201
|
Lung SC, Chye ML. Arabidopsis acyl-CoA-binding proteins regulate the synthesis of lipid signals. THE NEW PHYTOLOGIST 2019; 223:113-117. [PMID: 30676650 DOI: 10.1111/nph.15707] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/11/2019] [Indexed: 05/20/2023]
Abstract
Plant lipid signals are crucial developmental modulators and stress response mediators. A family of acyl-CoA-binding proteins (ACBPs) participates in the lipid trafficking of these signals. Isoform-specific functions can arise from differences in their subcellular distribution, tissue-specificity, stress-responsiveness, and ligand selectivity. In lipid-mediated cell signaling, plant ACBPs are not merely transporters but are also important regulators via their interaction with lipid-metabolic enzymes and precursor lipids. In this Insight, the regulatory roles of plant ACBPs in the synthesis of various signaling lipids, including phosphatidic acid, sterols, oxylipins, and sphingolipids, are reviewed. We focus on the functional significance of these lipid signals in plant development and stress responses with an overview of recent work using reverse genetics and transgenic Arabidopsis.
Collapse
Affiliation(s)
- Shiu-Cheung Lung
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| |
Collapse
|
202
|
Yang S, Pan L, Chen Y, Yang D, Liu Q, Jian H. Heterodera avenae GLAND5 Effector Interacts With Pyruvate Dehydrogenase Subunit of Plant to Promote Nematode Parasitism. Front Microbiol 2019; 10:1241. [PMID: 31214156 PMCID: PMC6558007 DOI: 10.3389/fmicb.2019.01241] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 05/17/2019] [Indexed: 01/04/2023] Open
Abstract
Heterodera avenae mainly infects cereal crops and causes severe economic losses. Many studies have shown that parasitic nematodes can secrete effector proteins to suppress plant immune responses and then promote parasitism. In this study, we showed that HaGland5, a novel effector of H. avenae, was exclusively expressed in dorsal esophageal gland cell of nematode, and up-regulated in the early parasitic stage. Transgenic Arabidopsis thaliana lines expressing HaGland5 were significantly more susceptible to H. schachtii than wild-type control plants. Conversely, silencing of HaGland5 through barley stripe mosaic virus-medicated host-induced gene silencing technique substantially reduced the infection of H. avenae in wheat. Moreover, HaGland5 could suppress the plant defense responses, including the repression of plant defense-related genes, reducing deposition of cell wall callose and the burst of reactive oxygen species. Mass spectrometry, co-immunoprecipitation, and firefly luciferase complementation imaging assays confirmed that HaGland5 interacted specifically with Arabidopsis pyruvate dehydrogenase subunit (AtEMB3003).
Collapse
Affiliation(s)
- Shanshan Yang
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, China
| | - Lingling Pan
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, China
| | - Yongpan Chen
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, China
| | - Dan Yang
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, China
| | - Qian Liu
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, China
| | - Heng Jian
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, China
| |
Collapse
|
203
|
Farahbakhsh F, Hamzehzarghani H, Massah A, Tortosa M, Yassaie M, Rodriguez VM. Comparative metabolomics of temperature sensitive resistance to wheat streak mosaic virus (WSMV) in resistant and susceptible wheat cultivars. JOURNAL OF PLANT PHYSIOLOGY 2019; 237:30-42. [PMID: 31005806 DOI: 10.1016/j.jplph.2019.03.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 03/06/2019] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
In order to evaluate wheat resistance to wheat streak mosaic virus (WSMV) at low temperature and resistance breakdown at high temperature, metabolic profile of WSMV-resistant (R) and susceptible (S) wheat cultivars were analyzed. Metabolites were detected by UPLC-QTOF/MS in leaves of R and S plants challenged with WSMV at 20 °C and 32 °C, 24, 48 and 72 h post inoculation (hpi). WSMV and mock inoculated plants were used for discriminating the most significant metabolites and metabolic pathways affected at those temperatures. At 24 hpi/20 °C and 48 hpi/20 °C, the most important metabolites in R plants were coumarins, a limited number of lipids, and unknown compounds, while at 72 hpi/20 °C, in addition to coumarins, alkaloids and several amino acids were increased. Compared to 24 and 48 hpi, at 72hpi, in R plants most metabolic pathways were up-regulated at 20 °C. These resistance-related specific pathways included amino acid metabolism, lipid metabolism and alkaloids pathways. Also, several pathways were up-regulated at 32 °C.These combined heat stress and pathogen related pathways, included lipid metabolism and amino acid metabolism. Some carbohydrate metabolism pathways were considered as heat stress related pathways and could be associated with resistance breakdown. On the other hand, the increased expression of lipid compounds, especially 24 hpi at 32 °C in R plant, can be attributed to plant adaptation to combined stressors such as pathogen and high temperature. Increased susceptibility of R plants at 32 °C coincided with a down-regulated expression of components of signal transduction pathways or in a decreased level of metabolites related to this pathway, especially at a later time after infection, leading to decreased metabolite signaling. Decrease of signaling compounds under combined stress is a possible outcome of deactivating WSMV specific signaling networks leading to compatible response in R plants. The significance of these findings considering the recent increase of global temperature and the challenge of breakdown of temperature sensitive resistance to some plant viruses is discussed.
