté des Sciences, Université du Québec à Montréal, Montréal, Québec H3C 3P8, Canada; Department of Neuroscience, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Edward R Siuda
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - George McMurray
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrew H Bass
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Réjean Dubuc
- Department of Exercise Science, Faculté des Sciences, Université du Québec à Montréal, Montréal, Québec H3C 3P8, Canada; Department of Neuroscience, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Darcy B Kelley
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Marc F Schmidt
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Richard J A Wilson
- Hotchkiss Brain Institute and ACH Research Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N4N1, Canada
| | - Paul A Gray
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
237
|
Ikeda K, Takahashi M, Sato S, Igarashi H, Ishizuka T, Yawo H, Arata S, Southard-Smith EM, Kawakami K, Onimaru H. A Phox2b BAC Transgenic Rat Line Useful for Understanding Respiratory Rhythm Generator Neural Circuitry. PLoS One 2015; 10:e0132475. [PMID: 26147470 PMCID: PMC4492506 DOI: 10.1371/journal.pone.0132475] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 06/15/2015] [Indexed: 11/21/2022] Open
Abstract
The key role of the respiratory neural center is respiratory rhythm generation to maintain homeostasis through the control of arterial blood pCO2/pH and pO2 levels. The neuronal network responsible for respiratory rhythm generation in neonatal rat resides in the ventral side of the medulla and is composed of two groups; the parafacial respiratory group (pFRG) and the pre-Bötzinger complex group (preBötC). The pFRG partially overlaps in the retrotrapezoid nucleus (RTN), which was originally identified in adult cats and rats. Part of the pre-inspiratory (Pre-I) neurons in the RTN/pFRG serves as central chemoreceptor neurons and the CO2 sensitive Pre-I neurons express homeobox gene Phox2b. Phox2b encodes a transcription factor and is essential for the development of the sensory-motor visceral circuits. Mutations in human PHOX2B cause congenital hypoventilation syndrome, which is characterized by blunted ventilatory response to hypercapnia. Here we describe the generation of a novel transgenic (Tg) rat harboring fluorescently labeled Pre-I neurons in the RTN/pFRG. In addition, the Tg rat showed fluorescent signals in autonomic enteric neurons and carotid bodies. Because the Tg rat expresses inducible Cre recombinase in PHOX2B-positive cells during development, it is a potentially powerful tool for dissecting the entire picture of the respiratory neural network during development and for identifying the CO2/O2 sensor molecules in the adult central and peripheral nervous systems.
Collapse
Affiliation(s)
- Keiko Ikeda
- Division of Biology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
- Division of Biology, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
- * E-mail:
| | - Masanori Takahashi
- Division of Biology, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Shigeru Sato
- Division of Biology, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Hiroyuki Igarashi
- Department of Physiology, and Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Toru Ishizuka
- Department of Developmental Biology and Neuroscience, Tohoku University Graduate School of Life Sciences and JST/CREST, Sendai, Miyagi, Japan
| | - Hiromu Yawo
- Department of Physiology, and Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Developmental Biology and Neuroscience, Tohoku University Graduate School of Life Sciences and JST/CREST, Sendai, Miyagi, Japan
| | - Satoru Arata
- Center for Biotechnology, Showa University, Shinagawa, Tokyo, Japan
| | - E. Michelle Southard-Smith
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Kiyoshi Kawakami
- Division of Biology, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Hiroshi Onimaru
- Department of Physiology, Showa University School of Medicine, Shinagawa, Tokyo, Japan
| |
Collapse
|
238
|
Jaiswal SJ, Wollman LB, Harrison CM, Pilarski JQ, Fregosi RF. Developmental nicotine exposure enhances inhibitory synaptic transmission in motor neurons and interneurons critical for normal breathing. Dev Neurobiol 2015; 76:337-54. [PMID: 26097160 DOI: 10.1002/dneu.22318] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 04/06/2015] [Accepted: 06/05/2015] [Indexed: 11/06/2022]
Abstract
Nicotine exposure in utero negatively affects neuronal growth, differentiation, and synaptogenesis. We used rhythmic brainstems slices and immunohistochemistry to determine how developmental nicotine exposure (DNE) alters inhibitory neurotransmission in two regions essential to normal breathing, the hypoglossal motor nucleus (XIIn), and preBötzinger complex (preBötC). We microinjected glycine or muscimol (GABAA agonist) into the XIIn or preBötC of rhythmic brainstem slices from neonatal rats while recording from XII nerve roots to obtain XII motoneuron population activity. Injection of glycine or muscimol into the XIIn reduced XII nerve burst amplitude, while injection into the preBötC altered nerve burst frequency. These responses were exaggerated in preparations from DNE animals. Quantitative immunohistochemistry revealed a significantly higher GABAA receptor density on XII motoneurons from DNE pups. There were no differences in GABAA receptor density in the preBötC, and there were no differences in glycine receptor expression in either region. Nicotine, in the absence of other chemicals in tobacco smoke, alters normal development of brainstem circuits that are critical for normal breathing.
