201
|
Maguire CC, Sieben JM, de Bie RA. The influence of walking-aids on the plasticity of spinal interneuronal networks, central-pattern-generators and the recovery of gait post-stroke. A literature review and scholarly discussion. J Bodyw Mov Ther 2016; 21:422-434. [PMID: 28532887 DOI: 10.1016/j.jbmt.2016.09.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/10/2016] [Accepted: 09/20/2016] [Indexed: 12/27/2022]
Abstract
BACKGROUND Many aspects of post-stroke gait-rehabilitation are based on low-level evidence or expert opinion. Neuroscientific principles are often not considered when evaluating the impact of interventions. The use of walking-aids including canes and rollators, although widely used for long periods, has primarily been investigated to assess the immediate kinetic, kinematic or physiological effects. The long-term impact on neural structures und functions remains unclear. METHODS A literature review of the function of and factors affecting plasticity of spinal interneuronal-networks and central-pattern-generators (CPG) in healthy and post-stroke patients. The relevance of these mechanisms for gait recovery and the potential impact of walking-aids is discussed. RESULTS Afferent-input to spinal-networks influences motor-output and spinal and cortical plasticity. Disrupted input may adversely affect post-stroke plasticity and functional recovery. Joint and muscle unloading and decoupling from four-limb CPG control may be particularly relevant. CONCLUSIONS Canes and rollators disrupt afferent-input and may negatively affect the recovery of gait.
Collapse
Affiliation(s)
- Clare C Maguire
- Department of Physiotherapy, Bildungszentrum Gesundheit Basel-Stadt, 4142, Muenchenstein, Switzerland; CAPHRI School for Public Health and Primary Care, Maastricht University, 6200 MD, Maastricht, The Netherlands.
| | - Judith M Sieben
- CAPHRI School for Public Health and Primary Care, Maastricht University, 6200 MD, Maastricht, The Netherlands; Department of Anatomy and Embryology, Maastricht University, 6200 MD, Maastricht, The Netherlands
| | - Robert A de Bie
- CAPHRI School for Public Health and Primary Care, Maastricht University, 6200 MD, Maastricht, The Netherlands; Department of Epidemiology, Maastricht University, 6200 MD, Maastricht, The Netherlands
| |
Collapse
|
202
|
Holinski BJ, Mazurek KA, Everaert DG, Toossi A, Lucas-Osma AM, Troyk P, Etienne-Cummings R, Stein RB, Mushahwar VK. Intraspinal microstimulation produces over-ground walking in anesthetized cats. J Neural Eng 2016; 13:056016. [PMID: 27619069 DOI: 10.1088/1741-2560/13/5/056016] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Spinal cord injury causes a drastic loss of motor, sensory and autonomic function. The goal of this project was to investigate the use of intraspinal microstimulation (ISMS) for producing long distances of walking over ground. ISMS is an electrical stimulation method developed for restoring motor function by activating spinal networks below the level of an injury. It produces movements of the legs by stimulating the ventral horn of the lumbar enlargement using fine penetrating electrodes (≤50 μm diameter). APPROACH In each of five adult cats (4.2-5.5 kg), ISMS was applied through 16 electrodes implanted with tips targeting lamina IX in the ventral horn bilaterally. A desktop system implemented a physiologically-based control strategy that delivered different stimulation patterns through groups of electrodes to evoke walking movements with appropriate limb kinematics and forces corresponding to swing and stance. Each cat walked over an instrumented 2.9 m walkway and limb kinematics and forces were recorded. MAIN RESULTS Both propulsive and supportive forces were required for over-ground walking. Cumulative walking distances ranging from 609 to 835 m (longest tested) were achieved in three animals. In these three cats, the mean peak supportive force was 3.5 ± 0.6 N corresponding to full-weight-support of the hind legs, while the angular range of the hip, knee, and ankle joints were 23.1 ± 2.0°, 29.1 ± 0.2°, and 60.3 ± 5.2°, respectively. To further demonstrate the viability of ISMS for future clinical use, a prototype implantable module was successfully implemented in a subset of trials and produced comparable walking performance. SIGNIFICANCE By activating inherent locomotor networks within the lumbosacral spinal cord, ISMS was capable of producing bilaterally coordinated and functional over-ground walking with current amplitudes <100 μA. These exciting results suggest that ISMS may be an effective intervention for restoring functional walking after spinal cord injury.
Collapse
Affiliation(s)
- B J Holinski
- Department of Biomedical Engineering, University of Alberta, Alberta, Canada. Project SMART (Alberta Innovates-Health Solutions Interdisciplinary Team in Smart Neural Prostheses), Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Katz PS. Evolution of central pattern generators and rhythmic behaviours. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150057. [PMID: 26598733 DOI: 10.1098/rstb.2015.0057] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Comparisons of rhythmic movements and the central pattern generators (CPGs) that control them uncover principles about the evolution of behaviour and neural circuits. Over the course of evolutionary history, gradual evolution of behaviours and their neural circuitry within any lineage of animals has been a predominant occurrence. Small changes in gene regulation can lead to divergence of circuit organization and corresponding changes in behaviour. However, some behavioural divergence has resulted from large-scale rewiring of the neural network. Divergence of CPG circuits has also occurred without a corresponding change in behaviour. When analogous rhythmic behaviours have evolved independently, it has generally been with different neural mechanisms. Repeated evolution of particular rhythmic behaviours has occurred within some lineages due to parallel evolution or latent CPGs. Particular motor pattern generating mechanisms have also evolved independently in separate lineages. The evolution of CPGs and rhythmic behaviours shows that although most behaviours and neural circuits are highly conserved, the nature of the behaviour does not dictate the neural mechanism and that the presence of homologous neural components does not determine the behaviour. This suggests that although behaviour is generated by neural circuits, natural selection can act separately on these two levels of biological organization.
Collapse
Affiliation(s)
- Paul S Katz
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302-5030, USA
| |
Collapse
|
204
|
NADPH-diaphorase reactivity and Fos-immunoreactivity within the ventral horn of the lumbar spinal cord of cats submitted to acute muscle inflammation induced by injection of carrageenan. Acta Histochem 2016; 118:659-664. [PMID: 27692234 DOI: 10.1016/j.acthis.2016.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/14/2016] [Accepted: 09/19/2016] [Indexed: 11/21/2022]
Abstract
The NADPH-diaphorase activity and Fos-immunoreactivity within the ventral horn of the lumbar spinal cord were studied in cats with acute unilateral myositis following injection of carrageenan into the m.m. gastrocnemius-soleus. In carrageenan-injected cats maximum in the mean number of intensely stained NADPH-diaphorase reactive (NADPH-dr) neurons was found in lamina VII (+100%) and VIII (+33%) of the contralateral ventral horn of the L6/L7 segments as compared with control animals. The maximumal level of Fos-immunoreactivity was registered in the same laminae with ipsilateral predominance (39.3±4.6 and 7.6±0.9 cells), in comparison with the contralateral side (13.6±0.8 and 5.5±0.6 cells, respectively; P<0.05). We also visualized low-intensely stained and double labelled (Fos immunoreactive+low-intensely stained NADPH-dr) multipolar and fusiform Renshaw-like cells (RLCs) within the ventral horn on both sides of the L6/L7 segments in carrageenan-injected cats. We visualized the double labelled (Fos-ir+NADPH-dr) multipolar and fusiform Renshaw-like cells (RLCs) within the ventral horn on both sides of the L6/L7 segments in carrageenan-injected cats. A significant difference in the mean number of RLCs was recorded between the ipsi- and contralateral sides in the lamina VII (13.6±2.5 vs. 4.9±0.7 cells, respectively). We suppose that activation of inhibitory RLCs in ipsilateral lamina VII could be directed on attenuation of activation of motoneurons during muscle pain development. Our study showed that a significant contralateral increase in the number of NADPH-dr cells is accompanied by an ipsilateral increase in c-Fos expression in lamina VII. These data may suggest that NADPH-dr neurons of the contralateral ventral horn through commissural connections also involved in the maintenance of the neuronal activity associated with acute muscle inflammation. It is also hypothesized, that during acute myositis, plastic changes in the ventral horn activate the processes of disinhibition due to an increase in the number of NADPH-d-reactive neurons in the spinal gray matter.
Collapse
|
205
|
Kobayashi R, Nishimaru H, Nishijo H. Estimation of excitatory and inhibitory synaptic conductance variations in motoneurons during locomotor-like rhythmic activity. Neuroscience 2016; 335:72-81. [PMID: 27561702 DOI: 10.1016/j.neuroscience.2016.08.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/06/2016] [Accepted: 08/12/2016] [Indexed: 11/28/2022]
Abstract
The rhythmic activity of motoneurons (MNs) that underlies locomotion in mammals is generated by synaptic inputs from the locomotor network in the spinal cord. Thus, the quantitative estimation of excitatory and inhibitory synaptic conductances is essential to understand the mechanism by which the network generates the functional motor output. Conductance estimation is obtained from the voltage-current relationship measured by voltage-clamp- or current-clamp-recording with knowledge of the leak parameters of the recorded neuron. However, it is often difficult to obtain sufficient data to estimate synaptic conductances due to technical difficulties in electrophysiological experiments using in vivo or in vitro preparations. To address this problem, we estimated the average variations in excitatory and inhibitory synaptic conductance during a locomotion cycle from a single voltage trace without measuring the leak parameters. We found that the conductance variations can be accurately reconstructed from a voltage trace of 10 cycles by analyzing synthetic data generated from a computational model. Next, the conductance variations were estimated from mouse spinal MNs in vitro during drug-induced-locomotor-like activity. We found that the peak of excitatory conductance occurred during the depolarizing phase of the locomotor cycle, whereas the peak of inhibitory conductance occurred during the hyperpolarizing phase. These results suggest that the locomotor-like activity is generated by push-pull modulation via excitatory and inhibitory synaptic inputs.
Collapse
Affiliation(s)
- Ryota Kobayashi
- Principles of Informatics Research Division, National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-0003, Japan; Department of Informatics, SOKENDAI (The Graduate University for Advanced Studies), 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan.
| | - Hiroshi Nishimaru
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan; Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan.
| | - Hisao Nishijo
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| |
Collapse
|
206
|
Kaur J, Flores Gutiérrez J, Nistri A. Neuroprotective effect of propofol against excitotoxic injury to locomotor networks of the rat spinal cord in vitro. Eur J Neurosci 2016; 44:2418-2430. [PMID: 27468970 DOI: 10.1111/ejn.13353] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/11/2016] [Indexed: 01/09/2023]
Abstract
Although neuroprotection to contain the initial damage of spinal cord injury (SCI) is difficult, multicentre studies show that early neurosurgery under general anaesthesia confers positive benefits. An interesting hypothesis is that the general anaesthetic itself might largely contribute to neuroprotection, although in vivo clinical settings hamper studying this possibility directly. To further test neuroprotective effects of a widely used general anaesthetic, we studied if propofol could change the outcome of a rat isolated spinal cord SCI model involving excitotoxicity evoked by 1 h application of kainate with delayed consequences on neurons and locomotor network activity. Propofol (5 μm; 4-8 h) enhanced responses to GABA and depressed those to NMDA together with decrease in polysynaptic reflexes that partly recovered after 1 day washout. Fictive locomotion induced by dorsal root stimuli or NMDA and serotonin was weaker the day after propofol application. Kainate elicited a significant loss of spinal neurons, especially motoneurons, whose number was halved. When propofol was applied for 4-8 h after kainate washout, strong neuroprotection was observed in all spinal areas, including attenuation of motoneuron loss. Although propofol had minimal impact on recovery of electrophysiological characteristics 24 h later, it did not further depress network activity. A significant improvement in disinhibited burst periodicity suggested potential to ameliorate neuronal excitability in analogy to histological data. Functional recovery of locomotor networks perhaps required longer time due to the combined action of excitotoxicity and anaesthetic depression at 24 h. These results suggest propofol could confer good neuroprotection to spinal circuits during experimental SCI.
