201
|
Chen Z, Liu YY, He XX, Chen JQ. Ultrafast excited state dynamics of biliverdin dimethyl ester coordinate with zinc ions. CHINESE J CHEM PHYS 2020. [DOI: 10.1063/1674-0068/cjcp1911193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Zhuang Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Yang-yi Liu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Xiao-xiao He
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Jin-quan Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
202
|
Viczián A, Ádám É, Staudt AM, Lambert D, Klement E, Romero Montepaone S, Hiltbrunner A, Casal J, Schäfer E, Nagy F, Klose C. Differential phosphorylation of the N-terminal extension regulates phytochrome B signaling. THE NEW PHYTOLOGIST 2020; 225:1635-1650. [PMID: 31596952 DOI: 10.1111/nph.16243] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/24/2019] [Indexed: 05/04/2023]
Abstract
Phytochrome B (phyB) is an excellent light quality and quantity sensor that can detect subtle changes in the light environment. The relative amounts of the biologically active photoreceptor (phyB Pfr) are determined by the light conditions and light independent thermal relaxation of Pfr into the inactive phyB Pr, termed thermal reversion. Little is known about the regulation of thermal reversion and how it affects plants' light sensitivity. In this study we identified several serine/threonine residues on the N-terminal extension (NTE) of Arabidopsis thaliana phyB that are differentially phosphorylated in response to light and temperature, and examined transgenic plants expressing nonphosphorylatable and phosphomimic phyB mutants. The NTE of phyB is essential for thermal stability of the Pfr form, and phosphorylation of S86 particularly enhances the thermal reversion rate of the phyB Pfr-Pr heterodimer in vivo. We demonstrate that S86 phosphorylation is especially critical for phyB signaling compared with phosphorylation of the more N-terminal residues. Interestingly, S86 phosphorylation is reduced in light, paralleled by a progressive Pfr stabilization under prolonged irradiation. By investigating other phytochromes (phyD and phyE) we provide evidence that acceleration of thermal reversion by phosphorylation represents a general mechanism for attenuating phytochrome signaling.
Collapse
Affiliation(s)
- András Viczián
- Institute of Plant Biology, Biological Research Centre, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Éva Ádám
- Institute of Plant Biology, Biological Research Centre, Temesvári krt. 62, H-6726, Szeged, Hungary
- Research Institute of Translational Biomedicine, Department of Dermatology and Allergology, University of Szeged, H-6726, Szeged, Hungary
| | - Anne-Marie Staudt
- Institute of Biology II, University of Freiburg, 79104, Freiburg, Germany
| | - Dorothee Lambert
- Institute of Biology II, University of Freiburg, 79104, Freiburg, Germany
| | - Eva Klement
- Laboratory of Proteomics Research, Biological Research Centre, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Sofia Romero Montepaone
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1417DSE, Buenos Aires, Argentina
| | - Andreas Hiltbrunner
- Institute of Biology II, University of Freiburg, 79104, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany
| | - Jorge Casal
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1417DSE, Buenos Aires, Argentina
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, C1405BWE, Buenos Aires, Argentina
| | - Eberhard Schäfer
- Institute of Biology II, University of Freiburg, 79104, Freiburg, Germany
| | - Ferenc Nagy
- Institute of Plant Biology, Biological Research Centre, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Cornelia Klose
- Institute of Biology II, University of Freiburg, 79104, Freiburg, Germany
| |
Collapse
|
203
|
Xia Y, Li Z, Wang J, Li Y, Ren Y, Du J, Song Q, Ma S, Song Y, Zhao H, Yang Z, Zhang G, Niu N. Isolation and Identification of a TaTDR-Like Wheat Gene Encoding a bHLH Domain Protein, Which Negatively Regulates Chlorophyll Biosynthesis in Arabidopsis. Int J Mol Sci 2020; 21:ijms21020629. [PMID: 31963591 PMCID: PMC7014150 DOI: 10.3390/ijms21020629] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/12/2020] [Accepted: 01/15/2020] [Indexed: 11/26/2022] Open
Abstract
Chlorophyll biosynthesis plays a vital role in chloroplast development and photosynthesis in plants. In this study, we identified an orthologue of the rice gene TDR (Oryza sativa L., Tapetum Degeneration Retardation) in wheat (Triticum aestivum L.) called TaTDR-Like (TaTDRL) by sequence comparison. TaTDRL encodes a putative 557 amino acid protein with a basic helix-loop-helix (bHLH) conserved domain at the C-terminal (295–344 aa). The TaTDRL protein localised to the nucleus and displayed transcriptional activation activity in a yeast hybrid system. TaTDRL was expressed in the leaf tissue and expression was induced by dark treatment. Here, we revealed the potential function of TaTDRL gene in wheat by utilizing transgenic Arabidopsis plants TaTDRL overexpressing (TaTDRL-OE) and TaTDRL-EAR (EAR-motif, a repression domain of only 12 amino acids). Compared with wild-type plants (WT), both TaTDRL-OE and TaTDRL-EAR were characterized by a deficiency of chlorophyll. Moreover, the expression level of the chlorophyll-related gene AtPORC (NADPH:protochlorophyllide oxidoreductase C) in TaTDRL-OE and TaTDRL-EAR was lower than that of WT. We found that TaTDRL physically interacts with wheat Phytochrome Interacting Factor 1 (PIF1) and Arabadopsis PIF1, suggesting that TaTDRL regulates light signaling during dark or light treatment. In summary, TaTDRL may respond to dark or light treatment and negatively regulate chlorophyll biosynthesis by interacting with AtPIF1 in transgenic Arabidopsis.
Collapse
Affiliation(s)
- Yu Xia
- Key Laboratory of Crop Heterosis of Shaanxi Province, Wheat Breeding Engineering Research Center, Ministry of Education, College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China; (Y.X.); (Z.L.); (J.W.); (Y.L.); (Y.R.); (J.D.); (Q.S.); (S.M.); (Y.S.); (Z.Y.)
| | - Zheng Li
- Key Laboratory of Crop Heterosis of Shaanxi Province, Wheat Breeding Engineering Research Center, Ministry of Education, College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China; (Y.X.); (Z.L.); (J.W.); (Y.L.); (Y.R.); (J.D.); (Q.S.); (S.M.); (Y.S.); (Z.Y.)
| | - Junwei Wang
- Key Laboratory of Crop Heterosis of Shaanxi Province, Wheat Breeding Engineering Research Center, Ministry of Education, College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China; (Y.X.); (Z.L.); (J.W.); (Y.L.); (Y.R.); (J.D.); (Q.S.); (S.M.); (Y.S.); (Z.Y.)
| | - Yanhong Li
- Key Laboratory of Crop Heterosis of Shaanxi Province, Wheat Breeding Engineering Research Center, Ministry of Education, College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China; (Y.X.); (Z.L.); (J.W.); (Y.L.); (Y.R.); (J.D.); (Q.S.); (S.M.); (Y.S.); (Z.Y.)
| | - Yang Ren
- Key Laboratory of Crop Heterosis of Shaanxi Province, Wheat Breeding Engineering Research Center, Ministry of Education, College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China; (Y.X.); (Z.L.); (J.W.); (Y.L.); (Y.R.); (J.D.); (Q.S.); (S.M.); (Y.S.); (Z.Y.)
| | - Jingjing Du
- Key Laboratory of Crop Heterosis of Shaanxi Province, Wheat Breeding Engineering Research Center, Ministry of Education, College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China; (Y.X.); (Z.L.); (J.W.); (Y.L.); (Y.R.); (J.D.); (Q.S.); (S.M.); (Y.S.); (Z.Y.)
| | - Qilu Song
- Key Laboratory of Crop Heterosis of Shaanxi Province, Wheat Breeding Engineering Research Center, Ministry of Education, College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China; (Y.X.); (Z.L.); (J.W.); (Y.L.); (Y.R.); (J.D.); (Q.S.); (S.M.); (Y.S.); (Z.Y.)
| | - Shoucai Ma
- Key Laboratory of Crop Heterosis of Shaanxi Province, Wheat Breeding Engineering Research Center, Ministry of Education, College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China; (Y.X.); (Z.L.); (J.W.); (Y.L.); (Y.R.); (J.D.); (Q.S.); (S.M.); (Y.S.); (Z.Y.)
| | - Yulong Song
- Key Laboratory of Crop Heterosis of Shaanxi Province, Wheat Breeding Engineering Research Center, Ministry of Education, College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China; (Y.X.); (Z.L.); (J.W.); (Y.L.); (Y.R.); (J.D.); (Q.S.); (S.M.); (Y.S.); (Z.Y.)
| | - Huiyan Zhao
- College of Plant Protection, Northwest A & F University, Yangling 712100, Shaanxi, China;
| | - Zhiquan Yang
- Key Laboratory of Crop Heterosis of Shaanxi Province, Wheat Breeding Engineering Research Center, Ministry of Education, College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China; (Y.X.); (Z.L.); (J.W.); (Y.L.); (Y.R.); (J.D.); (Q.S.); (S.M.); (Y.S.); (Z.Y.)
| | - Gaisheng Zhang
- Key Laboratory of Crop Heterosis of Shaanxi Province, Wheat Breeding Engineering Research Center, Ministry of Education, College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China; (Y.X.); (Z.L.); (J.W.); (Y.L.); (Y.R.); (J.D.); (Q.S.); (S.M.); (Y.S.); (Z.Y.)
- Correspondence: (G.Z.); (N.N.)
| | - Na Niu
- Key Laboratory of Crop Heterosis of Shaanxi Province, Wheat Breeding Engineering Research Center, Ministry of Education, College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China; (Y.X.); (Z.L.); (J.W.); (Y.L.); (Y.R.); (J.D.); (Q.S.); (S.M.); (Y.S.); (Z.Y.)
- Correspondence: (G.Z.); (N.N.)
| |
Collapse
|
204
|
Villegas-Escobar N, Matute RA. The Keto-Enol Tautomerism of Biliverdin in Bacteriophytochrome: Could it Explain the Bathochromic Shift in the Pfr Form? †. Photochem Photobiol 2020; 97:99-109. [PMID: 33053203 DOI: 10.1111/php.13341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 10/08/2020] [Indexed: 01/21/2023]
Abstract
Phytochromes are ubiquitous photoreceptors found in plants, eukaryotic algae, bacteria and fungi. Particularly, when bacteriophytochrome is irradiated with light, a Z-to-E (photo)isomerization takes place in the biliverdin chromophore as part of the Pr-to-Pfr conversion. This photoisomerization is concomitant with a bathochromic shift in the Q-band. Based on experimental evidence, we studied a possible keto-enol tautomerization of BV, as an alternative reaction channel after its photoisomerization. In this contribution, the noncatalyzed and water-assisted reaction pathways for the lactam-lactim interconversion through consecutive keto-enol tautomerization of a model BV species were studied deeply. It was found that in the absence of water molecules, the proton transfer reaction is unable to take place at normal conditions, due to large activation energies, and the endothermic formation of lactim derivatives prevents its occurrence. However, when a water molecule assists the process by catalyzing the proton transfer reaction, the activation free energy lowers considerably. The drastic lowering in the activation energy for the keto-enol tautomerism is due to the stabilization of the water moiety through hydrogen bonds along the reaction coordinate. The absorption spectra were computed for all tautomers. It was found that the UV-visible absorption bands are in reasonable agreement with the experimental data. Our results suggest that although the keto-enol equilibrium is likely favoring the lactam tautomer, the equilibrium could eventually be shifted in favor of the lactim, as it has been reported to occur in the dark reversion mechanism of bathy phytochromes.