Collapse
Affiliation(s)
- F Farahbakhsh
- Plant Protection Department, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - H Hamzehzarghani
- Plant Protection Department, Shiraz University, Bajgah, Shiraz, Iran.
| | - A Massah
- Plant Protection Department, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - M Tortosa
- Group of Genetics, Breeding and Biochemistry of Brassicas. Misión Biológica de Galicia (MBG-CSIC), Apartado 28, 36080 Pontevedra, Spain
| | - M Yassaie
- Seed and Plant Improvement Research Department, Fars Agricultural and Natural Resources Research and Education Center, AREEO, Shiraz, Iran
| | - V M Rodriguez
- Group of Genetics, Breeding and Biochemistry of Brassicas. Misión Biológica de Galicia (MBG-CSIC), Apartado 28, 36080 Pontevedra, Spain
| |
Collapse
|
204
|
Kang K, Yue L, Xia X, Liu K, Zhang W. Comparative metabolomics analysis of different resistant rice varieties in response to the brown planthopper Nilaparvata lugens Hemiptera: Delphacidae. Metabolomics 2019; 15:62. [PMID: 30976994 PMCID: PMC6459800 DOI: 10.1007/s11306-019-1523-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/01/2019] [Indexed: 12/21/2022]
Abstract
INTRODUCTION The brown planthopper (BPH, Nilaparvata lugens Stål, Hemiptera: Delphacidae) is one of the most devastating insect pests of the crucially important cereal crop, rice (Oryza sativa L.). Currently, multiple BPH-resistant rice varieties have been cultivated and generalized to control BPH. However, the defence metabolic responses and their modes of action against BPH in different rice cultivars remain uncharacterized. OBJECTIVE We used a non-biased metabolomics approach to explore the differences in metabolite profiles in response to BPH infestation in the susceptible TN1 rice cultivar and two resistant cultivars (IR36 and IR56). METHODS The metabolomic detection based on gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) was performed to investigate the content changes of identified metabolites in TN1, IR36 and IR56 rice varieties at various time points (0 h, 24 h, 48 h and 96 h) post BPH feeding. The differentially expressed metabolites were screened and the corresponding metabolic pathways were further enriched. RESULTS The results showed that compared to that in TN1, the content changes of most primary metabolites were more stable, but the concentration alterations of some defence-related metabolites were more acute and persistent in IR36 and IR56. Furthermore, the differentially expressed pathways analysis revealed that cyanoamino acids and lipids metabolism was persistently induced in IR36, but changes in thiamine, taurine and hypotaurine metabolism were more significant in IR56 during BPH infestation. Besides, the contents of quercetin and spermidine which were harmful to BPH fitness, were significantly elevated by BPH in TN1 and IR36, and the quercetin level was significantly decreased during BPH feeding in IR56. CONCLUSION The results of the differences in metabolite profiles in response to BPH infestation in different rice cultivars were useful to clarify the metabolic mechanism of rice plants during BPH infestation and to provide new resources to control this insect pest.
Collapse
Affiliation(s)
- Kui Kang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Lei Yue
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Xin Xia
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Kai Liu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Wenqing Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.
| |
Collapse
|
205
|
Nascimento R, Maia M, Ferreira AEN, Silva AB, Freire AP, Cordeiro C, Silva MS, Figueiredo A. Early stage metabolic events associated with the establishment of Vitis vinifera - Plasmopara viticola compatible interaction. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 137:1-13. [PMID: 30710794 DOI: 10.1016/j.plaphy.2019.01.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 05/25/2023]
Abstract
Grapevine (Vitis vinifera L.) is the most widely cultivated and economically important fruit crop in the world, with 7.5 million of production area in 2017. The domesticated varieties of grapevine are highly susceptible to many fungal infections, of which downy mildew, caused by the biotrophic oomycete Plasmopara viticola (Berk. et Curt.) Berl. et de Toni is one of the most threatening. In V. vinifera, several studies have shown that a weak and transient activation of a defense mechanism occurs, but it is easily overcome by the pathogen leading to the establishment of a compatible interaction. Major transcript, protein and physiologic changes were shown to occur at later infection time-points, but comprehensive data on the first hours of interaction is scarce. In the present work, we investigated the major physiologic and metabolic changes that occur in the first 24 h of interaction between V. vinifera cultivar Trincadeira and P. viticola. Our results show that there was a negative modulation of several metabolic classes associated to pathogen defense such as flavonoids or phenylpropanoids as well as an alteration of carbohydrate content after inoculation with the pathogen. We also found an accumulation of hydrogen peroxide and increase of lipid peroxidation but to a low extent, that seems to be insufficient to restrain pathogen growth during the initial biotrophic phase of the interaction.
Collapse
Affiliation(s)
- Rui Nascimento
- Biosystems & Integrative Sciences Institute (BioISI), Science Faculty of Lisbon University, 1749-016, Lisboa, Portugal
| | - Marisa Maia
- Biosystems & Integrative Sciences Institute (BioISI), Science Faculty of Lisbon University, 1749-016, Lisboa, Portugal; Laboratório de FTICR e Espectrometria de Massa Estrutural, Faculdade de Ciências da Universidade de Lisboa, Portugal; Centro de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Portugal
| | - António E N Ferreira
- Laboratório de FTICR e Espectrometria de Massa Estrutural, Faculdade de Ciências da Universidade de Lisboa, Portugal; Centro de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Portugal
| | - Anabela B Silva
- Biosystems & Integrative Sciences Institute (BioISI), Science Faculty of Lisbon University, 1749-016, Lisboa, Portugal
| | - Ana Ponces Freire
- Centro de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Portugal
| | - Carlos Cordeiro
- Laboratório de FTICR e Espectrometria de Massa Estrutural, Faculdade de Ciências da Universidade de Lisboa, Portugal; Centro de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Portugal
| | - Marta Sousa Silva
- Laboratório de FTICR e Espectrometria de Massa Estrutural, Faculdade de Ciências da Universidade de Lisboa, Portugal; Centro de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Portugal.