Collapse
Affiliation(s)
- Jaspreet Kaur
- Neuroscience Department, International School for Advanced Studies (SISSA), Via Bonomea 265, 34136, Trieste, Italy
| | - Javier Flores Gutiérrez
- Neuroscience Department, International School for Advanced Studies (SISSA), Via Bonomea 265, 34136, Trieste, Italy
| | - Andrea Nistri
- Neuroscience Department, International School for Advanced Studies (SISSA), Via Bonomea 265, 34136, Trieste, Italy. .,SPINAL (Spinal Person Injury Neurorehabilitation Applied Laboratory), Istituto di Medicina Fisica e Riabilitazione, Udine, Italy.
| |
Collapse
|
207
|
Frigon A, Desrochers É, Thibaudier Y, Hurteau MF, Dambreville C. Left-right coordination from simple to extreme conditions during split-belt locomotion in the chronic spinal adult cat. J Physiol 2016; 595:341-361. [PMID: 27426732 DOI: 10.1113/jp272740] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/07/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Coordination between the left and right sides is essential for dynamic stability during locomotion. The immature or neonatal mammalian spinal cord can adjust to differences in speed between the left and right sides during split-belt locomotion by taking more steps on the fast side. We show that the adult mammalian spinal cord can also adjust its output so that the fast side can take more steps. During split-belt locomotion, only certain parts of the cycle are modified to adjust left-right coordination, primarily those associated with swing onset. When the fast limb takes more steps than the slow limb, strong left-right interactions persist. Therefore, the adult mammalian spinal cord has a remarkable adaptive capacity for left-right coordination, from simple to extreme conditions. ABSTRACT Although left-right coordination is essential for locomotion, its control is poorly understood, particularly in adult mammals. To investigate the spinal control of left-right coordination, a spinal transection was performed in six adult cats that were then trained to recover hindlimb locomotion. Spinal cats performed tied-belt locomotion from 0.1 to 1.0 m s-1 and split-belt locomotion with low to high (1:1.25-10) slow/fast speed ratios. With the left hindlimb stepping at 0.1 m s-1 and the right hindlimb stepping from 0.2 to 1.0 m s-1 , 1:1, 1:2, 1:3, 1:4 and 1:5 left-right step relationships could appear. The appearance of 1:2+ relationships was not linearly dependent on the difference in speed between the slow and fast belts. The last step taken by the fast hindlimb displayed longer cycle, stance and swing durations and increased extensor activity, as the slow limb transitioned to swing. During split-belt locomotion with 1:1, 1:2 and 1:3 relationships, the timing of stance onset of the fast limb relative to the slow limb and placement of both limbs at contact were invariant with increasing slow/fast speed ratios. In contrast, the timing of stance onset of the slow limb relative to the fast limb and the placement of both limbs at swing onset were modulated with slow/fast speed ratios. Thus, left-right coordination is adjusted by modifying specific parts of the cycle. Results highlight the remarkable adaptive capacity of the adult mammalian spinal cord, providing insight into spinal mechanisms and sensory signals regulating left-right coordination.
Collapse
Affiliation(s)
- Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada, J1H 5N4
| | - Étienne Desrochers
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada, J1H 5N4
| | - Yann Thibaudier
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada, J1H 5N4
| | - Marie-France Hurteau
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada, J1H 5N4
| | - Charline Dambreville
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada, J1H 5N4
| |
Collapse
|
208
|
Anderson TM, Garcia AJ, Baertsch NA, Pollak J, Bloom JC, Wei AD, Rai KG, Ramirez JM. A novel excitatory network for the control of breathing. Nature 2016; 536:76-80. [PMID: 27462817 DOI: 10.1038/nature18944] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 06/17/2016] [Indexed: 01/09/2023]
Abstract
Breathing must be tightly coordinated with other behaviours such as vocalization, swallowing, and coughing. These behaviours occur after inspiration, during a respiratory phase termed postinspiration. Failure to coordinate postinspiration with inspiration can result in aspiration pneumonia, the leading cause of death in Alzheimer's disease, Parkinson's disease, dementia, and other neurodegenerative diseases. Here we describe an excitatory network that generates the neuronal correlate of postinspiratory activity in mice. Glutamatergic-cholinergic neurons form the basis of this network, and GABA (γ-aminobutyric acid)-mediated inhibition establishes the timing and coordination relative to inspiration. We refer to this network as the postinspiratory complex (PiCo). The PiCo has autonomous rhythm-generating properties and is necessary and sufficient for postinspiratory activity in vivo.The PiCo also shows distinct responses to neuromodulators when compared to other excitatory brainstem networks. On the basis of the discovery of the PiCo, we propose that each of the three phases of breathing is generated by a distinct excitatory network: the pre-Bötzinger complex, which has been linked to inspiration; the PiCo, as described here for the neuronal control of postinspiration; and the lateral parafacial region (pF(L)), which has been associated with active expiration, a respiratory phase that is recruited during high metabolic demand.
Collapse
|
209
|
Shevtsova NA, Rybak IA. Organization of flexor-extensor interactions in the mammalian spinal cord: insights from computational modelling. J Physiol 2016; 594:6117-6131. [PMID: 27292055 DOI: 10.1113/jp272437] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/07/2016] [Indexed: 12/28/2022] Open
Abstract
KEY POINTS Alternation of flexor and extensor activity in the mammalian spinal cord is mediated by two classes of genetically identified inhibitory interneurons, V1 and V2b. The V1 interneurons are essential for high-speed locomotor activity. They secure flexor-extensor alternations in the intact cord but lose this function after hemisection, suggesting that they are activated by inputs from the contralateral side of the cord. The V2b interneurons are involved in flexor-extensor alternations in both intact cord and hemicords. We used a computational model of the spinal network, simulating the left and right rhythm-generating circuits interacting via several commissural pathways, and extended this model by incorporating V1 and V2b neuron populations involved in flexor-extensor interactions on each cord side. The model reproduces multiple experimental data on selective silencing and activation of V1 and/or V2b neurons and proposes the organization of their connectivity providing flexor-extensor alternation in the spinal cord. ABSTRACT Alternating flexor and extensor activity represents the fundamental property underlying many motor behaviours including locomotion. During locomotion this alternation appears to arise in rhythm-generating circuits and transpires at all levels of the spinal cord including motoneurons. Recent studies in vitro and in vivo have shown that flexor-extensor alternation during locomotion involves two classes of genetically identified, inhibitory interneurons: V1 and V2b. Particularly, in the isolated mouse spinal cord, abrogation of neurotransmission derived by both V1 and V2b interneurons resulted in flexor-extensor synchronization, whereas selective inactivation of only one of these neuron types did not abolish flexor-extensor alternation. After hemisection, inactivation of only V2b interneurons led to the flexor-extensor synchronization, while inactivation of V1 interneurons did not affect flexor-extensor alternation. Moreover, optogenetic activation of V2b interneurons suppressed extensor-related activity, while similar activation of V1 interneurons suppressed both flexor and extensor oscillations. Here, we address these issues using the previously published computational model of spinal circuitry simulating bilateral interactions between left and right rhythm-generating circuits. In the present study, we incorporate V1 and V2b neuron populations on both sides of the cord to make them critically involved in flexor-extensor interactions. The model reproduces multiple experimental data on the effects of hemisection and selective silencing or activation of V1 and V2b neurons and suggests connectivity profiles of these neurons and their specific roles in left-right (V1) and flexor-extensor (both V2b and V1) interactions in the spinal cord that can be tested experimentally.
Collapse
Affiliation(s)
- Natalia A Shevtsova
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Ilya A Rybak
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
210
|
Kumar S, Dey S, Jain S. Extremely low-frequency electromagnetic fields: A possible non-invasive therapeutic tool for spinal cord injury rehabilitation. Electromagn Biol Med 2016; 36:88-101. [PMID: 27399648 DOI: 10.1080/15368378.2016.1194290] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Traumatic insults to the spinal cord induce both immediate mechanical damage and subsequent tissue degeneration. The latter involves a range of events namely cellular disturbance, homeostatic imbalance, ionic and neurotransmitters derangement that ultimately result in loss of sensorimotor functions. The targets for improving function after spinal cord injury (SCI) are mainly directed toward limiting these secondary injury events. Extremely low-frequency electromagnetic field (ELF-EMF) is a possible non-invasive therapeutic intervention for SCI rehabilitation which has the potential to constrain the secondary injury-induced events. In the present review, we discuss the effects of ELF-EMF on experimental and clinical SCI as well as on biological system.
Collapse
Affiliation(s)
- Suneel Kumar
- a Department of Physiology , All India Institute of Medical Sciences , New Delhi , India.,b W. M. Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey , Piscataway , NJ , USA
| | - Soumil Dey
- a Department of Physiology , All India Institute of Medical Sciences , New Delhi , India
| | - Suman Jain
- a Department of Physiology , All India Institute of Medical Sciences , New Delhi , India
| |
Collapse
|
211
|
Marinovic W, Tresilian JR. Triggering prepared actions by sudden sounds: reassessing the evidence for a single mechanism. Acta Physiol (Oxf) 2016; 217:13-32. [PMID: 26548462 DOI: 10.1111/apha.12627] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 10/13/2015] [Accepted: 11/02/2015] [Indexed: 12/19/2022]
Abstract
Loud acoustic stimuli can unintentionally elicit volitional acts when a person is in a state of readiness to execute them (the StartReact effect). It has been assumed that the same subcortical pathways and brain regions underlie all instances of the StartReact effect. They are proposed to involve the startle reflex pathways, and the eliciting mechanism is distinct from other ways in which sound can affect the motor system. We present an integrative review which shows that there is no evidence to support these assumptions. We argue that motor command generation for learned, volitional orofacial, laryngeal and distal limb movements is cortical and the StartReact effect for such movements involves transcortical pathways. In contrast, command generation for saccades, locomotor corrections and postural adjustments is subcortical and subcortical pathways are implicated in the StartReact effect for these cases. We conclude that the StartReact effect is not a special phenomenon mediated by startle reflex pathways, but rather is a particular manifestation of the excitatory effects of intense stimulation on the central nervous system.
Collapse
Affiliation(s)
- W. Marinovic
- School of Health & Rehabilitation Sciences; The University of Queensland; Brisbane Qld Australia
- Centre for Sensorimotor Performance; School of Human Movement and Nutrition Sciences; The University of Queensland; Brisbane Qld Australia
| | - J. R. Tresilian
- Department of Psychology; University of Warwick; Coventry UK
| |
Collapse
|
212
|
Bamford JA, Marc Lebel R, Parseyan K, Mushahwar VK. The Fabrication, Implantation, and Stability of Intraspinal Microwire Arrays in the Spinal Cord of Cat and Rat. IEEE Trans Neural Syst Rehabil Eng 2016; 25:287-296. [PMID: 28113558 DOI: 10.1109/tnsre.2016.2555959] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Intraspinal microstimulation (ISMS) is currently under investigation for its ability to restore function following spinal cord injury and aid in addressing basic investigations of the spinal cord in feline and murine (rat) models. In this report we describe the procedures for fabricating and implanting intraspinal microwires, with special emphasis on the rat model. We also report our results on targeting success and long-term stability and functionality of the implants. Early targeting with implants fabricated based on general "average" dimensions of the spinal cord was approximately 50% successful in reaching the proper targets within the ventral grey matter in cats. Improvements in insertion technique and the use of multiple contact electrodes have raised the targeting success to 100%. Furthermore, the manufacturing of ISMS arrays has been improved by the use of magnetic resonance imaging to create subject-specific implants for cats and track the location of the arrays post-implant. In the rat, our procedures have produced desirable targeting of all recovered microwires. We speculate this is due to the different targeting parameters and the shorter depth of insertion in the rat spinal cord. Although there is a heightened mechanical mismatch between the 30 μm -diameter microwires and the small rat spinal cord, chronic implantation and stimulation produce limited histological damage and do not compromise function. Furthermore, despite the increased difficulties of implanting into the smaller rat spinal cord, ISMS is effective in activating spinal cord networks in the lumbosacral enlargement in a manner that is safe, stable and reproducible.
Collapse
|
213
|
Staiger EA, Abri MA, Silva CAS, Brooks SA. Loci impacting polymorphic gait in the Tennessee Walking Horse1. J Anim Sci 2016; 94:1377-86. [DOI: 10.2527/jas.2015-9936] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- E. A. Staiger
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| | - M. A. Abri
- Department of Animal and Veterinary Sciences, College of Agriculture and Marine Sciences, Sultan Qaboos University, PO box 34 Al Khod, Postal Code 123, Muscat, Oman
| | - C. A. S. Silva
- Department of Animal Science, Instituto Federal Sul-Rio-Grandense, Pelotas, Rio Grande do Sul 96060-290, Brazil
| | - S. A. Brooks
- Department of Animal Science, University of Florida, Gainesville 32611
| |
Collapse
|
214
|
Stein PSG, Daniels-McQueen S, Lai J, Liu Z, Corman TS. Modular organization of the multipartite central pattern generator for turtle rostral scratch: knee-related interneurons during deletions. J Neurophysiol 2016; 115:3130-9. [PMID: 27030737 DOI: 10.1152/jn.00871.2015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 03/27/2016] [Indexed: 11/22/2022] Open
Abstract
Central pattern generators (CPGs) are neuronal networks in the spinal cord that generate rhythmic patterns of motor activity in the absence of movement-related sensory feedback. For many vertebrate rhythmic behaviors, CPGs generate normal patterns of motor neuron activities as well as variations of the normal patterns, termed deletions, in which bursts in one or more motor nerves are absent from one or more cycles of the rhythm. Prior work with hip-extensor deletions during turtle rostral scratch supports hypotheses of hip-extensor interneurons in a hip-extensor module and of hip-flexor interneurons in a hip-flexor module. We present here single-unit interneuronal recording data that support hypotheses of knee-extensor interneurons in a knee-extensor module and of knee-flexor interneurons in a knee-flexor module. Members of knee-related modules are not members of hip-related modules and vice versa. These results in turtle provide experimental support at the single-unit interneuronal level for the organizational concept that the rostral-scratch CPG for the turtle hindlimb is multipartite, that is, composed of more than two modules. This work, when combined with experimental and computational work in other vertebrates, does not support the classical view that the vertebrate limb CPG is bipartite with only two modules, one controlling all the flexors of the limb and the other controlling all the extensors of the limb. Instead, these results support the general principle that spinal CPGs are multipartite.