Collapse
Affiliation(s)
- Nery Villegas-Escobar
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo OHiggins, Santiago, Chile
| | - Ricardo A Matute
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo OHiggins, Santiago, Chile.,Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
205
|
Wiltbank LB, Kehoe DM. Diverse light responses of cyanobacteria mediated by phytochrome superfamily photoreceptors. Nat Rev Microbiol 2020; 17:37-50. [PMID: 30410070 DOI: 10.1038/s41579-018-0110-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cyanobacteria are an evolutionarily and ecologically important group of prokaryotes. They exist in diverse habitats, ranging from hot springs and deserts to glaciers and the open ocean. The range of environments that they inhabit can be attributed in part to their ability to sense and respond to changing environmental conditions. As photosynthetic organisms, one of the most crucial parameters for cyanobacteria to monitor is light. Cyanobacteria can sense various wavelengths of light and many possess a range of bilin-binding photoreceptors belonging to the phytochrome superfamily. Vital cellular processes including growth, phototaxis, cell aggregation and photosynthesis are tuned to environmental light conditions by these photoreceptors. In this Review, we examine the physiological responses that are controlled by members of this diverse family of photoreceptors and discuss the signal transduction pathways through which these photoreceptors operate. We highlight specific examples where the activities of multiple photoreceptors function together to fine-tune light responses. We also discuss the potential application of these photosensing systems in optogenetics and synthetic biology.
Collapse
Affiliation(s)
- Lisa B Wiltbank
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - David M Kehoe
- Department of Biology, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
206
|
Battle MW, Jones MA. Cryptochromes integrate green light signals into the circadian system. PLANT, CELL & ENVIRONMENT 2020; 43:16-27. [PMID: 31410859 PMCID: PMC6973147 DOI: 10.1111/pce.13643] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 05/04/2023]
Abstract
Plants are acutely sensitive of their light environment, adapting their growth habit and prioritizing developmental decisions to maximize fecundity. In addition to providing an energy source and directional information, light quality also contributes to entrainment of the circadian system, an endogenous timing mechanism that integrates endogenous and environmental signalling cues to promote growth. Whereas plants' perception of red and blue portions of the spectrum are well defined, green light sensitivity remains enigmatic. In this study, we show that low fluence rates of green light are sufficient to entrain and maintain circadian rhythms in Arabidopsis and that cryptochromes contribute to this response. Importantly, green light responses are distinguishable from low blue light-induced phenotypes. These data suggest a distinct signalling mechanism enables entrainment of the circadian system in green light-enriched environments, such as those found in undergrowth and in densely planted monoculture.
Collapse
Affiliation(s)
| | - Matthew Alan Jones
- School of Life SciencesUniversity of EssexColchesterCO4 3SQUK
- Institute of Molecular, Cell and Systems BiologyUniversity of GlasgowGlasgowG12 8QQUK
| |
Collapse
|
207
|
Budagovsky AV, Maslova MV, Budagovskaya ON, Grosheva EV. Impact of coherent light on interaction of fungi and bacteria cells cultivated in vitro. BIO WEB OF CONFERENCES 2020. [DOI: 10.1051/bioconf/20202302001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This article considers impact of coherent red quasi-monochromatic light on interaction of colonies of the Pseudomonas syringae bacteria and the Fusarium macroceras fungus in an in vitro culture. A helium-neon laser and a heat source with a system of light filters and aperture diaphragms were used for irradiation. Two light fluxes were obtained with energy parameters close in magnitude, but significantly different in spatio-temporal coherence. Light with a high statistical ordering stimulated growth of both colonies. Irradiation from the same spectral range and intensity, but with low spatial coherence, increased the functional activity of only small bacteria cells. As a result, there was a suppression of larger fungal cells development that were interacting with them. Therefore, it was the statistical (coherent) properties of light that affected the change in the equilibrium of microorganisms in an artificial biocenosis. This approach can be used in practice for increasing the activity of bacteria antagonists of pathogenic fungi and the non-chemical disease protection of plants.
Collapse
|
208
|
Oh J, Park E, Song K, Bae G, Choi G. PHYTOCHROME INTERACTING FACTOR8 Inhibits Phytochrome A-Mediated Far-Red Light Responses in Arabidopsis. THE PLANT CELL 2020; 32:186-205. [PMID: 31732705 PMCID: PMC6961613 DOI: 10.1105/tpc.19.00515] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/25/2019] [Accepted: 11/14/2019] [Indexed: 05/04/2023]
Abstract
PHYTOCHROME INTERACTING FACTORs (PIFs) are a group of basic helix-loop-helix (bHLH) transcription factors that repress plant light responses. PIF8 is one of the less-characterized Arabidopsis (Arabidopsis thaliana) PIFs, whose putative orthologs are conserved in other plant species. PIF8 possesses a bHLH motif and an active phytochrome B motif but not an active phytochrome A motif. Consistent with this motif composition, PIF8 binds to G-box elements and interacts with the Pfr form of phyB but only very weakly, if at all, with that of phyA. PIF8 differs, however, from other PIFs in its protein accumulation pattern and functional roles in different light conditions. First, PIF8 inhibits phyA-induced seed germination, suppression of hypocotyl elongation, and randomization of hypocotyl growth orientation in far-red light, but it does not inhibit phyB-induced red light responses. Second, PIF8 protein accumulates more in far-red light than in darkness or red light. This is distinct from the pattern observed with PIF3, which accumulates more in darkness. This PIF8 accumulation pattern requires degradation of PIF8 by CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) in darkness, inhibition of COP1 by phyA in far-red light, and promotion of PIF8 degradation by phyB in red light. Together, our results indicate that PIF8 is a genuine PIF that represses phyA-mediated light responses.
Collapse
Affiliation(s)
- Jeonghwa Oh
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Eunae Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Kijong Song
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Gabyong Bae
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Giltsu Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| |
Collapse
|
209
|
Macaluso V, Cupellini L, Salvadori G, Lipparini F, Mennucci B. Elucidating the role of structural fluctuations, and intermolecular and vibronic interactions in the spectroscopic response of a bacteriophytochrome. Phys Chem Chem Phys 2020; 22:8585-8594. [DOI: 10.1039/d0cp00372g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Molecular dynamics and a multiscale polarizable QM/MM strategy allow reproducing absorption, circular dichroism, and resonance Raman spectra of a bacteriophytochrome.
Collapse
Affiliation(s)
- Veronica Macaluso
- Department of Chemistry and Industrial Chemistry
- University of Pisa
- Pisa
- Italy
| | - Lorenzo Cupellini
- Department of Chemistry and Industrial Chemistry
- University of Pisa
- Pisa
- Italy
| | - Giacomo Salvadori
- Department of Chemistry and Industrial Chemistry
- University of Pisa
- Pisa
- Italy
| | - Filippo Lipparini
- Department of Chemistry and Industrial Chemistry
- University of Pisa
- Pisa
- Italy
| | - Benedetta Mennucci
- Department of Chemistry and Industrial Chemistry
- University of Pisa
- Pisa
- Italy
| |
Collapse
|
210
|
Kübel J, Chenchiliyan M, Ooi SA, Gustavsson E, Isaksson L, Kuznetsova V, Ihalainen JA, Westenhoff S, Maj M. Transient IR spectroscopy identifies key interactions and unravels new intermediates in the photocycle of a bacterial phytochrome. Phys Chem Chem Phys 2020; 22:9195-9203. [DOI: 10.1039/c9cp06995j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Infra-red spectroscopy advances our understanding of how photosensory proteins carry their function.
Collapse
Affiliation(s)
- Joachim Kübel
- Department of Chemistry and Molecular Biology
- University of Gothenburg
- Gothenburg 40530
- Sweden
| | - Manoop Chenchiliyan
- Department of Chemistry and Molecular Biology
- University of Gothenburg
- Gothenburg 40530
- Sweden
| | - Saik Ann Ooi
- Department of Chemistry and Molecular Biology
- University of Gothenburg
- Gothenburg 40530
- Sweden
| | - Emil Gustavsson
- Department of Chemistry and Molecular Biology
- University of Gothenburg
- Gothenburg 40530
- Sweden
| | - Linnéa Isaksson
- Department of Chemistry and Molecular Biology
- University of Gothenburg
- Gothenburg 40530
- Sweden
| | - Valentyna Kuznetsova
- Nanoscience Center
- Department of Biological and Environmental Science
- University of Jyväskylä
- Jyväskylä 40014
- Finland
| | - Janne A. Ihalainen
- Nanoscience Center
- Department of Biological and Environmental Science
- University of Jyväskylä
- Jyväskylä 40014
- Finland
| | - Sebastian Westenhoff
- Department of Chemistry and Molecular Biology
- University of Gothenburg
- Gothenburg 40530
- Sweden
| | - Michał Maj
- Department of Chemistry and Molecular Biology
- University of Gothenburg
- Gothenburg 40530
- Sweden
| |
Collapse
|
211
|
Competing excited-state deactivation processes in bacteriophytochromes. ADVANCES IN QUANTUM CHEMISTRY 2020. [DOI: 10.1016/bs.aiq.2020.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
212
|
Landi M, Zivcak M, Sytar O, Brestic M, Allakhverdiev SI. Plasticity of photosynthetic processes and the accumulation of secondary metabolites in plants in response to monochromatic light environments: A review. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1861:148131. [PMID: 31816291 DOI: 10.1016/j.bbabio.2019.148131] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 10/17/2019] [Accepted: 11/28/2019] [Indexed: 01/08/2023]
Abstract
Light spectra significantly influence plant metabolism, growth and development. Here, we review the effects of monochromatic blue, red and green light compared to those of multispectral light sources on the morpho-anatomical, photosynthetic and molecular traits of herbaceous plants. Emphasis is given to the effect of light spectra on the accumulation of secondary metabolites, which are important bioactive phytochemicals that determine the nutritional quality of vegetables. Overall, blue light may promote the accumulation of phenylpropanoid-based compounds without substantially affecting plant morpho-anatomical traits compared to the effects of white light. Red light, conversely, strongly alters plant morphology and physiology compared to that under white light without showing a consistent positive effect on secondary metabolism. Due to species-specific effects and the small shifts in the spectral band within the same color that can substantially affect plant growth and metabolism, it is conceivable that monochromatic light significantly affects not only plant photosynthetic performance but also the "quality" of plants by modulating the biosynthesis of photoprotective compounds.