| | - Andreia Figueiredo
- Biosystems & Integrative Sciences Institute (BioISI), Science Faculty of Lisbon University, 1749-016, Lisboa, Portugal.
| |
Collapse
|
206
|
Li J, Wang X. Phospholipase D and phosphatidic acid in plant immunity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 279:45-50. [PMID: 30709492 DOI: 10.1016/j.plantsci.2018.05.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/21/2018] [Accepted: 05/23/2018] [Indexed: 05/20/2023]
Abstract
Phospholipase D (PLD) hydrolyzes membrane phospholipids to generate phosphatidic acid (PA). Both PLD and its lipid product PA are involved in various physiological processes, including plant response to pathogens. The PLD family is comprised of multiple members in higher plants, and PLDs have been reported to play positive and/or negative roles in plant immunity, depending on the types of pathogens and specific PLDs involved. Individual PLDs have distinguishable biochemical properties, such as Ca2+ and phosphatidylinositide requirements. In addition, PLDs and PA are found to interact with various proteins in hormone and stress signaling. The different biochemical and regulatory properties of PLDs and PA shed light on the mechanisms for the functional diversity of PLDs in plant defense signaling and response.
Collapse
Affiliation(s)
- Jianwu Li
- Henan Agricultural University, Henan, 450002, China; Department of Biology, University of Missouri, St. Louis, MO 63121, United States; Donald Danforth Plant Science Center, St. Louis, MO 63132, United States.
| | - Xuemin Wang
- Department of Biology, University of Missouri, St. Louis, MO 63121, United States; Donald Danforth Plant Science Center, St. Louis, MO 63132, United States.
| |
Collapse
|
207
|
Gerphagnon M, Agha R, Martin‐Creuzburg D, Bec A, Perriere F, Rad‐Menéndez C, Gachon CM, Wolinska J. Comparison of sterol and fatty acid profiles of chytrids and their hosts reveals trophic upgrading of nutritionally inadequate phytoplankton by fungal parasites. Environ Microbiol 2019; 21:949-958. [DOI: 10.1111/1462-2920.14489] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/29/2018] [Accepted: 11/20/2018] [Indexed: 01/28/2023]
Affiliation(s)
- Mélanie Gerphagnon
- Department of Ecosystem Research, Leibniz‐Institute of Freshwater Ecology and Inland Fisheries (IGB) Germany
| | - Ramsy Agha
- Department of Ecosystem Research, Leibniz‐Institute of Freshwater Ecology and Inland Fisheries (IGB) Germany
| | - Dominik Martin‐Creuzburg
- Limnological Institute, Department of Biology, University of Constance Mainaustrasse 252, 78464 Constance Germany
| | - Alexandre Bec
- Laboratoire Microorganismes: Génome et Environnement‐Université Clermont Auvergne France
| | - Fanny Perriere
- Laboratoire Microorganismes: Génome et Environnement‐Université Clermont Auvergne France
| | - Cecilia Rad‐Menéndez
- Culture Collection of Algae and ProtozoaScottish Association for Marine Science, Scottish Marine Institute UK
| | - Claire M.M. Gachon
- Culture Collection of Algae and ProtozoaScottish Association for Marine Science, Scottish Marine Institute UK
| | - Justyna Wolinska
- Department of Ecosystem Research, Leibniz‐Institute of Freshwater Ecology and Inland Fisheries (IGB) Germany
- Department of BiologyChemistry, Pharmacy, Institute of Biology, Freie Universität Germany
| |
Collapse
|
208
|
Mareya CR, Tugizimana F, Piater LA, Madala NE, Steenkamp PA, Dubery IA. Untargeted Metabolomics Reveal Defensome-Related Metabolic Reprogramming in Sorghum bicolor against Infection by Burkholderia andropogonis. Metabolites 2019; 9:metabo9010008. [PMID: 30609758 PMCID: PMC6359421 DOI: 10.3390/metabo9010008] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 12/21/2018] [Accepted: 12/24/2018] [Indexed: 12/27/2022] Open
Abstract
Burkholderia andropogonis is the causal agent of bacterial leaf stripe, one of the three major bacterial diseases affecting Sorghum bicolor. However, the biochemical aspects of the pathophysiological host responses are not well understood. An untargeted metabolomics approach was designed to understand molecular mechanisms underlying S. bicolor⁻B. andropogonis interactions. At the 4-leaf stage, two sorghum cultivars (NS 5511 and NS 5655) differing in disease tolerance, were infected with B. andropogonis and the metabolic changes monitored over time. The NS 5511 cultivar displayed delayed signs of wilting and lesion progression compared to the NS 5655 cultivar, indicative of enhanced resistance. The metabolomics results identified statistically significant metabolites as biomarkers associated with the sorghum defence. These include the phytohormones salicylic acid, jasmonic acid, and zeatin. Moreover, metabolic reprogramming in an array of chemically diverse metabolites that span a wide range of metabolic pathways was associated with the defence response. Signatory biomarkers included aromatic amino acids, shikimic acid, metabolites from the phenylpropanoid and flavonoid pathways, as well as fatty acids. Enhanced synthesis and accumulation of apigenin and derivatives thereof was a prominent feature of the altered metabolomes. The analyses revealed an intricate and dynamic network of the sorghum defence arsenal towards B. andropogonis in establishing an enhanced defensive capacity in support of resistance and disease suppression. The results pave the way for future analysis of the biosynthesis of signatory biomarkers and regulation of relevant metabolic pathways in sorghum.