Collapse
Affiliation(s)
- Stuti J Jaiswal
- Department of Neuroscience, The University of Arizona, Tucson, Arizona, 85721
| | - Lila Buls Wollman
- Department of Physiology, The University of Arizona, Tucson, Arizona, 85724
| | - Caitlyn M Harrison
- Department of Physiology, The University of Arizona, Tucson, Arizona, 85724
| | - Jason Q Pilarski
- Department of Physiology, The University of Arizona, Tucson, Arizona, 85724
| | - Ralph F Fregosi
- Department of Neuroscience, The University of Arizona, Tucson, Arizona, 85721.,Department of Physiology, The University of Arizona, Tucson, Arizona, 85724
| |
Collapse
|
239
|
Fukuda K, Kanazawa H, Aizawa Y, Ardell JL, Shivkumar K. Cardiac innervation and sudden cardiac death. Circ Res 2015; 116:2005-19. [PMID: 26044253 PMCID: PMC4465108 DOI: 10.1161/circresaha.116.304679] [Citation(s) in RCA: 260] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/11/2014] [Indexed: 12/14/2022]
Abstract
Afferent and efferent cardiac neurotransmission via the cardiac nerves intricately modulates nearly all physiological functions of the heart (chronotropy, dromotropy, lusitropy, and inotropy). Afferent information from the heart is transmitted to higher levels of the nervous system for processing (intrinsic cardiac nervous system, extracardiac-intrathoracic ganglia, spinal cord, brain stem, and higher centers), which ultimately results in efferent cardiomotor neural impulses (via the sympathetic and parasympathetic nerves). This system forms interacting feedback loops that provide physiological stability for maintaining normal rhythm and life-sustaining circulation. This system also ensures that there is fine-tuned regulation of sympathetic-parasympathetic balance in the heart under normal and stressed states in the short (beat to beat), intermediate (minutes to hours), and long term (days to years). This important neurovisceral/autonomic nervous system also plays a major role in the pathophysiology and progression of heart disease, including heart failure and arrhythmias leading to sudden cardiac death. Transdifferentiation of neurons in heart failure, functional denervation, cardiac and extracardiac neural remodeling has also been identified and characterized during the progression of disease. Recent advances in understanding the cellular and molecular processes governing innervation and the functional control of the myocardium in health and disease provide a rational mechanistic basis for the development of neuraxial therapies for preventing sudden cardiac death and other arrhythmias. Advances in cellular, molecular, and bioengineering realms have underscored the emergence of this area as an important avenue of scientific inquiry and therapeutic intervention.
Collapse
Affiliation(s)
- Keiichi Fukuda
- From the Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (K.F., H.K., Y.A.); and UCLA Cardiac Arrhythmia Center, Neurocardiology Research Center of Excellence (J.L.A., K.S.).
| | - Hideaki Kanazawa
- From the Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (K.F., H.K., Y.A.); and UCLA Cardiac Arrhythmia Center, Neurocardiology Research Center of Excellence (J.L.A., K.S.)
| | - Yoshiyasu Aizawa
- From the Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (K.F., H.K., Y.A.); and UCLA Cardiac Arrhythmia Center, Neurocardiology Research Center of Excellence (J.L.A., K.S.)
| | - Jeffrey L Ardell
- From the Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (K.F., H.K., Y.A.); and UCLA Cardiac Arrhythmia Center, Neurocardiology Research Center of Excellence (J.L.A., K.S.)