Collapse
Affiliation(s)
- Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, Italy
| | - Marek Zivcak
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovak Republic.
| | - Oksana Sytar
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovak Republic
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovak Republic; Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 16500 Prague, Czech Republic
| | - Suleyman I Allakhverdiev
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia; Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, Russia; Department of Plant Physiology, M.V. Lomonosov Moscow State University, Moscow, Russia; Department of Molecular and Cell Biology, Moscow Institute of Physics and Technology, Institutsky lane 9, Dolgoprudny, Moscow Region, Russia; Institute of Molecular Biology and Biotechnology, Azerbaijan National Academy of Sciences, Baku, Azerbaijan; King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
213
|
Regulation of Photomorphogenic Development by Plant Phytochromes. Int J Mol Sci 2019; 20:ijms20246165. [PMID: 31817722 PMCID: PMC6941077 DOI: 10.3390/ijms20246165] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/03/2022] Open
Abstract
Photomorphogenesis and skotomorphogenesis are two key events that control plant development, from seed germination to flowering and senescence. A group of wavelength-specific photoreceptors, E3 ubiquitin ligases, and various transcription factors work together to regulate these two critical processes. Phytochromes are the main photoreceptors in plants for perceiving red/far-red light and transducing the light signals to downstream factors that regulate the gene expression network for photomorphogenic development. In this review, we highlight key developmental stages in the life cycle of plants and how phytochromes and other components in the phytochrome signaling pathway play roles in plant growth and development.
Collapse
|
214
|
Deconstructing and repurposing the light-regulated interplay between Arabidopsis phytochromes and interacting factors. Commun Biol 2019; 2:448. [PMID: 31815202 PMCID: PMC6888877 DOI: 10.1038/s42003-019-0687-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 11/07/2019] [Indexed: 01/30/2023] Open
Abstract
Phytochrome photoreceptors mediate adaptive responses of plants to red and far-red light. These responses generally entail light-regulated association between phytochromes and other proteins, among them the phytochrome-interacting factors (PIF). The interaction with Arabidopsis thaliana phytochrome B (AtPhyB) localizes to the bipartite APB motif of the A. thaliana PIFs (AtPIF). To address a dearth of quantitative interaction data, we construct and analyze numerous AtPIF3/6 variants. Red-light-activated binding is predominantly mediated by the APB N-terminus, whereas the C-terminus modulates binding and underlies the differential affinity of AtPIF3 and AtPIF6. We identify AtPIF variants of reduced size, monomeric or homodimeric state, and with AtPhyB affinities between 10 and 700 nM. Optogenetically deployed in mammalian cells, the AtPIF variants drive light-regulated gene expression and membrane recruitment, in certain cases reducing basal activity and enhancing regulatory response. Moreover, our results provide hitherto unavailable quantitative insight into the AtPhyB:AtPIF interaction underpinning vital light-dependent responses in plants. David Golonka et al. report the epitopes in Arabidopsis phytochrome-interacting factors (PIF) that underlie light-dependent interactions with phytochrome B. They identify compact PIF variants that enable light-activated gene expression and membrane recruitment with reduced basal activity and enhanced regulatory response.
Collapse
|
215
|
Jenkins AJ, Gottlieb SM, Chang CW, Hayer RJ, Martin SS, Lagarias JC, Larsen DS. Conservation and diversity in the secondary forward photodynamics of red/green cyanobacteriochromes. Photochem Photobiol Sci 2019; 18:2539-2552. [PMID: 31528964 DOI: 10.1039/c9pp00295b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cyanobacteriochromes (CBCRs) are photosensitive proteins that are distantly related to the phytochrome family of photoreceptors and, like phytochromes, exhibit photoactivity initiated by the excited-state photoisomerization of a covalently bound bilin chromophore. The canonical red/green photoswitching sub-family is the most studied class of CBCRs studied to date. Recently, a comparative study of the ultrafast (100 fs-10 ns) forward photodynamics of nine red/green photoswitching CBCR domains isolated from Nostoc punctiforme were reported (S. M. Gottlieb, P. W. Kim, C.-W. Chang, S. J. Hanke, R. J. Hayer, N. C. Rockwell, S. S. Martin, J. C. Lagarias and D. S. Larsen, Conservation and Diversity in the Primary Forward Photodynamics of Red/Green Cyanobacteriochromes, Biochemistry, 2015, 54, 1028-1042). We extend this study by characterizing the secondary (10 ns-1 ms) forward photodynamics of eight red/green photoswitching CBCRs from N. punctiforme with broadband time-resolved absorption spectroscopy. We demonstrate that the dynamics of these representative red/green CBCRs can be separated into two coexisting pathways involving a photoactive pathway that is successful in generating the terminal light-adapted 15EPg population and an unsuccessful pathway that stalls after generating a meta-stable Lumi-Of intermediate. The photoactive pathway evolves through a similar mechanism from excitation of the dark-adapted 15ZPr state to generate a far-red absorbing Lumi-Rf and then via a succession of blue-shifting photointermediates to ultimately generate the 15EPg state. This suggests a steady deviation from planarity of the bilin chromophore during the dynamics. While, the general mechanism for this evolution is conserved among these CBCBs, the timescales of these dynamics deviate significantly. Only half of the characterized CBCRs exhibit the unproductive pathways due to photoexcitation of dark-adapted 15ZPo sub-population that upon photoexcitation generates a meta-stable Lumi-Of intermediate, which eventually decays back to the 15ZPo subpopulation. 15ZPo is ascribed the horizontal Asp657 configuration that disrupts H-bonding with the chromophore in the dark-adapted state; its presence can be identified via enhanced absorption of high-energy tail of the electronic absorption spectrum.
Collapse
Affiliation(s)
- Adam J Jenkins
- Department of Chemistry, University of California, Davis One Shields Ave, Davis, 95616, USA.
| | | | | | | | | | | | | |
Collapse
|
216
|
BBX4, a phyB-interacting and modulated regulator, directly interacts with PIF3 to fine tune red light-mediated photomorphogenesis. Proc Natl Acad Sci U S A 2019; 116:26049-26056. [PMID: 31776262 DOI: 10.1073/pnas.1915149116] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phytochrome B (phyB) absorbs red light signals and subsequently initiates a set of molecular events in plant cells to promote photomorphogenesis. Here we show that phyB directly interacts with B-BOX CONTAINING PROTEIN 4 (BBX4), a positive regulator of red light signaling, and positively controls its abundance in red light. BBX4 associates with PHYTOCHROME INTERACTING FACTOR 3 (PIF3) and represses PIF3 transcriptional activation activity and PIF3-controlled gene expression. The degradation of BBX4 in darkness is dependent on CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) and the 26S proteasome system. Collectively, BBX4 acts as a key component of the phyB-PIF3-mediated signaling module and fine tunes the red light action. phyB promotes the accumulation of BBX4, which in turn serves to repress PIF3 action through direct physical interaction to promote photomorphogenic development in red light.
Collapse
|
217
|
Gustavsson E, Isaksson L, Persson C, Mayzel M, Brath U, Vrhovac L, Ihalainen JA, Karlsson BG, Orekhov V, Westenhoff S. Modulation of Structural Heterogeneity Controls Phytochrome Photoswitching. Biophys J 2019; 118:415-421. [PMID: 31839260 DOI: 10.1016/j.bpj.2019.11.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/15/2019] [Accepted: 11/20/2019] [Indexed: 11/16/2022] Open
Abstract
Phytochromes sense red/far-red light and control many biological processes in plants, fungi, and bacteria. Although the crystal structures of dark- and light-adapted states have been determined, the molecular mechanisms underlying photoactivation remain elusive. Here, we demonstrate that the conserved tongue region of the PHY domain of a 57-kDa photosensory module of Deinococcus radiodurans phytochrome changes from a structurally heterogeneous dark state to an ordered, light-activated state. The results were obtained in solution by utilizing a laser-triggered activation approach detected on the atomic level with high-resolution protein NMR spectroscopy. The data suggest that photosignaling of phytochromes relies on careful modulation of structural heterogeneity of the PHY tongue.
Collapse
Affiliation(s)
- Emil Gustavsson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Linnéa Isaksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Cecilia Persson
- Swedish NMR center, University of Gothenburg, Gothenburg, Sweden
| | - Maxim Mayzel
- Swedish NMR center, University of Gothenburg, Gothenburg, Sweden
| | - Ulrika Brath
- Swedish NMR center, University of Gothenburg, Gothenburg, Sweden
| | - Lidija Vrhovac
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Janne A Ihalainen
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - B Göran Karlsson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden; Swedish NMR center, University of Gothenburg, Gothenburg, Sweden
| | - Vladislav Orekhov
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden; Swedish NMR center, University of Gothenburg, Gothenburg, Sweden
| | - Sebastian Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
218
|
Testone G, Baldoni E, Iannelli MA, Nicolodi C, Di Giacomo E, Pietrini F, Mele G, Giannino D, Frugis G. Transcription Factor Networks in Leaves of Cichorium endivia: New Insights into the Relationship Between Photosynthesis and Leaf Development. PLANTS (BASEL, SWITZERLAND) 2019; 8:E531. [PMID: 31766484 PMCID: PMC6963412 DOI: 10.3390/plants8120531] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 11/18/2022]
Abstract
Cichorium endivia is a leafy crop closely related to Lactuca sativa that comprises two major botanical varieties characterized by a high degree of intraspecific morphological variation: var. latifolium with broad leaves (escarole) and var. crispum with narrow crisp curly leaves (endive). To investigate the relationship between leaf morphology and photosynthetic activity, escaroles and endives were used as a crop model due to the striking morphological diversity of their leaves. We constructed a leaf database for transcription factors (TFs) and photosynthesis-related genes from a refined C. endivia transcriptome and used RNA-seq transcriptomic data from leaves of four commercial endive and escarole cultivars to explore transcription factor regulatory networks. Cluster and gene co-expression network (GCN) analyses identified two main anticorrelated modules that control photosynthesis. Analysis of the GCN network topological properties identified known and novel hub genes controlling photosynthesis, and candidate developmental genes at the boundaries between shape and function. Differential expression analysis between broad and curly leaves suggested three novel TFs putatively involved in leaf shape diversity. Physiological analysis of the photosynthesis properties and gene expression studies on broad and curly leaves provided new insights into the relationship between leaf shape and function.
Collapse
Affiliation(s)
- Giulio Testone
- Istituto di Biologia e Biotecnologia Agraria (IBBA), Operative Unit of Rome, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300, 00015 Monterotondo Scalo (Roma), Italy; (G.T.); (E.B.); (M.A.I.); (C.N.); (E.D.G.); (G.M.); (D.G.)
| | - Elena Baldoni
- Istituto di Biologia e Biotecnologia Agraria (IBBA), Operative Unit of Rome, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300, 00015 Monterotondo Scalo (Roma), Italy; (G.T.); (E.B.); (M.A.I.); (C.N.); (E.D.G.); (G.M.); (D.G.)