Collapse
Affiliation(s)
- Paul S G Stein
- Department of Biology, Washington University, St. Louis, Missouri
| | | | - Jessica Lai
- Department of Biology, Washington University, St. Louis, Missouri
| | - Z Liu
- Department of Biology, Washington University, St. Louis, Missouri
| | - Tanya S Corman
- Department of Biology, Washington University, St. Louis, Missouri
| |
Collapse
|
215
|
Sartori M, Llyod DG, Farina D. Neural Data-Driven Musculoskeletal Modeling for Personalized Neurorehabilitation Technologies. IEEE Trans Biomed Eng 2016; 63:879-893. [PMID: 27046865 DOI: 10.1109/tbme.2016.2538296] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVES The development of neurorehabilitation technologies requires the profound understanding of the mechanisms underlying an individual's motor ability and impairment. A major factor limiting this understanding is the difficulty of bridging between events taking place at the neurophysiologic level (i.e., motor neuron firings) with those emerging at the musculoskeletal level (i.e. joint actuation), in vivo in the intact moving human. This review presents emerging model-based methodologies for filling this gap that are promising for developing clinically viable technologies. METHODS We provide a design overview of musculoskeletal modeling formulations driven by recordings of neuromuscular activity with a critical comparison to alternative model-free approaches in the context of neurorehabilitation technologies. We present advanced electromyography-based techniques for interfacing with the human nervous system and model-based techniques for translating the extracted neural information into estimates of motor function. RESULTS We introduce representative application areas where modeling is relevant for accessing neuromuscular variables that could not be measured experimentally. We then show how these variables are used for designing personalized rehabilitation interventions, biologically inspired limbs, and human-machine interfaces. CONCLUSION The ability of using electrophysiological recordings to inform biomechanical models enables accessing a broader range of neuromechanical variables than analyzing electrophysiological data or movement data individually. This enables understanding the neuromechanical interplay underlying in vivo movement function, pathology, and robot-assisted motor recovery. SIGNIFICANCE Filling the gap between our understandings of movement neural and mechanical functions is central for addressing one of the major challenges in neurorehabilitation: personalizing current technologies and interventions to an individual's anatomy and impairment.
Collapse
|
216
|
Mitchell EJ, McCallum S, Dewar D, Maxwell DJ. Corticospinal and Reticulospinal Contacts on Cervical Commissural and Long Descending Propriospinal Neurons in the Adult Rat Spinal Cord; Evidence for Powerful Reticulospinal Connections. PLoS One 2016; 11:e0152094. [PMID: 26999665 PMCID: PMC4801400 DOI: 10.1371/journal.pone.0152094] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/08/2016] [Indexed: 01/05/2023] Open
Abstract
Descending systems have a crucial role in the selection of motor output patterns by influencing the activity of interneuronal networks in the spinal cord. Commissural interneurons that project to the contralateral grey matter are key components of such networks as they coordinate left-right motor activity of fore and hind-limbs. The aim of this study was to determine if corticospinal (CST) and reticulospinal (RST) neurons make significant numbers of axonal contacts with cervical commissural interneurons. Two classes of commissural neurons were analysed: 1) local commissural interneurons (LCINs) in segments C4-5; 2) long descending propriospinal neurons (LDPNs) projecting from C4 to the rostral lumbar cord. Commissural interneurons were labelled with Fluorogold and CST and RST axons were labelled by injecting the b subunit of cholera toxin in the forelimb area of the primary somatosensory cortex or the medial longitudinal fasciculus respectively. The results show that LCINs and LDPNs receive few contacts from CST terminals but large numbers of contacts are formed by RST terminals. Use of vesicular glutamate and vesicular GABA transporters revealed that both types of cell received about 80% excitatory and 20% inhibitory RST contacts. Therefore the CST appears to have a minimal influence on LCINs and LDPNs but the RST has a powerful influence. This suggests that left-right activity in the rat spinal cord is not influenced directly via CST systems but is strongly controlled by the RST pathway. Many RST neurons have monosynaptic input from corticobulbar pathways therefore this pathway may provide an indirect route from the cortex to commissural systems. The cortico-reticulospinal-commissural system may also contribute to functional recovery following damage to the CST as it has the capacity to deliver information from the cortex to the spinal cord in the absence of direct CST input.
Collapse
Affiliation(s)
- Emma J. Mitchell
- Spinal Cord Group, Institute of Neuroscience and Psychology, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - Sarah McCallum
- Spinal Cord Group, Institute of Neuroscience and Psychology, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - Deborah Dewar
- Spinal Cord Group, Institute of Neuroscience and Psychology, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - David J. Maxwell
- Spinal Cord Group, Institute of Neuroscience and Psychology, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
- * E-mail:
| |
Collapse
|
217
|
Dose F, Taccola G. Two Distinct Stimulus Frequencies Delivered Simultaneously at Low Intensity Generate Robust Locomotor Patterns. Neuromodulation 2016; 19:563-75. [PMID: 26968869 DOI: 10.1111/ner.12402] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 12/21/2015] [Accepted: 12/29/2015] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Explore the primary characteristics of afferent noisy stimuli, which optimally activate locomotor patterns at low intensity. MATERIALS AND METHODS Intracellular and extracellular electrophysiological traces were derived from single motoneurons and from ventral roots, respectively. From these recordings, we obtained noisy stimulating protocols, delivered to a dorsal root (DR) of an isolated neonatal rat spinal cord, while recording fictive locomotion (FL) from ventral roots. RESULTS We decreased complexity of efficient noisy stimulating protocols down to single cell spikes. Then, we identified four main components within the power spectrum of these signals and used them to construct a basic multifrequency protocol of rectangular impulses, able to induce FL. Further disassembling generated the minimum stimulation paradigm that activated FL, which consisted of a pair of 35 and 172 Hz frequency pulse trains, strongly effective at low intensity when delivered either jointly to one lumbosacral DR or as single simultaneous trains to two distinct DRs. This simplified pulse schedule always activated a locomotor rhythm, even when delivered for a very short time (500 ms). One prerequisite for the two-frequency protocol to activate FL at low intensity when applied to sacrocaudal afferents was the ability to induce ascending volleys of greater amplitude. CONCLUSION Multifrequency protocols can support future studies in defining the most effective characteristics for electrical stimulation to reactivate stepping following motor injury.
Collapse
Affiliation(s)
- Francesco Dose
- Neuroscience Area, International School for Advanced Studies (SISSA), Trieste, TS, Italy.,SPINAL (Spinal Person Injury Neurorehabilitation Applied Laboratory), Istituto di Medicina Fisica e Riabilitazione (IMFR), Udine, UD, Italy
| | - Giuliano Taccola
- Neuroscience Area, International School for Advanced Studies (SISSA), Trieste, TS, Italy.,SPINAL (Spinal Person Injury Neurorehabilitation Applied Laboratory), Istituto di Medicina Fisica e Riabilitazione (IMFR), Udine, UD, Italy
| |
Collapse
|
218
|
Abstract
Unravelling the functional operation of neuronal networks and linking cellular activity to specific behavioural outcomes are among the biggest challenges in neuroscience. In this broad field of research, substantial progress has been made in studies of the spinal networks that control locomotion. Through united efforts using electrophysiological and molecular genetic network approaches and behavioural studies in phylogenetically diverse experimental models, the organization of locomotor networks has begun to be decoded. The emergent themes from this research are that the locomotor networks have a modular organization with distinct transmitter and molecular codes and that their organization is reconfigured with changes to the speed of locomotion or changes in gait.
Collapse
Affiliation(s)
- Ole Kiehn
- Mammalian Locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, Retziusväg 8, 17177 Stockholm, Sweden
| |
Collapse
|
219
|
Iyer NR, Huettner JE, Butts JC, Brown CR, Sakiyama-Elbert SE. Generation of highly enriched V2a interneurons from mouse embryonic stem cells. Exp Neurol 2016; 277:305-316. [PMID: 26784005 PMCID: PMC4761286 DOI: 10.1016/j.expneurol.2016.01.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 12/21/2022]
Abstract
Challenges in parsing specific contributions to spinal microcircuit architecture have limited our ability to model and manipulate those networks for improved functional regeneration after injury or disease. While spinal interneurons (INs) have been implicated in driving coordinated locomotor behaviors, they constitute only a small percentage of the spinal cord and are difficult to isolate from primary tissue. In this study, we employed a genetic strategy to obtain large quantities of highly enriched mouse embryonic stem cell (ESC)-derived V2a INs, an excitatory glutamatergic IN population that is defined by expression of the homeodomain protein Chx10 during development. Puromycin N-acetyltransferase expression was driven by the native gene regulatory elements of Chx10 in the transgenic ESC line, resulting in positive selection of V2a INs after induction and treatment with puromycin. Directly after selection, approximately 80% of cells are Chx10(+), with 94% Lhx3(+); after several weeks, cultures remain free of proliferative cell types and mature into normal glutamatergic neurons as assessed by molecular markers and electrophysiological methods. Functional synapses were observed between selected ESC-derived V2a INs and motor neurons when co-cultured, demonstrating the potential of these cells to form neural networks. While ESC-derived neurons obtained in vitro are not identical to those that develop in the spinal cord, the transgenic ESCs here provide a unique tool to begin studying V2a INs in isolation or for use in in vitro models of spinal microcircuits.
Collapse
Affiliation(s)
- Nisha R Iyer
- Department of Biomedical Engineering, Washington University, Campus Box 1097, One Brookings Drive, St. Louis, MO 63130, USA
| | - James E Huettner
- Department of Cell Biology and Physiology, Washington University School of Medicine, Campus Box 8228, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Jessica C Butts
- Department of Biomedical Engineering, Washington University, Campus Box 1097, One Brookings Drive, St. Louis, MO 63130, USA
| | - Chelsea R Brown
- Department of Biomedical Engineering, Washington University, Campus Box 1097, One Brookings Drive, St. Louis, MO 63130, USA
| | - Shelly E Sakiyama-Elbert
- Department of Biomedical Engineering, Washington University, Campus Box 1097, One Brookings Drive, St. Louis, MO 63130, USA.
| |
Collapse
|
220
|
Shevtsova NA, Talpalar AE, Markin SN, Harris-Warrick RM, Kiehn O, Rybak IA. Organization of left-right coordination of neuronal activity in the mammalian spinal cord: Insights from computational modelling. J Physiol 2016; 593:2403-26. [PMID: 25820677 DOI: 10.1113/jp270121] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 03/23/2015] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Coordination of neuronal activity between left and right sides of the mammalian spinal cord is provided by several sets of commissural interneurons (CINs) whose axons cross the midline. Genetically identified inhibitory V0D and excitatory V0V CINs and ipsilaterally projecting excitatory V2a interneurons were shown to secure left-right alternation at different locomotor speeds. We have developed computational models of neuronal circuits in the spinal cord that include left and right rhythm-generating centres interacting bilaterally via three parallel pathways mediated by V0D , V2a-V0V and V3 neuron populations. The models reproduce the experimentally observed speed-dependent left-right coordination in normal mice and the changes in coordination seen in mutants lacking specific neuron classes. The models propose an explanation for several experimental results and provide insights into the organization of the spinal locomotor network and parallel CIN pathways involved in gait control at different locomotor speeds. ABSTRACT Different locomotor gaits in mammals, such as walking or galloping, are produced by coordinated activity in neuronal circuits in the spinal cord. Coordination of neuronal activity between left and right sides of the cord is provided by commissural interneurons (CINs), whose axons cross the midline. In this study, we construct and analyse two computational models of spinal locomotor circuits consisting of left and right rhythm generators interacting bilaterally via several neuronal pathways mediated by different CINs. The CIN populations incorporated in the models include the genetically identified inhibitory (V0D ) and excitatory (V0V ) subtypes of V0 CINs and excitatory V3 CINs. The model also includes the ipsilaterally projecting excitatory V2a interneurons mediating excitatory drive to the V0V CINs. The proposed network architectures and CIN connectivity allow the models to closely reproduce and suggest mechanistic explanations for several experimental observations. These phenomena include: different speed-dependent contributions of V0D and V0V CINs and V2a interneurons to left-right alternation of neural activity, switching gaits between the left-right alternating walking-like activity and the left-right synchronous hopping-like pattern in mutants lacking specific neuron classes, and speed-dependent asymmetric changes of flexor and extensor phase durations. The models provide insights into the architecture of spinal network and the organization of parallel inhibitory and excitatory CIN pathways and suggest explanations for how these pathways maintain alternating and synchronous gaits at different locomotor speeds. The models propose testable predictions about the neural organization and operation of mammalian locomotor circuits.