Collapse
Affiliation(s)
- Charity R Mareya
- Centre for Plant Metabolomics Research, Department of Biochemistry, University of Johannesburg, Auckland Park 2006, Johannesburg, South Africa.
| | - Fidele Tugizimana
- Centre for Plant Metabolomics Research, Department of Biochemistry, University of Johannesburg, Auckland Park 2006, Johannesburg, South Africa.
| | - Lizelle A Piater
- Centre for Plant Metabolomics Research, Department of Biochemistry, University of Johannesburg, Auckland Park 2006, Johannesburg, South Africa.
| | - Ntakadzeni E Madala
- Centre for Plant Metabolomics Research, Department of Biochemistry, University of Johannesburg, Auckland Park 2006, Johannesburg, South Africa.
| | - Paul A Steenkamp
- Centre for Plant Metabolomics Research, Department of Biochemistry, University of Johannesburg, Auckland Park 2006, Johannesburg, South Africa.
| | - Ian A Dubery
- Centre for Plant Metabolomics Research, Department of Biochemistry, University of Johannesburg, Auckland Park 2006, Johannesburg, South Africa.
| |
Collapse
|
209
|
Wu Q, Li T, Chen X, Wen L, Yun Z, Jiang Y. Sodium dichloroisocyanurate delays ripening and senescence of banana fruit during storage. Chem Cent J 2018; 12:131. [PMID: 30519833 PMCID: PMC6768313 DOI: 10.1186/s13065-018-0503-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 11/27/2018] [Indexed: 01/07/2023] Open
Abstract
Banana as a typical climacteric fruit soften rapidly, resulting in a very short shelf life after harvest. Sodium dichloroisocyanurate (NaDCC) is reported to be an effectively antibacterial compound. Here, we investigated the effects of NaDCC on ripening and senescence of harvested banana fruit at physiological and molecular levels. Application of 200 mg L−1 NaDCC solution effectively inhibited the ripening and senescence of banana fruit after harvest. NaDCC treatment reduced greatly ethylene production rate and expressions of genes encoding 1-aminocyclopropane-1-carboxylate synthetase, 1-aminocyclopropane-1-carboxylate oxidase, ethylene-responsive transcription factor and EIN3-binding F-box protein. Meanwhile, NaDCC treatment down-regulated markedly the expressions of xyloglucan endotransglucosylase/hydrolase and pectinesterase genes. Furthermore, NaDCC treatment affected significantly the accumulation of ripening-related primary metabolites such as sugars and organic acids. Additionally, NaDCC treatment decreased the production of hydroxyl radical and increased 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging activity, reducing power and hydroxyl radical scavenging activity. In conclusion, NaDCC delayed effectively the ripening and senescence of harvested banana fruit via the reduced ethylene effect and enhanced antioxidant activity.
Collapse
Affiliation(s)
- Qixian Wu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100039, People's Republic of China
| | - Taotao Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, People's Republic of China
| | - Xi Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100039, People's Republic of China
| | - Lingrong Wen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, People's Republic of China
| | - Ze Yun
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, People's Republic of China
| | - Yueming Jiang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, People's Republic of China.
| |
Collapse
|
210
|
Mamode Cassim A, Gouguet P, Gronnier J, Laurent N, Germain V, Grison M, Boutté Y, Gerbeau-Pissot P, Simon-Plas F, Mongrand S. Plant lipids: Key players of plasma membrane organization and function. Prog Lipid Res 2018; 73:1-27. [PMID: 30465788 DOI: 10.1016/j.plipres.2018.11.002] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 12/29/2022]
Abstract
The plasma membrane (PM) is the biological membrane that separates the interior of all cells from the outside. The PM is constituted of a huge diversity of proteins and lipids. In this review, we will update the diversity of molecular species of lipids found in plant PM. We will further discuss how lipids govern global properties of the plant PM, explaining that plant lipids are unevenly distributed and are able to organize PM in domains. From that observation, it emerges a complex picture showing a spatial and multiscale segregation of PM components. Finally, we will discuss how lipids are key players in the function of PM in plants, with a particular focus on plant-microbe interaction, transport and hormone signaling, abiotic stress responses, plasmodesmata function. The last chapter is dedicated to the methods that the plant membrane biology community needs to develop to get a comprehensive understanding of membrane organization in plants.
Collapse
Affiliation(s)
- Adiilah Mamode Cassim
- Laboratoire de Biogenèse Membranaire (LBM), CNRS, University of Bordeaux, UMR 5200, F-33882 Villenave d'Ornon, France
| | - Paul Gouguet
- Laboratoire de Biogenèse Membranaire (LBM), CNRS, University of Bordeaux, UMR 5200, F-33882 Villenave d'Ornon, France
| | - Julien Gronnier
- Laboratoire de Biogenèse Membranaire (LBM), CNRS, University of Bordeaux, UMR 5200, F-33882 Villenave d'Ornon, France
| | - Nelson Laurent
- Agroécologie, AgroSup Dijon, INRA, University of Bourgogne Franche-Comté, F-21000 Dijon, ERL 6003 CNRS, Dijon, France
| | - Véronique Germain
- Laboratoire de Biogenèse Membranaire (LBM), CNRS, University of Bordeaux, UMR 5200, F-33882 Villenave d'Ornon, France
| | - Magali Grison
- Laboratoire de Biogenèse Membranaire (LBM), CNRS, University of Bordeaux, UMR 5200, F-33882 Villenave d'Ornon, France
| | - Yohann Boutté
- Laboratoire de Biogenèse Membranaire (LBM), CNRS, University of Bordeaux, UMR 5200, F-33882 Villenave d'Ornon, France
| | - Patricia Gerbeau-Pissot
- Agroécologie, AgroSup Dijon, INRA, University of Bourgogne Franche-Comté, F-21000 Dijon, ERL 6003 CNRS, Dijon, France
| | - Françoise Simon-Plas
- Agroécologie, AgroSup Dijon, INRA, University of Bourgogne Franche-Comté, F-21000 Dijon, ERL 6003 CNRS, Dijon, France.