- Istituto di Biologia e Biotecnologia Agraria (IBBA), Consiglio Nazionale delle Ricerche (CNR), Via Bassini 15, 20133 Milano, Italy
| | - Maria Adelaide Iannelli
- Istituto di Biologia e Biotecnologia Agraria (IBBA), Operative Unit of Rome, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300, 00015 Monterotondo Scalo (Roma), Italy; (G.T.); (E.B.); (M.A.I.); (C.N.); (E.D.G.); (G.M.); (D.G.)
| | - Chiara Nicolodi
- Istituto di Biologia e Biotecnologia Agraria (IBBA), Operative Unit of Rome, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300, 00015 Monterotondo Scalo (Roma), Italy; (G.T.); (E.B.); (M.A.I.); (C.N.); (E.D.G.); (G.M.); (D.G.)
| | - Elisabetta Di Giacomo
- Istituto di Biologia e Biotecnologia Agraria (IBBA), Operative Unit of Rome, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300, 00015 Monterotondo Scalo (Roma), Italy; (G.T.); (E.B.); (M.A.I.); (C.N.); (E.D.G.); (G.M.); (D.G.)
| | - Fabrizio Pietrini
- Istituto di Ricerca sugli Ecosistemi Terrestri (IRET), Operative Unit of Rome, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km 29,300, 00015 Monterotondo Scalo (Roma), Italy;
| | - Giovanni Mele
- Istituto di Biologia e Biotecnologia Agraria (IBBA), Operative Unit of Rome, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300, 00015 Monterotondo Scalo (Roma), Italy; (G.T.); (E.B.); (M.A.I.); (C.N.); (E.D.G.); (G.M.); (D.G.)
| | - Donato Giannino
- Istituto di Biologia e Biotecnologia Agraria (IBBA), Operative Unit of Rome, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300, 00015 Monterotondo Scalo (Roma), Italy; (G.T.); (E.B.); (M.A.I.); (C.N.); (E.D.G.); (G.M.); (D.G.)
| | - Giovanna Frugis
- Istituto di Biologia e Biotecnologia Agraria (IBBA), Operative Unit of Rome, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300, 00015 Monterotondo Scalo (Roma), Italy; (G.T.); (E.B.); (M.A.I.); (C.N.); (E.D.G.); (G.M.); (D.G.)
| |
Collapse
|
219
|
De Luca G, Fochesato S, Lavergne J, Forest KT, Barakat M, Ortet P, Achouak W, Heulin T, Verméglio A. Light on the cell cycle of the non-photosynthetic bacterium Ramlibacter tataouinensis. Sci Rep 2019; 9:16505. [PMID: 31712689 PMCID: PMC6848086 DOI: 10.1038/s41598-019-52927-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 10/22/2019] [Indexed: 12/27/2022] Open
Abstract
Ramlibacter tataouinensis TTB310, a non-photosynthetic betaproteobacterium isolated from a semi-arid region of southern Tunisia, forms both rods and cysts. Cysts are resistant to desiccation and divide when water and nutrients are available. Rods are motile and capable of dissemination. Due to the strong correlation between sunlight and desiccation, light is probably an important external signal for anticipating desiccating conditions. Six genes encoding potential light sensors were identified in strain TTB310. Two genes encode for bacteriophytochromes, while the four remaining genes encode for putative blue light receptors. We determined the spectral and photochemical properties of the two recombinant bacteriophytochromes RtBphP1 and RtBphP2. In both cases, they act as sensitive red light detectors. Cyst divisions and a complete cyst-rod-cyst cycle are the main processes in darkness, whereas rod divisions predominate in red or far-red light. Mutant phenotypes caused by the inactivation of genes encoding bacteriophytochromes or heme oxygenase clearly show that both bacteriophytochromes are involved in regulating the rod-rod division. This process could favor rapid rod divisions at sunrise, after dew formation but before the progressive onset of desiccation. Our study provides the first evidence of a light-based strategy evolved in a non-photosynthetic bacterium to exploit scarse water in a desert environment.
Collapse
Affiliation(s)
- Gilles De Luca
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMiRE, Saint Paul-Lez-Durance, F-13108, France
| | - Sylvain Fochesato
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMiRE, Saint Paul-Lez-Durance, F-13108, France
| | - Jérôme Lavergne
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMiRE, Saint Paul-Lez-Durance, F-13108, France
| | - Katrina T Forest
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mohamed Barakat
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMiRE, Saint Paul-Lez-Durance, F-13108, France
| | - Philippe Ortet
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMiRE, Saint Paul-Lez-Durance, F-13108, France
| | - Wafa Achouak
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMiRE, Saint Paul-Lez-Durance, F-13108, France
| | - Thierry Heulin
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMiRE, Saint Paul-Lez-Durance, F-13108, France.
| | - André Verméglio
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMiRE, Saint Paul-Lez-Durance, F-13108, France
| |
Collapse
|
220
|
Möglich A. Signal transduction in photoreceptor histidine kinases. Protein Sci 2019; 28:1923-1946. [PMID: 31397927 PMCID: PMC6798134 DOI: 10.1002/pro.3705] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 12/14/2022]
Abstract
Two-component systems (TCS) constitute the predominant means by which prokaryotes read out and adapt to their environment. Canonical TCSs comprise a sensor histidine kinase (SHK), usually a transmembrane receptor, and a response regulator (RR). In signal-dependent manner, the SHK autophosphorylates and in turn transfers the phosphoryl group to the RR which then elicits downstream responses, often in form of altered gene expression. SHKs also catalyze the hydrolysis of the phospho-RR, hence, tightly adjusting the overall degree of RR phosphorylation. Photoreceptor histidine kinases are a subset of mostly soluble, cytosolic SHKs that sense light in the near-ultraviolet to near-infrared spectral range. Owing to their experimental tractability, photoreceptor histidine kinases serve as paradigms and provide unusually detailed molecular insight into signal detection, decoding, and regulation of SHK activity. The synthesis of recent results on receptors with light-oxygen-voltage, bacteriophytochrome and microbial rhodopsin sensor units identifies recurring, joint signaling strategies. Light signals are initially absorbed by the sensor module and converted into subtle rearrangements of α helices, mostly through pivoting and rotation. These conformational transitions propagate through parallel coiled-coil linkers to the effector unit as changes in left-handed superhelical winding. Within the effector, subtle conformations are triggered that modulate the solvent accessibility of residues engaged in the kinase and phosphatase activities. Taken together, a consistent view of the entire trajectory from signal detection to regulation of output emerges. The underlying allosteric mechanisms could widely apply to TCS signaling in general.
Collapse
Affiliation(s)
- Andreas Möglich
- Department of BiochemistryUniversität BayreuthBayreuthGermany
- Bayreuth Center for Biochemistry & Molecular BiologyUniversität BayreuthBayreuthGermany
- North‐Bavarian NMR CenterUniversität BayreuthBayreuthGermany
| |
Collapse
|
221
|
González R, Mroginski MA. Fully Quantum Chemical Treatment of Chromophore–Protein Interactions in Phytochromes. J Phys Chem B 2019; 123:9819-9830. [DOI: 10.1021/acs.jpcb.9b08938] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ronald González
- Institut für Chemie, Technische Universität Berlin, Sekr. PC 14, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | - Maria A. Mroginski
- Institut für Chemie, Technische Universität Berlin, Sekr. PC 14, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
222
|
Sato T, Kikukawa T, Miyoshi R, Kajimoto K, Yonekawa C, Fujisawa T, Unno M, Eki T, Hirose Y. Protochromic absorption changes in the two-cysteine photocycle of a blue/orange cyanobacteriochrome. J Biol Chem 2019; 294:18909-18922. [PMID: 31649035 DOI: 10.1074/jbc.ra119.010384] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/23/2019] [Indexed: 11/06/2022] Open
Abstract
Cyanobacteriochromes (CBCRs) are phytochrome-related photosensors with diverse spectral sensitivities spanning the entire visible spectrum. They covalently bind bilin chromophores via conserved cysteine residues and undergo 15Z/15E bilin photoisomerization upon light illumination. CBCR subfamilies absorbing violet-blue light use an additional cysteine residue to form a second bilin-thiol adduct in a two-Cys photocycle. However, the process of second thiol adduct formation is incompletely understood, especially the involvement of the bilin protonation state. Here, we focused on the Oscil6304_2705 protein from the cyanobacterium Oscillatoria acuminata PCC 6304, which photoconverts between a blue-absorbing 15Z state ( 15Z Pb) and orange-absorbing 15E state ( 15E Po). pH titration analysis revealed that 15Z Pb was stable over a wide pH range, suggesting that bilin protonation is stabilized by a second thiol adduct. As revealed by resonance Raman spectroscopy, 15E Po harbored protonated bilin at both acidic and neutral pH, but readily converted to a deprotonated green-absorbing 15Z state ( 15Z Pg) at alkaline pH. Site-directed mutagenesis revealed that the conserved Asp-71 and His-102 residues are required for second thiol adduct formation in 15Z Pb and bilin protonation in 15E Po, respectively. An Oscil6304_2705 variant lacking the second cysteine residue, Cys-73, photoconverted between deprotonated 15Z Pg and protonated 15E Pr, similarly to the protochromic photocycle of the green/red CBCR subfamily. Time-resolved spectroscopy revealed 15Z Pg formation as an intermediate in the 15E Pr-to- 15Z Pg conversion with a significant solvent-isotope effect, suggesting the sequential occurrence of 15EP-to-15Z photoisomerization, deprotonation, and second thiol adduct formation. Our findings uncover the details of protochromic absorption changes underlying the two-Cys photocycle of violet-blue-absorbing CBCR subfamilies.
Collapse
Affiliation(s)
- Teppei Sato
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441-8580, Japan
| | - Takashi Kikukawa
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Kita10 Nishi8, Kita-ku, Sapporo 060-0810, Japan; Faculty of Advanced Life Science, Hokkaido University, Kita10 Nishi8, Kita-ku, Sapporo 060-0810, Japan
| | - Risako Miyoshi
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Kousuke Kajimoto
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Chinatsu Yonekawa
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441-8580, Japan
| | - Tomotsumi Fujisawa
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Masashi Unno
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Toshihiko Eki
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441-8580, Japan
| | - Yuu Hirose
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441-8580, Japan.
| |
Collapse
|
223
|
Krueger D, Izquierdo E, Viswanathan R, Hartmann J, Pallares Cartes C, De Renzis S. Principles and applications of optogenetics in developmental biology. Development 2019; 146:146/20/dev175067. [PMID: 31641044 PMCID: PMC6914371 DOI: 10.1242/dev.175067] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The development of multicellular organisms is controlled by highly dynamic molecular and cellular processes organized in spatially restricted patterns. Recent advances in optogenetics are allowing protein function to be controlled with the precision of a pulse of laser light in vivo, providing a powerful new tool to perturb developmental processes at a wide range of spatiotemporal scales. In this Primer, we describe the most commonly used optogenetic tools, their application in developmental biology and in the nascent field of synthetic morphogenesis.