Collapse
Affiliation(s)
- Natalia A Shevtsova
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Adolfo E Talpalar
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Sergey N Markin
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| | | | - Ole Kiehn
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ilya A Rybak
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
221
|
Lee KH, Huang YJ, Grau JW. Learning about Time within the Spinal Cord II: Evidence that Temporal Regularity Is Encoded by a Spinal Oscillator. Front Behav Neurosci 2016; 10:14. [PMID: 26903830 PMCID: PMC4749712 DOI: 10.3389/fnbeh.2016.00014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/28/2016] [Indexed: 11/13/2022] Open
Abstract
How a stimulus impacts spinal cord function depends upon temporal relations. When intermittent noxious stimulation (shock) is applied and the interval between shock pulses is varied (unpredictable), it induces a lasting alteration that inhibits adaptive learning. If the same stimulus is applied in a temporally regular (predictable) manner, the capacity to learn is preserved and a protective/restorative effect is engaged that counters the adverse effect of variable stimulation. Sensitivity to temporal relations implies a capacity to encode time. This study explores how spinal neurons discriminate variable and fixed spaced stimulation. Communication with the brain was blocked by means of a spinal transection and adaptive capacity was tested using an instrumental learning task. In this task, subjects must learn to maintain a hind limb in a flexed position to minimize shock exposure. To evaluate the possibility that a distinct class of afferent fibers provide a sensory cue for regularity, we manipulated the temporal relation between shocks given to two dermatomes (leg and tail). Evidence for timing emerged when the stimuli were applied in a coherent manner across dermatomes, implying that a central (spinal) process detects regularity. Next, we show that fixed spaced stimulation has a restorative effect when half the physical stimuli are randomly omitted, as long as the stimuli remain in phase, suggesting that stimulus regularity is encoded by an internal oscillator Research suggests that the oscillator that drives the tempo of stepping depends upon neurons within the rostral lumbar (L1-L2) region. Disrupting communication with the L1-L2 tissue by means of a L3 transection eliminated the restorative effect of fixed spaced stimulation. Implications of the results for step training and rehabilitation after injury are discussed.
Collapse
Affiliation(s)
- Kuan H Lee
- Department of Neurobiology, Center for Pain Research, University of Pittsburgh School of Medicine Pittsburgh, PA, USA
| | - Yung-Jen Huang
- Department of Psychology, Cellular and Behavioral Neuroscience, Texas A&M University College Station, TX, USA
| | - James W Grau
- Department of Psychology, Cellular and Behavioral Neuroscience, Texas A&M University College Station, TX, USA
| |
Collapse
|
222
|
Facial Mechanosensory Influence on Forelimb Movement in Newborn Opossums, Monodelphis domestica. PLoS One 2016; 11:e0148352. [PMID: 26848758 PMCID: PMC4746123 DOI: 10.1371/journal.pone.0148352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 12/08/2015] [Indexed: 01/08/2023] Open
Abstract
The opossum, Monodelphis domestica, is born very immature but crawls, unaided, with its forelimbs (FL) from the mother's birth canal to a nipple where it attaches to pursue its development. What sensory cues guide the newborn to the nipple and trigger its attachment to it? Previous experiments showed that low intensity electrical stimulation of the trigeminal ganglion induces FL movement in in vitro preparations and that trigeminal innervation of the facial skin is well developed in the newborn. The skin does not contain Vater-Pacini or Meissner touch corpuscles at this age, but it contains cells which appear to be Merkel cells (MC). We sought to determine if touch perceived by MC could exert an influence on FL movements. Application of the fluorescent dye AM1-43, which labels sensory cells such as MC, revealed the presence of a large number of labeled cells in the facial epidermis, especially in the snout skin, in newborn opossums. Moreover, calibrated pressure applied to the snout induced bilateral and simultaneous electromyographic responses of the triceps muscle in in vitro preparations of the neuraxis and FL from newborn. These responses increase with stimulation intensity and tend to decrease over time. Removing the facial skin nearly abolished these responses. Metabotropic glutamate 1 receptors being involved in MC neurotransmission, an antagonist of these receptors was applied to the bath, which decreased the EMG responses in a reversible manner. Likewise, bath application of the purinergic type 2 receptors, used by AM1-43 to penetrate sensory cells, also decreased the triceps EMG responses. The combined results support a strong influence of facial mechanosensation on FL movement in newborn opossums, and suggest that this influence could be exerted via MC.
Collapse
|
223
|
Moraud EM, Capogrosso M, Formento E, Wenger N, DiGiovanna J, Courtine G, Micera S. Mechanisms Underlying the Neuromodulation of Spinal Circuits for Correcting Gait and Balance Deficits after Spinal Cord Injury. Neuron 2016; 89:814-28. [PMID: 26853304 DOI: 10.1016/j.neuron.2016.01.009] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/11/2015] [Accepted: 12/26/2015] [Indexed: 01/24/2023]
Abstract
Epidural electrical stimulation of lumbar segments facilitates standing and walking in animal models and humans with spinal cord injury. However, the mechanisms through which this neuromodulation therapy engages spinal circuits remain enigmatic. Using computer simulations and behavioral experiments, we provide evidence that epidural electrical stimulation interacts with muscle spindle feedback circuits to modulate muscle activity during locomotion. Hypothesis-driven strategies emerging from simulations steered the design of stimulation protocols that adjust bilateral hindlimb kinematics throughout gait execution. These stimulation strategies corrected subject-specific gait and balance deficits in rats with incomplete and complete spinal cord injury. The conservation of muscle spindle feedback circuits across mammals suggests that the same mechanisms may facilitate motor control in humans. These results provide a conceptual framework to improve stimulation protocols for clinical applications.
Collapse
Affiliation(s)
| | - Marco Capogrosso
- Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland; BioRobotics Institute, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Emanuele Formento
- Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
| | - Nikolaus Wenger
- Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland; Department of Neurology and Experimental Neurology, University of Berlin, 10098 Berlin, Germany
| | - Jack DiGiovanna
- Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
| | - Grégoire Courtine
- Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland.
| | - Silvestro Micera
- Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland; BioRobotics Institute, Scuola Superiore Sant'Anna, 56127 Pisa, Italy.
| |
Collapse
|
224
|
Merkulyeva N, Veshchitskii A, Makarov F, Gerasimenko Y, Musienko P. Distribution of 28 kDa Calbindin-Immunopositive Neurons in the Cat Spinal Cord. Front Neuroanat 2016; 9:166. [PMID: 26858610 PMCID: PMC4729936 DOI: 10.3389/fnana.2015.00166] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/21/2015] [Indexed: 01/05/2023] Open
Abstract
The distribution of vitamin D-dependent calcium-binding protein (28 kDa calbindin) was investigated in cat lumbar and sacral spinal cord segments (L1-S3). We observed specific multi-dimensional distributions over the spinal segments for small immunopositive cells in Rexed laminae II-III and medium-to-large cells of varying morphology in lamina I and laminae V-VIII. The small neurons in laminae II-III were clustered into the columns along the dorsal horn curvature. The medium-to-large cells were grouped into four assemblages that were located in (1) the most lateral region of lamina VII at the L1-L4 level; (2) the laminae IV-V boundary at the L5-L7 level; (3) the lamina VII dorsal border at the L5-L7 level; and (4) the lamina VIII at the L5-S3 level. The data obtained suggest that the morphological and physiological heterogeneity of calbindin immunolabeling cells formed morpho-functional clusters over the gray matter. A significant portion of the lumbosacral enlargement had immunopositive neurons within all Rexed laminae, suggesting an important functional role within and among the spinal networks that control hindlimb movements.
Collapse
Affiliation(s)
- Natalia Merkulyeva
- Laboratory of Neuromorphology, Pavlov Institute of Physiology RASSaint Petersburg, Russia
- Laboratory of Neuroprosthetics, Institute of Translational Biomedicine, Saint Petersburg State UniversitySaint Petersburg, Russia
| | - Aleksandr Veshchitskii
- Laboratory of Neuromorphology, Pavlov Institute of Physiology RASSaint Petersburg, Russia
| | - Felix Makarov
- Laboratory of Neuromorphology, Pavlov Institute of Physiology RASSaint Petersburg, Russia
| | - Yury Gerasimenko
- Laboratory of Motor Physiology, Pavlov Institute of Physiology RASSaint Petersburg, Russia
| | - Pavel Musienko
- Laboratory of Neuroprosthetics, Institute of Translational Biomedicine, Saint Petersburg State UniversitySaint Petersburg, Russia
- Laboratory of Motor Physiology, Pavlov Institute of Physiology RASSaint Petersburg, Russia
- Laboratory of Neurophysiology and Experimental Neurorehabilitation, Children’s Surgery and Orthopedic Clinic, Department of Non-pulmonary Tuberculosis, Research Institute of PhthysiopulmonologySaint Petersburg, Russia
| |
Collapse
|
225
|
Wenger N, Moraud EM, Gandar J, Musienko P, Capogrosso M, Baud L, Le Goff CG, Barraud Q, Pavlova N, Dominici N, Minev IR, Asboth L, Hirsch A, Duis S, Kreider J, Mortera A, Haverbeck O, Kraus S, Schmitz F, DiGiovanna J, van den Brand R, Bloch J, Detemple P, Lacour SP, Bézard E, Micera S, Courtine G. Spatiotemporal neuromodulation therapies engaging muscle synergies improve motor control after spinal cord injury. Nat Med 2016; 22:138-45. [PMID: 26779815 PMCID: PMC5061079 DOI: 10.1038/nm.4025] [Citation(s) in RCA: 215] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 12/08/2015] [Indexed: 12/17/2022]
Abstract
Electrical neuromodulation of lumbar segments improves motor control after spinal cord injury in animal models and humans. However, the physiological principles underlying the effect of this intervention remain poorly understood, which has limited this therapeutic approach to continuous stimulation applied to restricted spinal cord locations. Here, we developed novel stimulation protocols that reproduce the natural dynamics of motoneuron activation during locomotion. For this, we computed the spatiotemporal activation pattern of muscle synergies during locomotion in healthy rats. Computer simulations identified optimal electrode locations to target each synergy through the recruitment of proprioceptive feedback circuits. This framework steered the design of spatially selective spinal implants and real–time control software that modulate extensor versus flexor synergies with precise temporal resolution. Spatiotemporal neuromodulation therapies improved gait quality, weight–bearing capacities, endurance and skilled locomotion in multiple rodent models of spinal cord injury. These new concepts are directly translatable to strategies to improve motor control in humans.