| | - Sébastien Mongrand
- Laboratoire de Biogenèse Membranaire (LBM), CNRS, University of Bordeaux, UMR 5200, F-33882 Villenave d'Ornon, France.
| |
Collapse
|
211
|
Qian C, Yan X, Yin H, Fan X, Yin X, Sun P, Li Z, Nevo E, Ma XF. Transcriptomes Divergence of Ricotia lunaria Between the Two Micro-Climatic Divergent Slopes at "Evolution Canyon" I, Israel. Front Genet 2018; 9:506. [PMID: 30487810 PMCID: PMC6246625 DOI: 10.3389/fgene.2018.00506] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/08/2018] [Indexed: 01/19/2023] Open
Abstract
As one of the hotspot regions for sympatric speciation studies, Evolution Canyon (EC) became an ideal place for its high level of microclimatic divergence interslopes. In this study, to highlight the genetic mechanisms of sympatric speciation, phenotypic variation on flowering time and transcriptomic divergence were investigated between two ecotypes of Ricotia lunaria, which inhabit the opposite temperate and tropical slopes of EC I (Lower Nahal Oren, Mount Carmel, Israel) separated by 100 m at the bottom of the slopes. Growth chamber results showed that flowering time of the ecotype from south-facing slope population # 3 (SFS 3) was significantly 3 months ahead of the north-facing slope population # 5 (NFS 5). At the same floral development stage, transcriptome analysis showed that 1,064 unigenes were differentially expressed between the two ecotypes, which enriched in the four main pathways involved in abiotic and/or biotic stresses responses, including flavonoid biosynthesis, α-linolenic acid metabolism, plant-pathogen interaction and linoleic acid metabolism. Furthermore, based on Ka/Ks analysis, nine genes were suggested to be involved in the ecological divergence between the two ecotypes, whose homologs functioned in RNA editing, ABA signaling, photoprotective response, chloroplasts protein-conducting channel, and carbohydrate metabolism in Arabidopsis thaliana. Among them, four genes, namely, SPDS1, FCLY, Tic21 and BGLU25, also showed adaptive divergence between R. lunaria and A. thaliana, suggesting that these genes could play an important role in plant speciation, at least in Brassicaceae. Based on results of both the phenotype of flowering time and comparative transcriptome, we hypothesize that, after long-time local adaptations to their interslope microclimatic environments, the molecular functions of these nine genes could have been diverged between the two ecotypes. They might differentially regulate the expression of the downstream genes and pathways that are involved in the interslope abiotic stresses, which could further diverge the flowering time between the two ecotypes, and finally induce the reproductive isolation establishment by natural selection overruling interslope gene flow, promoting sympatric speciation.
Collapse
Affiliation(s)
- Chaoju Qian
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Xia Yan
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Hengxia Yin
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Xingke Fan
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyue Yin
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Peipei Sun
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Zhijun Li
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Alar, China
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Xiao-Fei Ma
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| |
Collapse
|
212
|
Farid R, Mutale-Joan C, Redouane B, Mernissi Najib EL, Abderahime A, Laila S, Arroussi Hicham EL. Effect of Microalgae Polysaccharides on Biochemical and Metabolomics Pathways Related to Plant Defense in Solanum lycopersicum. Appl Biochem Biotechnol 2018; 188:225-240. [PMID: 30417320 DOI: 10.1007/s12010-018-2916-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/05/2018] [Indexed: 11/28/2022]
Abstract
Microalgae are photosynthetic microorganisms that produce several bioactive molecules that have received considerable attention in scientific and industrial communities. Today, many plant biostimulants including seaweed extracts and polysaccharides are used in agriculture. However, microalgae have not been largely exploited in this field as a potential source of plant bio stimulants. This study investigated the biostimulatory effects of microalgae polysaccharides on different metabolomic and biochemical pathways related to plant defense. 0.2 mg mL-1 of crude polysaccharides extracted from four green microalgae strains was injected into tomato plants (Solanum lycopersicum). β-1,3-glucanase activity, lipid remodeling, phenylalanine ammonia lyase (PAL), Lipoxygenase (LOX), and antioxidant enzyme (APX, POD and CAT) activities were evaluated 48 h after treatment. Plants treated with crude polysaccharides extracted from. C. vulgaris and C. sorokiniana exhibited a significant increase in β-1,3-glucanase activity. Accordingly, C. sorokiniana crude polysaccharides had a significant stimulatory effect on PAL activity with a percentage increase of 188.73% compared to the control. GC/MS quantitative lipidomics analysis revealed that treatment with D. salina, C. sorokiniana, and C. reinhardtii crude polysaccharides increased PUFA content by 50.37%, 34.46%, and 33.37% respectively. Microalgae polysaccharides also enhanced stearic acid, palmitic acid, and VLCFA content, the optimal value of which increased by 45.50%, 32.83%, and 60.60% respectively under treatment with C. reinhardtii crude polysaccharides compared with the control. C. vulgaris and C. reinhardtii crude polysaccharides also exhibited higher APX and POD activity respectively. The present results therefore indicate the potentiality of microalgae crude polysaccharides as a promising renewable bio resource in the development plant bio stimulants.