| | - Kalyanam Shivkumar
- From the Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (K.F., H.K., Y.A.); and UCLA Cardiac Arrhythmia Center, Neurocardiology Research Center of Excellence (J.L.A., K.S.).
| |
Collapse
|
240
|
Respiratory deficits in a rat model of Parkinson’s disease. Neuroscience 2015; 297:194-204. [DOI: 10.1016/j.neuroscience.2015.03.048] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/11/2015] [Accepted: 03/19/2015] [Indexed: 11/19/2022]
|
241
|
Burke PGR, Kanbar R, Basting TM, Hodges WM, Viar KE, Stornetta RL, Guyenet PG. State-dependent control of breathing by the retrotrapezoid nucleus. J Physiol 2015; 593:2909-26. [PMID: 25820491 DOI: 10.1113/jp270053] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 03/19/2015] [Indexed: 01/05/2023] Open
Abstract
KEY POINTS This study explores the state dependence of the hypercapnic ventilatory reflex (HCVR). We simulated an instantaneous increase or decrease of central chemoreceptor activity by activating or inhibiting the retrotrapezoid nucleus (RTN) by optogenetics in conscious rats. During quiet wake or non-REM sleep, hypercapnia increased both breathing frequency (fR ) and tidal volume (VT ) whereas, in REM sleep, hypercapnia increased VT exclusively. Optogenetic inhibition of RTN reduced VT in all sleep-wake states, but reduced fR only during quiet wake and non-REM sleep. RTN stimulation always increased VT but raised fR only in quiet wake and non-REM sleep. Phasic RTN stimulation produced active expiration and reduced early expiratory airflow (i.e. increased upper airway resistance) only during wake. We conclude that the HCVR is highly state-dependent. The HCVR is reduced during REM sleep because fR is no longer under chemoreceptor control and thus could explain why central sleep apnoea is less frequent in REM sleep. ABSTRACT Breathing has different characteristics during quiet wake, non-REM or REM sleep, including variable dependence on PCO2. We investigated whether the retrotrapezoid nucleus (RTN), a proton-sensitive structure that mediates a large portion of the hypercapnic ventilatory reflex, regulates breathing differently during sleep vs. wake. Electroencephalogram, neck electromyogram, blood pressure, respiratory frequency (fR ) and tidal volume (VT ) were recorded in 28 conscious adult male Sprague-Dawley rats. Optogenetic stimulation of RTN with channelrhodopsin-2, or inhibition with archaerhodopsin, simulated an instantaneous increase or decrease of central chemoreceptor activity. Both opsins were delivered with PRSX8-promoter-containing lentiviral vectors. RTN and catecholaminergic neurons were transduced. During quiet wake or non-REM sleep, hypercapnia (3 or 6% FI,CO2 ) increased both fR and VT whereas, in REM sleep, hypercapnia increased VT exclusively. RTN inhibition always reduced VT but reduced fR only during quiet wake and non-REM sleep. RTN stimulation always increased VT but raised fR only in quiet wake and non-REM sleep. Blood pressure was unaffected by either stimulation or inhibition. Except in REM sleep, phasic RTN stimulation entrained and shortened the breathing cycle by selectively shortening the post-inspiratory phase. Phasic stimulation also produced active expiration and reduced early expiratory airflow but only during wake. VT is always regulated by RTN and CO2 but fR is regulated by CO2 and RTN only when the brainstem pattern generator is in autorhythmic mode (anaesthesia, non-REM sleep, quiet wake). The reduced contribution of RTN to breathing during REM sleep could explain why certain central apnoeas are less frequent during this sleep stage.