Collapse
Affiliation(s)
- Nikolaus Wenger
- International Paraplegic Foundation Chair in Spinal Cord Repair, Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.,Department of Neurology with Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Eduardo Martin Moraud
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Bioengineering, EPFL, Lausanne, Switzerland
| | - Jerome Gandar
- International Paraplegic Foundation Chair in Spinal Cord Repair, Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Pavel Musienko
- International Paraplegic Foundation Chair in Spinal Cord Repair, Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.,Motor Physiology Laboratory, Pavlov Institute of Physiology, St. Petersburg, Russia.,Laboratory of Neuroprosthetics, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia.,Lab of Neurophysiology and Experimental Neurorehabilitation, Children's Surgery and Orthopedic Clinic, Department of Nonpulmonary Tuberculosis, Institute of Physiopulmonology, St. Petersburg, Russia
| | - Marco Capogrosso
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Bioengineering, EPFL, Lausanne, Switzerland.,The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Laetitia Baud
- International Paraplegic Foundation Chair in Spinal Cord Repair, Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Camille G Le Goff
- International Paraplegic Foundation Chair in Spinal Cord Repair, Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Quentin Barraud
- International Paraplegic Foundation Chair in Spinal Cord Repair, Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Natalia Pavlova
- International Paraplegic Foundation Chair in Spinal Cord Repair, Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.,Motor Physiology Laboratory, Pavlov Institute of Physiology, St. Petersburg, Russia
| | - Nadia Dominici
- International Paraplegic Foundation Chair in Spinal Cord Repair, Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.,MOVE Research Institute Amsterdam, Faculty of Behavioural and Movement Sciences, VU University Amsterdam, Amsterdam, the Netherlands
| | - Ivan R Minev
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Center for Neuroprosthetics and Institute of Bioengineering, EPFL, Lausanne, Switzerland
| | - Leonie Asboth
- International Paraplegic Foundation Chair in Spinal Cord Repair, Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Arthur Hirsch
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Center for Neuroprosthetics and Institute of Bioengineering, EPFL, Lausanne, Switzerland
| | - Simone Duis
- International Paraplegic Foundation Chair in Spinal Cord Repair, Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Julie Kreider
- International Paraplegic Foundation Chair in Spinal Cord Repair, Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Andrea Mortera
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Bioengineering, EPFL, Lausanne, Switzerland
| | | | | | - Felix Schmitz
- Fraunhofer Institute for Chemical Technology-Mainz Institute for Microtechnology (ICT-IMM), Mainz, Germany
| | - Jack DiGiovanna
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Bioengineering, EPFL, Lausanne, Switzerland
| | - Rubia van den Brand
- International Paraplegic Foundation Chair in Spinal Cord Repair, Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Jocelyne Bloch
- Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Peter Detemple
- Fraunhofer Institute for Chemical Technology-Mainz Institute for Microtechnology (ICT-IMM), Mainz, Germany
| | - Stéphanie P Lacour
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Center for Neuroprosthetics and Institute of Bioengineering, EPFL, Lausanne, Switzerland
| | - Erwan Bézard
- Motac Neuroscience Inc., Beijing, China.,University of Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - Silvestro Micera
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Bioengineering, EPFL, Lausanne, Switzerland.,The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Grégoire Courtine
- International Paraplegic Foundation Chair in Spinal Cord Repair, Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.,Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| |
Collapse
|
226
|
Tuntevski K, Ellison R, Yakovenko S. Asymmetric Walkway: A Novel Behavioral Assay for Studying Asymmetric Locomotion. J Vis Exp 2016:e52921. [PMID: 26863182 DOI: 10.3791/52921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Behavioral assays are commonly used for the assessment of sensorimotor impairment in the central nervous system (CNS). The most sophisticated methods for quantifying locomotor deficits in rodents is to measure minute disturbances of unconstrained gait overground (e.g., manual BBB score or automated CatWalk). However, cortical inputs are not required for the generation of basic locomotion produced by the spinal central pattern generator (CPG). Thus, unconstrained walking tasks test locomotor deficits due to motor cortical impairment only indirectly. In this study, we propose a novel, precise foot-placement locomotor task that evaluates cortical inputs to the spinal CPG. An instrumented peg-way was used to impose symmetrical and asymmetrical locomotor tasks mimicking lateralized movement deficits. We demonstrate that shifts from equidistant inter-stride lengths of 20% produce changes in the forelimb stance phase characteristics during locomotion with preferred stride length. Furthermore, we propose that the asymmetric walkway allows for measurements of behavioral outcomes produced by cortical control signals. These measures are relevant for the assessment of impairment after cortical damage.
Collapse
Affiliation(s)
- Kiril Tuntevski
- Neural Engineering Laboratory, Biomedical Research Center, West Virginia University School of Medicine
| | - Ryan Ellison
- Neural Engineering Laboratory, Biomedical Research Center, West Virginia University School of Medicine
| | - Sergiy Yakovenko
- Neural Engineering Laboratory, Biomedical Research Center, West Virginia University School of Medicine;
| |
Collapse
|
227
|
Shah PK, Gerasimenko Y. Multi-site spinal stimulation strategies to enhance locomotion after paralysis. Neural Regen Res 2016; 11:1926-1927. [PMID: 28197186 PMCID: PMC5270428 DOI: 10.4103/1673-5374.197131] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Prithvi K Shah
- Division of Rehabilitation Sciences, School of Health Technology and Management, Stony Brook University, Stony Brook, NY, USA; Department of Neurobiology, Life Science Building, Stony Brook University, Stony Brook, NY, USA
| | - Yury Gerasimenko
- Department of Integrative Biology and Physiology, Charles E Young Dr, University of California, Los Angeles, CA, USA; Pavlov Institute of Physiology, St. Petersburg, Russia; Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
228
|
Loss of Projections, Functional Compensation, and Residual Deficits in the Mammalian Vestibulospinal System of Hoxb1-Deficient Mice. eNeuro 2015; 2:eN-NWR-0096-15. [PMID: 26730404 PMCID: PMC4697082 DOI: 10.1523/eneuro.0096-15.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/02/2015] [Accepted: 11/12/2015] [Indexed: 11/21/2022] Open
Abstract
The genetic mechanisms underlying the developmental and functional specification of brainstem projection neurons are poorly understood. Here, we use transgenic mouse tools to investigate the role of the gene Hoxb1 in the developmental patterning of vestibular projection neurons, with particular focus on the lateral vestibulospinal tract (LVST). The LVST is the principal pathway that conveys vestibular information to limb-related spinal motor circuits and arose early during vertebrate evolution. We show that the segmental hindbrain expression domain uniquely defined by the rhombomere 4 (r4) Hoxb1 enhancer is the origin of essentially all LVST neurons, but also gives rise to subpopulations of contralateral medial vestibulospinal tract (cMVST) neurons, vestibulo-ocular neurons, and reticulospinal (RS) neurons. In newborn mice homozygous for a Hoxb1-null mutation, the r4-derived LVST and cMVST subpopulations fail to form and the r4-derived RS neurons are depleted. Several general motor skills appear unimpaired, but hindlimb vestibulospinal reflexes, which are mediated by the LVST, are greatly reduced. This functional deficit recovers, however, during the second postnatal week, indicating a substantial compensation for the missing LVST. Despite the compensatory plasticity in balance, adult Hoxb1-null mice exhibit other behavioral deficits that manifest particularly in proprioception and interlimb coordination during locomotor tasks. Our results provide a comprehensive account of the developmental role of Hoxb1 in patterning the vestibular system and evidence for a remarkable developmental plasticity in the descending control of reflex limb movements. They also suggest an involvement of the lateral vestibulospinal tract in proprioception and in ensuring limb alternation generated by locomotor circuitry.
Collapse
|
229
|
Sámano C, Kaur J, Nistri A. A study of methylprednisolone neuroprotection against acute injury to the rat spinal cord in vitro. Neuroscience 2015; 315:136-49. [PMID: 26701292 DOI: 10.1016/j.neuroscience.2015.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 12/21/2022]
Abstract
Methylprednisolone sodium succinate (MPSS) has been proposed as a first-line treatment for acute spinal cord injury (SCI). Its clinical use remains, however, controversial because of the modest benefits and numerous side-effects. We investigated if MPSS could protect spinal neurons and glia using an in vitro model of the rat spinal cord that enables recording reflexes, fictive locomotion and morphological analysis of damage. With this model, a differential lesion affecting mainly either neurons or glia can be produced via kainate-evoked excitotoxicity or application of a pathological medium (lacking O2 and glucose), respectively. MPSS (6-10 μM) applied for 24 h after 1-h pathological medium protected astrocytes and oligodendrocytes especially in the ventrolateral white matter. This effect was accompanied by the return of slow, alternating oscillations (elicited by NMDA and 5-hydroxytryptamine (5-HT)) reminiscent of a sluggish fictive locomotor pattern. MPSS was, however, unable to reverse even a moderate neuronal loss and the concomitant suppression of fictive locomotion evoked by kainate (0.1 mM; 1 h). These results suggest that MPSS could, at least in part, contrast damage to spinal glia induced by a dysmetabolic state (associated to oxygen and glucose deprivation) and facilitate reactivation of spinal networks. Conversely, when even a minority of neurons was damaged by excitotoxicity, MPSS did not protect them nor did it restore network function in the current experimental model.
Collapse
Affiliation(s)
- C Sámano
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Mexico City, Mexico
| | - J Kaur
- Neuroscience Department, International School for Advanced Studies (SISSA), Trieste, Italy
| | - A Nistri
- Neuroscience Department, International School for Advanced Studies (SISSA), Trieste, Italy; SPINAL (Spinal Person Injury Neurorehabilitation Applied Laboratory) Laboratory, Istituto di Medicina Fisica e Riabilitazione, Udine, Italy.
| |
Collapse
|
230
|
Affiliation(s)
- Adam W. Feinberg
- Department of Biomedical Engineering and Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213;
| |
Collapse
|
231
|
STEELE KATHERINEM, ROZUMALSKI ADAM, SCHWARTZ MICHAELH. Muscle synergies and complexity of neuromuscular control during gait in cerebral palsy. Dev Med Child Neurol 2015; 57:1176-82. [PMID: 26084733 PMCID: PMC4683117 DOI: 10.1111/dmcn.12826] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/04/2015] [Indexed: 11/30/2022]
Abstract
AIM Individuals with cerebral palsy (CP) have impaired movement due to a brain injury near birth. Understanding how neuromuscular control is altered in CP can provide insight into pathological movement. We sought to determine if individuals with CP demonstrate reduced complexity of neuromuscular control during gait compared with unimpaired individuals and if changes in control are related to functional ability. METHOD Muscle synergies during gait were retrospectively analyzed for 633 individuals (age range 3.9-70y): 549 with CP (hemiplegia, n=122; diplegia, n=266; triplegia, n=73; quadriplegia, n=88) and 84 unimpaired individuals. Synergies were calculated using non-negative matrix factorization from surface electromyography collected during previous clinical gait analyses. Synergy complexity during gait was compared with diagnosis subtype, functional ability, and clinical examination measures. RESULT Fewer synergies were required to describe muscle activity during gait in individuals with CP compared with unimpaired individuals. Changes in synergies were related to functional impairment and clinical examination measures including selective motor control, strength, and spasticity. INTERPRETATION Individuals with CP use a simplified control strategy during gait compared with unimpaired individuals. These results were similar to synergies during walking among adult stroke survivors, suggesting similar neuromuscular control strategies between these clinical populations.
Collapse
Affiliation(s)
| | - ADAM ROZUMALSKI
- James R. Gage Center for Gait & Motion Analysis, Gillette Children's Specialty Healthcare, St. Paul, MN, Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - MICHAEL H SCHWARTZ
- James R. Gage Center for Gait & Motion Analysis, Gillette Children's Specialty Healthcare, St. Paul, MN, Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
232
|
Moonen G, Satkunendrarajah K, Wilcox JT, Badner A, Mothe A, Foltz W, Fehlings MG, Tator CH. A New Acute Impact-Compression Lumbar Spinal Cord Injury Model in the Rodent. J Neurotrauma 2015; 33:278-89. [PMID: 26414192 DOI: 10.1089/neu.2015.3937] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Traumatic injury to the lumbar spinal cord results in complex central and peripheral nervous tissue damage causing significant neurobehavioral deficits and personal/social adversity. Although lumbar cord injuries are common in humans, there are few clinically relevant models of lumbar spinal cord injury (SCI). This article describes a novel lumbar SCI model in the rat. The effects of moderate (20 g), moderate-to-severe (26 g) and severe (35 g, and 56 g) clip impact-compression injuries at the lumbar spinal cord level L1-L2 (vertebral level T11-T12) were assessed using several neurobehavioral, neuroanatomical, and electrophysiological outcome measures. Lesions were generated after meticulous anatomical landmarking using microCT, followed by laminectomy and extradural inclusion of central and radicular elements to generate a traumatic SCI. Clinically relevant outcomes, such as MR and ultrasound imaging, were paired with robust morphometry. Analysis of the lesional tissue demonstrated that pronounced tissue loss and cavitation occur throughout the acute to chronic phases of injury. Behavioral testing revealed significant deficits in locomotion, with no evidence of hindlimb weight-bearing or hindlimb-forelimb coordination in any injured group. Evaluation of sensory outcomes revealed highly pathological alterations including mechanical allodynia and thermal hyperalgesia indicated by increasing avoidance responses and decreasing latency in the tail-flick test. Deficits in spinal tracts were confirmed by electrophysiology showing increased latency and decreased amplitude of both sensory and motor evoked potentials (SEP/MEP), and increased plantar H-reflex indicating an increase in motor neuron excitability. This is a comprehensive lumbar SCI model and should be useful for evaluation of translationally oriented pre-clinical therapies.