Collapse
Affiliation(s)
- Rachidi Farid
- Green Biotechnology Laboratory, Moroccan Foundation for Advanced Science, Innovation &Research (MASCIR), Rabat Design Center, Rue Mohamed Al Jazouli - Madinat Al Irfane, 10 100, Rabat, Morocco.,Laboratory of Microbiology and Molecular Biology, Faculty of Sciences, University of Mohammed V, Rabat, Morocco
| | - Chanda Mutale-Joan
- Green Biotechnology Laboratory, Moroccan Foundation for Advanced Science, Innovation &Research (MASCIR), Rabat Design Center, Rue Mohamed Al Jazouli - Madinat Al Irfane, 10 100, Rabat, Morocco.,Laboratory of Microbiology and Molecular Biology, Faculty of Sciences, University of Mohammed V, Rabat, Morocco
| | - Benhima Redouane
- Green Biotechnology Laboratory, Moroccan Foundation for Advanced Science, Innovation &Research (MASCIR), Rabat Design Center, Rue Mohamed Al Jazouli - Madinat Al Irfane, 10 100, Rabat, Morocco
| | - E L Mernissi Najib
- Green Biotechnology Laboratory, Moroccan Foundation for Advanced Science, Innovation &Research (MASCIR), Rabat Design Center, Rue Mohamed Al Jazouli - Madinat Al Irfane, 10 100, Rabat, Morocco
| | - Aasfar Abderahime
- Green Biotechnology Laboratory, Moroccan Foundation for Advanced Science, Innovation &Research (MASCIR), Rabat Design Center, Rue Mohamed Al Jazouli - Madinat Al Irfane, 10 100, Rabat, Morocco
| | - Sbabou Laila
- Laboratory of Microbiology and Molecular Biology, Faculty of Sciences, University of Mohammed V, Rabat, Morocco
| | - E L Arroussi Hicham
- Green Biotechnology Laboratory, Moroccan Foundation for Advanced Science, Innovation &Research (MASCIR), Rabat Design Center, Rue Mohamed Al Jazouli - Madinat Al Irfane, 10 100, Rabat, Morocco.
| |
Collapse
|
213
|
Scala V, Reverberi M, Salustri M, Pucci N, Modesti V, Lucchesi S, Loreti S. Lipid Profile of Xylella fastidiosa Subsp. pauca Associated With the Olive Quick Decline Syndrome. Front Microbiol 2018; 9:1839. [PMID: 30154768 PMCID: PMC6102392 DOI: 10.3389/fmicb.2018.01839] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
Lipids, components of the plasma and intracellular membranes as well as of droplets, provide different biological functions related to energy, carbon storage, and stress responses. Bacterial species display diverse membrane composition that changes in response to the different environmental conditions. During plant-pathogen interactions, lipids might have roles in several aspects such as recognition, signal transduction, and downstream responses. Among lipid entities, free fatty acids (FFAs) and their oxidized form, the oxylipins, represent an important class of signaling molecules in host-pathogen perception, especially related to virulence and defense. In bacteria, FFAs (e.g., diffusible signaling factors) and oxylipins have a crucial role in modulating motility, biofilm formation, and virulence. In this study, we explore by LC-TOF and LC-MS/MS the lipid composition of Xylella fastidiosa subsp. pauca strain De Donno in pure culture; some specific lipids (e.g., ornithine lipids and the oxylipin 7,10-diHOME), characteristic of other pathogenic bacteria, were revealed. Nicotiana tabacum was used for testing the ability of this pathogen in producing such lipids in the host. Different lipid compounds present a clear distribution pattern within the infected plant tissues compared to the uninfected ones.
Collapse
Affiliation(s)
- Valeria Scala
- Centro di Ricerca Difesa e Certificazione, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Rome, Italy
| | - Massimo Reverberi
- Dipartimento di Biologia Ambientale, Sapienza University of Rome, Rome, Italy
| | - Manuel Salustri
- Dipartimento di Biologia Ambientale, Sapienza University of Rome, Rome, Italy
| | - Nicoletta Pucci
- Centro di Ricerca Difesa e Certificazione, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Rome, Italy
| | - Vanessa Modesti
- Centro di Ricerca Difesa e Certificazione, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Rome, Italy
| | - Simone Lucchesi
- Centro di Ricerca Difesa e Certificazione, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Rome, Italy
| | - Stefania Loreti
- Centro di Ricerca Difesa e Certificazione, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Rome, Italy
| |
Collapse
|
214
|
He Y, Han J, Liu R, Ding Y, Wang J, Sun L, Yang X, Zeng Y, Wen W, Xu J, Zhang H, Yan X, Chen Z, Gu Z, Chen H, Tang H, Deng X, Cheng Y. Integrated transcriptomic and metabolomic analyses of a wax deficient citrus mutant exhibiting jasmonic acid-mediated defense against fungal pathogens. HORTICULTURE RESEARCH 2018; 5:43. [PMID: 30083358 PMCID: PMC6068166 DOI: 10.1038/s41438-018-0051-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/03/2018] [Accepted: 04/30/2018] [Indexed: 05/05/2023]
Abstract
Naturally, resistant crop germplasms are important resources for managing the issues of agricultural product safety and environment deterioration. We found a spontaneous mutant of 'Newhall' navel orange (Citrus sinensis Osbeck) (MT) with broad-spectrum protections against fungal pathogens in the orchard, postharvest-storage, and artificial inoculation conditions. To understand the defense mechanism of MT fruit, we constructed a genome-scale metabolic network that integrated metabolome and transcriptome datasets. The coordinated transcriptomic and metabolic data were enriched in two sub-networks, showing the decrease in very long chain fatty acid (by 41.53%) and cuticular wax synthesis (by 81.34%), and increase in the synthesis of jasmonic acid (JA) (by 95.23%) and JA-induced metabolites such as 5-dimethylnobietin (by 28.37%) in MT. Furthermore, cytological and biochemical analyses confirmed that the response to fungal infection in MT was independent of wax deficiency and was correlated with the levels of jasmonates, and the expression of plant defensin gene PDF1.2. Results of exogenous application of MeJA and JA inhibitors such as propyl gallate proved that JA-mediated defense contributes to the strong tolerance against pathogens in MT. Our results indicated that jasmonate biosynthesis and signaling are stimulated by the fatty acid redirection of MT, and participate in the tolerance of pathogenic fungi.