Collapse
Affiliation(s)
- Peter G R Burke
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Roy Kanbar
- Department of Pharmaceutical Sciences, Lebanese American University, Beyrouth, Lebanon
| | - Tyler M Basting
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Walter M Hodges
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Kenneth E Viar
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Ruth L Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Patrice G Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, USA
| |
Collapse
|
242
|
Medina-Martínez JS, Greising SM, Sieck GC, Mantilla CB. Semi-automated assessment of transdiaphragmatic pressure variability across motor behaviors. Respir Physiol Neurobiol 2015; 215:73-81. [PMID: 26003850 DOI: 10.1016/j.resp.2015.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 05/13/2015] [Accepted: 05/15/2015] [Indexed: 10/23/2022]
Abstract
We developed and tested a semi-automated algorithm to generate large data sets of ventilatory information (amplitude, premotor drive and timing) across a range of motor behaviors. Adult spontaneously breathing, anesthetized mice (n = 27) underwent measurements of transdiaphragmatic pressure (Pdi) during eupnea, hypoxia-hypercapnia, and tracheal occlusion with values ranging from 8 ± 1 to 9 ± 2 to 44 ± 3 cmH2O, respectively. Premotor drive to phrenic motor neurons (estimated by the rate of rise during initial 60 ms) was ∼ 5-fold greater during tracheal occlusion compared to other behaviors. Variability in Pdi amplitude (normalized to spontaneously occurring sighs for each animal) displayed minimal evidence of complex temporal structure or dynamic clustering across the entire period of examination. Using a deterministic model to evaluate predictor variables for Pdi amplitude between successive inspiratory events, there was a large correlation for premotor drive and preceding Pdi amplitude vs. Pdi amplitude (r = 0.52). These findings highlight substantial variability in Pdi amplitude that primarily reflects linear components rather than complex, dynamic effects over time.
Collapse
Affiliation(s)
- Juan S Medina-Martínez
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Sarah M Greising
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA; Department of Anesthesiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Carlos B Mantilla
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA; Department of Anesthesiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
243
|
Bondarenko E, Beig MI, Hodgson DM, Braga VA, Nalivaiko E. Blockade of the dorsomedial hypothalamus and the perifornical area inhibits respiratory responses to arousing and stressful stimuli. Am J Physiol Regul Integr Comp Physiol 2015; 308:R816-22. [DOI: 10.1152/ajpregu.00415.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 03/05/2015] [Indexed: 11/22/2022]
Abstract
The dorsomedial hypothalamus (DMH) and the perifornical area (DMH/PeF) is one of the key regions of central autonomic processing. Previous studies have established that this region contains neurons that may be involved in respiratory processing; however, this has never been tested in conscious animals. The aim of our study was to investigate the involvement of the DMH/PeF area in mediating respiratory responses to stressors of various intensities and duration. Adult male Wistar rats ( n = 8) received microinjections of GABAA agonist muscimol or saline into the DMH/PeF bilaterally and were subjected to a respiratory recording using whole body plethysmography. Presentation of acoustic stimuli (500-ms white noise) evoked transient responses in respiratory rate, proportional to the stimulus intensity, ranging from +44 ± 27 to +329 ± 31 cycles/min (cpm). Blockade of the DMH/PeF almost completely abolished respiratory rate and tidal volume responses to the 40- to 70-dB stimuli and also significantly attenuated responses to the 80- to 90-dB stimuli. Also, it significantly attenuated respiratory rate during the acclimatization period (novel environment stress). The light stimulus (30-s 2,000 lux) as well as 15-min restraint stress significantly elevated respiratory rate from 95 ± 4.0 to 236 ± 29 cpm and from 117 ± 5.2 to 189 ± 13 cpm, respectively; this response was abolished after the DMH/PeF blockade. We conclude that integrity of the DMH/PeF area is essential for generation of respiratory responses to both stressful and alerting stimuli.
Collapse
Affiliation(s)
| | | | | | - Valdir A. Braga
- Biotechnology Centre, Federal University of Paraiba, Joao Pessoa, Paraiba, Brazil
| | | |
Collapse
|
244
|
Marchenko V, Ghali MGZ, Rogers RF. The role of spinal GABAergic circuits in the control of phrenic nerve motor output. Am J Physiol Regul Integr Comp Physiol 2015; 308:R916-26. [PMID: 25833937 DOI: 10.1152/ajpregu.00244.2014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 03/26/2015] [Indexed: 01/20/2023]
Abstract
While supraspinal mechanisms underlying respiratory pattern formation are well characterized, the contribution of spinal circuitry to the same remains poorly understood. In this study, we tested the hypothesis that intraspinal GABAergic circuits are involved in shaping phrenic motor output. To this end, we performed bilateral phrenic nerve recordings in anesthetized adult rats and observed neurogram changes in response to knocking down expression of both isoforms (65 and 67 kDa) of glutamate decarboxylase (GAD65/67) using microinjections of anti-GAD65/67 short-interference RNA (siRNA) in the phrenic nucleus. The number of GAD65/67-positive cells was drastically reduced on the side of siRNA microinjections, especially in the lateral aspects of Rexed's laminae VII and IX in the ventral horn of cervical segment C4, but not contralateral to microinjections. We hypothesize that intraspinal GABAergic control of phrenic output is primarily phasic, but also plays an important role in tonic regulation of phrenic discharge. Also, we identified respiration-modulated GABAergic interneurons (both inspiratory and expiratory) located slightly dorsal to the phrenic nucleus. Our data provide the first direct evidence for the existence of intraspinal GABAergic circuits contributing to the formation of phrenic output. The physiological role of local intraspinal inhibition, independent of descending direct bulbospinal control, is discussed.