Collapse
Affiliation(s)
- Gray Moonen
- 1 Institute of Medical Science, Faculty of Medicine, University of Toronto , Toronto, Ontario, Canada .,2 Division of Genetics and Development, Toronto Western Research Institute, University Health Network , Toronto, Ontario, Canada
| | - Kajana Satkunendrarajah
- 2 Division of Genetics and Development, Toronto Western Research Institute, University Health Network , Toronto, Ontario, Canada
| | - Jared T Wilcox
- 1 Institute of Medical Science, Faculty of Medicine, University of Toronto , Toronto, Ontario, Canada .,2 Division of Genetics and Development, Toronto Western Research Institute, University Health Network , Toronto, Ontario, Canada
| | - Anna Badner
- 1 Institute of Medical Science, Faculty of Medicine, University of Toronto , Toronto, Ontario, Canada .,2 Division of Genetics and Development, Toronto Western Research Institute, University Health Network , Toronto, Ontario, Canada
| | - Andrea Mothe
- 2 Division of Genetics and Development, Toronto Western Research Institute, University Health Network , Toronto, Ontario, Canada
| | - Warren Foltz
- 4 STTARR Innovation Centre, University Health Network , Toronto, Ontario, Canada
| | - Michael G Fehlings
- 1 Institute of Medical Science, Faculty of Medicine, University of Toronto , Toronto, Ontario, Canada .,2 Division of Genetics and Development, Toronto Western Research Institute, University Health Network , Toronto, Ontario, Canada .,3 Department of Surgery, Division of Neurosurgery, University of Toronto , Toronto, Ontario, Canada
| | - Charles H Tator
- 1 Institute of Medical Science, Faculty of Medicine, University of Toronto , Toronto, Ontario, Canada .,2 Division of Genetics and Development, Toronto Western Research Institute, University Health Network , Toronto, Ontario, Canada .,3 Department of Surgery, Division of Neurosurgery, University of Toronto , Toronto, Ontario, Canada
| |
Collapse
|
233
|
Hinckley CA, Alaynick WA, Gallarda BW, Hayashi M, Hilde KL, Driscoll SP, Dekker JD, Tucker HO, Sharpee TO, Pfaff SL. Spinal Locomotor Circuits Develop Using Hierarchical Rules Based on Motorneuron Position and Identity. Neuron 2015; 87:1008-21. [PMID: 26335645 DOI: 10.1016/j.neuron.2015.08.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/29/2015] [Accepted: 08/03/2015] [Indexed: 11/28/2022]
Abstract
The coordination of multi-muscle movements originates in the circuitry that regulates the firing patterns of spinal motorneurons. Sensory neurons rely on the musculotopic organization of motorneurons to establish orderly connections, prompting us to examine whether the intraspinal circuitry that coordinates motor activity likewise uses cell position as an internal wiring reference. We generated a motorneuron-specific GCaMP6f mouse line and employed two-photon imaging to monitor the activity of lumbar motorneurons. We show that the central pattern generator neural network coordinately drives rhythmic columnar-specific motorneuron bursts at distinct phases of the locomotor cycle. Using multiple genetic strategies to perturb the subtype identity and orderly position of motorneurons, we found that neurons retained their rhythmic activity-but cell position was decoupled from the normal phasing pattern underlying flexion and extension. These findings suggest a hierarchical basis of motor circuit formation that relies on increasingly stringent matching of neuronal identity and position.
Collapse
Affiliation(s)
- Christopher A Hinckley
- Gene Expression Laboratory and the Howard Hughes Medical Institute, Salk Institute for Biological Studies, 10010 North Torrey Pines, La Jolla, CA 92037, USA
| | - William A Alaynick
- Gene Expression Laboratory and the Howard Hughes Medical Institute, Salk Institute for Biological Studies, 10010 North Torrey Pines, La Jolla, CA 92037, USA
| | - Benjamin W Gallarda
- Gene Expression Laboratory and the Howard Hughes Medical Institute, Salk Institute for Biological Studies, 10010 North Torrey Pines, La Jolla, CA 92037, USA
| | - Marito Hayashi
- Gene Expression Laboratory and the Howard Hughes Medical Institute, Salk Institute for Biological Studies, 10010 North Torrey Pines, La Jolla, CA 92037, USA
| | - Kathryn L Hilde
- Gene Expression Laboratory and the Howard Hughes Medical Institute, Salk Institute for Biological Studies, 10010 North Torrey Pines, La Jolla, CA 92037, USA
| | - Shawn P Driscoll
- Gene Expression Laboratory and the Howard Hughes Medical Institute, Salk Institute for Biological Studies, 10010 North Torrey Pines, La Jolla, CA 92037, USA
| | - Joseph D Dekker
- Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Haley O Tucker
- Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Tatyana O Sharpee
- Gene Expression Laboratory and the Howard Hughes Medical Institute, Salk Institute for Biological Studies, 10010 North Torrey Pines, La Jolla, CA 92037, USA; Computational Neurobiology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines, La Jolla, CA 92037, USA
| | - Samuel L Pfaff
- Gene Expression Laboratory and the Howard Hughes Medical Institute, Salk Institute for Biological Studies, 10010 North Torrey Pines, La Jolla, CA 92037, USA.
| |
Collapse
|
234
|
Shabbir A, Bianchetti E, Cargonja R, Petrovic A, Mladinic M, Pilipović K, Nistri A. Role of HSP70 in motoneuron survival after excitotoxic stress in a rat spinal cord injury modelin vitro. Eur J Neurosci 2015; 42:3054-65. [DOI: 10.1111/ejn.13108] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 10/15/2015] [Accepted: 10/15/2015] [Indexed: 01/06/2023]
Affiliation(s)
- Ayisha Shabbir
- Neuroscience Department; Scuola Internazionale Superiore di Studi Avanzati (SISSA); Via Bonomea 265 34136 Trieste Italy
| | - Elena Bianchetti
- Neuroscience Department; Scuola Internazionale Superiore di Studi Avanzati (SISSA); Via Bonomea 265 34136 Trieste Italy
| | - Renato Cargonja
- Neuroscience Department; Scuola Internazionale Superiore di Studi Avanzati (SISSA); Via Bonomea 265 34136 Trieste Italy
- Department of Biotechnology; University of Rijeka; Rijeka Croatia
| | - Antonela Petrovic
- Neuroscience Department; Scuola Internazionale Superiore di Studi Avanzati (SISSA); Via Bonomea 265 34136 Trieste Italy
- Department of Biotechnology; University of Rijeka; Rijeka Croatia
| | - Miranda Mladinic
- Neuroscience Department; Scuola Internazionale Superiore di Studi Avanzati (SISSA); Via Bonomea 265 34136 Trieste Italy
- Department of Biotechnology; University of Rijeka; Rijeka Croatia
| | - Kristina Pilipović
- Neuroscience Department; Scuola Internazionale Superiore di Studi Avanzati (SISSA); Via Bonomea 265 34136 Trieste Italy
| | - Andrea Nistri
- Neuroscience Department; Scuola Internazionale Superiore di Studi Avanzati (SISSA); Via Bonomea 265 34136 Trieste Italy
| |
Collapse
|
235
|
Bouvier J, Caggiano V, Leiras R, Caldeira V, Bellardita C, Balueva K, Fuchs A, Kiehn O. Descending Command Neurons in the Brainstem that Halt Locomotion. Cell 2015; 163:1191-1203. [PMID: 26590422 PMCID: PMC4899047 DOI: 10.1016/j.cell.2015.10.074] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 09/21/2015] [Accepted: 10/28/2015] [Indexed: 01/21/2023]
Abstract
The episodic nature of locomotion is thought to be controlled by descending inputs from the brainstem. Most studies have largely attributed this control to initiating excitatory signals, but little is known about putative commands that may specifically determine locomotor offset. To link identifiable brainstem populations to a potential locomotor stop signal, we used developmental genetics and considered a discrete neuronal population in the reticular formation: the V2a neurons. We find that those neurons constitute a major excitatory pathway to locomotor areas of the ventral spinal cord. Selective activation of V2a neurons of the rostral medulla stops ongoing locomotor activity, owing to an inhibition of premotor locomotor networks in the spinal cord. Moreover, inactivation of such neurons decreases spontaneous stopping in vivo. Therefore, the V2a "stop neurons" represent a glutamatergic descending pathway that favors immobility and may thus help control the episodic nature of locomotion.
Collapse
Affiliation(s)
- Julien Bouvier
- Mammalian Locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden; Paris-Saclay Institute of Neuroscience, UMR 9197 - CNRS and Université-Paris 11, 91190 Gif-sur-Yvette, France.
| | - Vittorio Caggiano
- Mammalian Locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Roberto Leiras
- Mammalian Locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Vanessa Caldeira
- Mammalian Locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Carmelo Bellardita
- Mammalian Locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Kira Balueva
- Institute of Physiology, Christian Albrechts University of Kiel, 24098 Kiel, Germany
| | - Andrea Fuchs
- Mammalian Locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Ole Kiehn
- Mammalian Locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden.
| |
Collapse
|
236
|
Xu H, Iyer N, Huettner JE, Sakiyama-Elbert SE. A puromycin selectable cell line for the enrichment of mouse embryonic stem cell-derived V3 interneurons. Stem Cell Res Ther 2015; 6:220. [PMID: 26555777 PMCID: PMC4641415 DOI: 10.1186/s13287-015-0213-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/21/2015] [Accepted: 10/23/2015] [Indexed: 01/19/2023] Open
Abstract
INTRODUCTION Spinal V3 interneurons (INs) are a commissural, glutamatergic, propriospinal neuron population that holds great potential for understanding locomotion circuitry and local rewiring after spinal cord injury. Embryonic stem cells hold promise as a cell source. However, the inevitable heterogeneity resulting from differentiation protocols makes studying post-mitotic stem cell-derived neuron populations difficult because proliferative glia quickly overtake a culture. Previously, an induction protocol for V3 INs was established. However, because of the heterogeneous population resulting from the induction protocol, functional characterization of the induced cells was not possible. METHODS A selectable murine transgenic embryonic stem cell (ESC) line (Sim1-Puro) was generated by recombineering. The expression of the puromycin resistance enzyme, puromycin N-acetyl-transferase (PAC), was knocked into the locus of a post-mitotic V3 IN marker (Sim1), allowing Sim1 gene regulatory elements to control PAC expression. The resulting cell line was characterized for Sim1 expression by in situ hybridization, for glutamatergic marker expression by immunocytochemistry and quantitative real time polymerase chain reaction (qRT-PCR), and for functional maturation by electrophysiology. RESULTS Puromycin selection significantly enriched the population for V3 INs, allowing long-term characterization. The selected population expressed the neuronal marker β-III tubulin and the glutamatergic neuron marker VGluT2. The selected V3 INs also exhibited appropriate functional maturation, as assessed by electrophysiology, and remained glutamatergic for 2 weeks. CONCLUSION The Sim1-Puro cell line provides a simple, high throughput method for generating large numbers of V3 INs from mouse ESCs for future in vitro and cell transplantation studies.
Collapse
Affiliation(s)
- Hao Xu
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive, Box 1097, St. Louis, MO, 63130, USA.
| | - Nisha Iyer
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive, Box 1097, St. Louis, MO, 63130, USA.
| | - James E Huettner
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Shelly E Sakiyama-Elbert
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive, Box 1097, St. Louis, MO, 63130, USA.
| |
Collapse
|
237
|
Lee KH, Turtle JD, Huang YJ, Strain MM, Baumbauer KM, Grau JW. Learning about time within the spinal cord: evidence that spinal neurons can abstract and store an index of regularity. Front Behav Neurosci 2015; 9:274. [PMID: 26539090 PMCID: PMC4612497 DOI: 10.3389/fnbeh.2015.00274] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/28/2015] [Indexed: 01/06/2023] Open
Abstract
Prior studies have shown that intermittent noxious stimulation has divergent effects on spinal cord plasticity depending upon whether it occurs in a regular (fixed time, FT) or irregular (variable time, VT) manner: In spinally transected animals, VT stimulation to the tail or hind leg impaired spinal learning whereas an extended exposure to FT stimulation had a restorative/protective effect. These observations imply that lower level systems are sensitive to temporal relations. Using spinally transected rats, it is shown that the restorative effect of FT stimulation emerges after 540 shocks; fewer shocks generate a learning impairment. The transformative effect of FT stimulation is related to the number of shocks administered, not the duration of exposure. Administration of 360 FT shocks induces a learning deficit that lasts 24 h. If a second bout of FT stimulation is given a day after the first, it restores the capacity to learn. This savings effect implies that the initial training episode had a lasting (memory-like) effect. Two bouts of shock have a transformative effect when applied at different locations or at difference frequencies, implying spinal systems abstract and store an index of regularity (rather than a specific interval). Implications of the results for step training and rehabilitation after injury are discussed.