Collapse
Affiliation(s)
- Yizhong He
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070 China
| | - Jingwen Han
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070 China
| | - Runsheng Liu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yuduan Ding
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070 China
| | - Jinqiu Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070 China
| | - Li Sun
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070 China
| | - Xiaoming Yang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yunliu Zeng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070 China
| | - Weiwei Wen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070 China
| | - Juan Xu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070 China
| | - Hongming Zhang
- Institute of Citrus Science Research of Ganzhou, Ganzhou, 341000 Jiangxi Province China
| | - Xiang Yan
- Institute of Citrus Science Research of Ganzhou, Ganzhou, 341000 Jiangxi Province China
| | - Zhaoxing Chen
- Institute of Citrus Science Research of Ganzhou, Ganzhou, 341000 Jiangxi Province China
| | - Zuliang Gu
- Research Center of Navel Orange Planting Technology of Anyuan County, Ganzhou, 341000 Jiangxi Province China
| | - Hong Chen
- Research Center of Navel Orange Planting Technology of Anyuan County, Ganzhou, 341000 Jiangxi Province China
| | - Huanqing Tang
- Research Center of Navel Orange Planting Technology of Anyuan County, Ganzhou, 341000 Jiangxi Province China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yunjiang Cheng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
215
|
Yan Y, Yuan Q, Tang J, Huang J, Hsiang T, Wei Y, Zheng L. Colletotrichum higginsianum as a Model for Understanding Host⁻Pathogen Interactions: A Review. Int J Mol Sci 2018; 19:E2142. [PMID: 30041456 PMCID: PMC6073530 DOI: 10.3390/ijms19072142] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/18/2018] [Accepted: 07/18/2018] [Indexed: 11/16/2022] Open
Abstract
Colletotrichum higginsianum is a hemibiotrophic ascomycetous fungus that causes economically important anthracnose diseases on numerous monocot and dicot crops worldwide. As a model pathosystem, the Colletotrichum⁻Arabidopsis interaction has the significant advantage that both organisms can be manipulated genetically. The goal of this review is to provide an overview of the system and to point out recent significant studies that update our understanding of the pathogenesis of C. higginsianum and resistance mechanisms of Arabidopsis against this hemibiotrophic fungus. The genome sequence of C. higginsianum has provided insights into how genome structure and pathogen genetic variability has been shaped by transposable elements, and allows systematic approaches to longstanding areas of investigation, including infection structure differentiation and fungal⁻plant interactions. The Arabidopsis-Colletotrichum pathosystem provides an integrated system, with extensive information on the host plant and availability of genomes for both partners, to illustrate many of the important concepts governing fungal⁻plant interactions, and to serve as an excellent starting point for broad perspectives into issues in plant pathology.
Collapse
Affiliation(s)
- Yaqin Yan
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| | - Qinfeng Yuan
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jintian Tang
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| | - Junbin Huang
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Yangdou Wei
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada.
| | - Lu Zheng
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
216
|
Tian L, Shi S, Ma L, Nasir F, Li X, Tran LSP, Tian C. Co-evolutionary associations between root-associated microbiomes and root transcriptomes in wild and cultivated rice varieties. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 128:134-141. [PMID: 29777991 DOI: 10.1016/j.plaphy.2018.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/26/2018] [Accepted: 04/10/2018] [Indexed: 06/08/2023]
Abstract
The plants and root-associated microbiomes are closely related. Plant metabolic substances can serve as a nutrient source for the microbiome, and in return, the microbiome can regulate the production of plant metabolic substances. Wild rice (Oryza rufipogon), as the ancestor of cultivated rice (Oryza sativa), has changed several metabolic pathways and root-associated microbiome during evolution. Thus, the study of the different associations between metabolic pathways and root-associated microbiomes in wild and cultivated rice varieties is important for rice breeding. In this article, the co-evolutionary association between metabolic pathways, which are based on transcriptome data, and root-associated microbiomes, which are based on 16S rRNA and internal transcribed spacer (ITS) amplicon data, in wild and cultivated rice was studied. The results showed that the enriched pathways were differentially correlated with the enriched microbiomes in wild and cultivated rice varieties. Pathways for 'Glutathione metabolism', 'Plant-pathogen interaction', 'Protein processing in endoplasmic reticulum' and 'Tyrosine metabolism' were positively associated with the improved relative abundance of bacterial and fungal operational taxonomic units (OTUs) in wild rice. On the other hand, 'Glycolysis/Gluconeogenesis', 'Brassinosteroid biosynthesis', 'Carbon metabolism', 'Phenylpropanoid biosynthesis' and 'Caffeine metabolism' were positively correlated with the improved relative abundance of bacterial and fungal OTUs in cultivated rice. Redundancy analysis showed that certain bacterial and fungal species could positively and significantly affect plant gene expression; for instance, Streptomyces, with 8.7% relative abundance in bacterial community, significantly affected plant gene expression in wild rice. This study can provide the theoretical basis for recognizing the associations between root-associated microbiomes and root transcriptomes in wild and cultivated rice varieties, and can provide practical significance for developing useful bacterial and fungal resources in wild rice.