Collapse
Affiliation(s)
- Daniel Krueger
- European Molecular Biology Laboratory (EMBL), Developmental Biology Unit Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Emiliano Izquierdo
- European Molecular Biology Laboratory (EMBL), Developmental Biology Unit Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Ranjith Viswanathan
- European Molecular Biology Laboratory (EMBL), Developmental Biology Unit Meyerhofstrasse 1, 69117 Heidelberg, Germany.,Heidelberg University, Faculty of Biosciences, Heidelberg, 69117, Germany
| | - Jonas Hartmann
- European Molecular Biology Laboratory (EMBL), Developmental Biology Unit Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Cristina Pallares Cartes
- European Molecular Biology Laboratory (EMBL), Developmental Biology Unit Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Stefano De Renzis
- European Molecular Biology Laboratory (EMBL), Developmental Biology Unit Meyerhofstrasse 1, 69117 Heidelberg, Germany
| |
Collapse
|
224
|
Oide M, Hikima T, Oroguchi T, Kato T, Yamaguchi Y, Yoshihara S, Yamamoto M, Nakasako M, Okajima K. Molecular shape under far-red light and red light-induced association of Arabidopsis phytochrome B. FEBS J 2019; 287:1612-1625. [PMID: 31621187 DOI: 10.1111/febs.15095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/17/2019] [Accepted: 10/14/2019] [Indexed: 11/29/2022]
Abstract
Phytochrome B (phyB) is a plant photoreceptor protein that regulates various photomorphogenic responses to optimize plant growth and development. PhyB exists in two photoconvertible forms: a red light-absorbing (Pr) and a far-red light-absorbing (Pfr) form. Therefore, to understand the mechanism of phototransformation, the structural characterization of full-length phyB in these two forms is necessary. Here, we report the molecular structure of Arabidopsis thaliana phyB in Pr form and the molecular properties of the Pfr form determined by small-angle X-ray scattering coupled with size-exclusion chromatography. In solution, the Pr form associated as a dimer with a radius of gyration of 50 Å. The molecular shape was a crossed shape, in which the orientation of the photosensory modules differed from that in the crystal structure of dimeric photosensory module. PhyB exhibited structural reversibility in the Pfr-to-Pr phototransformation and thermal reversion from Pfr to Pr in the dark. In addition, Pfr only exhibited nonspecific association, which distinguished molecular properties of Pfr form from those of the inactive Pr form.
Collapse
Affiliation(s)
- Mao Oide
- Department of Physics, Faculty of Science and Technology, Keio University, Yokohama, Japan.,RIKEN SPring-8 Center, Sayo-gun, Japan
| | | | - Tomotaka Oroguchi
- Department of Physics, Faculty of Science and Technology, Keio University, Yokohama, Japan.,RIKEN SPring-8 Center, Sayo-gun, Japan
| | - Takayuki Kato
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Yuhki Yamaguchi
- Department of Physics, Faculty of Science and Technology, Keio University, Yokohama, Japan.,RIKEN SPring-8 Center, Sayo-gun, Japan
| | - Shizue Yoshihara
- Department of Biological Science, Osaka Prefecture University, Sakai, Japan
| | | | - Masayoshi Nakasako
- Department of Physics, Faculty of Science and Technology, Keio University, Yokohama, Japan.,RIKEN SPring-8 Center, Sayo-gun, Japan
| | - Koji Okajima
- Department of Physics, Faculty of Science and Technology, Keio University, Yokohama, Japan.,RIKEN SPring-8 Center, Sayo-gun, Japan
| |
Collapse
|
225
|
Wang D, Qin Y, Zhang S, Wang L, Yang X, Zhong D. Elucidating the Molecular Mechanism of Ultrafast Pfr-State Photoisomerization in Bathy Bacteriophytochrome PaBphP. J Phys Chem Lett 2019; 10:6197-6201. [PMID: 31577445 PMCID: PMC7268903 DOI: 10.1021/acs.jpclett.9b02446] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Bacteriophytochromes are photoreceptors that regulate various physiological processes induced by photoisomerization in a linear tetrapyrrole chromophore upon red/far-red light absorption. Here, we investigate the photoinduced Pfr-state isomerization mechanism of a bathy bacteriophytochrome from Pseudomonas aeruginosa combining femtosecond-resolved fluorescence and absorption methods. We observed initial coherent oscillation motions in the first 1 ps with low-frequency modes below 60 cm-1, then a bifurcation of the wavepacket with the distinct excited-state lifetimes in a few picoseconds, and finally chromophore-protein coupled ground-state conformational evolution on nanosecond time scales. Together with systematic mutational studies, we revealed the critical roles of hydrogen bonds in tuning the photoisomerization dynamics. These results provide a clear molecular picture of the Pfr-state photoisomerization, a mechanism likely applicable to the other phytochromes.
Collapse
Affiliation(s)
- Dihao Wang
- Department of Physics, Department of Chemistry and Biochemistry, Programs of Biophysics, Chemical
Physics, and Biochemistry, The Ohio State University, Columbus, OH 43210, United States
| | - Yangzhong Qin
- Department of Physics, Department of Chemistry and Biochemistry, Programs of Biophysics, Chemical
Physics, and Biochemistry, The Ohio State University, Columbus, OH 43210, United States
| | - Sheng Zhang
- Department of Physics, Department of Chemistry and Biochemistry, Programs of Biophysics, Chemical
Physics, and Biochemistry, The Ohio State University, Columbus, OH 43210, United States
| | - Lijuan Wang
- Department of Physics, Department of Chemistry and Biochemistry, Programs of Biophysics, Chemical
Physics, and Biochemistry, The Ohio State University, Columbus, OH 43210, United States
| | - Xiaojing Yang
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, United States
| | - Dongping Zhong
- Department of Physics, Department of Chemistry and Biochemistry, Programs of Biophysics, Chemical
Physics, and Biochemistry, The Ohio State University, Columbus, OH 43210, United States
- Corresponding Author
| |
Collapse
|
226
|
Hu W, Li Q, Li B, Ma K, Zhang C, Fu X. Optogenetics sheds new light on tissue engineering and regenerative medicine. Biomaterials 2019; 227:119546. [PMID: 31655444 DOI: 10.1016/j.biomaterials.2019.119546] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 10/09/2019] [Accepted: 10/14/2019] [Indexed: 01/23/2023]
Abstract
Optogenetics has demonstrated great potential in the fields of tissue engineering and regenerative medicine, from basic research to clinical applications. Spatiotemporal encoding during individual development has been widely identified and is considered a novel strategy for regeneration. A as a noninvasive method with high spatiotemporal resolution, optogenetics are suitable for this strategy. In this review, we discuss roles of dynamic signal coding in cell physiology and embryonic development. Several optogenetic systems are introduced as ideal optogenetic tools, and their features are compared. In addition, potential applications of optogenetics for tissue engineering are discussed, including light-controlled genetic engineering and regulation of signaling pathways. Furthermore, we present how emerging biomaterials and photoelectric technologies have greatly promoted the clinical application of optogenetics and inspired new concepts for optically controlled therapies. Our summation of currently available data conclusively demonstrates that optogenetic tools are a promising method for elucidating and simulating developmental processes, thus providing vast prospects for tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Wenzhi Hu
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, PR China; Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center, Chinese PLA General Hospital, 100048, Beijing, PR China
| | - Qiankun Li
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, PR China; Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center, Chinese PLA General Hospital, 100048, Beijing, PR China
| | - Bingmin Li
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, PR China; Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center, Chinese PLA General Hospital, 100048, Beijing, PR China
| | - Kui Ma
- Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center, Chinese PLA General Hospital, 100048, Beijing, PR China
| | - Cuiping Zhang
- Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center, Chinese PLA General Hospital, 100048, Beijing, PR China.
| | - Xiaobing Fu
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, PR China; Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center, Chinese PLA General Hospital, 100048, Beijing, PR China.
| |
Collapse
|
227
|
Ronald J, Davis SJ. Focusing on the nuclear and subnuclear dynamics of light and circadian signalling. PLANT, CELL & ENVIRONMENT 2019; 42:2871-2884. [PMID: 31369151 DOI: 10.1111/pce.13634] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/27/2019] [Accepted: 07/30/2019] [Indexed: 05/22/2023]
Abstract
Circadian clocks provide organisms the ability to synchronize their internal physiological responses with the external environment. This process, termed entrainment, occurs through the perception of internal and external stimuli. As with other organisms, in plants, the perception of light is a critical for the entrainment and sustainment of circadian rhythms. Red, blue, far-red, and UV-B light are perceived by the oscillator through the activity of photoreceptors. Four classes of photoreceptors signal to the oscillator: phytochromes, cryptochromes, UVR8, and LOV-KELCH domain proteins. In most cases, these photoreceptors localize to the nucleus in response to light and can associate to subnuclear structures to initiate downstream signalling. In this review, we will highlight the recent advances made in understanding the mechanisms facilitating the nuclear and subnuclear localization of photoreceptors and the role these subnuclear bodies have in photoreceptor signalling, including to the oscillator. We will also highlight recent progress that has been made in understanding the regulation of the nuclear and subnuclear localization of components of the plant circadian clock.
Collapse
Affiliation(s)
- James Ronald
- Department of Biology, University of York, YO10 5DD, York, UK
| | - Seth J Davis
- Department of Biology, University of York, YO10 5DD, York, UK
| |
Collapse
|
228
|
Oligomerization and Photo-Deoligomerization of HOOKLESS1 Controls Plant Differential Cell Growth. Dev Cell 2019; 51:78-88.e3. [DOI: 10.1016/j.devcel.2019.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/11/2019] [Accepted: 08/07/2019] [Indexed: 12/11/2022]
|
229
|
Structural basis of molecular logic OR in a dual-sensor histidine kinase. Proc Natl Acad Sci U S A 2019; 116:19973-19982. [PMID: 31527275 DOI: 10.1073/pnas.1910855116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Signal detection and integration by sensory proteins constitute the critical molecular events as living organisms respond to changes in a complex environment. Many sensory proteins adopt a modular architecture that integrates the perception of distinct chemical or physical signals and the generation of a biological response in the same protein molecule. Currently, how signal perception and integration are achieved in such a modular, often dimeric, framework remains elusive. Here, we report a dynamic crystallography study on the tandem sensor domains of a dual-sensor histidine kinase PPHK (phosphorylation-responsive photosensitive histidine kinase) that operates a molecular logic OR, by which the output kinase activity is modulated by a phosphorylation signal and a light signal. A joint analysis of ∼170 crystallographic datasets probing different signaling states shows remarkable dimer asymmetry as PPHK responds to the input signals and transitions from one state to the other. Supported by mutational data and structural analysis, these direct observations reveal the working mechanics of the molecular logic OR in PPHK, where the light-induced bending of a long signaling helix at the dimer interface is counteracted by the ligand-induced structural changes from a different sensor domain. We propose that the logic OR of PPHK, together with an upstream photoreceptor, implements a "long-pass" red light response distinct from those accomplished by classical phytochromes.