Collapse
Affiliation(s)
- Kuan H Lee
- Department of Neurobiology, Center for Pain Research, University of Pittsburgh School of Medicine Pittsburgh, PA, USA
| | - Joel D Turtle
- Department of Psychology, Cellular and Behavioral Neuroscience, Texas A&M University College Station, TX, USA
| | - Yung-Jen Huang
- Department of Psychology, Cellular and Behavioral Neuroscience, Texas A&M University College Station, TX, USA
| | - Misty M Strain
- Department of Psychology, Cellular and Behavioral Neuroscience, Texas A&M University College Station, TX, USA
| | | | - James W Grau
- Department of Psychology, Cellular and Behavioral Neuroscience, Texas A&M University College Station, TX, USA
| |
Collapse
|
238
|
Acevedo J, Santana-Almansa A, Matos-Vergara N, Marrero-Cordero LR, Cabezas-Bou E, Díaz-Ríos M. Caffeine stimulates locomotor activity in the mammalian spinal cord via adenosine A1 receptor-dopamine D1 receptor interaction and PKA-dependent mechanisms. Neuropharmacology 2015; 101:490-505. [PMID: 26493631 DOI: 10.1016/j.neuropharm.2015.10.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/16/2015] [Accepted: 10/15/2015] [Indexed: 01/31/2023]
Abstract
Caffeine is a potent psychostimulant that can have significant and widely variable effects on the activity of multiple neuronal pathways. The most pronounced caffeine-induced behavioral effect seen in rodents is to increase locomotor activity which has been linked to a dose-dependent inhibition of A1 and A(2A) receptors. The effects of caffeine at the level of the lumbar spinal central pattern generator (CPG) network for hindlimb locomotion are lacking. We assessed the effects of caffeine to the locomotor function of the spinal CPG network via extracellular ventral root recordings using the isolated neonatal mouse spinal cord preparation. Addition of caffeine and of an A1 receptor antagonist significantly decreased the cycle period accelerating the ongoing locomotor rhythm, while decreasing burst duration reversibly in most preparations suggesting the role of A1 receptors as the primary target of caffeine. Caffeine and an A1 receptor antagonist failed to stimulate ongoing locomotor activity in the absence of dopamine or in the presence of a D1 receptor antagonist supporting A1/D1 receptor-dependent mechanism of action. The use of caffeine or an A1 receptor blocker failed to stimulate an ongoing locomotor rhythm in the presence of a blocker of the cAMP-dependent protein kinase (PKA) supporting the need of this intracellular pathway for the modulatory effects of caffeine to occur. These results support a stimulant effect of caffeine on the lumbar spinal network controlling hindlimb locomotion through the inhibition of A1 receptors and subsequent activation of D1 receptors via a PKA-dependent intracellular mechanism.
Collapse
Affiliation(s)
- JeanMarie Acevedo
- Department of Anatomy and Neurobiology and Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA
| | - Alexandra Santana-Almansa
- Department of Anatomy and Neurobiology and Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA
| | - Nikol Matos-Vergara
- Department of Anatomy and Neurobiology and Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA
| | - Luis René Marrero-Cordero
- Department of Anatomy and Neurobiology and Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA
| | - Ernesto Cabezas-Bou
- Department of Anatomy and Neurobiology and Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA
| | - Manuel Díaz-Ríos
- Department of Anatomy and Neurobiology and Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA.
| |
Collapse
|
239
|
Britz O, Zhang J, Grossmann KS, Dyck J, Kim JC, Dymecki S, Gosgnach S, Goulding M. A genetically defined asymmetry underlies the inhibitory control of flexor-extensor locomotor movements. eLife 2015; 4. [PMID: 26465208 PMCID: PMC4604447 DOI: 10.7554/elife.04718] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 08/29/2015] [Indexed: 11/13/2022] Open
Abstract
V1 and V2b interneurons (INs) are essential for the production of an alternating flexor–extensor motor output. Using a tripartite genetic system to selectively ablate either V1 or V2b INs in the caudal spinal cord and assess their specific functions in awake behaving animals, we find that V1 and V2b INs function in an opposing manner to control flexor–extensor-driven movements. Ablation of V1 INs results in limb hyperflexion, suggesting that V1 IN-derived inhibition is needed for proper extension movements of the limb. The loss of V2b INs results in hindlimb hyperextension and a delay in the transition from stance phase to swing phase, demonstrating V2b INs are required for the timely initiation and execution of limb flexion movements. Our findings also reveal a bias in the innervation of flexor- and extensor-related motor neurons by V1 and V2b INs that likely contributes to their differential actions on flexion–extension movements. DOI:http://dx.doi.org/10.7554/eLife.04718.001 Although there are many different movements an animal can make with its limbs—from reaching to walking—they all basically involve two sets of muscles that act as opposing levers around each joint. ‘Flexor’ muscles contract to bend the limb, and ‘extensor’ muscles contract to extend the limb. When an animal is walking these two sets of muscles contract repeatedly, one after the other. Inhibitory neurons in the spinal cord coordinate these walking movements by preventing the flexor or extensor muscles from contracting at the same time. In 2014, researchers discovered that two groups of inhibitory neurons, known as the V1 and V2b interneurons, are essential for this alternating pattern of flexing and extending of the limbs of newborn mice. However, these experiments were not able to assess the particular contribution that the V1 and V2b neurons each make to limb movements. Now, Britz et al.—including several of the researchers involved in the 2014 study—have used a sophisticated genetic technique in mice to investigate the role that each group of neurons plays separately. This involved introducing a gene into either the V1 or V2b neurons that makes them susceptible to being killed with the diphtheria toxin. Injecting the mice with diphtheria toxin selectively removed these cells from the regions of the spinal cord that controls hindlimb movements. Britz et al. found that removing either group of neurons prevented the mice from walking normally. Eliminating the V1 neurons caused extreme flexing of the hindlimbs, revealing that the V1 neurons are needed to extend the limb by inhibiting the motor neurons that contract the flexor muscles. In contrast, the loss of V2b neurons caused exaggerated hindlimb extension, indicating that the V2b neurons inhibit the motor neurons that innervate extensor muscles. Both the V1 and V2b groups of neurons contain a wide range of different cell types. Future studies will therefore need to explore how these different cells are involved in coordinating the motions involved in walking. DOI:http://dx.doi.org/10.7554/eLife.04718.002
Collapse
Affiliation(s)
- Olivier Britz
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, United States
| | - Jingming Zhang
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, United States
| | - Katja S Grossmann
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, United States
| | - Jason Dyck
- Department of Physiology, University of Alberta, Edmonton, Canada
| | - Jun C Kim
- Department of Genetics, Harvard Medical School, Boston, United States
| | - Susan Dymecki
- Department of Genetics, Harvard Medical School, Boston, United States
| | - Simon Gosgnach
- Department of Physiology, University of Alberta, Edmonton, Canada
| | - Martyn Goulding
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, United States
| |
Collapse
|
240
|
Sivertsen MS, Perreault MC, Glover JC. Pontine reticulospinal projections in the neonatal mouse: Internal organization and axon trajectories. J Comp Neurol 2015; 524:1270-91. [PMID: 26400815 DOI: 10.1002/cne.23904] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 09/11/2015] [Accepted: 09/15/2015] [Indexed: 01/02/2023]
Abstract
We recently characterized physiologically a pontine reticulospinal (pRS) projection in the neonatal mouse that mediates synaptic effects on spinal motoneurons via parallel uncrossed and crossed pathways (Sivertsen et al. [2014] J Neurophysiol 112:1628-1643). Here we characterize the origins, anatomical organization, and supraspinal axon trajectories of these pathways via retrograde tracing from the high cervical spinal cord. The two pathways derive from segregated populations of ipsilaterally and contralaterally projecting pRS neurons with characteristic locations within the pontine reticular formation (PRF). We obtained estimates of relative neuron numbers by counting from sections, digitally generated neuron position maps, and 3D reconstructions. Ipsilateral pRS neurons outnumber contralateral pRS neurons by threefold and are distributed about equally in rostral and caudal regions of the PRF, whereas contralateral pRS neurons are concentrated in the rostral PRF. Ipsilateral pRS neuron somata are on average larger than contralateral. No pRS neurons are positive in transgenic mice that report the expression of GAD, suggesting that they are predominantly excitatory. Putative GABAergic interneurons are interspersed among the pRS neurons, however. Ipsilateral and contralateral pRS axons have distinctly different trajectories within the brainstem. Their initial spinal funicular trajectories also differ, with ipsilateral and contralateral pRS axons more highly concentrated medially and laterally, respectively. The larger size and greater number of ipsilateral vs. contralateral pRS neurons is compatible with our previous finding that the uncrossed projection transmits more reliably to spinal motoneurons. The information about supraspinal and initial spinal pRS axon trajectories should facilitate future physiological assessment of synaptic connections between pRS neurons and spinal neurons.
Collapse
Affiliation(s)
- Magne S Sivertsen
- Laboratory of Neural Development and Optical Recording (NDEVOR), Department of Physiology, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0316, Oslo, Norway
| | | | - Joel C Glover
- Laboratory of Neural Development and Optical Recording (NDEVOR), Department of Physiology, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0316, Oslo, Norway.,Norwegian Center for Stem Cell Research, Oslo University Hospital, 0317, Oslo, Norway
| |
Collapse
|
241
|
Dingu N, Deumens R, Taccola G. Electrical Stimulation Able to Trigger Locomotor Spinal Circuits Also Induces Dorsal Horn Activity. Neuromodulation 2015; 19:38-46. [DOI: 10.1111/ner.12354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/29/2015] [Accepted: 09/01/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Nejada Dingu
- Neuroscience Department; International School for Advanced Studies (SISSA); Trieste Italy
- SPINAL (Spinal Person Injury Neurorehabilitation Applied Laboratory); Istituto di Medicina Fisica e Riabilitazione (IMFR); Udine Italy
| | - Ronald Deumens
- Institute of Neuroscience; Université catholique de Louvain (UCL); Brussels Belgium
| | - Giuliano Taccola
- Neuroscience Department; International School for Advanced Studies (SISSA); Trieste Italy
- SPINAL (Spinal Person Injury Neurorehabilitation Applied Laboratory); Istituto di Medicina Fisica e Riabilitazione (IMFR); Udine Italy
| |
Collapse
|
242
|
Petrosyan HA, Alessi V, Hunanyan AS, Sisto SA, Arvanian VL. Spinal electro-magnetic stimulation combined with transgene delivery of neurotrophin NT-3 and exercise: novel combination therapy for spinal contusion injury. J Neurophysiol 2015; 114:2923-40. [PMID: 26424579 DOI: 10.1152/jn.00480.2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 09/29/2015] [Indexed: 12/12/2022] Open
Abstract
Our recent terminal experiments revealed that administration of a single train of repetitive spinal electromagnetic stimulation (sEMS; 35 min) enhanced synaptic plasticity in spinal circuitry following lateral hemisection spinal cord injury. In the current study, we have examined effects of repetitive sEMS applied as a single train and chronically (5 wk, every other day) following thoracic T10 contusion. Chronic studies involved examination of systematic sEMS administration alone and combined with exercise training and transgene delivery of neurotrophin [adeno-associated virus 10-neurotrophin 3 (AAV10-NT3)]. Electrophysiological intracellular/extracellular recordings, immunohistochemistry, behavioral testing, and anatomical tracing were performed to assess effects of treatments. We found that administration of a single sEMS train induced transient facilitation of transmission through preserved lateral white matter to motoneurons and hindlimb muscles in chronically contused rats with effects lasting for at least 2 h. These physiological changes associated with increased immunoreactivity of GluR1 and GluR2/3 glutamate receptors in lumbar neurons. Systematic administration of sEMS alone for 5 wk, however, was unable to induce cumulative improvements of transmission in spinomuscular circuitry or improve impaired motor function following thoracic contusion. Encouragingly, chronic administration of sEMS, followed by exercise training (running in an exercise ball and swimming), induced the following: 1) sustained strengthening of transmission to lumbar motoneurons and hindlimb muscles, 2) better retrograde transport of anatomical tracer, and 3) improved locomotor function. Greatest improvements were seen in the group that received exercise combined with sEMS and AAV-NT3.
Collapse
Affiliation(s)
- Hayk A Petrosyan
- Northport Veterans Affairs Medical Center, Northport, New York; Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York; and
| | - Valentina Alessi
- Northport Veterans Affairs Medical Center, Northport, New York; Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York; and
| | | | - Sue A Sisto
- Department of Physical Therapy, Division of Rehabilitation Sciences, Stony Brook University, Stony Brook, New York
| | - Victor L Arvanian
- Northport Veterans Affairs Medical Center, Northport, New York; Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York; and
| |
Collapse
|
243
|
Organization of the Mammalian Locomotor CPG: Review of Computational Model and Circuit Architectures Based on Genetically Identified Spinal Interneurons(1,2,3). eNeuro 2015; 2:eN-REV-0069-15. [PMID: 26478909 PMCID: PMC4603253 DOI: 10.1523/eneuro.0069-15.2015] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/25/2015] [Accepted: 08/29/2015] [Indexed: 12/05/2022] Open
Abstract
The organization of neural circuits that form the locomotor central pattern generator (CPG) and provide flexor–extensor and left–right coordination of neuronal activity remains largely unknown. However, significant progress has been made in the molecular/genetic identification of several types of spinal interneurons, including V0 (V0D and V0V subtypes), V1, V2a, V2b, V3, and Shox2, among others. The possible functional roles of these interneurons can be suggested from changes in the locomotor pattern generated in mutant mice lacking particular neuron types. Computational modeling of spinal circuits may complement these studies by bringing together data from different experimental studies and proposing the possible connectivity of these interneurons that may define rhythm generation, flexor–extensor interactions on each side of the cord, and commissural interactions between left and right circuits. This review focuses on the analysis of potential architectures of spinal circuits that can reproduce recent results and suggest common explanations for a series of experimental data on genetically identified spinal interneurons, including the consequences of their genetic ablation, and provides important insights into the organization of the spinal CPG and neural control of locomotion.