Collapse
Affiliation(s)
- Lei Tian
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaohua Shi
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin 130102, China
| | - Lina Ma
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin 130102, China
| | - Fahad Nasir
- School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Xiujun Li
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin 130102, China
| | - Lam-Son Phan Tran
- Plant Stress Research Group & Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam; Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan.
| | - Chunjie Tian
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin 130102, China.
| |
Collapse
|
217
|
Aghdam MS, Jannatizadeh A, Luo Z, Paliyath G. Ensuring sufficient intracellular ATP supplying and friendly extracellular ATP signaling attenuates stresses, delays senescence and maintains quality in horticultural crops during postharvest life. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.04.003] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
218
|
Zhao Y, Luo L, Xu J, Xin P, Guo H, Wu J, Bai L, Wang G, Chu J, Zuo J, Yu H, Huang X, Li J. Malate transported from chloroplast to mitochondrion triggers production of ROS and PCD in Arabidopsis thaliana. Cell Res 2018. [PMID: 29540758 PMCID: PMC5939044 DOI: 10.1038/s41422-018-0024-8] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Programmed cell death (PCD) is a fundamental biological process. Deficiency in MOSAIC DEATH 1 (MOD1), a plastid-localized enoyl-ACP reductase, leads to the accumulation of reactive oxygen species (ROS) and PCD, which can be suppressed by mitochondrial complex I mutations, indicating a signal from chloroplasts to mitochondria. However, this signal remains to be elucidated. In this study, through cloning and analyzing a series of mod1 suppressors, we reveal a comprehensive organelle communication pathway that regulates the generation of mitochondrial ROS and triggers PCD. We show that mutations in PLASTIDIAL NAD-DEPENDENT MALATE DEHYDROGENASE (plNAD-MDH), chloroplastic DICARBOXYLATE TRANSPORTER 1 (DiT1) and MITOCHONDRIAL MALATE DEHYDROGENASE 1 (mMDH1) can each rescue the ROS accumulation and PCD phenotypes in mod1, demonstrating a direct communication from chloroplasts to mitochondria via the malate shuttle. Further studies demonstrate that these elements play critical roles in the redox homeostasis and plant growth under different photoperiod conditions. Moreover, we reveal that the ROS level and PCD are significantly increased in malate-treated HeLa cells, which can be dramatically attenuated by knockdown of the human gene MDH2, an ortholog of Arabidopsis mMDH1. These results uncover a conserved malate-induced PCD pathway in plant and animal systems, revolutionizing our understanding of the communication between organelles.
Collapse
Affiliation(s)
- Yannan Zhao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lilan Luo
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiesi Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Peiyong Xin
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hongyan Guo
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jian Wu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.,Department of Plant Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Lin Bai
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guodong Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jinfang Chu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jianru Zuo
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong Yu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xun Huang
- University of Chinese Academy of Sciences, Beijing, 100049, China. .,State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
219
|
Tolley JP, Nagashima Y, Gorman Z, Kolomiets MV, Koiwa H. Isoform-specific subcellular localization of Zea mays lipoxygenases and oxo-phytodienoate reductase 2. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.plgene.2017.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
220
|
Lanubile A, Maschietto V, Borrelli VM, Stagnati L, Logrieco AF, Marocco A. Molecular Basis of Resistance to Fusarium Ear Rot in Maize. FRONTIERS IN PLANT SCIENCE 2017; 8:1774. [PMID: 29075283 PMCID: PMC5644281 DOI: 10.3389/fpls.2017.01774] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/28/2017] [Indexed: 05/30/2023]
Abstract
The impact of climate change has been identified as an emerging issue for food security and safety, and the increased incidence of mycotoxin contamination in maize over the last two decades is considered a potential emerging hazard. Disease control by chemical and agronomic approaches is often ineffective and increases the cost of production; for this reason the exploitation of genetic resistance is the most sustainable method for reducing contamination. The review focuses on the significant advances that have been made in the development of transcriptomic, genetic and genomic information for maize, Fusarium verticillioides molds, and their interactions, over recent years. Findings from transcriptomic studies have been used to outline a specific model for the intracellular signaling cascade occurring in maize cells against F. verticillioides infection. Several recognition receptors, such as receptor-like kinases and R genes, are involved in pathogen perception, and trigger down-stream signaling networks mediated by mitogen-associated protein kinases. These signals could be orchestrated primarily by hormones, including salicylic acid, auxin, abscisic acid, ethylene, and jasmonic acid, in association with calcium signaling, targeting multiple transcription factors that in turn promote the down-stream activation of defensive response genes, such as those related to detoxification processes, phenylpropanoid, and oxylipin metabolic pathways. At the genetic and genomic levels, several quantitative trait loci (QTL) and single-nucleotide polymorphism markers for resistance to Fusarium ear rot deriving from QTL mapping and genome-wide association studies are described, indicating the complexity of this polygenic trait. All these findings will contribute to identifying candidate genes for resistance and to applying genomic technologies for selecting resistant maize genotypes and speeding up a strategy of breeding to contrast disease, through plants resistant to mycotoxin-producing pathogens.
Collapse
Affiliation(s)
- Alessandra Lanubile
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Valentina Maschietto
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Virginia M. Borrelli
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Lorenzo Stagnati
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Antonio F. Logrieco
- Institute of Sciences of Food Production, National Research Council, Bari, Italy
| | - Adriano Marocco
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|