Collapse
|
230
|
Lin CY, Romei MG, Oltrogge LM, Mathews II, Boxer SG. Unified Model for Photophysical and Electro-Optical Properties of Green Fluorescent Proteins. J Am Chem Soc 2019; 141:15250-15265. [PMID: 31450887 DOI: 10.1021/jacs.9b07152] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Green fluorescent proteins (GFPs) have become indispensable imaging and optogenetic tools. Their absorption and emission properties can be optimized for specific applications. Currently, no unified framework exists to comprehensively describe these photophysical properties, namely the absorption maxima, emission maxima, Stokes shifts, vibronic progressions, extinction coefficients, Stark tuning rates, and spontaneous emission rates, especially one that includes the effects of the protein environment. In this work, we study the correlations among these properties from systematically tuned GFP environmental mutants and chromophore variants. Correlation plots reveal monotonic trends, suggesting that all these properties are governed by one underlying factor dependent on the chromophore's environment. By treating the anionic GFP chromophore as a mixed-valence compound existing as a superposition of two resonance forms, we argue that this underlying factor is defined as the difference in energy between the two forms, or the driving force, which is tuned by the environment. We then introduce a Marcus-Hush model with the bond length alternation vibrational mode, treating the GFP absorption band as an intervalence charge transfer band. This model explains all of the observed strong correlations among photophysical properties; related subtopics are extensively discussed in the Supporting Information. Finally, we demonstrate the model's predictive power by utilizing the additivity of the driving force. The model described here elucidates the role of the protein environment in modulating the photophysical properties of the chromophore, providing insights and limitations for designing new GFPs with desired phenotypes. We argue that this model should also be generally applicable to both biological and nonbiological polymethine dyes.
Collapse
Affiliation(s)
- Chi-Yun Lin
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Matthew G Romei
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Luke M Oltrogge
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Irimpan I Mathews
- Stanford Synchrotron Radiation Lightsource , 2575 Sand Hill Road , Menlo Park , California 94025 , United States
| | - Steven G Boxer
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| |
Collapse
|
231
|
Li Y, Zheng C, Zhang Z, Zhou J, Zhang H, Xie X. Characterization of phytochrome C functions in the control of de-etiolation and agronomic traits in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 142:117-124. [PMID: 31279859 DOI: 10.1016/j.plaphy.2019.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 06/09/2023]
Abstract
Although phytochrome A (phyA) and phyB have been functionally characterized, functions of phyC in rice growth and development have remained elusive because of the functional dependency of phyC on the phyB protein. In this study, we introduced PHYB(C364A), in which the chromophore attachment site cysteine 364 was converted to alanine, into the phyAphyB double mutant (aabb) and the phyAphyBphyC triple mutant (aabbcc) to produce PHYB(C364A)/aabb lines and PHYB(C364A)/aabbcc lines, respectively. PHYB(C364A)/aabbcc lines were insensitive to red light (R) and far-red light (FR), suggesting that PHYB(C364A) protein was biologically inactive. Functions of phyC were characterized using the PHYB(C364A)/aabb lines, without the functional interference of phyA or phyB. Phytochrome C responded to R and FR to trigger de-etiolation in the very-low-fluence response and low-fluence response in the PHYB(C364A)/aabb lines. Compared with the aabb mutant, seedlings of PHYB(C364A)/aabb lines showed higher chlorophyll content and reduced leaf angle. The PHYB(C364A)/aabb lines also showed a delayed heading date under long-day conditions. Phytochrome C-regulated agronomic traits were measured at the mature stage. The PHYB(C364A)/aabb lines showed significantly increased plant height, panicle length, grain number per main panicle, seed-setting rate, grain size, and grain weight, compared with those of the aabb mutant. Taken together, the present findings confirm that phyC perceives R and FR, and plays an important role in photomorphogenesis and yield determination in rice.
Collapse
Affiliation(s)
- Yaping Li
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| | - Chongke Zheng
- Shandong Rice Engineering Technology Research Center, Shandong Rice Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| | - Zhizhen Zhang
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| | - Jinjun Zhou
- Shandong Rice Engineering Technology Research Center, Shandong Rice Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| | - Hui Zhang
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| | - Xianzhi Xie
- Shandong Rice Engineering Technology Research Center, Shandong Rice Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| |
Collapse
|
232
|
Lamprecht R. Regulation of signaling proteins in the brain by light. Prog Neurobiol 2019; 180:101638. [DOI: 10.1016/j.pneurobio.2019.101638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/29/2019] [Accepted: 06/06/2019] [Indexed: 12/20/2022]
|
233
|
He Y, Chen H, Zhou L, Liu Y, Chen H. Comparative transcription analysis of photosensitive and non-photosensitive eggplants to identify genes involved in dark regulated anthocyanin synthesis. BMC Genomics 2019; 20:678. [PMID: 31455222 PMCID: PMC6712802 DOI: 10.1186/s12864-019-6023-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/12/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Light is a key environmental factor in regulation of anthocyanin biosynthesis. Through a large number of bagging screenings, we obtained non-photosensitive eggplants that still have decent amount of anthocyanin synthesized after bagging. In the present study, transcriptome was made to explore the molecular mechanism of dark-regulated anthocyanin synthesis in non-photosensitive eggplant. RESULTS The transcriptome of the pericarp at 0 h, 0.5 h, 4 h, and 8 h after bag removal were sequenced and analyzed. Comparison of the sequencing data with those of photosensitive eggplant for the same time period showed that anthocyanin synthesis genes had different expression trends. Based on the expression trends of the structural genes, it was discovered that 22 transcription factors and 4 light signal transduction elements may be involved in the anthocyanin synthesis in two types of eggplants. Through transcription factor target gene prediction and yeast one-hybrid assay, SmBIM1, SmAP2, SmHD, SmMYB94, SmMYB19, SmTT8, SmYABBY, SmTTG2, and SmMYC2 were identified to be directly or indirectly bound to the promoter of the structural gene SmCHS. These results indicate that the identified 9 genes participated in the anthocyanin synthesis in eggplant peel and formed a network of interactions among themselves. CONCLUSIONS Based on the comparative transcription, the identified 22 transcription factors and 4 light signal transduction elements may act as the key factors in dark regulated anthocyanin synthesis in non-photosensitive eggplant. The results provided a step stone for further analysis of the molecular mechanism of dark-regulated anthocyanin synthesis in non-photosensitive eggplant.
Collapse
Affiliation(s)
- Yongjun He
- School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240 China
| | - Hang Chen
- School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240 China
| | - Lu Zhou
- School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240 China
| | - Yang Liu
- School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240 China
| | - Huoying Chen
- School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240 China
| |
Collapse
|
234
|
Dhar YV, Lakhwani D, Pandey A, Singh S, Trivedi PK, Asif MH. Genome-wide identification and interactome analysis of members of two-component system in Banana. BMC Genomics 2019; 20:674. [PMID: 31455217 PMCID: PMC6712864 DOI: 10.1186/s12864-019-6050-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 08/20/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Ethylene signal transduction in plants is conducted by the two-component system (TCS) which consists of histidine kinase (HK), histidine phosphotransferase (HPT) and response regulators (RRs). This system plays an important role in signal transduction during various cellular processes, including fruit ripening and response to multiple environmental cues. Though members of TCS have been identified in a few plants, no detailed analysis has been carried out in banana. RESULTS Through genome-wide analysis, we identified a total of 80 (25 HK, 10 HPT and 45 RR) and 72 (25 HK, 5 HPT and 42 RR) TCS genes in Musa acuminata and Musa balbisiana respectively. The analysis of identified genes revealed that most of the genes are highly conserved however; there are subtle divergences among various members. Comparative expression analysis revealed an involvement of a set of TCS members during banana fruit ripening. Co-expression network analysis identified a working TCS module with direct interactions of HK-HPT and RR members. The molecular dynamics analysis of TCS module showed a significant change in structural trajectories of TCS proteins in the presence of ethylene. Analysis suggests possible interactions between the HK-HPTs and RRs as well as other members leading to banana fruit ripening. CONCLUSIONS In this study, we identified and compared the members of TCS gene family in two banana species and showed their diversity, within groups on the basis of whole-genome duplication events. Our analysis showed that during banana fruit ripening TCS module plays a crucial role. We also demonstrated a possible interaction mechanism of TCS proteins in the presence and absence of ethylene by molecular dynamics simulations. These findings will help in understanding the functional mechanism of TCS proteins in plants in different conditions.
Collapse
Affiliation(s)
- Yogeshwar V Dhar
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Deepika Lakhwani
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ashutosh Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, P.O. Box No. 10531, New Delhi, 110 067, India
| | - Shikha Singh
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
| | - Prabodh K Trivedi
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Mehar H Asif
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
235
|
Fernandez Lopez M, Nguyen AD, Velazquez Escobar F, González R, Michael N, Nogacz Ż, Piwowarski P, Bartl F, Siebert F, Heise I, Scheerer P, Gärtner W, Mroginski MA, Hildebrandt P. Role of the Propionic Side Chains for the Photoconversion of Bacterial Phytochromes. Biochemistry 2019; 58:3504-3519. [DOI: 10.1021/acs.biochem.9b00526] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Maria Fernandez Lopez
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Anh Duc Nguyen
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Francisco Velazquez Escobar
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Ronald González
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Norbert Michael
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Żaneta Nogacz
- Humboldt Universität zu Berlin, Institut für Biologie, Biophysikalische Chemie, Invalidenstraße 42, D-10115 Berlin, Germany
| | - Patrick Piwowarski
- Humboldt Universität zu Berlin, Institut für Biologie, Biophysikalische Chemie, Invalidenstraße 42, D-10115 Berlin, Germany
| | - Franz Bartl
- Humboldt Universität zu Berlin, Institut für Biologie, Biophysikalische Chemie, Invalidenstraße 42, D-10115 Berlin, Germany
| | - Friedrich Siebert
- Albert-Ludwigs-Universität Freiburg, Institut für Molekulare Medizin und Zellforschung, Sektion Biophysik, Hermann-Herderstraße 9, D-79104 Freiburg, Germany
| | - Inge Heise
- Max Planck Institut für Chemische Energiekonversion, Stiftstraße 34-36, D-45470 Mülheim, Germany
| | - Patrick Scheerer
- Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, D-10117 Berlin, Germany
| | - Wolfgang Gärtner
- Max Planck Institut für Chemische Energiekonversion, Stiftstraße 34-36, D-45470 Mülheim, Germany
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
| | - Maria Andrea Mroginski
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Peter Hildebrandt
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
236
|
MAS NMR on a Red/Far-Red Photochromic Cyanobacteriochrome All2699 from Nostoc. Int J Mol Sci 2019; 20:ijms20153656. [PMID: 31357417 PMCID: PMC6696110 DOI: 10.3390/ijms20153656] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/21/2019] [Accepted: 07/24/2019] [Indexed: 11/16/2022] Open
Abstract
Unlike canonical phytochromes, the GAF domain of cyanobacteriochromes (CBCRs) can bind bilins autonomously and is sufficient for functional photocycles. Despite the astonishing spectral diversity of CBCRs, the GAF1 domain of the three-GAF-domain photoreceptor all2699 from the cyanobacterium Nostoc 7120 is the only CBCR-GAF known that converts from a red-absorbing (Pr) dark state to a far-red-absorbing (Pfr) photoproduct, analogous to the more conservative phytochromes. Here we report a solid-state NMR spectroscopic study of all2699g1 in its Pr state. Conclusive NMR evidence unveils a particular stereochemical heterogeneity at the tetrahedral C31 atom, whereas the crystal structure shows exclusively the R-stereochemistry at this chiral center. Additional NMR experiments were performed on a construct comprising the GAF1 and GAF2 domains of all2699, showing a greater precision in the chromophore-protein interactions in the GAF1-2 construct. A 3D Pr structural model of the all2699g1-2 construct predicts a tongue-like region extending from the GAF2 domain (akin to canonical phytochromes) in the direction of the chromophore, shielding it from the solvent. In addition, this stabilizing element allows exclusively the R-stereochemistry for the chromophore-protein linkage. Site-directed mutagenesis performed on three conserved motifs in the hairpin-like tip confirms the interaction of the tongue region with the GAF1-bound chromophore.