Collapse
Affiliation(s)
- Vitaliy Marchenko
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Michael G Z Ghali
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Robert F Rogers
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
245
|
Abstract
Contiguous brain regions associated with a given behavior are increasingly being divided into subregions associated with distinct aspects of that behavior. Using recently developed neuronal hyperpolarizing technologies, we functionally dissect the parafacial region in the medulla, which contains key elements of the central pattern generator for breathing that are important in central CO2-chemoreception and for gating active expiration. By transfecting different populations of neighboring neurons with allatostatin or HM4D Gi/o-coupled receptors, we analyzed the effect of their hyperpolarization on respiration in spontaneously breathing vagotomized urethane-anesthetized rats. We identify two functionally separate parafacial nuclei: ventral (pFV) and lateral (pFL). Disinhibition of the pFL with bicuculline and strychnine led to active expiration. Hyperpolarizing pFL neurons had no effect on breathing at rest, or changes in inspiratory activity induced by hypoxia and hypercapnia; however, hyperpolarizing pFL neurons attenuated active expiration when it was induced by hypercapnia, hypoxia, or disinhibition of the pFL. In contrast, hyperpolarizing pFV neurons affected breathing at rest by decreasing inspiratory-related activity, attenuating the hypoxia- and hypercapnia-induced increase in inspiratory activity, and when present, reducing expiratory-related abdominal activity. Together with previous observations, we conclude that the pFV provides a generic excitatory drive to breathe, even at rest, whereas the pFL is a conditional oscillator quiet at rest that, when activated, e.g., during exercise, drives active expiration.
Collapse
|
246
|
Hengen KB, Nelson NR, Stang KM, Johnson SM, Smith SM, Watters JJ, Mitchell GS, Behan M. Daily isoflurane exposure increases barbiturate insensitivity in medullary respiratory and cortical neurons via expression of ε-subunit containing GABA ARs. PLoS One 2015; 10:e0119351. [PMID: 25748028 PMCID: PMC4352015 DOI: 10.1371/journal.pone.0119351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 01/12/2015] [Indexed: 11/23/2022] Open
Abstract
The parameters governing GABAA receptor subtype expression patterns are not well understood, although significant shifts in subunit expression may support key physiological events. For example, the respiratory control network in pregnant rats becomes relatively insensitive to barbiturates due to increased expression of ε-subunit-containing GABAARs in the ventral respiratory column. We hypothesized that this plasticity may be a compensatory response to a chronic increase in inhibitory tone caused by increased central neurosteroid levels. Thus, we tested whether increased inhibitory tone was sufficient to induce ε-subunit upregulation on respiratory and cortical neurons in adult rats. Chronic intermittent increases in inhibitory tone in male and female rats was induced via daily 5-min exposures to 3% isoflurane. After 7d of treatment, phrenic burst frequency was less sensitive to barbiturate in isoflurane-treated male and female rats in vivo. Neurons in the ventral respiratory group and cortex were less sensitive to pentobarbital in vitro following 7d and 30d of intermittent isoflurane-exposure in both male and female rats. The pentobarbital insensitivity in 7d isoflurane-treated rats was reversible after another 7d. We hypothesize that increased inhibitory tone in the respiratory control network and cortex causes a compensatory increase in ε-subunit-containing GABAARs.