Collapse
|
244
|
Itakura Y, Kohsaka H, Ohyama T, Zlatic M, Pulver SR, Nose A. Identification of Inhibitory Premotor Interneurons Activated at a Late Phase in a Motor Cycle during Drosophila Larval Locomotion. PLoS One 2015; 10:e0136660. [PMID: 26335437 PMCID: PMC4559423 DOI: 10.1371/journal.pone.0136660] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 08/06/2015] [Indexed: 11/25/2022] Open
Abstract
Rhythmic motor patterns underlying many types of locomotion are thought to be produced by central pattern generators (CPGs). Our knowledge of how CPG networks generate motor patterns in complex nervous systems remains incomplete, despite decades of work in a variety of model organisms. Substrate borne locomotion in Drosophila larvae is driven by waves of muscular contraction that propagate through multiple body segments. We use the motor circuitry underlying crawling in larval Drosophila as a model to try to understand how segmentally coordinated rhythmic motor patterns are generated. Whereas muscles, motoneurons and sensory neurons have been well investigated in this system, far less is known about the identities and function of interneurons. Our recent study identified a class of glutamatergic premotor interneurons, PMSIs (period-positive median segmental interneurons), that regulate the speed of locomotion. Here, we report on the identification of a distinct class of glutamatergic premotor interneurons called Glutamatergic Ventro-Lateral Interneurons (GVLIs). We used calcium imaging to search for interneurons that show rhythmic activity and identified GVLIs as interneurons showing wave-like activity during peristalsis. Paired GVLIs were present in each abdominal segment A1-A7 and locally extended an axon towards a dorsal neuropile region, where they formed GRASP-positive putative synaptic contacts with motoneurons. The interneurons expressed vesicular glutamate transporter (vGluT) and thus likely secrete glutamate, a neurotransmitter known to inhibit motoneurons. These anatomical results suggest that GVLIs are premotor interneurons that locally inhibit motoneurons in the same segment. Consistent with this, optogenetic activation of GVLIs with the red-shifted channelrhodopsin, CsChrimson ceased ongoing peristalsis in crawling larvae. Simultaneous calcium imaging of the activity of GVLIs and motoneurons showed that GVLIs’ wave-like activity lagged behind that of motoneurons by several segments. Thus, GVLIs are activated when the front of a forward motor wave reaches the second or third anterior segment. We propose that GVLIs are part of the feedback inhibition system that terminates motor activity once the front of the motor wave proceeds to anterior segments.
Collapse
Affiliation(s)
- Yuki Itakura
- Department of Complexity Science and Engineering Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba, Japan
| | - Hiroshi Kohsaka
- Department of Complexity Science and Engineering Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba, Japan
| | - Tomoko Ohyama
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - Marta Zlatic
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - Stefan R Pulver
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - Akinao Nose
- Department of Complexity Science and Engineering Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba, Japan; Department of Physics, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
245
|
Strategies and lessons in spinal cord injury rehabilitation. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2015. [DOI: 10.1007/s40141-015-0096-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
246
|
Veeraraghavan P, Nistri A. Modulatory effects by CB1 receptors on rat spinal locomotor networks after sustained application of agonists or antagonists. Neuroscience 2015; 303:16-33. [DOI: 10.1016/j.neuroscience.2015.06.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/19/2015] [Accepted: 06/19/2015] [Indexed: 10/23/2022]
|
247
|
Gerasimenko Y, Gorodnichev R, Moshonkina T, Sayenko D, Gad P, Reggie Edgerton V. Transcutaneous electrical spinal-cord stimulation in humans. Ann Phys Rehabil Med 2015. [PMID: 26205686 DOI: 10.1016/j.rehab.2015.05.003] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Locomotor behavior is controlled by specific neural circuits called central pattern generators primarily located at the lumbosacral spinal cord. These locomotor-related neuronal circuits have a high level of automaticity; that is, they can produce a "stepping" movement pattern also seen on electromyography (EMG) in the absence of supraspinal and/or peripheral afferent inputs. These circuits can be modulated by epidural spinal-cord stimulation and/or pharmacological intervention. Such interventions have been used to neuromodulate the neuronal circuits in patients with motor-complete spinal-cord injury (SCI) to facilitate postural and locomotor adjustments and to regain voluntary motor control. Here, we describe a novel non-invasive stimulation strategy of painless transcutaneous electrical enabling motor control (pcEmc) to neuromodulate the physiological state of the spinal cord. The technique can facilitate a stepping performance in non-injured subjects with legs placed in a gravity-neutral position. The stepping movements were induced more effectively with multi-site than single-site spinal-cord stimulation. From these results, a multielectrode surface array technology was developed. Our preliminary data indicate that use of the multielectrode surface array can fine-tune the control of the locomotor behavior. As well, the pcEmc strategy combined with exoskeleton technology is effective for improving motor function in paralyzed patients with SCI. The potential impact of using pcEmc to neuromodulate the spinal circuitry has significant implications for furthering our understanding of the mechanisms controlling locomotion and for rehabilitating sensorimotor function even after severe SCI.
Collapse
Affiliation(s)
- Yury Gerasimenko
- Pavlov Institute of Physiology, 199034 St. Petersburg, Russia; Department of Integrative Biology and Physiology, University of California, Terasaki Life Sciences Building, 610, Charles E. Young Drive East, Los Angeles, CA 90095-1527 USA.
| | - Ruslan Gorodnichev
- Velikie Luky State Academy of Physical Education and Sport, 182100 Velikie Luky, Russia
| | | | - Dimitry Sayenko
- Department of Integrative Biology and Physiology, University of California, Terasaki Life Sciences Building, 610, Charles E. Young Drive East, Los Angeles, CA 90095-1527 USA
| | - Parag Gad
- Department of Integrative Biology and Physiology, University of California, Terasaki Life Sciences Building, 610, Charles E. Young Drive East, Los Angeles, CA 90095-1527 USA
| | - V Reggie Edgerton
- Department of Integrative Biology and Physiology, University of California, Terasaki Life Sciences Building, 610, Charles E. Young Drive East, Los Angeles, CA 90095-1527 USA; Brain Research Institute, University of California, Los Angeles, CA 90095 , USA
| |
Collapse
|
248
|
Lu DC, Niu T, Alaynick WA. Molecular and cellular development of spinal cord locomotor circuitry. Front Mol Neurosci 2015; 8:25. [PMID: 26136656 PMCID: PMC4468382 DOI: 10.3389/fnmol.2015.00025] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/30/2015] [Indexed: 01/20/2023] Open
Abstract
The spinal cord of vertebrate animals is comprised of intrinsic circuits that are capable of sensing the environment and generating complex motor behaviors. There are two major perspectives for understanding the biology of this complicated structure. The first approaches the spinal cord from the point of view of function and is based on classic and ongoing research in electrophysiology, adult behavior, and spinal cord injury. The second view considers the spinal cord from a developmental perspective and is founded mostly on gene expression and gain-of-function and loss-of-function genetic experiments. Together these studies have uncovered functional classes of neurons and their lineage relationships. In this review, we summarize our knowledge of developmental classes, with an eye toward understanding the functional roles of each group.
Collapse
Affiliation(s)
- Daniel C Lu
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA USA
| | - Tianyi Niu
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA USA
| | - William A Alaynick
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA USA
| |
Collapse
|
249
|
Rosenbaum P, Schmitz J, Schmidt J, Büschges A. Task-dependent modification of leg motor neuron synaptic input underlying changes in walking direction and walking speed. J Neurophysiol 2015; 114:1090-101. [PMID: 26063769 DOI: 10.1152/jn.00006.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 06/04/2015] [Indexed: 11/22/2022] Open
Abstract
Animals modify their behavior constantly to perform adequately in their environment. In terrestrial locomotion many forms of adaptation exist. Two tasks are changes of walking direction and walking speed. We investigated these two changes in motor output in the stick insect Cuniculina impigra to see how they are brought about at the level of leg motor neurons. We used a semi-intact preparation in which we can record intracellularly from leg motor neurons during walking. In this single-leg preparation the middle leg of the animal steps in a vertical plane on a treadwheel. Stimulation of either abdomen or head reliably elicits fictive forward or backward motor activity, respectively, in the fixed and otherwise deafferented thorax-coxa joint. With a change of walking direction only thorax-coxa-joint motor neurons protractor and retractor changed their activity. The protractor switched from swing activity during forward to stance activity during backward walking, and the retractor from stance to swing. This phase switch was due to corresponding change of phasic synaptic inputs from inhibitory to excitatory and vice versa at specific phases of the step cycle. In addition to phasic synaptic input a tonic depolarization of the motor neurons was present. Analysis of changes in stepping velocity during stance showed only a significant correlation to flexor motor neuron activity, but not to that of retractor and depressor motor neurons during forward walking. These results show that different tasks in the stick insect walking system are generated by altering synaptic inputs to specific leg joint motor neurons only.
Collapse
Affiliation(s)
- Philipp Rosenbaum
- Biocenter Cologne, Zoological Institute, Department for Animal Physiology, University of Cologne, Cologne, Germany; and
| | - Josef Schmitz
- Department of Biological Cybernetics, Faculty for Biology, University of Bielefeld, Bielefeld, Germany
| | - Joachim Schmidt
- Biocenter Cologne, Zoological Institute, Department for Animal Physiology, University of Cologne, Cologne, Germany; and
| | - Ansgar Büschges
- Biocenter Cologne, Zoological Institute, Department for Animal Physiology, University of Cologne, Cologne, Germany; and
| |
Collapse
|
250
|
Molkov YI, Bacak BJ, Talpalar AE, Rybak IA. Mechanisms of left-right coordination in mammalian locomotor pattern generation circuits: a mathematical modeling view. PLoS Comput Biol 2015; 11:e1004270. [PMID: 25970489 PMCID: PMC4430237 DOI: 10.1371/journal.pcbi.1004270] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 04/06/2015] [Indexed: 12/28/2022] Open
Abstract
The locomotor gait in limbed animals is defined by the left-right leg coordination and locomotor speed. Coordination between left and right neural activities in the spinal cord controlling left and right legs is provided by commissural interneurons (CINs). Several CIN types have been genetically identified, including the excitatory V3 and excitatory and inhibitory V0 types. Recent studies demonstrated that genetic elimination of all V0 CINs caused switching from a normal left-right alternating activity to a left-right synchronized “hopping” pattern. Furthermore, ablation of only the inhibitory V0 CINs (V0D subtype) resulted in a lack of left-right alternation at low locomotor frequencies and retaining this alternation at high frequencies, whereas selective ablation of the excitatory V0 neurons (V0V subtype) maintained the left–right alternation at low frequencies and switched to a hopping pattern at high frequencies. To analyze these findings, we developed a simplified mathematical model of neural circuits consisting of four pacemaker neurons representing left and right, flexor and extensor rhythm-generating centers interacting via commissural pathways representing V3, V0D, and V0V CINs. The locomotor frequency was controlled by a parameter defining the excitation of neurons and commissural pathways mimicking the effects of N-methyl-D-aspartate on locomotor frequency in isolated rodent spinal cord preparations. The model demonstrated a typical left-right alternating pattern under control conditions, switching to a hopping activity at any frequency after removing both V0 connections, a synchronized pattern at low frequencies with alternation at high frequencies after removing only V0D connections, and an alternating pattern at low frequencies with hopping at high frequencies after removing only V0V connections. We used bifurcation theory and fast-slow decomposition methods to analyze network behavior in the above regimes and transitions between them. The model reproduced, and suggested explanation for, a series of experimental phenomena and generated predictions available for experimental testing. Movements of left and right limbs in mammals during locomotion are controlled by distinct rhythm-generating neuronal circuits in the spinal cord. Complex interactions between these circuits provide flexible coordination of limb movements in different gaits. It was shown that interactions between left and right spinal circuits are mediated by commissural interneurons. Genetic ablation of a particular type of these interneurons, called V0, leads to switching from a regular, left-right alternating “walking” activity to a left-right synchronous “hopping” pattern. Moreover, the V0 commissural interneurons have excitatory and inhibitory subtypes that appear to play different roles in the left-right coordination depending on locomotor speed. In this theoretical study, we build a simplified mathematical model of spinal circuits that describes left and right rhythm generators interacting bilaterally via several types of commissural connections. Using this model, we simulate different experimental manipulations, analyze the resultant alternating and synchronous regimes of activity, and propose explanations for the results of experimental studies. We show that although both excitatory and inhibitory V0 commissural pathways support left-right alternation, the resultant locomotor pattern and gait depend on the balance between different commissural interactions, which in turn may depend on the level of neuronal excitation and locomotor speed.
Collapse
Affiliation(s)
- Yaroslav I. Molkov
- Department of Mathematical Sciences, Indiana University—Purdue University, Indianapolis, Indiana, United States of America
| | - Bartholomew J. Bacak
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | | | - Ilya A. Rybak
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|