Collapse
|
237
|
Hoang QTN, Han YJ, Kim JI. Plant Phytochromes and their Phosphorylation. Int J Mol Sci 2019; 20:ijms20143450. [PMID: 31337079 PMCID: PMC6678601 DOI: 10.3390/ijms20143450] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/10/2019] [Accepted: 07/12/2019] [Indexed: 12/12/2022] Open
Abstract
Extensive research over several decades in plant light signaling mediated by photoreceptors has identified the molecular mechanisms for how phytochromes regulate photomorphogenic development, which includes degradation of phytochrome-interacting factors (PIFs) and inactivation of COP1-SPA complexes with the accumulation of master transcription factors for photomorphogenesis, such as HY5. However, the initial biochemical mechanism for the function of phytochromes has not been fully elucidated. Plant phytochromes have long been known as phosphoproteins, and a few protein phosphatases that directly interact with and dephosphorylate phytochromes have been identified. However, there is no report thus far of a protein kinase that acts on phytochromes. On the other hand, plant phytochromes have been suggested as autophosphorylating serine/threonine protein kinases, proposing that the kinase activity might be important for their functions. Indeed, the autophosphorylation of phytochromes has been reported to play an important role in the regulation of plant light signaling. More recently, evidence that phytochromes function as protein kinases in plant light signaling has been provided using phytochrome mutants displaying reduced kinase activities. In this review, we highlight recent advances in the reversible phosphorylation of phytochromes and their functions as protein kinases in plant light signaling.
Collapse
Affiliation(s)
- Quyen T N Hoang
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 61186, Korea
| | - Yun-Jeong Han
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 61186, Korea
| | - Jeong-Il Kim
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 61186, Korea.
| |
Collapse
|
238
|
Bizimana LA, Farfan CA, Brazard J, Turner DB. E to Z Photoisomerization of Phytochrome Cph1Δ Exceeds the Born-Oppenheimer Adiabatic Limit. J Phys Chem Lett 2019; 10:3550-3556. [PMID: 31181167 DOI: 10.1021/acs.jpclett.9b01137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The Born-Oppenheimer adiabatic limit applies broadly in chemistry because most reactions occur on the ground electronic state. Photochemical reactions involve two or more electronic states and need not be subject to this adiabatic limit. The spectroscopic signatures of nonadiabatic processes are subtle, and therefore, experimental investigations have been limited to the few systems dominated by single photochemical outcomes. Systems with branched excited-state pathways have been neglected, despite their potential to reveal insights into photochemical reactivity. Here we present experimental evidence from coherent three-dimensional electronic spectroscopy that the E to Z photoisomerization of phytochrome Cph1 is strongly nonadiabatic, and the simulations reproduce the measured features only when the photoisomerization proceeds nonadiabatically near, but not through, a conical intersection. The results broaden the general understanding of photoisomerization mechanisms and motivate future studies of nonadiabatic processes with multiple outcomes arising from branching on excited-state potential energy surfaces.
Collapse
Affiliation(s)
- Laurie A Bizimana
- Department of Chemistry , New York University , 100 Washington Square East , New York , New York 10003 , United States
| | - Camille A Farfan
- Department of Chemistry , New York University , 100 Washington Square East , New York , New York 10003 , United States
| | - Johanna Brazard
- Department of Chemistry , New York University , 100 Washington Square East , New York , New York 10003 , United States
| | - Daniel B Turner
- Department of Chemistry , New York University , 100 Washington Square East , New York , New York 10003 , United States
| |
Collapse
|
239
|
Rao Y, Xu N, Li S, Hu J, Jiao R, Hu P, Lin H, Lu C, Lin X, Dai Z, Zhang Y, Zhu X, Wang Y. PE-1, Encoding Heme Oxygenase 1, Impacts Heading Date and Chloroplast Development in Rice ( Oryza sativa L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7249-7257. [PMID: 31244201 DOI: 10.1021/acs.jafc.9b01676] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The duration of the rice growth phase has always been an important target trait. The identification of mutations in rice that alter these processes and result in a shorter growth phase could have potential benefits for crop production. In this study, we isolated an early aging rice mutant, pe-1, with light green leaves, using γ-mutated indica rice cultivar and subsequent screening methods, which is known as the phytochrome synthesis factor Se5 that controls rice flowering. The pe-1 plant is accompanied by a decreased chlorophyll content, an enhanced photosynthesis, and a decreased pollen fertility. PE-1, a close homologue of HY1, is localized in the chloroplast. Expression pattern analysis indicated that PE-1 was mainly expressed in roots, stems, leaves, leaf sheaths, and young panicles. The knockout of PE-1 using the CRISPR/Cas9 system decreased the chlorophyll content and downregulated the expression of PE-1-related genes. Furthermore, the chloroplasts of pe-1 were filled with many large-sized starch grains, and the number of osmiophilic granules (a chloroplast lipid reservoir) was significantly decreased. Altogether, our findings suggest that PE-1 functions as a master regulator to mediate in chlorophyll biosynthesis and photosynthetic pathways.
Collapse
Affiliation(s)
- Yuchun Rao
- College of Chemistry and Life Sciences , Zhejiang Normal University , Jinhua , Zhejiang 321004 , People's Republic of China
| | - Na Xu
- College of Chemistry and Life Sciences , Zhejiang Normal University , Jinhua , Zhejiang 321004 , People's Republic of China
| | - Sanfeng Li
- State Key Laboratory of Rice Biology , China National Rice Research Institute , Hangzhou , Zhejiang 310006 , People's Republic of China
| | - Juan Hu
- College of Chemistry and Life Sciences , Zhejiang Normal University , Jinhua , Zhejiang 321004 , People's Republic of China
| | - Ran Jiao
- College of Chemistry and Life Sciences , Zhejiang Normal University , Jinhua , Zhejiang 321004 , People's Republic of China
| | - Ping Hu
- State Key Laboratory of Rice Biology , China National Rice Research Institute , Hangzhou , Zhejiang 310006 , People's Republic of China
| | - Han Lin
- College of Chemistry and Life Sciences , Zhejiang Normal University , Jinhua , Zhejiang 321004 , People's Republic of China
| | - Caolin Lu
- State Key Laboratory of Rice Biology , China National Rice Research Institute , Hangzhou , Zhejiang 310006 , People's Republic of China
| | - Xue Lin
- College of Chemistry and Life Sciences , Zhejiang Normal University , Jinhua , Zhejiang 321004 , People's Republic of China
| | - Zhijun Dai
- College of Chemistry and Life Sciences , Zhejiang Normal University , Jinhua , Zhejiang 321004 , People's Republic of China
| | - Yilan Zhang
- College of Chemistry and Life Sciences , Zhejiang Normal University , Jinhua , Zhejiang 321004 , People's Republic of China
| | - Xudong Zhu
- State Key Laboratory of Rice Biology , China National Rice Research Institute , Hangzhou , Zhejiang 310006 , People's Republic of China
| | - Yuexing Wang
- State Key Laboratory of Rice Biology , China National Rice Research Institute , Hangzhou , Zhejiang 310006 , People's Republic of China
| |
Collapse
|
240
|
Hu W, Lagarias JC. LOF and GOF Alleles Shed Light on the Molecular Basis of phyB Signaling in Plants. THE PLANT CELL 2019; 31:1400-1401. [PMID: 31085578 PMCID: PMC6635851 DOI: 10.1105/tpc.19.00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
- Wei Hu
- Department of Molecular and Cellular BiologyUniversity of CaliforniaDavis, California 95616
| | - J Clark Lagarias
- Department of Molecular and Cellular BiologyUniversity of CaliforniaDavis, California 95616
| |
Collapse
|
241
|
Fomicheva A, Zhou C, Sun QQ, Gomelsky M. Engineering Adenylate Cyclase Activated by Near-Infrared Window Light for Mammalian Optogenetic Applications. ACS Synth Biol 2019; 8:1314-1324. [PMID: 31145854 DOI: 10.1021/acssynbio.8b00528] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Light in the near-infrared optical window (NIRW) penetrates deep through mammalian tissues, including the skull and brain tissue. Here we engineered an adenylate cyclase (AC) activated by NIRW light (NIRW-AC) and suitable for mammalian applications. To accomplish this goal, we constructed fusions of several bacteriophytochrome photosensory and bacterial AC modules using guidelines for designing chimeric homodimeric bacteriophytochromes. One engineered NIRW-AC, designated IlaM5, has significantly higher activity at 37 °C, is better expressed in mammalian cells, and can mediate cAMP-dependent photoactivation of gene expression in mammalian cells, in favorable contrast to the NIRW-ACs engineered earlier. The ilaM5 gene expressed from an AAV vector was delivered into the ventral basal thalamus region of the mouse brain, resulting in the light-controlled suppression of the cAMP-dependent wave pattern of the sleeping brain known as spindle oscillations. Reversible spindle oscillation suppression was observed in sleeping mice exposed to light from an external light source. This study confirms the robustness of principles of homodimeric bacteriophytochrome engineering, describes a NIRW-AC suitable for mammalian optogenetic applications, and demonstrates the feasibility of controlling brain activity via NIRW-ACs using transcranial irradiation.
Collapse
Affiliation(s)
- Anastasia Fomicheva
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Chen Zhou
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Qian-Quan Sun
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Mark Gomelsky
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071, United States
| |
Collapse
|
242
|
Phytochrome activates the plastid-encoded RNA polymerase for chloroplast biogenesis via nucleus-to-plastid signaling. Nat Commun 2019; 10:2629. [PMID: 31201355 PMCID: PMC6570650 DOI: 10.1038/s41467-019-10518-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/17/2019] [Indexed: 11/08/2022] Open
Abstract
Light initiates chloroplast biogenesis by activating photosynthesis-associated genes encoded by not only the nuclear but also the plastidial genome, but how photoreceptors control plastidial gene expression remains enigmatic. Here we show that the photoactivation of phytochromes triggers the expression of photosynthesis-associated plastid-encoded genes (PhAPGs) by stimulating the assembly of the bacterial-type plastidial RNA polymerase (PEP) into a 1000-kDa complex. Using forward genetic approaches, we identified REGULATOR OF CHLOROPLAST BIOGENESIS (RCB) as a dual-targeted nuclear/plastidial phytochrome signaling component required for PEP assembly. Surprisingly, RCB controls PhAPG expression primarily from the nucleus by interacting with phytochromes and promoting their localization to photobodies for the degradation of the transcriptional regulators PIF1 and PIF3. RCB-dependent PIF degradation in the nucleus signals the plastids for PEP assembly and PhAPG expression. Thus, our findings reveal the framework of a nucleus-to-plastid anterograde signaling pathway by which phytochrome signaling in the nucleus controls plastidial transcription.