Collapse
Affiliation(s)
- Keith B. Hengen
- Neuroscience Training Program, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
- * E-mail:
| | - Nathan R. Nelson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Kyle M. Stang
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Stephen M. Johnson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Stephanie M. Smith
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Jyoti J. Watters
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Gordon S. Mitchell
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Mary Behan
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
247
|
Mulkey DK, Hawkins VE, Hawryluk JM, Takakura AC, Moreira TS, Tzingounis AV. Molecular underpinnings of ventral surface chemoreceptor function: focus on KCNQ channels. J Physiol 2015; 593:1075-81. [PMID: 25603782 DOI: 10.1113/jphysiol.2014.286500] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/12/2015] [Indexed: 12/12/2022] Open
Abstract
Central chemoreception is the mechanism by which CO₂/H(+) -sensitive neurons (i.e. chemoreceptors) regulate breathing in response to changes in tissue CO₂/H(+) . Neurons in the retrotrapezoid nucleus (RTN) directly regulate breathing in response to changes in tissue CO₂/H(+) and function as a key locus of respiratory control by integrating information from several respiratory centres, including the medullary raphe. Therefore, chemosensitive RTN neurons appear to be critically important for maintaining breathing, thus understanding molecular mechanisms that regulate RTN chemoreceptor function may identify therapeutic targets for the treatment of respiratory control disorders. We have recently shown that KCNQ (Kv7) channels in the RTN are essential determinants of spontaneous activity ex vivo, and downstream effectors for serotonergic modulation of breathing. Considering that loss of function mutations in KCNQ channels can cause certain types of epilepsy including those associated with sudden unexplained death in epilepsy (SUDEP), we propose that dysfunctions of KCNQ channels may be one cause for epilepsy and respiratory problems associated with SUDEP. In this review, we will summarize the role of KCNQ channels in the regulation of RTN chemoreceptor function, and suggest that these channels represent useful therapeutic targets for the treatment of respiratory control disorders.
Collapse
Affiliation(s)
- Daniel K Mulkey
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, 06269, USA
| | | | | | | | | | | |
Collapse
|
248
|
Dzal YA, Jenkin SEM, Lague SL, Reichert MN, York JM, Pamenter ME. Oxygen in demand: How oxygen has shaped vertebrate physiology. Comp Biochem Physiol A Mol Integr Physiol 2015; 186:4-26. [PMID: 25698654 DOI: 10.1016/j.cbpa.2014.10.029] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 10/07/2014] [Accepted: 10/10/2014] [Indexed: 10/24/2022]
Abstract
In response to varying environmental and physiological challenges, vertebrates have evolved complex and often overlapping systems. These systems detect changes in environmental oxygen availability and respond by increasing oxygen supply to the tissues and/or by decreasing oxygen demand at the cellular level. This suite of responses is termed the oxygen transport cascade and is comprised of several components. These components include 1) chemosensory detectors that sense changes in oxygen, carbon dioxide, and pH in the blood, and initiate changes in 2) ventilation and 3) cardiac work, thereby altering the rate of oxygen delivery to, and carbon dioxide clearance from, the tissues. In addition, changes in 4) cellular and systemic metabolism alters tissue-level metabolic demand. Thus the need for oxygen can be managed locally when increasing oxygen supply is not sufficient or possible. Together, these mechanisms provide a spectrum of responses that facilitate the maintenance of systemic oxygen homeostasis in the face of environmental hypoxia or physiological oxygen depletion (i.e. due to exercise or disease). Bill Milsom has dedicated his career to the study of these responses across phylogenies, repeatedly demonstrating the power of applying the comparative approach to physiological questions. The focus of this review is to discuss the anatomy, signalling pathways, and mechanics of each step of the oxygen transport cascade from the perspective of a Milsomite. That is, by taking into account the developmental, physiological, and evolutionary components of questions related to oxygen transport. We also highlight examples of some of the remarkable species that have captured Bill's attention through their unique adaptations in multiple components of the oxygen transport cascade, which allow them to achieve astounding physiological feats. Bill's research examining the oxygen transport cascade has provided important insight and leadership to the study of the diverse suite of adaptations that maintain cellular oxygen content across vertebrate taxa, which underscores the value of the comparative approach to the study of physiological systems.