Collapse
|
243
|
Yang EJ, Yoo CY, Liu J, Wang H, Cao J, Li FW, Pryer KM, Sun TP, Weigel D, Zhou P, Chen M. NCP activates chloroplast transcription by controlling phytochrome-dependent dual nuclear and plastidial switches. Nat Commun 2019; 10:2630. [PMID: 31201314 PMCID: PMC6570768 DOI: 10.1038/s41467-019-10517-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/17/2019] [Indexed: 12/30/2022] Open
Abstract
Phytochromes initiate chloroplast biogenesis by activating genes encoding the photosynthetic apparatus, including photosynthesis-associated plastid-encoded genes (PhAPGs). PhAPGs are transcribed by a bacterial-type RNA polymerase (PEP), but how phytochromes in the nucleus activate chloroplast gene expression remains enigmatic. We report here a forward genetic screen in Arabidopsis that identified NUCLEAR CONTROL OF PEP ACTIVITY (NCP) as a necessary component of phytochrome signaling for PhAPG activation. NCP is dual-targeted to plastids and the nucleus. While nuclear NCP mediates the degradation of two repressors of chloroplast biogenesis, PIF1 and PIF3, NCP in plastids promotes the assembly of the PEP complex for PhAPG transcription. NCP and its paralog RCB are non-catalytic thioredoxin-like proteins that diverged in seed plants to adopt nonredundant functions in phytochrome signaling. These results support a model in which phytochromes control PhAPG expression through light-dependent double nuclear and plastidial switches that are linked by evolutionarily conserved and dual-localized regulatory proteins. Phytochrome signaling in the nucleus can activate expression of photosynthesis-associated genes in plastids. Here Yang et al. show that NCP is a dual-targeted protein that promotes phytochrome B localization to photobodies in the nucleus while facilitating PEP polymerase assembly in the plastids.
Collapse
Affiliation(s)
- Emily J Yang
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA.,Department of Biology, Duke University, Durham, NC, 27708, USA.,Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Chan Yul Yoo
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Jiangxin Liu
- Department of Biochemistry, Duke University Medical Center, Durham, NC, 27710, USA.,State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, China
| | - He Wang
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Jun Cao
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Fay-Wei Li
- Department of Biology, Duke University, Durham, NC, 27708, USA.,Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | | | - Tai-Ping Sun
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Pei Zhou
- Department of Biochemistry, Duke University Medical Center, Durham, NC, 27710, USA.
| | - Meng Chen
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
244
|
Lee JW, Kim GH. Red And far-red regulation of filament movement correlates with the expression of phytochrome and FHY1 genes in Spirogyra varians (Zygnematales, Streptophyta) 1. JOURNAL OF PHYCOLOGY 2019; 55:688-699. [PMID: 30805922 DOI: 10.1111/jpy.12849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/05/2019] [Indexed: 06/09/2023]
Abstract
Spirogyra filaments show unique photomovement that differs in response to blue, red, and far-red light. Phototropins involved in the blue-light movement have been characterized together with downstream signaling components, but the photoreceptors and mechanical effectors of red- and far-red light movement are not yet characterized. The filaments of Spirogyra varians slowly bent and aggregated to form a tangled mass in red light. In far-red light, the filaments unbent, stretched rapidly, and separated from each other. Mannitol and/or sorbitol treatment significantly inhibited this far-red light movement suggesting that turgor pressure is the driving force of this movement. The bending and aggregating movements of filaments in red light were not affected by osmotic change. Three phytochrome homologues isolated from S. varians showed unique phylogenetic characteristics. Two canonical phytochromes, named SvPHY1 and SvPHY2, and a noncanonical phytochrome named SvPHYX2. SvPHY1 is the first PHY1 family phytochrome reported in zygnematalean algae. The gene involved in the transport of phytochromes into the nucleus was characterized, and its expression in response to red and far-red light was measured using quantitative PCR. Our results suggest that the phytochromes and the genes involved in the transport system into the nucleus are well conserved in S. varians.
Collapse
Affiliation(s)
- Ji Woong Lee
- Department of Biological Sciences, Kongju National University, Gongju, 32588, Korea
| | - Gwang Hoon Kim
- Department of Biological Sciences, Kongju National University, Gongju, 32588, Korea
| |
Collapse
|
245
|
Wei L, Chi B, Ren Y, Rao L, Wu J, Shang H, Liu J, Xiao Y, Ma M, Xu X, Wan J. Conformation Search Across Multiple-Level Potential-Energy Surfaces (CSAMP): A Strategy for Accurate Prediction of Protein–Ligand Binding Structures. J Chem Theory Comput 2019; 15:4264-4279. [DOI: 10.1021/acs.jctc.8b01150] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Lin Wei
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Bo Chi
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yanliang Ren
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Li Rao
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jue Wu
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Huan Shang
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jiaqi Liu
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yiting Xiao
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Minghui Ma
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xin Xu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Ministry of Education (MOE) Laboratory for Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, People’s Republic of China
| | - Jian Wan
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
246
|
Takeda K, Terazima M. Dynamics of Conformational Changes in Full-Length Phytochrome from Cyanobacterium Synechocystis sp. PCC6803 (Cph1) Monitored by Time-Resolved Translational Diffusion Detection. Biochemistry 2019; 58:2720-2729. [DOI: 10.1021/acs.biochem.9b00081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kimitoshi Takeda
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Masahide Terazima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
247
|
Sineshchekov VA, Belyaeva OB. Regulation of Chlorophyll Biogenesis by Phytochrome A. BIOCHEMISTRY (MOSCOW) 2019; 84:491-508. [DOI: 10.1134/s0006297919050043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
248
|
Hamouri F, Zhang W, Aujard I, Le Saux T, Ducos B, Vriz S, Jullien L, Bensimon D. Optical control of protein activity and gene expression by photoactivation of caged cyclofen. Methods Enzymol 2019; 624:1-23. [PMID: 31370925 DOI: 10.1016/bs.mie.2019.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The use of light to control the expression of genes and the activity of proteins is a rapidly expanding field. While many of these approaches use a fusion between a light activatable protein and the protein of interest to control the activity of the latter, it is also possible to control the activity of a protein by uncaging a specific ligand. In that context, controlling the activation of a protein fused to the modified estrogen receptor (ERT) by uncaging its ligand cyclofen-OH has emerged as a generic and versatile method to control the activation of proteins quantitatively, quickly and locally in a live organism. Here, we present the experimental details behind this approach.
Collapse
Affiliation(s)
- Fatima Hamouri
- Laboratoire de Physique de l'ENS, CNRS-UMR8023, PSL Research University, Paris, France; Institut de Biologie de l'ENS, CNRS-UMR8197, INSERM-U1024, PSL Research University, Paris, France
| | - Weiting Zhang
- Laboratoire de Physique de l'ENS, CNRS-UMR8023, PSL Research University, Paris, France; Institut de Biologie de l'ENS, CNRS-UMR8197, INSERM-U1024, PSL Research University, Paris, France
| | - Isabelle Aujard
- PASTEUR, Département de Chimie de l'ENS, CNRS, PSL Research University, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, ENS, CNRS, PASTEUR, Paris, France
| | - Thomas Le Saux
- PASTEUR, Département de Chimie de l'ENS, CNRS, PSL Research University, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, ENS, CNRS, PASTEUR, Paris, France
| | - Bertrand Ducos
- Laboratoire de Physique de l'ENS, CNRS-UMR8023, PSL Research University, Paris, France; Institut de Biologie de l'ENS, CNRS-UMR8197, INSERM-U1024, PSL Research University, Paris, France
| | - Sophie Vriz
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS UMR 7241, INSERM U1050, Paris, France; Department of Life Sciences, Paris-Diderot University, Sorbonne-Paris-Cité, Paris, France
| | - Ludovic Jullien
- PASTEUR, Département de Chimie de l'ENS, CNRS, PSL Research University, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, ENS, CNRS, PASTEUR, Paris, France
| | - David Bensimon
- Laboratoire de Physique de l'ENS, CNRS-UMR8023, PSL Research University, Paris, France; Institut de Biologie de l'ENS, CNRS-UMR8197, INSERM-U1024, PSL Research University, Paris, France; Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA, United States.
| |
Collapse
|
249
|
Sineshchekov VA, Belyaeva OB. Regulation of Chlorophyll Biogenesis by Phytochrome A. BIOCHEMISTRY (MOSCOW) 2019; 84:491-508. [DOI: https:/doi.org/10.1134/s0006297919050043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/29/2019] [Accepted: 01/29/2019] [Indexed: 12/18/2023]
|
250
|
Moser S, Kräutler B. In Search of Bioactivity - Phyllobilins, an Unexplored Class of Abundant Heterocyclic Plant Metabolites from Breakdown of Chlorophyll. Isr J Chem 2019; 59:420-431. [PMID: 31244492 PMCID: PMC6582504 DOI: 10.1002/ijch.201900012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/30/2019] [Accepted: 03/31/2019] [Indexed: 12/04/2022]
Abstract
The fate of the green plant pigment chlorophyll (Chl) in de-greening leaves has long been a fascinating biological puzzle. In the course of the last three decades, various bilin-type products of Chl breakdown have been identified, named phyllobilins (PBs). Considered 'mere' leftovers of a controlled biological Chl detoxification originally, the quest for finding relevant bioactivities of the PBs has become a new paradigm. Indeed, the PBs are abundant in senescent leaves, in ripe fruit and in some vegetables, and they display an exciting array of diverse heterocyclic structures. This review outlines briefly which types of Chl breakdown products occur in higher plants, describes basics of their bio-relevant structural and chemical properties and gives suggestions as to 'why' the plants produce vast amounts of uniquely 'decorated' heterocyclic compounds. Clearly, it is worthwhile to consider crucial metabolic roles of PBs in plants, which may have practical consequences in agriculture and horticulture. However, PBs are also part of our plant-based nutrition and their physiological and pharmacological effects in humans are of interest, as well.
Collapse
Affiliation(s)
- Simone Moser
- Pharmaceutical Biology, Pharmacy DepartmentLudwig-Maximilians University of MunichButenandtstraße 5–1381377MunichGermany
| | - Bernhard Kräutler
- Institute of Organic Chemistry and Centre of Molecular BiosciencesUniversity of Innsbruck. Innrain 80/826020InnsbruckAustria
| |
Collapse
|