Collapse
Affiliation(s)
- Yvonne A Dzal
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Sarah E M Jenkin
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Sabine L Lague
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Michelle N Reichert
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Julia M York
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Matthew E Pamenter
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
249
|
Takita K, Morimoto Y. Nociceptin/orphanin FQ slows inspiratory rhythm via its direct effects on the pre-Bötzinger complex. Respir Physiol Neurobiol 2015; 207:14-21. [PMID: 25500622 DOI: 10.1016/j.resp.2014.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 12/03/2014] [Accepted: 12/04/2014] [Indexed: 10/24/2022]
Abstract
In a previous study, we showed that in an in vitro en bloc preparation of newborn rats perfused with standard [K(+)] (6.2mM) and high [K(+)] (11.2mM) artificial cerebrospinal fluid (aCSF), nociceptin/orphanin FQ (N/OFQ) suppresses bursting of pre-inspiratory neurons with 1:1 coupling to the fictive inspiration. However, it is unclear whether the pre-Bötzinger complex (preBötC) is involved in the N/OFQ-induced slowing. Using in vitro en bloc preparations with and without the retrotrapezoid nucleus/parafacial respiratory group (RTN/pFRG) perfused with high [K(+)] aCSF, we found the following: (1) there were no differences in the effects of N/OFQ on the inspiratory rhythm between the preparations with and without the RTN/pFRG, (2) N/OFQ decreased the input resistance of inspiratory neurons (Insps) in the preparations without the RTN/pFRG and suppressed their ectopic firing activities, and (3) N/OFQ suppressed the spontaneous firing of Insps under a chemical synaptic transmission blockade. In conclusion, it is possible that the preBötC is involved in N/OFQ-induced inspiratory rhythm slowing.
Collapse
Affiliation(s)
- Koichi Takita
- Department of Anesthesiology, Hokkaido University Graduate School of Medicine, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-8638, Japan.
| | - Yuji Morimoto
- Department of Anesthesiology, Hokkaido University Graduate School of Medicine, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-8638, Japan
| |
Collapse
|
250
|
Gill LC, Mantilla CB, Sieck GC. Impact of unilateral denervation on transdiaphragmatic pressure. Respir Physiol Neurobiol 2015; 210:14-21. [PMID: 25641347 DOI: 10.1016/j.resp.2015.01.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 01/14/2015] [Accepted: 01/21/2015] [Indexed: 11/28/2022]
Abstract
The diaphragm muscle (DIAm) has a large reserve capacity for force generation such that in rats, the transdiaphragmatic pressure (Pdi) generated during ventilatory behaviors is less than 50% of maximal Pdi (Pd(imax)) elicited by bilateral phrenic nerve stimulation. Accordingly, we hypothesized that following unilateral denervation (DNV), the ability of the contralateral DIAm to generate sufficient Pdi to accomplish ventilatory behaviors will not be compromised and normal ventilation (as determined by arterial blood gas measurements) will not be impacted, although neural drive to the DIAm increases. In contrast, we hypothesized that higher force, non-ventilatory behaviors requiring Pdi generation greater than 50% of Pd(imax) will be compromised following DIAm hemiparalysis, i.e., increased neural drive cannot fully compensate for lack of force generating capacity. Pdi generated during ventilatory behaviors (eupnea and hypoxia (10% O2)-hypercapnia (5% CO2)) did not change after DNV and arterial blood gases were unaffected by DNV. However, neural drive to the contralateral DIAm, assessed by the rate of rise of root mean squared (RMS) EMG at 75 ms after onset of inspiratory activity (RMS75), increased after DNV (p<0.05). In contrast, Pdi generated during higher force, non-ventilatory behaviors was significantly reduced after DNV (p < 0.01), while RMS75 was unchanged. These findings support our hypothesis that only non-ventilatory behaviors requiring Pdi generation greater than 50% of Pd(imax) are impacted after DNV. Clinically, these results indicate that an evaluation of DIAm weakness requires examination of Pdi across multiple motor behaviors, not just ventilation.
Collapse
Affiliation(s)
- Luther C Gill
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN, USA
| | - Carlos B Mantilla
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN, USA; Department of Anesthesiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN, USA; Department of Anesthesiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|